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Abstract. Widespread bacteria are a major proportion of bioaerosols and their coexistence with dust enables both types of 10 

aerosols to be more active in ice cloud formation and harmful to public health. However, the abundance and viability of 

particle-attached and free-floating bacteria in dusty air have not been quantitatively investigated. We researched this subject 

based on the fact that airborne bacterial cells are approximately 1 μm or smaller in aerodynamic diameter; therefore, particle-

attached bacteria should occur in aerosol samples of particles larger than 1 μm, and free-floating bacteria should occur among 

particles smaller than 1 μm. Our observations at a coastal site in Japan in spring, when the westerlies frequently blew dust 15 

there from the Asian continent, revealed that particle-attached bacteria in dust episodes, averagely at the concentration of 

3.2105 cells m-3, occupied 72 % in the total bacteria. In contrast, the fraction was 56 % during nondust periods and the 

concentration was 1.1105 cells m-3. The viability, defined as the ratio of viable cells to total cells, of particle-attached bacteria 

was averagely 69 % in dust episodes and 60 % during nondust periods, both of which were considerably lower than the 

viabilities of free-floating bacteria (about 87 %) under either dusty or nondust conditions. The present cases suggest that dust 20 

particles carried substantial bacteria on their surfaces, more than half of which were viable, and spread these bacteria in the 

atmosphere. This implies that dust and bacteria have nonnegligible roles as internally mixed assemblages in various 

atmospheric processes and in linking geographically isolated microbial communities, as well as have synergistic effect on 

human health. 

  25 
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1 Introduction 

Biological particles in the atmosphere have a significant potential effect on climate change (Ariya et al., 2009;Delort 

et al., 2010;Möhler et al., 2007;Zhang et al., 2017), efficiently link microbial communities between continents, islands and 

oceans (Fröhlich-Nowoisky et al., 2016;Morris et al., 2011;Caliz et al., 2018), and pose risks to human health (Polymenakou 

et al., 2008;Reinmuth-Selzle et al., 2017). Representing a high fraction of primary biological particles, airborne bacteria are 30 

emitted into the atmosphere from various sources, among which desert dust is a major source (Morris et al., 2011;Pöschl and 

Shiraiwa, 2015;Pöschl et al., 2010). The cooccurrence of dust and high concentrations of bacteria has been observed frequently 

in different locations, indicating the widespread nature and dissemination of bacteria with dust at local, regional and even 

global scales (Griffin, 2007;Hara and Zhang, 2012;Iwasaka et al., 2009). Limited available observations have revealed the 

coexistence of mineral and biological contents in ice crystals (Creamean et al., 2013;Pratt et al., 2009), and laboratory 35 

experiments have demonstrated that the ice nucleation ability of dust particles is enhanced by biological components, including 

bacteria in the particles (Boose et al., 2019;Tobo et al., 2019;Conen et al., 2011). Recent toxicological studies with mouse 

exposure found that the internal mixture of dust and pathogenic bacteria exacerbated pneumonia (He et al., 2012). In addition, 

the attachment of bacteria to dust particles is expected to largely alter the fate of bacterial cells in the air due to protection by 

the dust particles from harsh environmental conditions (Bowers et al., 2013) and enhanced gravitational settling (Zhang, 2008). 40 

All these results reflect that the adherence of bacterial cells to dust particles, i.e., the particle-attached state, and the viability 

or metabolic capability of bacterial cells are key factors affecting the roles and fate of airborne bacteria in the evolution, 

development and conservation of the natural environment. 

Quantitative data on the mutual state of airborne bacteria and dust particles in dusty air are no doubt scientifically very 

interesting (Schuerger et al., 2018). However, quantitative data are rare because of a lack of available and confident methods 45 

for such research, leaving unidentifiable uncertainties in both field observations and model simulations exploring the activities 

and roles of bacterial cells in atmospheric processes. The cell size distributions for bacteria separated from soils have been 

investigated previously (Portillo et al., 2013). Whereas, airborne bacteria should have different survival mechanisms, dispersal 

processes and size distribution from bacteria in soils, because the aerosolization efficiency of soil bacteria from Earth surfaces 

varies according to bacterial species and soil types (Joung et al., 2017) and airborne bacteria suffer air turbulence and harsh 50 

atmospheric stressors (Hara and Zhang, 2012). Bacteria-associated particles in the air have an aerodynamic diameter 

significantly larger than the typical size (approximately 1 μm) of individual bacterial cells (Burrows et al., 2009). This is 

because airborne bacterial cells are favorably attached to coarse particles, such as dust particles and plant debris, or are 

sometimes found as assemblages of many cells (Després et al., 2012;Iwasaka et al., 2009;Maki et al., 2013;Lighthart, 1997). 

