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Abstract. A variety of modelling studies have suggested tree rooting depth as a key variable to explain evapotranspiration 22 
rates, productivity and the geographical distribution of evergreen forests in tropical South America. However, none of those 23 
studies acknowledged resource investment, timing and physical constraints of tree rooting depth within a competitive 24 
environment, undermining the ecological realism of their results. Here, we present an approach of implementing variable 25 
rooting strategies and dynamic root growth into the LPJmL4.0 DGVM and apply it to tropical and sub-tropical South-26 
America under contemporary climate conditions. We show how competing rooting strategies which underlie the trade-off 27 
between above- and below-ground carbon investment lead to more realistically simulation of intra-annual productivity and 28 
evapotranspiration, and consequently simulated forest cover and spatial biomass distribution. We find that climate and soil 29 
depth determine a spatially heterogeneous pattern of mean rooting depth and belowground biomass across the study region. 30 
Our findings support the hypothesis that the ability of evergreen trees to adjust their rooting systems to seasonally dry 31 
climates is crucial to explain the current dominance, productivity and evapotranspiration of evergreen forests in tropical 32 
South America. 33 

1 Introduction 34 

Tropical evergreen forest is the naturally dominant biome type in South-America over a large climatic range including 35 
regions with a marked dry season (Hirota et al., 2011; Xiao et al., 2006). To withstand seasonal shortages of precipitation 36 
and sustain productivity, trees with evergreen phenology often have access to deep soil water via deep roots (Brum et al., 37 
2019; Canadell et al., 1996; Johnson et al., 2018; Kim et al., 2012; Markewitz et al., 2010). Consequently, recent studies 38 
suggest a heterogeneous spatial pattern of maximum rooting depth across tropical forest biomes in South-America which 39 
differs over the order of magnitudes depending on local groundwater, soil and climate conditions (Canadell et al., 1996; Fan 40 
et al., 2017). So far different modelling approaches were presented which highlighted the crucial role of rooting depth for the 41 
productivity and therefore the distribution of evergreen trees in South-America. In a pioneering study more than 20 years 42 
ago, Kleidon and Heimann (1998) systematically searched for rooting strategies which yield highest net primary productivity 43 
over South America with a dynamic global vegetation model (DGVM) to explain intra-annual rates of ET and vegetation 44 
cover. Follow up studies further underlined the importance of deep roots for the water cycle of South America (Kleidon and 45 
Heimann, 2000). Accordingly, Lee et al. (2005) found that allowing for deep roots and hydraulic redistribution of water in 46 
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the soil column in a general circulation model (GCM) improved simulated Amazon forest productivity and 47 
evapotranspiration (ET) in the dry season. Baker et al. (2008) came to similar results when introducing deep roots in a land 48 
surface model. Ichii et al., (2007) found that constraining rooting depth across the Amazon based on satellite-derived data of 49 
forest productivity yields similar results in a terrestrial ecosystem model. More recently, Langan, Higgins and Scheiter 50 
(2017) showed for the same study area how diverse rooting strategies in a tree individual and trait-based DGVM can 51 
improve simulated intra-annual productivity and ET as well as better explain patterns of different tropical biome types and 52 
biomass in fire-prone ecosystems. While these studies are important steps to acknowledge the diversity of tree rooting depth 53 
and its effects on ET and forest productivity, some assumptions of the underlying models might decrease the liability of their 54 
results. These assumptions are related to 1) resource investment, 2) temporal growth and 3) physical constraints of rooting 55 
depth: 56 
1) Most global  vegetation models so far do not account for coarse roots (Warren et al., 2015a) even though they can make 57 
up the majority of total root biomass (Xiao et al., 2003). This approach may be sufficient when employing shallow tree 58 
rooting strategies only, but with increasing rooting depth, costs for coarse roots increases substantially. Since the amount of 59 
resources trees can allocate to their processes and structures is finite, a local adaptation of tree rooting depth must follow a 60 
trade-off between above- and below-ground resource investment (Nikolova et al., 2011). Generally, above-ground 61 
investments into leaf and stem growth can increase light absorption and CO2 uptake, while below-ground investments can 62 
increase the uptake of water and nutrients. Depending on local environmental and competitive conditions one or the other 63 
allocation strategy might be more advantageous, eventually leading to substantial regional variation in the mean ratios 64 
between below-ground to above-ground biomass (Leuschner et al., 2007; Mokany et al., 2006). Therefore, the simulated 65 
spectrum of tree rooting strategies which can survive and co-exist should be in accordance with this crucial trade-off. 2) In 66 
contrast to above-ground stem growth, most global vegetation models do not simulate gradual root growth (Warren et al., 67 
2015a). Instead simulated  vegetation types are assigned a constant relative distribution of fine roots throughout the soil 68 
column at any point in space and time (Best et al., 2011; Lawrence et al., 2011; Schaphoff et al., 2018a; Smith et al., 2014). 69 
As under the above-mentioned simplification under 1), this approach may be sufficient when accounting for shallow rooting 70 
strategies only, but when the maximum tree rooting depth is strongly increased, it is questionable that the time needed to 71 
reach this depth is negligible, especially when accounting for competition of different vegetation types. Rooting depth 72 
increases rather gradually and non-linearly over a tree’s lifetime with a velocity driven by a mix of plastic optimization and 73 
allometric determination (Brum et al., 2019; Brunner et al., 2015; Nikolova et al., 2011; Poorter et al., 2012; Warren et al., 74 
2015b). Even though smaller-scale models have implemented root optimization schemes in the past (Schymanski et al., 75 
2008), the knowledge base for a mechanistic bottom-up modelling approach of plastic root optimization is very sparse 76 
(Jenik, 2010; Poorter et al., 2012; Warren et al., 2015b) and knowledge on certain allometric rules (Brum et al., 2019; Eshel 77 
and Grünzweig, 2013; Mokany et al., 2006) seems enough to be applied in global vegetation models. 3) Most global 78 
vegetation models so far do not account for a location-dependent soil depth, but apply a constant soil depth across the globe 79 
(Best et al., 2011; Guimberteau et al., 2017; Lawrence et al., 2011; Ostle et al., 2009; Schaphoff et al., 2018a; Smith et al., 80 
2014). Again, this approach may be sufficient when accounting for shallow rooting strategies only, but allowing for deep 81 
tree rooting strategies should go in parallel with their potential physical barriers. Recent data products on global soil depth 82 
now enable to better constrain rooting depth in vegetation models across scales (Pelletier et al., 2016).  83 
Here we overcome the above mentioned limitations and present a new approach of diversifying tree rooting strategies of 84 
tropical plant functional types (PFTs) in the DGVM LPJmL4.0 (Lund-Potsdam-Jena managed Lands; Schaphoff et al., 2018) 85 
which increases the ecological liability with the following aspects: 1) A global product of soil depth restricts the maximum 86 
tree rooting depth, 2) PFTs are sub-divided according to a broad spectrum of different possible tree rooting strategies with a 87 
range of maximum rooting depths between 0.5 and 18 m, 3) all sub-PFTs grow in competition and their individual 88 
performance determines dominance, 4) dominance is supported by best performing sub-PFTs increasing their establishment 89 
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rate, 5) sub-PFTs have to invest carbon into coarse roots, i.e. acknowledging the trade-off between growing deeper roots and 90 
allocating available carbon to other compartments (stem and leaf growth), and 6) sub-PFT roots are growing deeper over 91 
time depending on tree height. Given these new model developments we here re-evaluate the hypotheses that  92 

