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Abstract. Water erosion on arable land can reduce soil fertility and agricultural productivity. Despite the impact 18 

of water erosion on crops, it is typically neglected in global crop yield projections. Furthermore, previous efforts 19 

to quantify global water erosion have paid little attention to the effects of field management on the magnitude of 20 

water erosion. In this study, we analyse the robustness of simulated water erosion estimates in maize and wheat 21 

fields between the years 1980 to 2010 based on daily model outputs from a global gridded version of the 22 

Environmental Policy Integrated Climate (EPIC) crop model. Using the MUSS water erosion equation and 23 

country-specific and environmental indicators determining different intensities in tillage, residue handling and 24 

cover crops, we obtained the global median water erosion rates of 7 t ha-1 a-1 in maize fields and 5 t ha-1 a-1 in wheat 25 

fields. A comparison of our simulation results with field data demonstrates an overlap of simulated and measured 26 

water erosion values for the majority of global cropland. Slope inclination and daily precipitation are key factors 27 

in determining the agreement between simulated and measured erosion values and are the most critical input 28 

parameters controlling all water erosion equations included in EPIC. The many differences between field 29 

management methods worldwide, the varying water erosion estimates from different equations and the complex 30 

distribution of cropland in mountainous regions add uncertainty to the simulation results. To reduce the 31 

uncertainties in global water erosion estimates, it is necessary to gather more data on global farming techniques, 32 

to reduce the uncertainty in global land use maps and to collect more data on soil erosion rates representing the 33 

diversity of environmental conditions where crops are grown.  34 

 35 

1 Introduction 36 

Water erosion is widely recognized as a threat to global agriculture (den Biggelaar et al., 2004; Kaiser, 2004; 37 

Panagos et al., 2018; Pimentel, 2006). The removal of topsoil by surface runoff reduces soil fertility and crop 38 
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yields due to loss of nutrients, degradation of the soil structure, and decreasing plant-available water capacity 39 

(Våje et al., 2005). Water erosion is a natural process, but the impact of agricultural field management on surface 40 

cover and roughness is decisive for the magnitude of water erosion. High energy precipitation, steep slopes and 41 

lack of vegetation cover intensify water erosion. The most vulnerable areas are mountainous regions, due to steep 42 

slopes, the tropics and subtropics, due to abundant high energy precipitation, and arid regions, where precipitation 43 

events are rare but often intense and the vegetation cover is sparse. This global distribution of water erosion is 44 

indicated by suspended sediment in rivers (Walling and Webb, 1996). South America, Sub-Saharan Africa, South 45 

and East Asia have been identified as the most vulnerable regions to erosion on agricultural land by several prior 46 

studies (Borrelli et al., 2017; Pimentel et al., 1995). 47 

Despite its importance for global agriculture, water erosion is usually not considered in global gridded crop model 48 

(GGCM) studies. Throughout the past decade, GGCMs - typically combinations of agronomic or ecosystem 49 

models and global gridded input data infrastructures - have become essential tools for climate change impact 50 

assessments, evaluations of agricultural externalities, and as input data providers for agro-economic models 51 

(Mueller et al., 2017). Few assessments have considered land degradation processes and found their inclusion and 52 

understanding crucial for evaluating climate change mitigation and adaptation strategies (Balkovič et al., 2018; 53 

Chappell et al., 2016). Beyond crop models, there is a need to improve the representation of agricultural 54 

management and soil-related processes in earth system models to better reflect carbon sinks and sources (Luo et 55 

al., 2016; McDermid et al., 2017; Pongratz et al., 2018). Moreover, improving the representation of water erosion 56 

in large-scale models is urgently needed to inform major environmental and agricultural policy programs such as 57 

the European Union's Common Agricultural Policy (CAP), the United Nations Sustainable Development Goals 58 

(SDGs), the United Nations Convention to Combat Desertification (UNCCD) and the Intergovernmental Science-59 

Policy Platform on Biodiversity and Ecosystem Services (IPBES) (Alewell et al., 2019). Yet, the necessary 60 

algorithms to simulate water erosion are often not incorporated in such models. Exceptions among field-scale crop 61 

models, which are frequently used in GGCM ensemble studies, are the Environmental Policy Integrated Climate 62 

model (EPIC) and Agricultural Production Systems Simulator (APSIM). Compared to other commonly used crop 63 

models in GGCMs, EPIC stands out in its detailed representation of soil processes including water erosion and 64 

the impacts of tillage on soil properties (Folberth et al., 2019). 65 

Recently, water erosion models such as the Universal Soil Loss Equation (USLE) and the Revised Universal Soil 66 

Loss Equation (RUSLE) have been used to estimate global water erosion. Annual global soil removal estimates 67 

and water erosion rates on cropland of recent studies range between 13 – 22 Gt and 11 - 13 t ha-1 (Borrelli et al., 68 

2017; Doetterl et al., 2012; van Oost et al., 2007). USLE and its modifications were developed in the Midwestern 69 

United States and should ideally be evaluated against soil erosion measurements when used for other agro-70 

environmental zones (Evans and Boardman, 2016). However, the uneven distribution of field data around the 71 

world, the lack of long-term soil measurements in most global regions, and the great variability of the designs of 72 

erosion rate measurements hamper the evaluation of global soil loss estimates derived from models (Auerswald 73 

et al., 2004; Borrelli et al., 2017; García-Ruiz et al., 2015). In addition, model input data on topography, soil 74 

properties and land use are often aggregated over large areas and thus simulation results cannot be directly 75 

compared to single field measurements at specific locations. 76 
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Most global soil removal estimates using water erosion models are based on static observation approaches or on 77 

very coarse timescales that do not fall below annual time steps (Borrelli et al., 2017). Therefore, seasonal patterns 78 

of soil cover and precipitation intensities are neglected even though they are crucial factors for water erosion. The 79 

state of the soil and its cover is influenced by land management, such as the choice of crops, planting and harvest 80 

dates, tillage and plant residue management. Accordingly, neglecting the impact of seasonal changes in vegetation 81 

cover and field management practices constitutes large uncertainty in global water erosion estimates. Crop models 82 

usually simulate crop growth on a daily timescale, which allows attached water erosion models to account for 83 

daily changes in weather, soil properties and vegetation cover. However, uncertainty remains due to the increasing 84 

requirement of input data for daily simulations, which is especially challenging at a global scale. 85 

The overall aim of this study is (i) to analyse the robustness of water erosion estimates in all global agro-86 

environmental regions simulated with an EPIC-based global-gridded crop model and (ii) to discuss the main 87 

drivers affecting the robustness and the uncertainty of simulated water erosion rates on a global scale. We simulate 88 

global water erosion rates in maize and wheat fields using different empirical erosion equations in EPIC while 89 

accounting for the daily crop growth and development under different field management scenarios. Here, maize 90 

and wheat are used as representative crops of global agriculture, as they are grown under most environmental 91 

conditions and represent contrasting soil cover patterns. Our global simulations are carried out for a baseline crop 92 

management scenario based on a set of environmental and country-specific assumptions and indicators, which is 93 

a common practice in global gridded crop modelling. In addition, we quantify the uncertainties of simulated water 94 

erosion values stemming from (i) uncertain field management inputs, and (ii) water erosion calculation methods. 95 