We quantified the fractions of particle-attached and free-floating bacterial cells in dusty and nondust air based on the fact that 55 

airborne bacterial cells are usually ~1 μm or smaller than 1 m (Delort et al., 2010;Després et al., 2012;Pósfai et al., 

2003;Burrows et al., 2009;Hara et al., 2011); thus, particle-attached bacteria should be trapped in aerosol samples of particles 

larger than 1 m, and free-floating bacteria should be located among particles smaller than 1 m. 
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By utilizing 8-stage Andersen cascade impactors, size-segregated aerosol samples were collected at a southwestern 

coastal site of Japan in the spring of 2013−2016, when the middle latitude westerly wind in the Northern Hemisphere frequently 60 

brought dust from the Asian continent to the observation site. Viable and nonviable bacteria in each sample were counted using 

the LIVE/DEAD BacLight bacterial viability assay to estimate bacterial concentrations (Murata and Zhang, 2013, 2016). 

Bacteria detected in samples of particles larger than 1.1 m (the cutoff size of the sampler stages) were considered particle-

attached bacteria, and those in the stages of particles smaller than 1.1 m were considered free-floating bacteria. An analysis 

of method confidence showed that uncertainties due to the sample collection were small (Figs. S4 and S5 in the Supplement). 65 

In this study, we focus on comparisons of the quantitative results of particle-attached and free-floating bacteria in the air and 

the viability of these bacteria under dust and nondust conditions. 

2 Methods 

2.1 Sample collection and cell enumeration 

Aerosol samples were collected on the platform of a building (32.324°N, 129.993°E; 15 m above ground level and 23 70 

m above sea level) on the seaside of Amakusa Island, southwestern Japan (Fig. S1) during several observational campaigns 

during spring in the years 2013 to 2016. Dust plumes from the Asian continent, called Asian dust, frequently pass this area in 

spring. There are limited fishery and agriculture activities and few anthropogenic sources of air pollutants around the area, 

making the site suitable for investigating airborne bacteria in the Asian continental outflow (Murata and Zhang, 2016). 

Aerosol samples were collected onto 0.2 μm pore polycarbonate filters (47 mm; Merck Millipore Ltd., Cork, Ireland) 75 

with 8-stage Andersen cascade samplers (Model AN-200; Tokyo Dylec Corp., Japan). The flow rate of the samplers was 28.3 

L min−1. Aerosol particles were collected onto 8 filters according to the particle aerodynamic diameter ranges of >11, 7.0−11, 

4.7−7.0, 3.3−4.7, 2.1−3.3, 1.1−2.1, 0.65−1.1 and 0.43−0.65 μm. The collection time of one set of samples was from 

approximately 3 to 24 h. Details on the sample collection are given in Table 1 and Table S1and Fig. S2 in the Supplement. 

Before the collection of each sample set, all stages of the sampler were cleaned carefully, and the plates for the filters 80 

were rinsed and wiped with 70% ethanol in a clean hood to avoid contamination. A blank control for each set of samples was 

prepared, i.e., a blank filter was set in the sampler without sample collection. After sample collection, the filters were sealed 

in Petri dishes and stored at −20C until analysis. 

The viable and nonviable bacterial cells (Fig. S3) on the filters were enumerated using the LIVE/DEAD BacLight 

bacterial viability assay with an epifluorescence microscope (EFM; Eclipse 80i, Nikon Corp., Tokyo, Japan) as described 85 

previously (Murata and Zhang, 2016, 2013;Hu et al., 2017). Bacterial cells and other particles were detached from the aerosol-

loaded polycarbonate membranes (47 mm in diameter) by vortex shaking and ultrasonic vibration in a phosphate-buffered 

saline solution (PBS, pH 7.4). Then the suspension was treated with glutaraldehyde fixation and stained with the LIVE/DEAD 
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BacLight Bacterial Viability Kit (L13152, Invitrogen™, Molecular Probes Inc., Eugene, Oregon, US), followed by filtration 

on a 25 mm diameter and 0.2 μm pore black polycarbonate membrane for bacterial enumeration. An excitation wavelength 90 

range between 450 and 490 nm (blue) was utilized, and the microscope was operated at 1000 magnification. Fluorescent 

green and red/orange/yellow cells with spherical shape and size close to or smaller than 1 m in diameter were counted as 

viable and nonviable bacteria, respectively. The cell concentrations in the size-segregated particles in the air were estimated 

based on cell counts and the sampling of air volumes following the subtraction of the blank controls. The viability of a group 

of bacterial cells was defined as the ratio of the viable bacterial cells to total bacterial cells. The procedure for the experimental 95 

operation and the formulations for the estimation of cell concentrations are given in the Supplement (Text S1 in the 

Supplement).  