I) climate and soil depth determine dominant tree rooting strategies,  93 
II) tree rooting depth influences the distribution and dominance and  94 
III) diverse tree rooting strategies are key to explain rates of evapotranspiration and productivity  95 

of tropical evergreen forests in South America. Therefore, we compare several model versions of LPJmL4.0 differing in the 96 
above-mentioned model developments and evaluate simulated evapotranspiration, productivity, biomass and spatial 97 
distribution of evergreen and deciduous tree PFTs using different sources of validation data. 98 

2 Materials and Methods 99 

2.1 The LPJmL4.0 model 100 

LPJmL4.0 is a process-based Dynamic Global Vegetation Model (DGVM) which simulates the surface energy balance, 101 
water fluxes, fire disturbance, carbon fluxes and stocks of the global land (Schaphoff et al., 2018a). Plant productivity is 102 
modelled on the basis of leaf-level photosynthesis responding to climatic and environmental conditions, atmospheric CO2 103 
concentration, canopy conductance, autotrophic respiration, phenology and management intensity. Fire disturbance is 104 
modelled using the simple fire module Glob-FIRM (Thonicke et al., 2001) which relates the length of the fire season to 105 
fractional annual area burnt. The model simulates 11 plant functional types (PFTs), 3 bioenergy functional types (BFTs) and 106 
12 crop functional types (CFTs), to represent average plants of natural vegetation, bioenergy plantations and agriculture, 107 
respectively. Three PFTs represent the natural vegetation of the tropics and sub-tropics namely the “tropical broadleaved 108 
evergreen tree” mainly representing tropical evergreen forest, the “tropical broadleaved deciduous tree” representing tropical 109 
dry forest and the woody component of savanna and “tropical herbs” representing the herbaceous layer in grasslands, 110 
savanna and forests. The standard spatial model resolution is a 0.5° x 0.5° longitude-latitude grid. For each grid cell the 111 
fractional coverage of bioenergy and agricultural BFTs and CFTs follows a prescribed land-use data set, whereas in the 112 
remaining grid-cell area natural PFTs grow in competition. 113 

2.2 A new tree rooting scheme for LPJmL4.0 114 

All changes made to LPJmL4.0 in order to simulate variable tree rooting strategies resulted in a new sub-version of 115 
LPJmL4.0 which we call LPJmL4.0-VR hereafter (where “VR” stands for “variable roots”). A detailed description of our 116 
modelling approach can be found in Appendix A.  117 
For our purposes we extended the general maximum soil depth of 3 m in LPJmL4.0 to 20 m in LPJmL4.0-VR, but restrict it 118 
to local soil depth information at the spatial model resolution of 0.5° x 0.5°; Sect. 2.3.2. We applied the same basic scheme 119 
for vertical soil layer partitioning from LPJmL4.0 (Schaphoff et al., 2018a), in order to keep model differences small 120 
(Appendix A Sect. 1.1 & Table A1). We increased the amount of rooting strategies for each of the 2 tropical tree PFTs 121 
(broadleaved evergreen and broadleaved deciduous), by splitting each PFT into 10 sub-PFTs. Each of those 10 sub-PFTs 122 
was assigned a different maximum vertical distribution of fine roots throughout the soil column following classical 123 
allometric rules applied in LPJmL4.0 (Appendix A Sect. 1.3 & Figure A1). Those distributions where chosen in order to 124 
allow the sub-PFTs to reach different maximum rooting depths in discrete steps between 0.5 and 18 m (Table A2). We here 125 
refer to the depth at which the cumulated fine root biomass from the soil surface downwards amounts to 95% (D95_max; Eq. 126 
A3). To account for additional carbon investments needed to grow deeper rooting systems we introduced two new carbon 127 
pools, namely root sapwood and root heartwood (Appendix A Sect. 1.4). Like stem sapwood in LPJmL4.0, also root 128 
sapwood in LPJmL4.0-VR needs to satisfy the assumptions of the pipe model (Shinozaki et al., 1964; Waring et al., 1982). 129 
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This implementation creates a trade-off between below-ground and above-ground carbon investment. To allow for dynamic 130 
root growth we implemented a logistic root growth function, which calculates a general maximum conceivable tree rooting 131 
depth depending on tree height (Appendix A Sect. 1.5), in approximation to the findings of Brum et al. (2019). 132 
Consequently, each sub-PFT shows a logistic growth of rooting depth which is dependent on the sub-PFT height and which 133 
saturates towards its specific D95_max (Fig. A2). Therefore, limitations of aboveground sub-PFT growth due to below-ground 134 
carbon investment of different tree rooting strategies (Sect. 2.2.4) are equal in the sapling phase of all sub-PFTs (starting 135 
from bare ground) but diverge with increasing sub-PFT height. In the case temporal root depths exceeds the grid-cell specific 136 
local soil depth (as prescribed by local soil depth information, see Sect. 2.3.2) all the respective fine root biomass exceeding 137 
this soil depth is transferred to the last soil layer matching this soil depth (see also Fig. 1 and Supplementary Video 1 for a 138 
visualization of new below-ground carbon pools and root growth in LPJmL4.0-VR under http://www.pik-139 
potsdam.de/~borissa/LPJmL4_VR/Supplementary_Video_1.pptx).  140 
To fully investigate the effects of 20 tropical sub-PFTs growing in competition we adjusted the original PFT establishment 141 
routine of LPJmL4.0 (Appendix A Sect. 1.6). The adjustments lead to a higher establishment rate for productive sub-PFTs 142 
relative to their spatial dominance and vice versa, without changing the overall establishment rate as originally set by 143 
Prentice et al. (1993). The adjusted establishment routine has the effect that non-viable sub-PFTs are outcompeted over time. 144 
Furthermore, we increased the universal and constant maximum background mortality rate of tree PFTs in LPJmL4.0-VR to 145 
7% in order to counter-balance increased survival rates and therefore biomass accumulation under enhanced water access 146 
(Appendix A Sect. 1.7). 147 