We also evaluate the model’s sensitivity to all inputs involved in the water erosion calculation to interpret the 96 

variability and uncertainties of the simulation results, and to discuss the differences between water erosion 97 

equations. Finally, we use field measurements from various locations world-wide to evaluate the robustness of 98 

estimated water erosion rates under different environmental conditions. 99 

2 Methods 100 

The simplified framework in Figure 1 illustrates the particular stages of the methodological procedure applied by 101 

this study and their relationships to input data and model outputs. Both, input and output data are used twofold. 102 

We use input data (i) to simulate daily maize and wheat growth and water erosion with EPIC, and (ii) to analyse 103 

the sensitivity of relevant model parameters to simulate global water erosion with all equations in EPIC. We use 104 

model outputs (i) to calculate a baseline global water erosion scenario, and (ii) to address the uncertainty of 105 

simulation results. The final step of this study consists of the robustness check of the model outputs using field 106 

data. A detailed description of each element of this study is described in the following sections. 107 

 108 

2.1 Modelling water erosion and crop growth with EPIC 109 

2.1.1 Global gridded crop model and input data 110 

We use a global gridded version of the Environmental Policy Integrated Climate (EPIC) crop model, EPIC-IIASA 111 

(Balkovič et al., 2014), to simulate soil sediment loss with runoff from 1980 to 2010 while accounting for the 112 

daily growth of maize and wheat under different field management scenarios. EPIC can simulate the growth of a 113 

wide range of crops and has a sophisticated representation of carbon, nutrient and water dynamics as well as a 114 
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wide variety of possible field management options, including tillage operations and crop rotations (Izaurralde et 115 

al., 2006; Sharpley and Williams, 1990). Originally EPIC was named Erosion-Productivity Impact Calculator and 116 

was developed to determine the relationship between erosion and soil productivity. Due to its origin, EPIC has 117 

several options to calculate water erosion caused by precipitation, runoff and irrigation (Williams, 1990). 118 

EPIC-IIASA requires global soil and topography data and daily weather data. The basic spatial resolution of the 119 

model is 5’ x 5’ at which soil and topographic data are provided. These are aggregated to homogenous response 120 

units and further intersected with a 30’ x 30’ climate grid, the resolution at which global gridded climate data are 121 

available. This results in a total of 131,326 grid cells with a spatial resolution ranging between 5’ to 30’ (about 9 122 

km to 56 km near the equator) (Skalský et al., 2008). We use global daily weather data from the AgMERRA 123 

dataset for the years 1980-2010 (Ruane et al., 2015), soil information from the Harmonized World Soil Database 124 

(FAO/IIASA/ISRIC/ISSCAS/JRC, 2009), and topography from USGS GTOPO30 (USGS, 1997). Each grid cell 125 

is represented by a single field characterized by the combination of topography and soil conditions prevailing in 126 

this landscape unit. Each representative field has a defined slope length (20 – 200 m) and field size (1 - 10 ha) 127 

based on a set of rules for different slope classes (Table S1). The slope of each representative field is determined 128 

by the slope class covering the largest area in each grid cell (Table S1). Slope classes are taken from a global 129 

terrain slope database (IIASA/FAO, 2012) and are based on a high-resolution 90 m SRTM digital elevation model. 130 

In each grid cell, we consider reported growing seasons for maize and wheat (Sacks et al., 2010), and spatially 131 

explicit nitrogen and phosphorus fertilizer application rates (Mueller et al., 2012). 132 

2.1.2 Water erosion equations 133 

EPIC includes seven empirical equations to calculate water erosion (Wischmeier and Smith, 1978). The basic 134 

equation is: 135 

Y = R ∗ K ∗ LS ∗ C ∗ P (1) 136 

where Y is soil erosion in t ha-1 (mass/area), R is the erosivity factor (erosivity unit/area), K is the soil erodibility 137 

factor in t MJ-1 (mass/erosivity unit), LS is the slope length and steepness factor (dimensionless), C is the soil 138 

cover and management factor (dimensionless) and P is the conservation practices factor (dimensionless).  139 

The main difference between the water erosion equations available in EPIC is their energy components used to 140 

calculate the erosivity factor. The USLE, RUSLE and RUSLE2 equations use precipitation intensity as an erosive 141 

energy to calculate the detachment of soil particles. The Modified Universal Soil Loss Equation (MUSLE) 142 

equation and its variations MUST and MUSS use runoff variables to simulate water erosion and sediment yield. 143 

The Onstad-Foster equation (AOF) combines energy through rainfall and runoff (Table 1). 144 

The erosion energy component is calculated as a function of either runoff volume Q (mm), peak runoff rate qp 145 

(mm h-1) and watershed area WSA (ha), or via the rainfall erosivity index EI (MJ ha-1). The latter determines the 146 

detachment of soil particles through the energy of daily precipitation and a statistical estimate of the daily 147 

maximum intensity of precipitation falling within 30 minutes. RUSLE2 is the only equation calculating soil 148 

deposition. If the sediment load exceeds the transport capacity, determined by a function of flow rate and slope 149 

steepness, soil is deposited, which is calculated by a function of flow rate and particle size (USDA-ARC, 2013). 150 
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The soil cover and management factor is updated for every day where runoff occurs using a function of crop 151 

residues, biomass cover and surface roughness. The impact of soil erodibility on simulated water erosion is 152 

calculated for the top-soil layer at the start of each simulation year as a function of sand, silt, clay and organic 153 

carbon content. The topographic factor is calculated as a function of slope length and slope steepness. A detailed 154 

description of the cover and management, soil erodibility and topographic factor is provided in the supporting 155 

information (Text S1). The conservation practice factor is included in all equations as a static coefficient ranging 156 

between 0 and 1, where 0 represents conservation practices that prevent any erosion and 1 represents no 157 

conservation practices. Typical conservation practice factors can be derived from tables, which include values 158 

ranging from 0.01 to 0.35 for terracing strategies and from 0.25 to 0.9 for different contouring practices (Morgan, 159 

2005; Wischmeier and Smith, 1978). Alternatively, values can be derived from local field studies and remote 160 

sensing (Karydas et al., 2009; Panagos et al., 2015), from equations using topographical data (Fu et al., 2005; 161 

Terranova et al., 2009), or from economic indicators (Scherer and Pfister, 2015).  162 

2.1.3 Field management scenarios 163 

Field management techniques influencing soil properties and soil cover have a significant impact on the amount 164 

of water erosion. However, these methods are very heterogenous around the world and data on different field 165 

management techniques are sparse. Therefore, three tillage management scenarios – conventional tillage, reduced 166 

tillage and no-tillage – were designed by altering parameters related to water erosion to analyse the impact of field 167 

management on simulated water erosion and to draw conclusions on its impact on the quality of simulation results. 168 

In the reduced and no-tillage scenarios, we decrease soil disturbance by reducing cultivation operations, tillage 169 

depth and surface roughness, and we increase plant residues left in the field after harvest. In addition, we reduce 170 

the runoff curve numbers, which indicate the runoff potential of a hydrological soil group, land use and treatment 171 

class, with decreasing tillage intensification by using pre-defined values for the cover treatment classes presented 172 

in Table 2 (Sharpley and Williams, 1990). By lowering the runoff curve numbers, the impact of reduced tillage 173 

practices on the hydrologic balance can be taken into account (Chung et al., 1999). We simulate each tillage 174 

scenario with and without green fallow cover in between growing seasons, leading to a total of six field 175 

management scenarios. 176 

2.2 Baseline scenario for estimating global water erosion in wheat and maize fields 177 

We estimate the rate of water erosion globally by combining these six tillage and cover crop scenarios in different 178 

regions of the world, using climatic and country-specific assumptions and indicators (Table 3). We chose maize 179 

and wheat as two contrasting crop types for analysing water erosion in different cultivation systems. Maize is a 180 

row crop with relatively large areas of bare and unprotected soil between the crop rows. The plant density in wheat 181 

fields is much higher, which improves the protection of soils against water erosion. 182 