The collection efficiency of airborne bacterial cells with Andersen samplers was evaluated by comparing the results to 

those obtained by using BioSamplers (SKC Inc., Eighty-Four, PA, US) and in-line filter holders (47 mm, Millipore Corp., 

Billerica, MA, US). The results show that the total bacterial concentration results of the Andersen sampler were generally 100 

consistent with those of the BioSamplers and the in-line filter holders (Fig. S4). 

Table 1. Concentration and viability of total, free-floating and particle-attached bacteria. The concentration of coarse particles 

(>1 m) and the ratio of particle-attached bacteria to coarse particles are also listed. The percentages of free-floating and 

particle-attached bacteria are given in the parentheses. The sample ID indicates the sequence number (1 to 27) of the sample, 

and dust condition (D, dusty; ND, nondust) and synoptic weather (Pr, prefront; Po, postfront; AA, approaching anticyclone; 105 

A, anticyclone) during the sampling period. 

 
Sample ID Synoptic 

weather 

Coarse 

particles 

(105 m−3) 

Total bacteria Free-floating bacteria Particle-attached bacteria (PAB) 

Concentration 

(105 cells m−3) 

Viability 

(%) 

Concentration 

(105 cells m−3)  

Viability 

(%) 

Concentration 

(105 cells m−3)  

Viability 

(%) 

PAB/Coarse 

particles (%) 

Dusty (9) 

1D-Pr Prefront 41 7.8 84 1.7 (21) 90 6.1 (79) 82 15 

2D-Po Postfront 32 2.3 77 0.5 (23) 99 1.8 (77) 71 6 

3D-AA Approaching 

anticyclone 

12 2.2 89 0.7 (30) 91 1.6 (70) 88 13 

4D-Pr+Po Pre-/postfront 52 7.3 61 1.8 (25) 71 5.4 (75) 58 11 

5D-AA Approaching 

anticyclone 

21 4.7 63 0.7 (16) 79 3.9 (84) 60 19 

10D-Po Postfront 16 2.5 40 0.6 (25) 61 1.9 (75) 33 11 

17D-AA Approaching 

anticyclone 

88 2.9 73 1.0 (36) 99 1.9 (64) 59 2 

26D-Po Postfront 10 8.2 95 2.5 (30) 97 5.7 (70) 95 59 

27D-AA Approaching 

anticyclone 

15 1.9 87 0.9 (46) 96 1.0 (54) 78 7 

Average  32 4.4 74 1.2 (28) 87 3.2 (72) 69 16 

Nondust (18) 

6ND-AA Approaching 

anticyclone 

13 1.5 75 0.4 (27) 88 1.1 (73) 70 9 

7ND-A Anticyclone 12 1.5 74 0.6 (39) 82 0.9 (61) 69 8 
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8ND-A+Pr Anticyclone+p