2.3 Model input data 148 

2.3.1 Climate input data 149 

All versions of LPJmL used in this study (Sect. 2.4) were forced with 4 different climate inputs each delivering the climate 150 
variables air temperature, precipitation, long-wave and shortwave downward radiation at daily or monthly resolution:  151 
1) WATCH Forcing Data (WFD) + WATCH Forcing Data methodology applied to ERAInterim data. A combination of the 152 
WATCH data set (Weedon et al., 2011) and the WFDEI data set (Weedon et al., 2014) as used in the ISIMIP project 153 
(https://www.isimip.org/gettingstarted/input-data-bias-correction/details/5/). This input data set is called WATCH+WFDEI 154 
hereafter. 155 
2) Global Soil Wetness Project Phase 3 (GSWP3) (Kim et al., no date; http://hydro.iis.u-tokyo.ac.jp/GSWP3/index.html).  156 
3) NOAH Global Land Assimilation System version 2.0 (GLDAS, Rodell et al., 2004).  157 
4) Climate forcing as in Schaphoff et al. (2018) with monthly precipitation provided by the Global Precipitation Climatology 158 
Centre (GPCC Full Data Reanalysis version 7.0; (Becker et al., 2013), daily mean temperature from the Climate Research 159 
Unit (CRU TS version 3.23, University of East Anglia Climatic Research Unit, 2015; Harris et al., 2014), shortwave 160 
downward radiation and net downward radiation reanalysis data from ERA-Interim (Dee et al., 2011), and number of wet 161 
days from (New et al., 2000) used to allocate monthly precipitation to individual days. 162 
This input data set is called CRU hereafter. 163 

2.3.2 Soil and sediment thickness 164 

For this study, we regridded a global 1 x 1 km soil and sediment thickness product (Pelletier et al., 2016) to the 0.5° x 0.5° 165 
spatial resolution of LPJmL4.0-VR, set the global maximum value to 20 m according to the maximum soil depth chosen for 166 
LPJmL4.0-VR (Sect. 2.2 & Appendix A Sect. 1.1), and used the resulting map as grid cell specific model input (Fig. A3). 167 
Regridding was done using the software R (R Core Team, 2019) with the package “raster” (Hijmans and van Etten, 2016).  168 
We used the aggregate function to calculate the average value of all Pelletier et al. (2016) data entries falling into the coarser 169 
0.5° grid of LPJmL. 170 

http://www.pik-potsdam.de/%7Eborissa/LPJmL4_VR/Supplementary_Video_1.pptx
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2.4 Model versions and simulation protocol 171 

In order to investigate the impact of simulating variable rooting strategies and root growth, we employ 3 model versions of 172 
LPJmL in this study: 1) LPJmL4.0, 2) LPJmL4.0-VR, and 3) LPJmL4.0-VR-base. LPJmL4.0-VR-base has the same settings 173 
as LPJmL4.0-VR except variable rooting strategies, i.e. using the 2 rooting strategy parameterizations of LPJmL4.0 174 
(Appendix A Sect. 1.3) for the respective 10 sub-PFTs of the tropical broadleaved evergreen PFT  and the tropical 175 
broadleaved deciduous PFT. We regard LPJmL4.0-VR-base as the baseline model of this study, because comparisons to 176 
LPJmL4.0-VR enable to investigate differences caused by the presence or absence of variable tree rooting strategies. 177 
Each simulation was initialized with 5000 simulation years of spin up from bare ground without land-use by periodically 178 
cycling the first 30 years of the respective climate data set (1901-1930 for WATCH+WFDEI, GSWP3, CRU and 1948-1977 179 
for GLDAS) and using a pre-industrial atmospheric CO2 level of 278 ppm. The first spin-up ensures that carbon pools and 180 
local distributions of PFTs and sub-PFTs are in equilibrium with climate (Schaphoff et al., 2018). In a second spin-up phase 181 
cycling the same 30 years of climate data, historical land-use and changing levels of atmospheric CO2 concentration are 182 
introduced. The second spin-up starts in the year 1700 and ends with the first year available in each climate data set. Land-183 
use is updated annually as described in Schaphoff et al. (2018). Before the year 1840 a constant pre-industrial atmospheric 184 
CO2 concentration of 278 ppm is prescribed. After this year atmospheric CO2 increases annually based on data of Tans and 185 
Keeling (2015) as described in Schaphoff et al. (2018). After the second spin up, transient simulations start with the first year 186 
available in each climate data set and end in 2010. Land-use and atmospheric CO2 are consistently updated annually 187 
continuing to follow the same data sets as used in the second spin-up.   188 
At the beginning of the first spin-up, all sub-PFTs in LPJmL4.0-VR and LPJmL4.0-VR-base have the same chance to 189 
establish, i.e. tree rooting strategies are uniformly distributed. During the spin-up simulations, local environmental filtering 190 
and competition in connection with PFT-dominance dependent establishment rates (Sect. 2.2 & Appendix A Sect. 1.6) 191 
determine which tree rooting strategies are best suited and which are outcompeted. Therefore, the transient simulations 192 
already start with distinct distributions of tree rooting strategies. 193 

2.5 Model validation  194 

2.5.1 Validation data 195 

Regional biomass pattern 196 
For evaluation of simulated regional pattern of AGB we compare the results of the 3 LPJmL model versions used in this 197 
study to two remote sensing based biomass maps (Avitabile et al., 2016a; Saatchi et al., 2011) which were regridded to the 198 
spatial resolution of the LPJmL models. Data of Avitabile et al. (2016) was regridded using the software R (R Core Team, 199 
2019) with the package raster (Hijmans and van Etten, 2016).  We used the aggregate function to calculate the average value 200 
of all Avitabile et al. (2016) data entries falling into the coarser 0.5° grid of LPJmL. Regridded data of Saatchi et al. (2011) 201 
was taken from Carvalhais et al. (2014). 202 
Local scale evapotranspiration and productivity 203 
To evaluate simulated local ET and net ecosystem exchange (NEE) of the 3 LPJmL versions used in this study, we compare 204 
Fluxnet eddy covariance measurements of ET at 7 sites and NEE at 3 sites  across the study region (Bonal et al., 2008; 205 
Saleska et al., 2013, Table A3) to respective simulated rates of local ET and NEE. We used only 3 sites for NEE 206 
comparisons, because only those sites provided continuous data covering more than 2 years. Fluxnet data was downloaded 207 
from https://fluxnet.fluxdata.org (under DOI: 10.18140/FLX/1440032 and DOI: 10.18140/FLX/1440165) in October 2017 208 
and from https://daac.ornl.gov/LBA/guides/CD32_Brazil_Flux_Network.html in November 2019.   209 
Continental scale gridded evapotranspiration products and selection of regions 210 