We consider conventional and reduced tillage systems globally while considering no-tillage only for countries in 183 

which the share of conservation agriculture is at least 5 %. In tropical regions, we simulate water erosion with a 184 

green cover in between maize and wheat seasons to account for soil cover from a year-round growing season. In 185 

temperate and snow regions, we simulate water erosion affected by both soil cover throughout the year and bare 186 

soil in winter seasons. In arid regions, we do not simulate green cover in between growing seasons due to the 187 

limited water supply. 188 
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On slopes steeper than 5 %, we consider only rainfed agriculture, as hilly cropland is irrigated predominantly on 189 

terraces that prevent water runoff. To account for erosion control measures on steep slopes, we use a conservation 190 

P-factor of 0.5 on slopes steeper than 16 %, and a P-factor of 0.15 on slopes steeper than 30 % to simulate 191 

contouring and terracing based on the range of P-values presented by Morgan (2005). The threshold for slopes 192 

that are cultivated with conservation practices is based on the slope classes used for the underlying structure of 193 

slope information of EPIC-IIASA, from which the three highest slope classes (16–30 %, 30–45 %, >45 %) mark 194 

slopes that are less likely to be cultivated without measures to prevent erosion. We choose the MUSS equation 195 

for the baseline scenario as it generates the lowest deviation between simulated and measured water erosion as 196 

discussed below. Table 3 summarises the field management assumptions of the baseline scenario used to aggregate 197 

erosion rates in each grid cell and region. 198 

2.3 Uncertainty analysis of field management scenarios and water erosion equations  199 

Given the global scale of the analysis and the aggregated nature of available field management information, there 200 

is much uncertainty about crop management strategies, which introduces uncertainty in the water erosion 201 

estimates. In addition, each water erosion equation gives a different overall erosion estimate. To discuss the 202 

uncertainty of simulation results, we evaluate the variance in simulated water erosion rates at grid level due to: (i) 203 

different management assumptions, and (ii) the choice of water erosion equation. The variance of simulation 204 

outputs is defined as the range between minimum and maximum simulated water erosion rates with all 205 

combinations of tillage and cover crop scenarios and with each water erosion equation. 206 

2.4 Sensitivity analysis of model parameters 207 

We use a sensitivity analysis to identify the most essential input parameters to the factors in the seven water 208 

erosion equations. We use the Sobol method (Sobol, 1990), which is a variance-based sensitivity analysis that is 209 

popular in environmental modelling (Nossent et al., 2011). With this method, it is possible to quantify the amount 210 

of variance that each parameter contributes to the total variance of the model output. These amounts are expressed 211 

as sensitivity indices, which rank the importance of each input parameter for simulated water erosion. In addition, 212 

the sensitivity indices can be used to determine the impact of parameter interactions on the model output. 213 

We test 30 parameters directly connected to the water erosion equations in EPIC. In total, we assign 126,976 214 

random values to all input parameters along a pre-defined triangular distribution or a range of discrete values 215 

(Table S2). Water erosion is simulated with EPIC using the seven available equations for each random input 216 

combination at 40 locations where wheat and maize are cultivated. To represent a heterogenous distribution of 217 

global precipitation regimes, we use the natural break optimisation method to choose locations based on average 218 

annual precipitation amounts from 1980 to 2010 (Jenks, 1967). For each location and equation, the most sensitive 219 

parameters are ranked. To analyse the impact of precipitation regimes on the sensitivity of each parameter, we use 220 

Spearman coefficients (ρ) to determine if positive or negative relationships exist between each parameter’s 221 

sensitivity and annual precipitation. 222 

2.4 Evaluation of simulated erosion against reported field measurements 223 

We compare our simulated water erosion rates with 606 soil erosion measurements on arable land from 36 224 

countries representing plot and field scale. Most of the selected erosion rates are based on the 137Cs method. In 225 

addition, data from erosion plots and volumetric measurements of rills collected by Auerswald et al. (2009), 226 
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Benaud et al. (2020) and García-Ruiz et al. (2015) are used. In total, 315 records are derived by the 137Cs method, 227 

188 records from runoff plots, and 103 records from volumetric measurements of rills. An overview of the field 228 

data is presented in Fig. S4-S7, and the full dataset is available in Table S5. 229 

Guidance on the 137Cs method is provided by Fulajtar et al. (2017); Mabit et al. (2014) and Zapata (2002). The 230 

137Cs radionuclide was released by nuclear weapon tests and from the accident of the Chernobyl Nuclear Power 231 

Plant to the atmosphere and subsequently deposited in the uppermost soil layer by atmospheric fallout. After its 232 

deposition it was bind to soil colloids and can be moved only together with soil particles by mechanical processes 233 

such as soil erosion. Its chemical mobility and uptake by plants is negligible (Mabit et al., 2014; Zapata, 2002). If 234 

part of the topsoil contaminated by 137Cs is removed by erosion, the 137Cs concentrations in soil profiles can be 235 

used to trace soil movements using mass balance equation (Walling et al., 2014). A major advantage of the 137Cs 236 

method is that it provides long term mean erosion rates (representing the period since 137Cs fallout in the 1960s 237 

until the time of sampling) and overcomes the problem of high temporal variability of erosion.  238 

Bounded plots are the most commonly used method of erosion measurements. They were introduced in the USA 239 

in the 1920s (Hudson, 1993) and were used for the development of USLE and WEPP models (Brazier, 2004). 240 

Eroded soil material can be quantified with erosion plots in different ways (total collection of sediment, fractioned 241 

collection of sediments using multislott divisors, measurement of discharge and sediment concentration by tipping 242 

buckets and Coshocton wheels). The overview of this method is provided by Cerdan et al. (2010); Hudson (1993); 243 

Mutchler et al. (1994); De Ploey and Gabriels (1980) and Zachar (1982). 244 

The volumetric measurements of rill erosion are used since approximately the 1940s in the USA (Kaiser, 1978 in 245 

Evans, 2013) and the 1950s in Europe (Lobotka, 1955), usually at field scale (Boardman, 1990, 2003; Boardman 246 

and Evans, 2020; Brazier, 2004; Evans, 2002, 2013; Herweg, 1988; Zachar, 1982). The volume of erosion rills is 247 

derived from their lengths and profile cross-section areas, which are measured in field or from terrestrial and aerial 248 

photos (Evans, 1986, 1988; Watson and Evans, 1991).  249 

The overwhelming effect of the experimental methodology on measured erosion rates, the lack of sufficient 250 

metadata accompanying erosion measurements and the granular spatial resolution of our simulation setup hinders 251 

a direct comparison between simulated and observed water erosion rates. Instead we compare aggregated 252 

simulated and observed erosion values for different slope and precipitation classes to analyse the robustness of 253 

simulated water erosion rates under different environmental conditions. Therefore, only measurements with 254 

recorded slope steepness and annual precipitation are used. Where annual precipitation is not recorded, it is taken 255 

from the WorldClim2 dataset (Fick and Hijmans, 2017). Due to the non-normal distribution of the simulated and 256 

measured data, the median deviation (MD) is used as a measure to compare the agreement between simulated and 257 

measured water erosion values. 258 

3 Results 259 

We estimate global median water erosion rates of 7 t ha-1 and 5 t ha-1 in maize and wheat fields, respectively. The 260 

total removal of soil in global maize and wheat fields is estimated to be 5.3 Gt a-1 and 1.9 Gt a-1, respectively. The 261 

map in Figure 2 illustrates the global distribution of simulated water erosion rates. Highest water erosion is 262 

simulated in mountainous regions and regions with strong precipitation, especially in tropical climate zones. In 263 