refront 

14 0.8 98 0.2 (31) 99 0.5 (69) 98 4 

9ND-Pr Prefront 26 2.7 73 1.9 (71) 84 0.8 (29) 45 3 

11ND-AA Approaching 

anticyclone 

4 2.1 72 1.3 (64) 85 0.8 (36) 51 18 

12ND-A Anticyclone 14 2.9 83 2.1 (73) 96 0.8 (27) 48 6 

13ND-A Anticyclone 9 3.6 75 2.5 (70) 86 1.1 (30) 50 12 

14ND-A Anticyclone 13 1.9 77 0.8 (42) 99 1.1 (58) 62 9 

15ND-AA Approaching 

anticyclone 

10 4.4 65 1.0 (24) 61 3.4 (76) 66 35 

16ND-Po Postfront 16 2.5 89 0.9 (35) 96 1.6 (65) 85 10 

18ND-AA Approaching 

anticyclone 

15 2.9 91 0.5 (18) 86 2.4 (82) 92 16 

19ND-A Anticyclone 9 1.1 72 0.4 (35) 96 0.7 (65) 59 7 

20ND-A Anticyclone 10 1.0 77 0.4 (41) 85 0.6 (59) 72 6 

21ND-A Anticyclone 13 1.7 63 1.0 (63) 89 0.6 (37) 18 5 

22ND-A Anticyclone 8 1.2 40 0.5 (43) 56 0.7 (57) 28 9 

23ND-

Pr+Po 

Pre-/postfront 12 1.1 59 0.5 (48) 88 0.6 (52) 32 5 

24ND-

Po+A 

Postfront/Anti

cyclone 

7 1.4 72 0.5 (38) 88 0.8 (62) 62 12 

25ND-A Anticyclone 6 1.5 85 0.6 (40) 95 0.9 (60) 78 15 

Average  12  2.0 75 0.9 (44) 87 1.1 (56) 60 10 

All (27)          

Average  18 2.8 74 1.0 (39) 87 1.8 (61) 63 12 

 

2.2 Separation of particle-attached and free-floating bacteria 

In this study, bacteria in the samples of stages with particles larger than 1.1 μm were considered particle-attached 110 

bacteria, and bacteria in the samples of stages with particles ranging from 0.43−1.1 μm were considered free-floating 

bacteria. The resuspension of bacteria trapped by upper stages and falling onto lower stages during sample collection may 

cause uncertainties in the size distribution of bacteria-associated particles and the separation of particle-attached and free-

floating bacteria.  

The uncertainties were investigated in the laboratory (Text S2 in the Supplement). The fractions and concentrations 115 

of particle-attached bacteria obtained by the present method were potentially underestimated. But the underestimation did 

not significantly affect the size distributions of particle-attached bacteria, and, in particular, the underestimation of the 

concentrations of particle-attached bacterial cells was less than 10% on average (Fig. S5). In addition, the concentrations of 

total bacterial cells quantified using the Andersen samplers were consistent (10015%) with those quantified using the in-

line filter holders. This result indicates that bacteria smaller than 0.43 m, which trapped with difficulty by the Andersen 120 

samplers, were a minor fraction of the free-floating bacteria. 
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2.3 Atmospheric conditions 

During the observation periods, the number concentrations of size-segregated airborne particles 

(>0.3, >0.5, >1.0, >2.0, and >5.0 μm in diameter) were monitored with optical particle counters (OPC, KC-01D in 2013 and 

KC-01E in 2014–2016, Rion Co., Ltd, Tokyo, Japan). In this study, fine particles are in the range of 0.3–1.0 μm, and those 125 

larger than 1.0 μm are referred to as coarse particles. Meteorological conditions, including temperature, pressure, relative 

humidity, precipitation, and wind speed and direction, were monitored with a weather transmitter (WXT520, Vaisala Inc., 

Helsinki, Finland). Airborne particle number concentrations and meteorological data during the observation periods are 

summarized in Fig. S2 and Table 1. 

On the basis of surface pressure and weather charts in the days before and after sample collection (Figs. S2 and S6), 130 

the air parcels on the synoptic scales from which samples were collected were categorized into four groups: prefront, 

postfront, approaching anticyclone, and anticyclone (Table S1). Details of the categorization are available in Murata and 

Zhang (2016). 

Dust episodes were identified by significant increases in coarse particle concentrations (>1 µm), the forecast for 

Asian dust distributions in the east Asian region (http://www-cfors.nies.go.jp/~cfors/; Fig. S7), and the backward trajectory 135 

of air masses calculated with the NOAA/HYSPLIT model (http://ready.arl.noaa.gov/HYSPLIT_traj.php). During dust 

events, the coarse particle concentration largely increased at the study site (Zhang et al., 2003). Dust particles were present in 

the postfront air and sometimes in the approaching anticyclone air. The results of backward trajectory analysis during dusty 

and nondust episodes are shown in Fig. S8. 