https://fluxnet.fluxdata.org/
http://dx.doi.org/10.18140/FLX/1440032
http://dx.doi.org/10.18140/FLX/1440165
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To evaluate the simulated ET over large regions and during a long period (1981-2010), we use three global gridded datasets: 211 
Global Land Data Assimilation System Version 2 (Rodell et al., 2004), ERA-Interim/Land (ERAI-L, Balsamo et al., 2015) 212 
and Global Land Evaporation Amsterdam Model v3.2 (GLEAM, Miralles et al., 2011; Martens et al., 2017). 213 
GLDAS and ERAI-L are reanalysis products, meaning that they are land surface models forced with meteorological data that 214 
has been corrected with observations to give better estimates of land surface variables. The selection of these two products is 215 
based on the study of Sörensson and Ruscica (2018), who found that they have a better performance over South America 216 
than other reanalysis and satellite-based ET products. GLDAS uses the land surface model Noah (Ek et al., 2003) forced by 217 
Princeton meteorological dataset version 2.2 (Sheffield et al., 2006). The soil depth of Noah is 2 m and the model uses four 218 
soil layers and vegetation data from University of Maryland (http://glcf.umd.edu/data/landcover/). ERAI-L uses the land 219 
surface model HTESSEL (Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land, Balsamo et al., 2009) 220 
forced by ERA-Interim atmospheric data with a GPCP based correction of monthly precipitation. The soil depth of ERAI-L 221 
is 2.89 m, the model uses four soil layers and vegetation data from ECOCLIMAP (Masson et al., 2003).  222 
GLEAM uses the Priestley-Taylor equation to estimate the potential ET and a set of algorithms with meteorological and 223 
vegetation satellite data as input to calculate the actual ET. The version used here, GLEAMv3.2a (Martens et al., 2017, 224 
downloaded from https://www.gleam.eu/#downloads) uses precipitation input from MSWEP v1.0 (Beck et al., 2017), 225 
vegetation cover from the MODIS product MOD44B, remotely sensed Vegetation Optical Index from CCI-LPRM (Liu et 226 
al., 2013) and assimilates soil moisture from both remote sensing (ESA CCI SM v2.3, Liu et al., 2012) and land-reanalysis 227 
(GLDAS Noah, Rodell et al., 2004). The original spatio-temporal resolution of GLDAS and GLEAM is 0.25º x 0.25º while 228 
for ERAI-L it is 0.75º x 0.75º. Monthly time series were calculated from daily values for the three datasets. Hereafter, we use 229 
the short names GLDAS, ERAI-L and GLEAM for the described reference datasets. 230 
For the temporal analysis of ET we used five climatological regions across the study area: Northern South America (NSA), 231 
Equatorial Amazon West (EQ W), Equatorial Amazon East (EQ E), Southern Amazon (SAMz), and South American 232 
Monsoon System region (SAMS) (see Fig. 3f). These regions result from a K-means clustering analysis of the annual cycles 233 
of the main drivers of ET: precipitation and surface net radiation (for details see Sörensson and Ruscica, 2018). Additionally 234 
we divided the large EQ region used by Sörensson and Ruscica (2018) in two smaller (EQ W and EQ E) at 60ºW, since this 235 
is the approximate division between regimes that have a maximum climatological water deficit (MCWD; Sect. 2.5.3) of 236 
around -200 mm per year (EQ W), and of around -500 mm per year (EQ E).  237 
Spatial distribution of vegetation types 238 
To evaluate the simulated regional distribution of simulated biome types of the 3 LPJmL versions we compare our results to 239 
satellite-derived vegetation composition maps from ESA Land cover CCI V2.0.7 (Li et al., 2018) which were reclassified to 240 
the PFTs of LPJmL from Forkel et al. (2014). In this dataset PFT dominance is indicated by foliage projected cover (FPC) 241 
which is also a standard output variable of the 3 LPJmL model versions allowing a direct comparison to model results. 242 
Spatial pattern of rooting depth 243 
We compare regional patterns of mean rooting depth simulated with LPJmL4.0-VR to a maximum depth of root water 244 
uptake map (Fan et al., 2017) which was regridded to the 0.5° x 0.5° spatial resolution of LPJmL4.0-VR. This product was 245 
inversely modelled by taking the dynamically interacting variables soil water supply and plant water demand into account. In 246 
Fan et al. (2017) supply was based on climate, soil properties and topography and demand of plant transpiration deduced 247 
from remotely sensed reanalysis of atmospheric water fluxes and leaf area index (LAI) data. 248 

2.5.2 Validation metrics 249 

All statistical evaluations of model results were based on 1) Pearson Correlation and 2) normalized mean squared error  250 
(NME; Kelley et al., 2013). NME is calculated as: 251 

http://glcf.umd.edu/data/landcover/
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𝑁𝑁𝑁𝑁𝑁𝑁 =  ∑ |𝑦𝑦𝑖𝑖− 𝑥𝑥𝑖𝑖|
𝑁𝑁
𝑖𝑖=1
∑ |𝑥𝑥𝑖𝑖−𝑥̅𝑥|𝑁𝑁
𝑖𝑖=1

              Eq. (1) 252 

where yi is the simulated and xi the reference value in the grid cell or time step i. 𝑥̅𝑥 is the mean reference value. NME takes 253 
the value 0 at perfect agreement, 1 when the model performs as well as the reference mean and values > 2 indicate complete 254 
disagreement.  255 

2.5.3 Maximum cumulative water deficit as indicator of seasonal water stress 256 

To analyse and explain the geographical pattern of rooting depth, ET and productivity we use the maximum cumulative 257 
water deficit (MCWD) as an independent indicator of potential seasonal water demand of vegetation. MCWD is a widely 258 
used indicator for seasonal water stress of tropical and sub-tropical forests in South America (Aragão et al., 2007; Lewis et 259 
al., 2011; Malhi et al., 2009). MCWD captures the seasonal difference of ET and precipitation in a cumulative way and 260 
therefore comprises dry season strength and duration. Here we calculate MCWD on a monthly basis. Therefore, we first 261 
calculate the cumulative water deficit CWDn of each month n as: 262 
𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 =  𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛−1 −  𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 + 𝑃𝑃𝑛𝑛             Eq. (2) 263 
where PET is the potential monthly ET and P the monthly sum of precipitation. CWD is constrained to values <=0 and is set 264 
to 0 at the end of each hydrological year, here the last day of September, as in Lewis et al. (2011). We use P from climate 265 
input used for model forcing (Sect. 2.3.1) and PET as it is simulated by LPJmL4.0 (Schaphoff et al., 2018a) which is only 266 
dependent on net surface radiation and air temperature, therefore remaining an explanatory variable independent of 267 
vegetation dynamics. We chose this PET instead of using the commonly used constant ET of 100 mm/month to calculate 268 
CWD (Aragão et al., 2007; Lewis et al., 2011; Malhi et al., 2009), because in this way, the CWD better corresponds to the 269 
actual climatological conditions in the different LPJmL model versions used in this study (Sect. 2.4). MCWD is then 270 
calculated as: 271 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑦𝑦 = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂,𝑦𝑦−1, … ,𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑦𝑦)           Eq. (3) 272 
where y indicates the calendrical year. 273 