Asia, those regions are widespread in the east, south-east and the Himalaya region. In Africa, similar areas with 264 
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high water erosion values are spread around the continent and are most common at the west coast and in East 265 

Africa including broad areas in Guinea, Sierra Leone, Liberia, Ethiopia and Madagascar. In South America, 266 

highest water erosion is simulated in the south of Brazil and regions around the Andes mountain range and the 267 

Amazon river basin. The highest water erosion values on the American continent are simulated in tropical Central 268 

America and the Caribbean. In North America, highest water erosion occurs along the west coast and in the east. 269 

Water erosion in Europe is highest in Mediterranean areas and around the Alps.  270 

Median annual water erosion values for the five largest wheat and maize producing countries demonstrate the 271 

strong impact of climate and topography on simulated water erosion. In Brazil, China and India, where a large 272 

proportion of cropland is in tropical areas, water erosion is relatively high with annual median values of 10 t ha-1, 273 

6 t ha-1, and 37 t ha-1, respectively. In Russia and the United States annual median values are much lower with 1 t 274 

ha-1, and 2 t ha-1, respectively. Overall, Figure 2 illustrates the large variation in simulated water erosion between 275 

tropical climate regions and regions with a large proportion of flat and dry land. 276 

3.1 Sources of model uncertainty related to management assumptions and method selection 277 

The uncertainty of the simulation results due to management scenarios and the choice of water erosion equations 278 

is highest in regions most vulnerable to water erosion (Figure 3). The annual median uncertainty range at each 279 

grid cell due to management is 30 t ha-1. For 97 % of grid cells, the lowest erosion rates are simulated with 280 

management scenarios including no-tillage and cover crops. For 86 % of grid cells, maximum erosion rates are 281 

simulated under conventional tillage without cover crops. The annual median uncertainty range at each grid cell 282 

due to the choice of erosion equation is 23 t ha-1. In 74 % of grid cells, the lowest erosion rates are simulated with 283 

the MUSS equation. The highest erosion values are simulated with the RUSLE equation (46 %), followed by the 284 

USLE equation (25%). 285 

In most locations, the uncertainty due to field management exceeds the uncertainty caused by choice of erosion 286 

equation. For 46 % of grid cells, management scenarios cause the prevailing uncertainty, which we defined as the 287 

higher uncertainty range by at least 5 t ha-1. The selected erosion equation causes higher uncertainty by at least 5 288 

t ha-1 in 14 % of grid cells. The map in Figure 4 illustrates the global distribution of prevailing uncertainty sources.  289 

3.2 Main drivers of the global erosion model 290 

We designed the sensitivity study to explain the large variability of simulated water erosion rates in different 291 

regions and to discuss the main differences between water erosion equations. Water erosion is highly sensitive to 292 

slope steepness (SLP) for all equations. The first-order sensitivity index of the slope parameter indicates that 46–293 

54 % of the variance in the model output is attributable to the slope, without considering interactions between the 294 

input parameters (Table 4). Daily precipitation (PRCP) is the second most important parameter for calculating 295 

water erosion, with an individual contribution of around 9–20 % to the variance of the output. The remaining 296 

parameters contribute together 4–13 % to the output variance. 297 

The first-order sensitivity indices do not include interactions between input parameters, which leads to the sum of 298 

all first-order sensitivity indices being lower than 1. The total-order sensitivity indices sum all first-order effects 299 

and interactions between parameters, which leads to overlaps in case of interactions and a sum greater than 1. The 300 

differences between the first-order and the total-order indices can be used as a measure to determine the impact 301 

of the interactions between a specific parameter with other parameters. The total-order sensitivity indices show 302 
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that slope steepness, including interactions to other parameters, contributes 63–75 % of the output variance from 303 

which 18–21 % are due to interactive effects with other parameters (Table 5). The total-order sensitivity indices 304 

from precipitation range from 21–36 %, from which 10–18 % is due to interactions with other parameters. 305 

The high sensitivity of slope and precipitation is similar for all equations, but the most sensitive parameters after 306 

these can be different for each equation. Equations estimating erosion energy by surface runoff and the RUSLE2 307 

equation are very sensitive to the hydrological soil group (HSG), which determines the soils infiltration ability. 308 

This parameter is used in the calculation of the curve number, which defines the partition of precipitation into 309 

runoff and infiltration. Also, the land use number (LUN), which is ranked among the most sensitive input 310 

parameters, is used for the calculation of the curve number. The most sensitive parameters of the USLE and 311 

RUSLE equation, following slope inclination and daily precipitation, are soil texture classes (SAND & SILT) 312 

followed by daily temperature changes (TMX). Crop residues (ORHI) are relatively important for all equations 313 

but especially important for equations based on rainfall-energy. Other parameters relevant for field management, 314 

such as surface roughness and mixing efficiency of the topsoil, have little influence on water erosion. 315 

The sensitivity of slope steepness has a strong positive correlation with the amount of annual precipitation at each 316 

location (ρ = 0.69, p<0.01). The increase in the sensitivity of slope steepness with increasing annual precipitation 317 

is demonstrated in Figure 5, which illustrates substantially lower sensitivity indices at dry locations compared to 318 

wet locations. In contrast, the sensitivity indices of daily precipitation are negatively correlated to annual 319 

precipitation with a moderate strength (ρ = 0.45, p<0.05). Depending on the equation, strong positive or negative 320 

correlations between SIs and annual precipitation also exist for other parameters such as slope length, soil texture, 321 

soil organic carbon, channel length, channel slope and watershed area (Table S4).  322 

3.3 Evaluation of simulation results against field data 323 

The most recent estimated global water erosion rates on cropland of 11 - 13 t ha-1 derived from a comparable 324 

method (Borrelli et al., 2017; Doetterl et al., 2012; van Oost et al., 2007) lie above our simulated median water 325 

erosion rates of 7 t ha-1 and 5 t ha-1 for maize and wheat fields, respectively. Similarly, our global water erosion 326 

estimates in maize and wheat fields are lower than the median value of 9 t ha-1 from 606 water erosion 327 

measurements from cropland around the world.  328 

To evaluate the agreement between simulated and observed data, we compare median values between simulated 329 

and measured erosion rates grouped by precipitation and slope classes, which are defined along the whole range 330 

of recorded slope inclinations and annual precipitation amounts of the field data (Figure 6a). Although slope and 331 

precipitation classes from the field are spread unevenly, they cover most climatic and topographic characteristics 332 

relevant to global agriculture. The comparison illustrates that the deviation between simulated and field data is 333 

highest for locations with steep slopes and high annual precipitation. Where slopes are steeper than 8 % and annual 334 

precipitation is higher than 1000 mm, the median of simulated water erosion exceeds the median of measured 335 

water erosion in most cases by at least 50 t ha-1. With decreasing slope steepness and annual precipitation, the 336 

median deviation between simulated and measured data is decreasing. Where both slope steepness is below 8 % 337 

and annual precipitation is below 1000 mm, the median deviation is lower than 5 t ha1 in most cases. A comparison 338 

of measured and simulated water erosion using other equations with the baseline scenario can be found in Fig. S8. 339 
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The boxplots in Figure 6b illustrate the range of water erosion values measured in the field and simulated with the 340 