3 Results  140 

3.1 Concentrations of airborne bacteria in segregated size ranges 

The concentrations of bacterial cells, including viable and nonviable cells, generally showed a bimodal number-size 

distribution during dust episodes (e.g., Fig. 1a, b, d, f). Most of the bacteria were present in particle fractions with aerodynamic 

size (Dp) ranges larger than 2 µm (i.e., 2.1−3.3, 3.3−4.7 and 4.7−7.0 µm; Fig. S9). These sizes are larger than the size of 

individual airborne bacterial cells (approximately 1 µm or smaller), indicating that the bacteria did not float individually in the 145 

air but were combined with other particles or were agglomerates of bacterial cells, i.e., the bacteria were particle-attached. The 

agglomerates of bacterial cells usually appear near emission sources, e.g., sea spray and leaf water (Lighthart, 1997), and 

probably contributed a limited portion to particle-attached bacteria in this study. There were also many bacterial cells in the 

size ranges smaller than 1.1 µm, i.e., free-floating bacterial cells. Their concentration was comparable to or lower than the 

concentrations of bacteria in the larger size ranges (Figs. 1 and S9). 150 
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In contrast to dust episodes, during nondust periods, the number-size distribution of bacteria largely varied and did not 

show any trend with respect to weather conditions. In six cases during nondust periods (9ND-Pr, 11ND-AA, 12ND-A, 13ND-

A, 14ND-A, and 21ND-A; Fig. S9), the bacteria appeared mainly in size ranges smaller than 1.1 μm and accumulated the most 

in the size range of 0.43–0.65 μm (e.g., Fig. 1c), indicating the predominance of free-floating bacteria. During most of the 

other nondust periods (6ND-AA, 7ND-A, 8ND-A+Pr, 16ND-Po, 19ND-A, 20ND-A, 22ND-A, 23ND-Pr+Po, 24ND-Po+A, 155 

and 25ND-A), the distributions of bacteria were similar to those during the dust periods, although the concentrations were 

much lower than or comparable to those in the dust episodes (e.g., Fig. 1e). There were two exceptional cases in nondust 

periods that had a mono-modal distribution, with peaks at 3.3–4.7 µm (15ND-AA) or larger than 11 µm (18ND-AA) (Fig. S9). 

There were multiple processes, e.g., advection, deposition, local emission and local convective mixing, that could influence 

the size distributions. Unfortunately, we do not have enough case data to investigate statistically meaningful connections 160 

between the size distribution and those processes. 

 

Figure 1. Concentrations of viable and nonviable bacteria (CB) and mineral dust-like particles (CM) in size-segregated airborne 

particles. Selected samples are shown as examples: (a) 1D-Pr; (b) 4D-Pr+Po; (c) 11ND-AA; (d) 17D-AA; (e) 22ND-A; (f) 

27D-AA. The results of all sampling periods are depicted in Fig. S9 in the Supplement. 165 
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3.2 Concentration of particle-attached and free-floating bacteria 

On average, the concentration of total bacterial cells, 4.4 × 105 cells m-3, during dust episodes was more than twice that 

during nondust periods, 2.0 × 105 cells m-3 (Table 1). This large difference in concentration is consistent with the results of 

previous studies (Hara and Zhang, 2012;Yamaguchi et al., 2014). The concentrations of particle-attached bacterial cells during 170 

dust episodes and nondust periods were 3.2 × 105 and 1.1 × 105 cells m-3, respectively. The percentage of particle-attached 

bacteria during dust periods, 729%, was significantly higher than that during nondust periods, 5617% (independent samples 

t test, p<0.05). These results signify that dust particles carry a substantial amount of bacterial cells on their surfaces to remote 

downstream areas. 

On the other hand, the percentage of free-floating bacterial cells was higher than 70% in some cases during nondust 175 

periods (Table 1). In particular, the percentage ranged from 35% to 73% (49% on average) under anticyclone weather 

conditions, when the air mass moved sluggishly and was mainly influenced by marine and local emissions and less by 

continental emissions (Fig. S8). Therefore, there were a substantial fraction of free-floating bacteria, and they were frequently 

the common bacteria in nondust air. 

The number ratio of particle-attached bacteria to particles in the size range larger than 1.1 µm was 12% on average 180 

(Table 1). Except for two periods when the ratios were 35% and 59%, respectively, the ratio was approximately stable (9% on 

average for the other periods), regardless of dust episodes and nondust periods (Table 1). That is, assuming that a bacteria-

attached coarse particle harbors at least one bacterial cell, coarse particles including mineral dust particles with attached 

bacteria usually made up less than 9% of the total coarse particles. Maki et al. (2008) reported that the mineral particles with 

attached bacteria made up approximately 10% of the total mineral particles, with the remaining mineral particles possessing 185 

few or no bacterial cells at 800-m height above the ground in an Asian dust source region, Dunhuang, China. 