3 Results 274 

3. 1 Regional pattern of tree rooting strategies 275 

In LPJmL4.0-VR the contribution of each tree rooting strategy to the overall net primary productivity (NPP) appears highly 276 
dependent on local environmental conditions.  277 
Based on the information of how much NPP each sub-PFT contributes in each grid cell, we derived maps of mean rooting 278 
depth over the whole study region for the time span 2001-2010 for each climate input used in this study (Fig. 2). Fig. 2 279 
shows the mean of the actually achieved D95 of each sub-PFT (evergreen and deciduous combined) weighted by the 280 
respective relative NPP contribution of each sub-PFT to total forest NPP (we call  𝐷𝐷95����� , hereafter). Therefore, the regional 281 
pattern of 𝐷𝐷95����� reflects the effects of climate and soil depth. A general East to West gradient of 𝐷𝐷95����� over the Amazon region 282 
follows climatic gradients of precipitation and MCWD (Fig. B1-B2), while soil depth (Fig. A3) constrains 𝐷𝐷95����� especially in 283 
the South-Eastern Amazon. In general, areas with higher mean annual rainfall and weaker dry season show lower 𝐷𝐷95����� and 284 
vice versa (please also see Fig. B3 for a detailed exemplary comparison of sub-PFT NPP for 2 grid cells with contrasting 285 
climate conditions). This pattern holds true under all climate inputs, with some minor local differences and is in line with an 286 
inversely modelled global gridded product of maximum depth of root water uptake (MDRU in Fan et al. 2017). 287 
Nevertheless, we find considerable absolute differences between MDRU and 𝐷𝐷95����� (Fig. B4), which can easily emerge from 288 
different model settings and assumptions, e.g. related to differences in spatial model resolution, simulated water percolation 289 
and underlying vegetation features.  290 
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Focussing on the climatological clusters (Sect. 2.5.1 and Fig. 3f) under CRU climate input, the western Amazon (EQ W), 291 
with a MAP of 2708 mm and mean MCWD of -163 mm, displays an overall mean 𝐷𝐷95����� of 1.14 m and a maximum of 5.47 m, 292 
despite considerably deeper soils present. In this cluster Fan et al. (2017) find a respective mean and maximum MDRU of 293 
1.26 and 17.95 m. In the Northern, Western and Southern Amazon clusters (NSA, EQ E, SAMz) with lower MAP of 2299, 294 
2190 and 2035 mm and considerably lower MCWD of -488, -438 and -497 mm, respectively, mean 𝐷𝐷95����� increases to 2.32, 295 
3.20 and 2.68 m, respectively (mean MDRU of 1.85, 2.84 and 3.28 m). Here, maximum 𝐷𝐷95����� values respectively reach 11.97, 296 
11.27 and 9.04 m (maximum MDRU of 14.28, 13.47 m and 16.57 m). In the monsoon dominated region (SAMS) displaying 297 
the lowest MAP of 1449 mm and MCWD of -649 mm, mean 𝐷𝐷95����� decreases to 1.37 m (mean MDRU 2.61 m). The maximum 298 
𝐷𝐷95����� of this region reaches 11.17 m located at the border to SAMz (maximum MDRU 49.37 m). 299 
The regional simulation of 𝐷𝐷95����� also allows us to generalize which tree rooting strategies occupy which climate space. Using 300 
MCWD and MAP to define a climate space we find a clear adjustment of 𝐷𝐷95����� (Fig. B5). A core region with deep-rooted 301 
forests (mean 𝐷𝐷95�����> 4 m) is found where MCWD ranges between -1300 and -400 and where MAP is at least 1500 mm (see 302 
also maps of MCWD and MAP in Fig. B1-B2). This core region is surrounded by a small band of medium rooting depth 303 
forests (mean 𝐷𝐷95�����~ 2-4 m). Rather shallow-rooted forests (mean 𝐷𝐷95�����< 2 m) are found in increasingly drier climates where 304 
MAP is less than 1000 mm and in more seasonal climates where MCWD is below -500 mm. Shallow-rooted forests are also 305 
simulated in very wet conditions where MCWD is greater than -300 mm and MAP is 1200 mm or higher. 306 

3.2 Evapotranspiration and productivity 307 

The climatological clusters within the Amazon region  which undergo the strongest dry season (EQ E and SAMz) show the 308 
largest differences between simulations with variable (LPJmL4.0-VR) and constant tree rooting strategies (LPJmL4.0-VR-309 
base and LPJmL4.0). In those clusters LPJmL4.0-VR shows a significant higher agreement with validation data (Fig. 3c, d 310 
and Table B3). Agreement is largest for EQ E where NME and r² show values of 0.62 and 0.91, respectively, whereas 311 
constant rooting systems in the other two models lead to values of NME >= 1.92 and r² <= 0.21 (Table B3). In NSA and EQ 312 
W model differences are less pronounced as annual precipitation deficits are lower and deep rooting systems play a lesser 313 
role. Still, variable rooting systems lead to noticeably higher agreement in NSA between January and April (Fig. 3a), where 314 
monthly precipitation is lower compared to the rest of the year. In the monsoon dominated cluster SAMS outside the 315 
Amazon region (Fig. 3e), model differences are least pronounced, since shallow rooting forests dominate this area in 316 
LPJmL4.0-VR (Fig. 2) which are very similar to the forests with constant tree rooting strategies in the other 2 model 317 
versions.  318 
Results of regional ET are in line with results of site-specific ET. On the local level, variable tree rooting strategies of 319 
LPJmL4.0-VR lead to a major improvement in reproducing measured Fluxnet NEE and ET (Appendix B Sect. 1.1 & Fig B6-320 
B7), increasing the confidence of regional modelling results. 321 

3.3 Distribution of plant functional types 322 

The simulated relative dominance of tropical tree PFTs across the study area differs substantially between model versions 323 
(Fig. 4). In simulations with LPJmL4.0, more than half of the grid cells show the evergreen and deciduous PFTs equally 324 
dominant (Fig. 4g-h). Only in areas outside tropical moist climate regions the model tends towards a dominance of the 325 
deciduous PFT, whereas e.g. in the Amazon region, the evergreen and deciduous PFTs co-exist in almost equal abundance. 326 
These patterns strongly differ from satellite-derived geographical PFT distributions (Fig. 4a-b) and therefore yield in 327 
respective comparisons the highest NME values among all models (Table B4). In contrast LPJmL4.0-VR and LPJmL4.0-328 
VR-base show clear dominance patterns of both tropical tree PFTs across the study area (Fig. 4c-f). Nevertheless, differences 329 
between LPJmL4.0-VR and LPJmL4.0-VR-base are quite substantial. In LPJmL4.0-VR-base the tropical evergreen PFT 330 
dominates the North-Western Amazon region only, negligibly extending further than the borders of climatological clusters 331 
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NSA and EQ W combined. Beyond these borders the tropical deciduous PFT dominates (Fig. 4e-f). In contrast, in 332 
LPJmL4.0-VR (Fig. 4e-f) the evergreen tree PFT dominates the entire Amazon region including EQ E and SAMz, and the 333 
deciduous PFT is pushed towards drier and more seasonal climate (including parts of SAMS). Therefore, LPJmL4.0-VR 334 
yields the lowest NME values in comparison to satellite-derived PFT distributions (Table B4).  335 