baseline scenario. The high deviation between observed and simulated values for grouped locations with slopes 341 

steeper than 8 % and annual precipitation higher than 1000 mm can also be observed between the range of 342 

simulated and measured water erosion values. Outside locations combining steep slopes and strong precipitation, 343 

median deviation between simulated and measured data is lower than the variability within the field data. The 344 

range of values at locations with lower precipitation and slope steepness demonstrates that simulated values are 345 

mostly below measured values in those environments.  346 

The uncertainty in the choice of management scenarios and water erosion equations included in our baseline 347 

scenario leads to an uncertainty of the deviation between simulated and measured erosion values. This uncertainty 348 

is demonstrated in Figure 6b by additional three bars illustrating the range of simulated medians due to contrasting 349 

tillage management scenarios, cover crop scenarios and different water erosion equations. At locations with low 350 

to moderate slope steepness and annual precipitation, the measured water erosion values agree best with the 351 

simulation values generated under scenarios implying larger water erosion, such as high intensity tillage and low 352 

soil cover. On the other hand, at locations with steep slopes and intensive precipitation, the measured values are 353 

closer to the simulated values under scenarios with less intensive tillage and more soil cover. In addition, the 354 

varying sensitivities of each water erosion equation lead to a different magnitude of water erosion values in 355 

different environments. On low to moderate slopes, water erosion simulated with the MUSS equation is lowest, 356 

whereas RUSLE generates the highest values. On steep slopes, the RUSLE equation generates the lowest water 357 

erosion values, which agree best with the measured values. The options to increase and decrease simulated water 358 

erosion with different field management scenarios and water erosion equations creates both uncertainty in the 359 

model results, but also the possibility to closely match field data. 360 

At locations combining steep slopes and intense precipitation, most management scenarios and equations generate 361 

water erosion values that are higher than the measured values. However, those environmental conditions cover 362 

only a small share of global cropland. Cultivation areas with slopes steeper than 8 % and annual precipitation 363 

higher than 1000 mm represent only 7 % of global maize and wheat cropland in our grid cells. The map in Figure 364 

7 illustrates that the highest concentration of these areas is in East and South-East Asia, followed by Central and 365 

South America, and Sub-Saharan Africa. 366 

 367 

4 Discussion 368 

4.1 Varying robustness of simulated water erosion in different global regions 369 

Global water erosion estimates generated with an EPIC-based GGCM and our baseline scenario overlap with 370 

observed water erosion values under most of the climatic and topographic environments where maize and wheat 371 

are grown. However, global maize and wheat land include locations where environmental characteristics differ 372 

significantly from the Midwestern United States, where the data was collected to develop the water erosion 373 

equations embedded in EPIC. The USLE model and its modification were developed with data for slopes of up to 374 

20 %, which makes model application for steeper slopes uncertain (McCool et al., 1989; Meyer, 1984). 375 

Furthermore, the relations between kinetic energy and rainfall energy in the American Great Plains differ from 376 

other regions in the world (Roose, 1996). Similarly, the runoff curve number method, which is the key 377 
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methodology for the calculation of surface runoff, is based on an empirical analysis in watersheds located in the 378 

United States and might be less reliable in different regions of the world (Rallison, 1980). Due to the high 379 

sensitivity of slope steepness and daily precipitation for the calculation of water erosion, the reliability of the 380 

tested equations decreases in regions where typical slope and precipitation patterns differ from the Midwestern 381 

US. Although some studies have successfully used USLE and its modification under a different environmental 382 

context (e.g. Alewell et al., 2019; Almas and Jamal, 2009; Fischer et al., 2018; Sadeghi and Mizuyama, 2007), 383 

many studies have concluded that the accuracy of these models may be reduced outside the environments they 384 

were created without calibration and model adaptation (e.g. Cohen et al., 2005; Labrière et al., 2015). 385 

The skewed distribution of simulated water erosion values influenced by extreme soil loss rates in few fields 386 

highly sensitive to water erosion results in a large difference between the global median value of 6 t ha-1 a-1 and 387 

the global average value of 19 t ha-1 a-1  (Fig. S9). Due to the strong influence of outliers on average values, we 388 

used median values to represent global and regional water erosion rates in wheat and maize fields. The high 389 

sensitivity of the simulation results to slope inclinations and precipitation suggests that a significant share of the 390 

estimated soil removal of 7.2 Gt a-1 originates from small wheat and maize cultivation areas on steep slopes with 391 

strong annual precipitation.  392 

4.2 Sources of uncertainties in global water erosion estimates 393 

4.2.1 Uncertain land use in mountainous regions 394 

Changing climatic conditions with increasing elevation and the variable soils in mountainous regions can favour 395 

crop cultivation in higher elevations over lower elevations (Romeo et al., 2015). However, upland farming without 396 

soil conservation measures can lead to exhaustive soil erosion and can become a critical problem for agriculture 397 

(Montgomery, 2007). Large areas of land have been abandoned due to high erosion rates as soils were no longer 398 

able to support crops (Figure 8) (Romeo et al., 2015). As mountain agriculture is determined by various 399 

environmental and socio-economic factors, the cultivation of steep slopes can be very variable between regions. 400 

Regional erosion assessments in mountainous cropland suggested that areas with extreme water erosion rates are 401 

mainly limited to marginal steep land cultivated by smallholders (Haile and Fetene, 2012; Long et al., 2006; 402 

Nyssen et al., 2019). In some mountainous regions, efforts to remove marginal farmlands from agricultural 403 

production, and programs to improve land management on steep slopes have reduced high water erosion rates 404 

(Deng et al., 2012; Nyssen et al., 2015). On the contrary, recent pressure through increasing population and crop 405 

production demands has resulted in re-cultivation of hillslopes and a reduction of fallow periods, which limits the 406 

recovery of eroded soil (Turkelboom et al., 2008; Valentin et al., 2008).  407 

To analyse the sustainability of simulated maize and wheat cultivation systems exposed to high erosion rates, we 408 

compare simulated annual eroded soil depth with a global dataset on modelled sedimentary deposit thickness 409 

(Pelletier et al., 2016). The comparison shows that at 4 % of grid cells permanent maize and wheat cultivation 410 

would not be sustainable as the whole soil profile would be eroded at the end of the simulation period (Fig. S18). 411 

Most of the unsustainable agriculture is simulated on steep slopes. Although we account for conservation 412 

techniques and cover crops, we do not imitate the highly complex farming practices involving intercropping 413 

techniques and fallow periods, which are common on hillslopes typically managed by smallholders (Turkelboom 414 

et al., 2008). Moreover, we assume that the slope class representing the largest area in each grid cell most likely 415 

represents the largest share of arable land. This builds on the idea that a spatially extensive and diverse landscape 416 
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can be represented by a single “representative field” characterized by the prevailing topography and soil conditions 417 

found in the landscape. On hilly terrain this setup simulates maize and wheat cultivation on steep slopes and thus 418 

mainly represents unsustainable agriculture. Although unsustainable maize and wheat cultivation can be observed 419 

in several mountain regions, cropland is very heterogeneously distributed in mountains and thus erosion rates 420 

from one representative field are highly uncertain. 421 

The uncertainty in cropland distribution can partly be reduced by developing a higher resolution global gridded 422 

data infrastructure, which is currently not available for EPIC-IIASA. However, due to the large uncertainty in 423 

global land cover maps (Fritz et al., 2015; Lesiv et al., 2019), an explicit spatial link between cropland distribution 424 

and the corresponding slope category cannot be established without on-site observations. We test the impact of 425 

this uncertainty for erosion estimates in Italy, where large maize and wheat cultivation areas are distributed on 426 

both flat terrain in the north and mountainous regions in the south. In an ideal scenario where cropland is limited 427 

to flattest land available per grid cell, median simulated water erosion in Italy would be reduced to tolerable levels 428 

below 1 t ha-1. However, in a scenario, where the most common slopes per grid cell are cultivated, median 429 

simulated water erosion increases to 14 t ha-1 due to high water erosion simulated in Italy’s mountainous regions 430 