The number-size distributions of bacterial cells and mineral dust-like particles (insoluble and with irregular shapes; 

Fig. S3) in the microscope fields of some samples were compared. In most cases, the distributions (mode sizes) of particles 

and bacteria in the size ranges larger than 1.1 µm showed very good consistency (Figs. 1 and S9). In some cases, the 

concentration of bacteria in the size ranges larger than 1.1 µm, especially nonviable bacteria, was closely correlated with the 190 

mineral dust-like particles in size-segregated samples (Fig. 2). These results further confirm that the bacteria observed in the 

large size ranges were closely associated with airborne coarse particles, i.e., they were particle attached. In some cases, the 

mode size ranges of the bacterial cells and the dust-like particles were inconsistent (Fig. S9), likely because the number of 

bacteria on the surface of each coarse particle largely varied or there were less dust-like particles in the coarse size ranges (e.g., 

26D-Po). Dust-like particles were rarely observed in the size ranges smaller than 1.1 µm (Fig. S9), further indicating that the 195 

bacteria observed in those size ranges were predominantly free-floating. 
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Figure 2. Relationship between bacteria and mineral dust-like particles in size-segregated aerosols. (a) Total bacteria, (b) 200 

viable bacteria, and (c) nonviable bacteria. Solid and open circles represent particles in the size ranges larger and smaller than 

1.1 m, respectively. The Pearson correlation coefficients (r) between bacteria and mineral dust-like particles for particles 

larger than 1.1 m are shown. 
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3.3 Viabilities of particle-attached and free-floating bacteria 

The viability of particle-attached bacteria varied over a wide range from 18% to 98% (63% on average), and the 205 

viability of free-floating bacteria was between 56% and 99% (87% on average) (Table 1), much higher than the viability of 

particle-attached bacteria (Wilcoxon signed rank test, 2-tailed P = 0.00). The attachment of airborne bacteria to larger particles 

is expected to be favorable for retaining the viability or cultivability of cells and may indirectly increase the diversity of 

bacterial communities because of the possible protection of bacterial cells from harsh atmospheric conditions (Bowers et al., 

2013;Prospero et al., 2005;Lighthart, 2000). 210 

However, we found that the viability of particle-attached bacteria tended to be lower than that of free-floating bacteria, 

regardless of weather conditions (Table 1). This result indicates that a fraction of the particle-attached bacterial cells were 

either nonviable when they were blown into the air with the dust or had experienced atmospheric stressors for several days 

during long-distance transport and changed from a viable to a nonviable state. This is also likely the reason for the poor 

correlation (Pearson correlation r= 0.349, p = 0.075) between the viability of particle-attached bacteria and the ratio of particle-215 

attached bacteria to coarse particles (Tables 1). In contrast, a large fraction of free-floating bacteria were viable. A fraction of 

these bacteria were likely from local areas, with a residence time (usually less than one day) shorter than that (2−3 days) of the 

particle-attached bacteria transported from the Asian continent (Fig. S8). The proportion of free-floating bacteria was higher 

under nondust conditions when the air masses moved slowly above the marine area. However, for special cases, such as the 

one of 20ND-A when the air was from the north due to the specific weather of west-high pressure versus east-low pressure in 220 

the westerly, a substantial fraction of the bacteria could be from the local and close areas due to the extremely strong wind. In 

terms of concentration, viable particle-attached bacteria were usually more abundant than viable free-floating bacteria in dust 

episodes (Figs. 1 and S9). 

On average, the viability (74%) of total bacteria in dusty episodes was close to the viability (75%) of total bacteria 

during nondust periods (Table 1). The viability of particle-attached bacteria (69%) during dust periods was slightly higher than 225 

that (60%) during nondust periods. The majority of particle-attached bacteria were viable. 

Free-floating bacteria exhibited a quite high viability, and the viabilities of the bacteria in dusty (87% on average) and 

nondust (87%) air were similar. The concentration of viable free-floating bacteria was 3.8 × 104–1.5 × 105 cells m-3, which 

was lower than that of particle-attached bacteria (6.2 × 104–5.1 × 105 cells m-3). An increase in viable free-floating bacteria on 

the order of 105 cell m−3 (1.1−2.2  105 cell m−3) was observed when the weather was fine and the air masses moved slowly 230 

from marine areas (e.g., 9ND-Pr, 12ND-A, and 13ND-A), favoring the accumulation of bacteria emitted from local areas (Fig. 