4 Discussion 336 

4.1 Climate and soil depth determine dominant tree rooting strategies 337 

The geographical patterns of simulated 𝐷𝐷95����� are very similar under 4 different climate input data sets (Fig. 2). This gives 338 
confidence to the general robustness of our results and modelling approach as differences in climate data do not lead to 339 
substantially different model behaviour. This is further supported by similar regional rates of ET simulated under the 340 
different climate data inputs (Fig. 3). 341 
Simulated 𝐷𝐷95����� (Fig. 2) clearly follows climate gradients and soil depth found in the study region (Fig. A3, B2-B3). Here, 342 
MAP and MCWD can serve as explanatory variables of simulated 𝐷𝐷95����� (Fig. B5). These findings are in line with the general 343 
ecological expectation and former studies that seasonal water depletion of upper soil layers, as a combination of annual 344 
precipitation and dry season length and strength, is positively correlated with the rooting depth of tropical evergreen trees 345 
(Baker et al., 2009; Ichii et al., 2007; Kleidon and Heimann, 1998, 1999). We also find lower thresholds for MAP and 346 
MCWD where 𝐷𝐷95����� strongly decreases again (Fig. B5) which can be explained by different mechanisms leading to a regime 347 
shift from the evergreen to the deciduous tree PFT as discussed below (see Sect. 4.2).  348 
To evaluate our model results against empirical data, we checked the data availability on maximum rooting depth across 349 
South America in the TRY database (Kattge et al., 2020; data downloaded September 2019). As it is also shown in Fan et al. 350 
(2017) we found the number of sites within the TRY data base where maximum rooting depth has been measured in South 351 
America to be very low. Moreover, the number of data entries per site appeared very small, where 33 TRY sites falling 352 
within our study area showed a mean of 9 and a median of 6 data entries, while 15 sites showed <=5 data entries. Therefore, 353 
we decided to not include site specific comparisons of rooting depth as it is not clear how representative these measurements 354 
are for the local forest communities. More research is necessary to increase the number of observation sites and improve the 355 
empirical basis of field-based rooting depth to allow for site-specific model evaluation. Nevertheless, as shown in Fan et al. 356 
(2017) measured site-specific maximum rooting depth across the Amazon region expectedly follows the known climatic 357 
gradient (Fig. B1-B2). The same holds true for the inversely modelled MDRU of Fan et al. (2017; we show in Fig. B4), 358 
which gives confidence to our results.   359 

4.2 Rooting depth influences the distribution, dominance and biomass of tropical plant functional types 360 

In all 3 model versions used in this study the same land-use is applied (Sect. 2.4), which shapes the geographical extent and 361 
maximum dominance of natural vegetation in our results. This is why FPC maps of all model versions show the shape of the 362 
Amazon region as a distinct pattern (Fig 4), even though it is less visible for LPJmL4.0-VR-base and one has to consider 363 
both tropical tree PFTs at the same time (Fig. 4e-f). Within the Amazon region, LPJmL4.0 simulates a similar dominance of 364 
the evergreen and deciduous PFT (Fig. 4g-h) which contradicts evaluation data (Fig. 4a-b) and indicates a similar 365 
performance of the 2 PFTs or missing mechanisms rewarding a better performance over time. We here find that introducing 366 
a performance dependent tree establishment rate (Sect. 2.2 and Appendix A Sect. 1.6) clearly resolves this issue. This feature 367 
produces clear dominance pattern of either PFT in LPJmL4.0-VR and LPJmL4.0-VR-base. Apparently, by rewarding better 368 
performance, variable tree rooting strategies (LPJmL4.0-VR) become necessary to reproduce the dominance of the evergreen 369 
PFT throughout the Amazon region (Fig. 4e-f). To remain superior in drier and more seasonal environments in the South to 370 
South-Eastern Amazon region the evergreen PFT needs to access deep water by adjusting its rooting depth (Fig. 2). Clearly, 371 
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this adjustment of rooting depth is only possible within a certain climatic envelope. Below certain thresholds of MAP 372 
(around 1000 mm) and MCWD (around -500 mm) mean 𝐷𝐷95����� decreases again (Fig. B5), which coincides with a transition 373 
from the evergreen to the deciduous PFT. Those thresholds are similar to thresholds between evergreen forests and savanna 374 
found by e.g. Malhi et al. (2009) at an annual precipitation of 1500 mm and at an MCWD of -300 mm. The substantially 375 
lower MCWD value found in our study can be explained by the differences in calculating CWD. While Malhi et al. (2009) 376 
assume a constant rate of ET per month of 100 mm, we use the monthly variable PET (Sect. 2.5.3). Since PET often is 377 
significantly higher than 100 mm our monthly CWD and therefore MCWD values are respectively lower.  378 
Similarly to Malhi et al. (2009), Staver, Archibald and Levin (2011) find that the climatic thresholds for evergreen forest are 379 
not very distinct and savanna can simultaneously be found in a climatic range around the mean threshold. The authors 380 
ascribe this forest-savanna bi-stability to climate-fire-vegetation feedbacks. Many recent studies investigating potential 381 
forest-savanna bi-stability and tipping points of forests in and around the Amazon region rely solely on such climatic ranges 382 
of tropical biomes (Hirota et al., 2011; Wuyts, Champneys and House, 2017; Zemp et al., 2017; Staal et al., 2018; Ciemer et 383 
al., 2019). The results of LPJmL4.0-VR show that knowledge on local tree root adaptations is another important explanatory 384 
variable of vegetation cover reducing the uncertainty and width of anticipated climatic ranges where vegetation cover could 385 
be bi-stable. These findings are supported by a recent study that finds rooting depth more crucial than fire dynamics for 386 
explaining PFT dominance in South America (Langan et al., 2017).  387 
Whether the transition between the evergreen and deciduous tree PFT for the thresholds of MAP and MCWD we find with 388 
LPJmL4.0-VR is mainly caused by (a) environmental filtering (including vegetation-fire feedbacks) of deep tree rooting 389 
strategies, (b) their competitive exclusion by shallow rooted deciduous sub-PFTs together with the tropical herbaceous PFT 390 
(Fig. B8), or most probably a combination of both is yet to be determined. Given that we used the most simplistic fire 391 
module of LPJmL (GlobFirm; Thonicke et al., 2001) and current land-use input to allow model evaluation against remotely 392 
sensed data in this study, investigating the natural mechanisms of tropical PFT shifts should be in the focus of further 393 
studies. 394 
Regardless of the mechanisms that eventually lead to a PFT shift, we can state that neither costs for deep root investment nor 395 
a heterogeneous pattern of soil depth across the study region disproves that locally adapted tree rooting depth is key to 396 
explain the current geographical distribution of tropical evergreen forests in South-America. Given the large differences 397 
between LPJmL4.0-VR and LPJmL4.0-VR-base (Fig. 4) it is clear that in roughly half of the Amazon region the carbon 398 
balance of the evergreen PFT is superior to the deciduous PFT only when investing substantial amounts of carbon into 399 
deeper roots, i.e. belowground biomass (; Fig. B9). On the one hand this investment has a direct negative effect on 400 
productivity, because during growth the allocation of assimilated carbon shifts towards respiring belowground biomass , 401 
while investments into productive AGB (Fig. B10) need to be reduced. On the other hand, drier and more seasonal 402 
environments show less cloud cover during the dry season (Nemani et al., 2003), enhancing photosynthesis in this time of 403 
the year which increases productivity as long as water access is assured (Costa et al., 2010; Wu et al., 2016). The trade-off 404 
between AGB and BGB investment most probably leads to a more homogenous AGB pattern across the Amazon region with 405 
similar values over a wide climatic range (compare EQ E and SAMz in Fig. B10c-e).   406 