(Fig. S19). This suggests a high uncertainty in global water erosion estimates due to uncertain spatial links between 431 

maize and wheat cultivation areas and different slope categories. 432 

4.2.2 Uncertain field management 433 

Simulated water erosion values are highly variable depending on the field management scenario. Simulating cover 434 

crop and no-tillage worldwide results in the lowest global soil removal of 2 Gt a-1 with median water erosion rates 435 

of 1 t ha-1 a-1 and simulating no cover crops and conventional tillage worldwide results in the highest global soil 436 

removal of 13 Gt a-1 with median water erosion rates of 17 t ha-1 a-1. These variations cause further uncertainties 437 

in the simulation results. 438 

Indeed, a proper reconstruction of a business-as-usual field management is important to further narrow down the 439 

uncertainty in global crop modelling (Folberth et al., 2019). In this study we allocated prevailing field management 440 

using a set of environmental- and country-specific indicators, similarly to Porwollik et al. (2019). For example, 441 

we accounted for conservation agriculture only in countries where this management strategy is likely according 442 

to AQUASTAT (FAO, 2016). Furthermore, by assuming cover crops in between wheat and maize seasons we 443 

simulated more complex cropping systems in the tropics, where long and year-round growing seasons and frequent 444 

multi-cropping farm practices barely leave the soil uncovered. Hence, we did not simulate bare fallow in the 445 

tropics as erroneously high water erosion values would have been simulated at locations with heavy precipitation 446 

falling on bare soil. In addition, conservation practices such as contouring and terracing are crucial to reduce the 447 

simulation of high water erosion values on steep slopes. We simulated these practices for specific slope classes 448 

under the assumption that farmers around the world uniformly use conservation practices when cultivating on 449 

steep slopes. The most relevant parameters used for tillage scenarios are related to crop residues left in the field. 450 

In addition, equations directly connected to surface runoff are strongly influenced by the land use number used to 451 

determine the impact of cover type and treatment on soil permeability. While both crop residues and green fallow 452 

decrease water erosion significantly, especially in the tropics, their use varies widely between regions and even 453 

farms, based on a complex web of factors such as institutional factors, farm sizes, risk attitudes, interest rates, 454 

access to markets, farming systems, resource endowments, and farm management skills (Pannell et al., 2014). 455 



13 
 

Also, soil conservation measures such as terraces or contour farming significantly influence water erosion but are 456 

very heterogeneously used between regions, farming systems and farmers. Our baseline scenario is a very rough 457 

depiction of the complex patterns of field management around the world but attempts to represent these highly 458 

influential practices with the limited available data. 459 

4.2.3 Variable estimates from different water erosion equations 460 

The water erosion equation chosen for the baseline scenario generates the lowest global soil removal estimate. 461 

Different water erosion equations embedded in EPIC estimate a higher global soil removal of up to 11 Gt a -1 as 462 

well as higher median water erosion rates up to 19 t ha-1 a-1. The MUSS water erosion equation chosen for the 463 

baseline scenario generates water erosion rates closest to the field data. The focus of equations on either rainfall 464 

energy or runoff energy is relevant for the different simulation results under specific environmental conditions. 465 

Equations based on rainfall-energy such as RUSLE and USLE simulate higher water erosion values than the other 466 

equations at most locations. However, on steep slopes they generate the lowest water erosion values as runoff 467 

becomes a greater source of energy than rain with increasing slope steepness (Roose, 1996). Also, the varying 468 

sensitivities of other parameters to the equations such as soil properties and management parameters lead to a 469 

varying agreement between simulated data and field data depending on the equation selection. Detailed field data 470 

would facilitate the choice of an appropriate equation to simulate water erosion worldwide or for a specific region. 471 

4.3 The difficulty of evaluating large-scale erosion estimates with field data 472 

The selection of field data for evaluating simulated water erosion was limited by the low availability of suitable 473 

water erosion observations covering the entire globe. The lack of reliable data on water erosion rates is a severe 474 

obstacle for understanding erosion, developing and validating models and implementing soil conservation 475 

(Boardman, 2006; Nearing et al., 2000; Poesen et al., 2003; Trimble and Crosson, 2000). The main reasons for 476 

the low availability of suitable data to evaluate simulated water erosion rates are twofold: (i) erosion monitoring 477 

is expensive, time consuming and labour demanding; and, (ii) primary data and metadata of measurement sites 478 

accompanying final results are often not available and many older measurements are poorly accessible as they are 479 

not available online (Benaud et al., 2020). A variety of factors influencing water erosion such as climate, field 480 

topography, soil properties and field management need to be considered when modelling water erosion but are 481 

often not reported in available field measurements (García-Ruiz et al., 2015). This hampers a direct comparison 482 

between simulated and observed water erosion values. We demonstrated the varying match between measured 483 

and simulated water erosion using different tillage and cover crop scenarios. Metadata on field management often 484 

only provides the crop cultivated and therefore the conditions under which erosion was measured in the field are 485 

not known sufficiently to evaluate erosion values simulated under different field management scenarios. Similarly, 486 

information on field topography and soil properties is often not provided with recorded field measurements and 487 

thus their use is limited in an evaluation of water erosion estimates simulated in different global environments. 488 

Moreover, most data are concentrated in the United States, West Europe and the West Mediterranean (García-489 

Ruiz et al., 2015). In summary, there is a lack of field data representing all needed regions, situations and scenarios 490 

(Alewell et al., 2019).  491 

The appropriate selection of field data to evaluate model outputs needs to be considered as well. At different 492 

spatial scales different erosion processes are dominant and consequently different erosion measurement methods 493 

are suitable (Boix-Fayos et al., 2006; Stroosnijder, 2005). Most authors use very heterogeneous data sets to 494 
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evaluate their models, involving data generated by different methods at variable time and spatial scales and 495 

variable quality. For example, Doetterl et al. (2012) used plot data, suspended sediments from rivers, and data 496 

from RUSLE modelling. Borrelli et al. (2017) used soil erosion rates (measurement methods are not specified), 497 

remote sensing, vegetation index (NDVI) and results of RUSLE modelling. In his review on erosion rates under 498 

different land use, Montgomery (2007) used field data derived from erosion plots, field-scale measurements, 499 

catchment-scale measurements using hydrological methods, 137Cs-method, soil profile truncation and elevated 500 

cemetery plots.  501 

Whilst all erosion measurement methods are open to criticism, we decided to use only data obtained by field 502 

measurements from runoff plots, by 137Cs method and volumetric surveys as these methods are most suitable at 503 

plot, slope and field scale. Geodetic methods such as erosion pins and laser scanner are also used at plot to field 504 

scales, but their accuracy is much lower than the accuracy of plot measurements and 137Cs method. Furthermore, 505 

erosion pins are mainly suitable for areas with extreme erosion rates (Hsieh et al., 2009; Hudson, 1993), and laser 506 

scanners have difficulties to recognize vegetation (Hsieh et al., 2009). Other commonly used methods such as  507 

hydrological method (measurements of discharge and suspended sediment load) and bathymetric method are more 508 

suitable for larger scales and involve a significant portion of channel erosion, which is not related with agricultural 509 

land (García-Ruiz et al., 2015). We did not consider plot experiments using rainfall simulators as they are usually 510 

performed on small plots with artificially generated rainfalls, which mostly have very low energies and thus 511 

generate low erosion rates (Boix-Fayos et al., 2006; García-Ruiz et al., 2015).  512 