S8). 
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4 Discussion 

4.1 Comparison with literature data 

There are few data on airborne bacterial cells available for comparison with the present study. Observations in the 235 

multiphase atmosphere with culture-dependent methods revealed that approximately 60−90% or even more culturable airborne 

bacteria were present in the size range of particles larger than 1.1 m (Agarwal, 2017;Burrows et al., 2009;Montero et al., 

2016;Raisi et al., 2013), and the median aerodynamic diameter of particles containing culturable bacteria was approximately 

2−4 μm at diverse sites (Lighthart, 2000;Raisi et al., 2013;Shaffer and Lighthart, 1997;Tong and Lighthart, 2000). These results 

indicate the predominance of culturable particle-attached bacteria in the air, which is approximately in line with the results 240 

under dusty and nondust conditions of this study. 

Early studies with single-particle analysis frequently encountered the mode size of biological aerosol particles in the 

size range smaller than 1 m (Matthias-Maser et al., 1999;Matthias-Maser and Jaenicke, 1995, 2000). In contrast, recent real-

time measurements using ultraviolet aerodynamic particle sizer spectrometers and wideband integrated bioaerosol sensor 

techniques revealed the mode size of fluorescent biological aerosol particles (FBAP) to be approximately 2–6 µm, and the 245 

particles were mainly attributed to fungal spores (Pöschl et al., 2010;Savage et al., 2017;Yue et al., 2017;Huffman et al., 2010). 

However, the abundant particle-attached bacteria identified in this study in size ranges larger than 2 µm indicate dust-particle-

attached bacteria should not compose small fractions of real-time FBAP results in the relevant size ranges. In addition, the 

mode at or smaller than 1 µm observed in real-time FBAP studies is likely consistent with the presence of free-floating bacterial 

cells in the present study, but the comparison and discussion on the data are not confident because of the large uncertainties 250 

caused by the low counting efficiency and accuracy in submicron size ranges of the instruments used in the studies (Yue et al., 

2017;Huffman et al., 2010). 

Since there are rare other equivalent data for comparisons, we discuss the influences of airborne bacteria according to 

the results obtained in this study and relevant general understandings in the following subsections. 

4.2 Ice cloud formation 255 

Dust particles from desert areas are constantly spread at local, regional and global scales in the atmosphere. These 

particles transport microorganisms across continents and oceans to remote downstream areas (Griffin, 2007;Schuerger et al., 

2018). It has been shown that bacteria in the air are more effective ice nuclei at temperatures as warm as −2C than abiotic 

particles (Ariya et al., 2009;Burrows et al., 2013;Fröhlich-Nowoisky et al., 2016;Möhler et al., 2007). Biological particles 

coexisting with dust particles have been detected in ice residues sampled from clouds (Creamean et al., 2013;Pratt et al., 2009), 260 

and the coexistence of dust and bacterial cells increases the ability of particles to act as ice nuclei for ice crystal formation 

(Tobo et al., 2019). Proteins in bacteria are ice nucleation active sites and are well protected when bacteria adhere to mineral 

dust surfaces (Conen et al., 2011). The attachment of bacteria to dust particles possibly increases the number of sites for ice 
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nucleation and consequently the ice nucleation ability of dust particles (Boose et al., 2019;Conen et al., 2011;Augustin-Bauditz 

et al., 2016). The present results show that up to one-tenth or more dust particles could be bacteria carriers, and the 265 

concentration of particle-attached bacteria, i.e., the number of bacteria-dust contact sites in dust episodes, was on average 3 

times larger than that during nondust periods (Table 1). The occurrence of dust in remote downstream areas will significantly 

increase not only the concentration of bacterial cells but also the concentration of dust-bacteria mixture particles and the 

number of ice nucleation active sites. This phenomenon could provide important sources of nuclei for ice cloud formation 

under saturated meteorological conditions for icing, particularly in remote elevated air, where the concentrations of aerosol 270 

particles able to act as nuclei are usually very low (Creamean et al., 2013). 