4.3 Diverse tree rooting strategies improve simulated evapotranspiration and productivity 407 

LPJmL4.0-VR simulates rates of local ET and NEE which reasonably match respective measurements at different Fluxnet 408 
sites throughout the Amazon region (Fig. B6-B7), even though we run the model with regionally gridded instead of locally 409 
measured climate data. While potentially lacking information on local short-term weather events, gridded climate input still 410 
seems to be sufficient to capture broad seasonal signals for our comparisons on a monthly basis. This increases the 411 
confidence in our results also on a regional scale.  412 
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Across large parts of the Amazon region variable tree rooting strategies decrease the intra-annual variability of ET and 413 
maintain high rates of NEE and ET during the dry season in accordance with the intra-annual trends suggested by evaluation 414 
data (Fig. 3, B6-B7). More than that simulated rates of ET and productivity can peak during the dry season, e.g., in EQ E 415 
which has been explained by increased solar radiation during this time of the year (Nemani et al., 2003; da Rocha et al., 416 
2004). Especially, in EQ E and SAMz at least parts of the forest area must have access to sufficient water in the model and in 417 
reality (Costa et al., 2010; Wu et al., 2016). Given that LPJmL4.0-VR and LPJmL4.0-VR-base are essentially identical 418 
models with the same soil depth input and subsequent hydrology over the whole soil column, their differences in simulated 419 
ET and NEE must emerge from their only difference which is the amount of simulated tree rooting strategies. Therefore, 420 
local root adaptations in LPJm4.0-VR can be regarded as a buffer against seasonal precipitation deficits by usage of deep 421 
water (exemplary shown in large detail for the Fluxnet Site STM K67 in Fig. B11). 422 
We can here quantify this water access for the first time on the basis of carbon investment and return, and limited by spatial 423 
heterogeneous soil depth. Without limits to rooting depth in the form of local soil depth (e.g. by applying a universal soil 424 
depth of 20 m) and below-ground carbon investment, seasonally dry climatological clusters would potentially shift towards 425 
deeper rooted sub-PFT dominance, consequently leading to an overestimation of ET rates.  Therefore, we argue that both 426 
factors are of great importance to explain regional rates of ET. This also means that forests in the same climatological cluster 427 
contribute very differently to the overall ET and therefore to moisture recycling across South America. We can here 428 
mechanistically explain this coherence as we show for the first time on the regional scale how PFTs with variable tree 429 
rooting strategies adjust to local environmental conditions and in return lead to simulated rates of ET very close to validation 430 
data (Fig. 3, B6). The heterogeneous picture of 𝐷𝐷95����� we find (Fig. 2) might provide a direct guideline where to put emphasis 431 
on forest conservation to maintain continental scale moisture recycling, as 𝐷𝐷95����� directly scales with rates of ET.  432 
Being able to mechanistically reproduce and explain the broad-scale stabilization of water fluxes into the atmosphere has 433 
wide implications for DGVM modelling frameworks and simulation of ET as moisture input to the atmosphere in Earth 434 
System Models (ESMs). Our approach can help to better quantify the role of forests for local-to-continental scale moisture 435 
recycling and to project the fate of forests under future climate and land-use change. The approach presented here is easily 436 
applicable for a wide range of DGVMs and ESMs which simulate fine root distribution in a similar way as the LPJmL model 437 
family (based on Jackson et al., 1996). A first and easy to implement step for other models could be to prescribe the relative 438 
fine root distribution in a spatial explicit way in accordance to 𝐷𝐷95����� presented in this study. 439 

5 Conclusions 440 

In this paper we reconfirm the hypotheses that climate and soil depth determine dominant tree rooting strategies (hypothesis 441 
I), tree rooting depth is key to explain the distribution and dominance (hypothesis II) as well as, evapotranspiration and 442 
productivity rates of tropical evergreen forests in South America (hypothesis III), even when the competition of tree rooting 443 
strategies and carbon investment into gradually growing roots are considered.  In fact our findings suggest that roughly half 444 
of the evergreen forests in the Amazon region depend on investments into rooting systems which go deeper than the standard 445 
average PFT parameterization based on literature allows for. Those deep root systems can be regarded as a buffer against 446 
seasonal precipitation deficits by usage of deep water and keep rates of ET and productivity at high levels throughout the 447 
year. 448 
A major advance of the new sub-model version LPJmL4.0-VR is that simulations start with uniform input distributions of 449 
tree rooting strategies in each location which shape into a distribution of abundance driven by local environmental filtering 450 
and competition. Therefore, these distributions are not a pre-selected input, but an emergent simulation output. 451 
The new model features enable to introduce local tree rooting depth as a key explanatory variable in future studies dealing 452 
with bi-stability of potential forest cover in tropical regions. Generally, we are convinced that our approach is of high 453 
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importance to all modelling frameworks of DGVMs and Earth System Models (ESMs) aiming at quantifying continental 454 
scale moisture recycling, forest tipping points and resilience. So far, the importance of local-scale tree root adaptations for 455 
regional-scale ecosystem functions underlines the need to protect this below-ground functional diversity not only in the 456 
scope of future global change. 457 
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 736 
Figure 1: Visualization of belowground carbon allocation to different carbon pools of a tree PFT in LPJmL4.0-VR with a height of 737 
40m and a D95_max of 14m (sub-PFT no. 8 in Table A2) growing in a grid cell with a soil depth of 20m (left panel) and a soil depth of 738 
7m (right panel). As for stem sapwood, also root sapwood needs to satisfy the pipe model. In the first soil layer root sapwood cross-739 
sectional area is equal to stem sapwood cross-sectional area, as all water taken up by fine roots needs to pass this layer. In each 740 
following soil layer the root sapwood cross-sectional area is reduced by the sum of the relative amount of fine roots of all soil layers 741 
above, thus adjusting the amount of sapwood needed to satisfy the pipe model. Please also see Supplementary Video 1 for a 742 
visualization of root growth and development of belowground carbon pools over time under http://www.pik-743 
potsdam.de/~borissa/LPJmL4_VR/Supplementary_Video_1.pptx. 744 

 745 
Figure 2: Regional NPP-weighted mean rooting depth (𝑫𝑫𝟗𝟗𝟗𝟗����) of all sub-PFTs (evergreen and deciduous PFTs combined) for 2001-746 
2010 and different climate inputs simulated with LPJmL4.0-VR. a) CRU climate input. b) GSWP3 climate input. c) 747 
WATCH+WFDEI climate input. d) GLDAS climate input. The color scale maximum is set to 10 m.  748 
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 749 
Figure 3: Comparisons of continental scale gridded ET products against simulated ET within 5 regional climatological clusters (a-750 
e) as defined in Sect. 2.5.1. Shown is the mean annual cycle of 1981-2010 and the mean for the whole cluster area. Corridors denote 751 
the minimum-maximum range between either the “Reference” ET products (Sect. 2.5.1 Validation data) or the model outputs 752 
under the different climate forcings used in this study. f) Geographical extent of climatological clusters (adapted from Sörensson 753 
and Ruscica, 2018). Statistical measures of the individual comparisons can be found in Table B3 (comparisons of corridor means).  754 
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 755 
Fig. 4: Foliage projected cover (FPC) of evergreen (a, c, e, g) and deciduous (b, d, f, h) PFTs over the study region. a)-b) Satellite-756 
derived vegetation composition from ESA Land cover CCI V2.0.7 (Li et al., 2018) reclassified to the PFTs of LPJmL as in (Forkel et 757 
al., 2014). b)-c) LPJmL4.0-VR. d)-e) LPJmL4.0-VR-base. f)-g) LPJmL4.0. All LPJmL model versions were forced with CRU 758 
climate input. The shown FPC for all models refers to 2001-2010. For statistical measures of individual comparisons between 759 
model versions (c-h) and satellite derived vegetation composition (a-b) see Table B4.  760 