The 137Cs method was criticised by Parsons and Foster (2013), who questioned assumptions about the 137Cs 513 

behaviour in the environment (variability of the 137Cs input by wet fallout, its microspatial variability at reference 514 

sites, its possible mobility in certain soils, the 137Cs uptake by plants and other aspects of 137Cs behaviour in soil). 515 

To confront the criticism against the 137Cs method, Mabit et al. (2013) discussed all objections raised by Parsons 516 

and Foster (2013) and confirmed its accuracy by listing several studies, in which 137Cs based erosion rates are 517 

compared with erosion rates derived from direct measurements. The 137Cs method is based on a set of 518 

presumptions which should be met to produce useful results and thus careful interpretation of the obtained results 519 

is needed (Fulajtar et al., 2017; Mabit et al., 2014; Zapata, 2002). 520 

Similarly, erosion rates obtained by volumetric measurements require careful interpretation as they are exposed 521 

to various potential sources of errors and do not account for interill erosion. Although the latter can be neglected 522 

under certain circumstances, studies from Europe and semiarid areas of the USA have reported that interill erosion 523 

contributed significantly to the amount of soil eroded in fields (Boardman and Evans, 2020; Parsons, 2019). 524 

Further, measuring the lengths and cross-sections of rills during field surveys or on terrestrial and aerial photos 525 

can be very subjective (Panagos et al., 2016). Different approaches used to detect and measure rills in fields can 526 

cause variability in calculated erosion volumes up to a factor of two (Boardman and Evans, 2020; Casali et al., 527 

2006; Watson and Evans, 1991). In order to obtain soil erosion rates in weight units, soil volumes need to be 528 

converted using the soil bulk density, which is often based on estimates (Evans and Brazier, 2005). 529 

The shortcomings of erosion plot measurements were discussed by several authors (Auerswald et al., 2009; 530 

Brazier, 2004; Evans, 1995, 2002; Loughran et al., 1988). Erosion plots have various sizes and shapes (few meters 531 

to few hundreds of meters) and various approaches of sediment recording are used (total collection, multislot 532 
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divisors, tipping buckets, Coshocton wheels), which all involve significant uncertainties. Although some long-533 

term plot experiments exist, many plot measurements fail to cover the whole year erosion cycle (Auerswald et al., 534 

2009). Often, they have to be removed during land management operations such as seeding, ploughing, or they 535 

are too expensive and labour demanding. 536 

Despite all the shortcomings of available soil erosion data, most data provide valuable information (Benaud et al., 537 

2020). The evaluation against field measurements in this study provided a first indication of the robustness of 538 

results under specific topographic and climatic conditions. In most environments relevant for maize and wheat 539 

cultivation the deviation between simulated and measured water erosion values is lower than the variability within 540 

the field data. The reported data does not enable us to further narrow down the uncertainties addressed. Although 541 

the metadata accompanying the field measurements includes information on slope steepness and annual 542 

precipitation (or geographic coordinates allowing for overlay with climatic data), information on soil types or 543 

texture classes, crop type and tillage system implemented over time are provided only for few points. Also, the 544 

various methods used to measure erosion rates, their complex implementation and the bias of field studies towards 545 

locations sensitive to erosion lead to an uncertain representation of large-scale erosion rates based on field 546 

measurements. To facilitate in-depth evaluation of erosion models across different scales, it is crucial to provide 547 

detailed information on site characteristics and to harmonise approaches to measure erosion in the field. Moreover, 548 

the accessibility of field data should be improved as raw data is often not published or needs to be collected from 549 

numerous publications, grey literature and conference proceedings to obtain the large amount of data necessary 550 

for regional or global erosion studies. Therefore, we support recent efforts to collate erosion measurements and 551 

metadata from existing studies (Benaud et al., 2020) as we believe that the availability of field data through a 552 

single platform will greatly benefit future modelling studies and the understanding of soil erosion at all scales. 553 

 554 

5 Conclusion 555 

The simulation of water erosion with GGCMs is largely influenced by the resolution of global datasets providing 556 

topographic, soil, climate, land use and field management data, which is currently not available at the field scale. 557 

Yet, considering water erosion in global crop yield projections can provide useful outputs to inform assessments 558 

of the potential impacts of erosion on global food production and to identify soil erosion hotspots on cropland for 559 

management and policy interventions. To improve the quality of the estimates and to further develop these models, 560 

it is crucial to identify, communicate and address the existing uncertainties. Increasing the resolution of global 561 

soil, topographic and precipitation data is central for improving global water erosion estimates. In addition, this 562 

study provides an insight into the importance of considering field management. The numerous options to simulate 563 

the cultivation of fields result in a large range of possible water erosion values, which can only partly be narrowed 564 

down at a global scale. Further improvement of global water erosion estimates requires detailed and harmonized 565 

field measurements across all environmental conditions to validate and calibrate simulation outputs. Using 566 

existing field data, we were able to identify specific environmental characteristics for which we have lower 567 

confidence in the modelled erosion rates. These are mainly found in the tropics and mountainous regions due to 568 

the high sensitivity of simulated water erosion to slope steepness and precipitation strength, and the complexity 569 

of mountain agriculture. However, these areas represent only a small fraction of global cropland for maize and 570 

wheat. The overlap of simulated and measured water erosion values in most environments used to produce maize 571 
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and wheat underlines the robustness of an EPIC-based GGCM to simulate the differences in water erosion rates 572 

of major global crop production regions. 573 
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 888 

Figure 1: Scheme of procedure used for simulating global water erosion with EPIC-IIASA and for analysing the 889 
uncertainty, sensitivity and robustness of our simulation setup. 890 
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 891 

Figure 2: Soil loss due to water erosion in maize (a) and wheat (b) fields simulated with the baseline scenario. 892 
Each pixel cell illustrates the median relative water erosion of one representative field. The extent of cropland 893 
areas is not considered in pixel cell size. The bars in the bottom plot (c) illustrate median soil removal for major 894 
world regions simulated under maize and wheat cultivation. The lines and whiskers illustrate 25th and 75th 895 
percentile values. The classification of world regions is illustrated in Fig. S3. Due to the large gap between 896 
aggregated values, all values in the bottom plot have been log-transformed to facilitate the visual comparison. 897 
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 898 

Figure 3: Water erosion uncertainty due to (a) field management assumptions and (b) water erosion equations. 899 

 900 

Figure 4: Prevailing uncertainty, defined as the higher uncertainty range by at least 5 t ha-1. 901 
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  902 

Figure 5: First-order and total-order sensitivity indices (SI) for (a) slope steepness (%) and (b) precipitation 903 
[mm]. The dashed vertical line illustrates median annual precipitation at all tested locations (1248 mm).  904 