4.3 Ecosystem conservation and development 

More than 60% of particle-attached bacteria and approximately 87% of free-floating bacteria in the dusty air remained 

viable. Airborne bacteria can multiply more easily after they settle into water (lakes, rivers and oceans) and soil surfaces than 

in the atmosphere. As a consequence, their dissemination via the atmosphere has the potential to alter the microbial 275 

biogeography, biogeochemistry and ecosystem services of downstream areas. Moreover, a recent study on phosphorus in 

aerosol particles in Asian continental outflow revealed that natural dust particles supplied higher ratios of bioavailable 

phosphorus than other types of particles as nutrients for the primary production in marine ecosystems, and the phosphorus was 

presumed to be from the biological particles in dust plumes (Shi et al., 2019). The dissemination of bacteria with dust in the 

air is much more efficient than that via other routes, such as rivers, because dust in the atmosphere can travel globally within 280 

two weeks (Uno et al., 2009). Therefore, the wide dispersal of atmospheric dust is an efficient link between bacterial 

communities in geographically isolated ecosystems. This linking function is likely the key process that constantly blurs the 

distinctions between closely related microbial species in distant areas. Thus, the diversities of microorganisms have a 

geographically weak gradient at the global scale, and are functions of habitat properties but not of historical/evolutionary 

factors (Fenchel and Finlay, 2004). 285 

4.4 Health effects 

Allergenic and toxic bacteria inhaled and deposited on the surface of upper respiratory tracts and lungs are suggested 

to provoke severe adverse health effects, regardless of whether the bacteria are viable, dead or cell fragments (Fröhlich-

Nowoisky et al., 2016;Després et al., 2007). Dust particles carrying biological materials, including bacteria with pathogenic, 

allergenic, and adjuvant activity, can cause and aggravate respiratory disorders (Reinmuth-Selzle et al., 2017). The size 290 

distribution of bacteria-related particles in the air is particularly meaningful because the movement and deposition of the 

particles in the airways are size-dependent. Particles larger than 0.5 μm are deposited by sedimentation and impaction mainly 

in the head airways, and particles smaller than 0.5 μm can reach the lower airways by diffusion (Fröhlich-Nowoisky et al., 

2016). According to the size distribution of the airborne bacteria-related particles in this study (Figs. 1 and S9), the deposition 

fraction and abundance of particle-attached bacteria are much higher than those of individual cells in both the upper and the 295 
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lower airways. Polymenakou et al. (2008) reported that a large fraction of airborne bacteria at respiratory particle sizes (< 3.3 

μm) during an intense dust event were phylogenetic neighbors to human pathogens. He et al. (2012) suggested that Asian dust 

caused the exacerbation of pneumonia induced by Klebsiella pneumoniae due to the enhanced production of pro-inflammatory 

mediators in alveolar macrophages. Therefore, free-floating bacterial cells are likely to more easily influence the deep parts 

than the upper parts of respiratory airways, while the negative influence of particle-attached bacteria, particularly under dust 300 

conditions, is expected to be more serious in the upper parts than in the deep parts of respiratory airways. 

5 Conclusions 

In this study, we aimed to quantify the particle-attached and free-floating bacteria in dusty and nondust air in 

southwestern Japan using the fluorescent enumeration of bacterial cells in size-segregated aerosol samples. The bacteria 

showed bimodal number-size distributions during dust episodes, while the distributions largely varied during nondust periods. 305 

Particle-attached bacteria in dust episodes, with a concentration of 3.2105 cells m-3 averagely, occupied 72 % of the total 

bacteria. In contrast, this percentage was 56 % during nondust periods, with a concentration of 1.1105 cells m-3. The results 

indicate that dust particles conveyed substantial bacterial cells on their surfaces. Viable particle-attached bacteria were more 

abundant than viable free-floating bacteria in dusty air, which is compatible with the previous results that larger particles 

harbor more viable and/or culturable bacteria than smaller particles. 310 

The viability (approximately 63%) of particle-attached bacteria was much lower than that (87%) of free-floating 

bacteria, likely because atmospheric stressors along with long-distance transport inhibited the survival of particle-attached 

bacteria and the entrainment of locally originating free-floating bacteria. High concentrations and viabilities of free-floating 

bacteria were observed in stagnant air, mostly under anticyclone conditions, suggesting that locally emitted bacteria accounted 

for the major fractions. 315 

The present results, quantitatively showing the state of airborne bacteria in association with particles, i.e., particle-

attached and free-floating bacteria, could have broad implications in the disciplines of atmospheric sciences, ecology, public 

health and climate. In addition, the methods used in this study are low cost and easily available but are time- and labor-intensive. 

Verification of the status of airborne bacteria using efficient techniques, such as in situ electron microscopy, and the exploration 

of the compositions, functions and activities of particle-attached and free-floating bacteria in the atmosphere, are necessary to 320 

deepen our understanding of the related fields. 
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