 905 

Figure 6: Comparison of simulated erosion with measured erosion. (a) Median deviation (MD) in t ha1 between 906 
simulated erosion using the baseline scenario and measured erosion. Simulated and measured data is grouped 907 
into precipitation classes and slope classes used for the simulation setup. (b) Distributions of measured erosion 908 
rates, erosion rates simulated with the baseline scenario and uncertainty ranges for management assumptions 909 
and erosion equations. The boxplots are defined by the median, the 25th and the 75th percentile of simulated and 910 
measured erosion rates. Whiskers illustrate the 10th and 90th percentile. The three bars next to the boxplots 911 
illustrate minimum and maximum median erosion rates calculated with all tillage and cover crop scenarios and 912 
with all water erosion equations. The values have been log-transformed for better visualization. 913 
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 914 

Figure 7: Distribution of low to high slope steepness (SLP) and annual precipitation (PRCP) in maize and wheat 915 
fields. Dark areas illustrate grid cells where dominant slopes are steeper than 8 % and annual precipitation is above 916 
1000 mm. Correspondingly, blue, red, and grey pixels are below one or both thresholds. 917 

(a) 

 

(b) 

 

(c) 

 

(d)  

 

Figure 8: (a) Sugar cane cultivation on steep slopes in South China (Nanning, Guangxi Zhuang Autonomous 918 
Region). The steepest slopes are already abandoned and reforested by eucalyptus trees. (b) Maize cultivation on 919 
strongly eroded slopes (30 – 60 %) in South West Uganda (Kigwa, Kabale District). (c) Abandoned fields and 920 
maize cultivation on a steep slope (30 – 60 %) in South West Uganda (Kigwa, Kabale District). (d) Degraded 921 
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and abandoned maize fields on steep slopes (20 – 60 %) in Northern El Salvador (San Ignacio, Chalatenango 922 
Department). The photos and additional examples are provided in Fig. S10 – S17. 923 

 924 

Table 1: Equations for calculating the erosivity factor in each water erosion equation available in EPIC.  925 

Erosivity factor Equation 

R = EI   (2) USLE, RUSLE, RUSLE2 (Renard et al., 1997; USDA-

ARC, 2013; Wischmeier and Smith, 1978) 

R = 0.646 ∗ EI + 0.45 ∗ (Q ∗ qp)
0.33 (3) AOF (Onstad and Foster, 1975) 

R = 1.586 ∗ (Q ∗ qp)
0.56

∗ WSA0.12 (4) MUSLE (Williams 1975) 

R = 2.5 ∗ Q ∗ qp
0.5  (5) MUST (Williams, 1995) 

R = 0.79 ∗ (Q ∗ qp)
0.65 ∗ WSA0.009 (6) MUSS (Williams, 1995) 

 926 

Table 2: Tillage management scenarios for maize and wheat cultivation 927 

 Conventional tillage Reduced tillage No-tillage 

total cultivation operations 6 – 7 4 – 5 3 

max. surface roughness 30 – 50 mm 20 mm 10 mm 

max. tillage depth 150 mm 150 mm 40 – 60 mm 

plant residues left 25 % 50 % 75 % 

cover treatment class straight  contoured contoured & terraced 

 928 

Table 3: Management assumptions and erosion equation selected for the baseline scenario 929 

Option Baseline 

TILLAGE • Mix of conventional, reduced and no-tillage in regions where the national share of 

conservation agriculture is > 5 % according to the latest reported data in 

AQUASTAT (2007-2014) (FAO, 2016): Argentina, Australia, Bolivia, Brazil, 

Canada, Chile, China, Colombia, Finland, Italy, Kazakhstan, New Zealand, 

Paraguay, Spain, USA, Uruguay, Venezuela, Zambia and Zimbabwe. 

• Mix of conventional and reduced tillage in the rest of the world. 

OFF-SEASON 

COVER 

• Cultivation only with cover crops in tropics according to Koeppen-Geiger regions 

(Fig. S1) (Kottek et al., 2006). 

• Mix of off-season cover with and without cover crops in temperate and cold zones. 

• No cover crops in arid regions. 

CONSERVATION 

PRACTICE 

FACTOR 

Slope 0 – 16 % 16 – 30 % > 30 % 

P-Factor 1.0 0.5 0.15 

CROP Water erosion is simulated in wheat and maize fields based on the global crop 

distribution by MIRCA2000 (Fig. S2) (Portmann et al., 2010). 
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IRRIGATION • Only on slopes ≤ 5 %. 

• Weighted average of irrigated and rainfed cropland based on MIRCA2000 

(Portmann et al., 2010). 

METHOD MUSS water erosion equation. 

AGGREGATION Median of all management scenarios per grid cell and region 

 930 

Table 4: First-order sensitivity indices (SI) ranking for the five most sensitive input parameters (PARM) for each 931 
water erosion equation including slope steepness (SLP), daily precipitation (PRCP), soil hydrologic group (HSG), 932 
land use number (LUN), soil silt content (SILT), soil sand content (SAND), curve number parameter (S301), 933 
maximum air temperature (TMX) and crop residues left after harvest (ORHI). The sensitivity indices of the 934 
remaining parameters are presented in Table S3. 935 

 

rank 

AOF MUSL MUSS MUST RUSLE2 RUSLE USLE 

PARM SI PARM SI PARM SI PARM SI PARM SI PARM SI PARM SI 

1 SLP 0.47 SLP 0.47 SLP 0.46 SLP 0.48 SLP 0.46 SLP 0.50 SLP 0.54 

2 PRCP 0.13 PRCP 0.10 PRCP 0.12 PRCP 0.09 PRCP 0.16 PRCP 0.20 PRCP 0.18 
3 HSG 0.03 HSG 0.04 HSG 0.05 HSG 0.04 HSG 0.03 SAND 0.05 SILT 0.02 

4 SILT 0.02 LUN 0.02 LUN 0.02 LUN 0.02 SAND 0.01 TMX 0.01 TMX 0.01 

5 LUN 0.01 SILT 0.02 S301 0.01 SILT 0.02 LUN 0.01 ORHI 0.01 ORHI 0.01 
… … … … … … … … … … … … … … … 

sum  0.69  0.68  0.71  0.69  0.71  0.78  0.77 

 936 

 937 

Table 5: Total-order sensitivity indices (SI) ranking for the five most sensitive input parameters (PARM) for each 938 
water erosion equation including slope steepness (SLP), daily precipitation (PRCP), soil hydrologic group (HSG), 939 
land use number (LUN), soil silt content (SILT), soil sand content (SAND), maximum air temperature (TMX) 940 
and crop residues left after harvest (ORHI). The sensitivity indices of the remaining parameters are presented in 941 
Table S3. 942 

 

rank 

AOF MUSL MUSS MUST RUSLE2 RUSLE USLE 

PARM SI PARM SI PARM SI PARM SI PARM SI PARM SI PARM SI 

1 SLP 0.68 SLP 0.68 SLP 0.63 SLP 0.68 SLP 0.66 SLP 0.69 SLP 0.75 

2 PRCP 0.28 PRCP 0.23 PRCP 0.22 PRCP 0.21 PRCP 0.32 PRCP 0.36 PRCP 0.36 

3 HSG 0.09 HSG 0.12 HSG 0.13 HSG 0.12 HSG 0.08 SAND 0.12 SILT 0.05 
4 SILT 0.07 LUN 0.07 LUN 0.07 LUN 0.07 LUN 0.05 TMX 0.02 TMX 0.02 

5 LUN 0.05 SILT 0.07 SILT 0.05 SILT 0.07 SAND 0.04 ORHI 0.01 SAND 0.01 

… … … … … … … … … … … … … … … 

sum  1.29  1.30  1.25  1.27  1.34  1.27  1.27 

 943 