Appendix A  761 

1 Methods 762 

A new tree rooting scheme for LPJmL4.0 763 

In this section we describe the new basic scheme for soil layer partitioning, the new tree rooting scheme, the simulation of 764 
belowground carbon investment, and how different tree rooting strategies (implemented in the new scheme) compete. 765 

1.1 Scheme for soil layer partitioning 766 

LPJmL4.0 employs a globally universal soil depth of 3 m. For LPJmL4.0-VR we extended the general maximum soil depth 767 
to 20 m (but restrict it to local soil depth information at spatial model resolution; Manuscript Sect. 2.3.2). We applied the 768 
same basic scheme for soil layer partitioning from LPJmL4.0 (Schaphoff et al., 2018a), in order to keep model differences 769 
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small (Table A1). We chose a maximum of 20 m soil depth to considerably increase the maximum soil depth compared to 770 
constant 3 m in LPJmL4.0, while keeping the increment of computational demand connected to adding more soil layers 771 
within an acceptable range. Equal to LPJmL4.0 (Schaphoff et al., 2018a), we use a grid cell specific soil texture information 772 
which is applied to the whole soil column.  773 

1.2 Water balance, infiltration and percolation 774 

We here provide a very brief description of LPJmL’s water balance and soil hydrology. A detailed description can be found 775 
in Schaphoff et al. (2018). 776 
Hydraulic conductivity and water holding capacity (water content at permanent wilting point, at field capacity, and at 777 
saturation) for each grid cell are derived from information on soil texture from the Harmonized World Soil Database 778 
(HWSD) version 1 (Nachtergaele et al., 2009) and relationships between texture and hydraulic properties from Cosby et al. 779 
(1984). Each soil layer’s (Appendix A Sect. 1.1) water content can be altered by infiltrating rainfall and percolation. The soil 780 
water content of the first soil layer determines the infiltration rate of rain and irrigation water. The excess water that does not 781 
infiltrate generates surface water runoff. Water percolation through the soil layers is calculated by the storage routine 782 
technique (Arnold et al., 1990) as used in regional hydrological models such as SWIM (Krysanova et al., 1998). Water 783 
percolation thus depends on the hydraulic conductivity of each soil layer and the soil water content between field capacity 784 
and saturation at the beginning and the end of the day for all soil layers. Similar to water infiltration into the first soil layer, 785 
percolation in each soil layer is limited by the soil moisture of the following lower layer. Excess water over the saturation 786 
levels forms lateral runoff in each layer and contributes to subsurface runoff. Surface and subsurface runoff accumulate to 787 
river discharge. The routines for water balance, infiltration and percolation were not changed for LPJmL4.0-VR. Thus the 788 
routines now apply for soil columns of up to 20 m depth (Appendix A Sect. 1.1). 789 

1.3 Diversifying general tree rooting strategies 790 

In LPJmL4.0 the tree rooting strategy of a PFT is reflected by a certain prescribed vertical distribution of fine roots 791 
throughout the soil column. Each soil layer l is assigned a PFT specific relative amount of fine roots rootdistl:  792 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑧𝑧𝑙𝑙) −  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑧𝑧𝑙𝑙−1)                               Eq. (A1) 793 
where zl is the soil layer boundary depth in cm of each soil layer l and rootdist(zl) is the relative amount of fine roots between 794 
the forest floor and the boundary of soil layer l. The function rootdist(z) is defined following Jackson et al. (1996):  795 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑧𝑧) =  1−𝛽𝛽𝑧𝑧

1−𝛽𝛽𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
                         Eq. (A2)  796 

where 𝛽𝛽 is a constant parameter shaping the vertical distribution of fine roots and therefore determining the tree rooting 797 
strategy and zbottom is the maximum soil depth in cm. In LPJmL4.0 each PFT is assigned a different 𝛽𝛽-value reflecting the 798 
average tree rooting strategy on this broad PFT scale (Schaphoff et al., 2018a).  799 
To quantify the maximum rooting depth of PFTs that actually results from this approach (Eq. A1&A2) we here calculate the 800 
depth at which the cumulated fine root biomass from the soil surface downwards is 95% (D95_max) as follows: 801 

𝐷𝐷95_𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑙𝑙𝑙𝑙𝑙𝑙 (1−0.95∙(1− 𝛽𝛽𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏))
𝑙𝑙𝑙𝑙𝑙𝑙 ( 𝛽𝛽)

                       Eq. (A3) 802 

In LPJmL4.0 the 𝛽𝛽-values of tropical tree PFTs are set to 0.962 for the tropical broadleaved evergreen tree and to 0.961 for 803 
the tropical broadleaved deciduous tree following Jackson et al. (1996). According to Eq. A3 both PFTs have a D95_max 804 
smaller than 1 m. For LPJmL4.0-VR we extended this representation of tree rooting strategies by splitting both tropical tree 805 
PFTs into 10 sub-PFTs and assigned each with a different 𝛽𝛽-value. These values were chosen to cover a range of different 806 
D95_max values between 0.5 and 18m (Table A2). We chose 18 m as the largest D95_max value in order to avoid that roots of the 807 
respective sub-PFT significantly exceed the maximum soil depth of 20 m (see also Appendix A Sect. 1.5). Fig. A1 shows the 808 
new maximum distribution of fine roots throughout the soil column for the different 𝛽𝛽-values chosen (Table A2). 809 
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1.4 Belowground carbon investment 810 

Tropical trees can avoid water stress under seasonally dry climate by growing relatively deep roots (Brum et al., 2019; Fan et 811 
al., 2017) which goes along with increased below-ground carbon investment. Thus, the need for deep water access creates a 812 
trade-off between below-ground and above-ground carbon investment. Therefore, a new carbon allocation scheme for 813 
LPJmL4.0-VR was necessary to account for this trade-off in order to reproduce observed local to regional patterns and 814 
distributions of tree rooting strategies instead of prescribing them. In LPJmL4.0-VR we introduced two new carbon pools, 815 
namely root sapwood and root heartwood. Like stem sapwood in LPJmL4.0, also root sapwood in LPJmL4.0-VR needs to 816 
satisfy the assumptions of the pipe model (Shinozaki et al., 1964; Waring et al., 1982). The pipe model describes, that for a 817 
certain amount of leaf area a certain amount of water conducting tissue must be available. In LPJmL4.0 the cross-sectional 818 
area of stem sapwood needs to be proportional to the leaf area LAind as follows: 819 
𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑘𝑘𝑙𝑙𝑙𝑙:𝑠𝑠𝑠𝑠  ∙  𝑆𝑆𝑆𝑆𝑖𝑖𝑛𝑛𝑑𝑑                                Eq. (A4)  820 
where kla:sa  is a constant describing the ratio of leaf area and stem sapwood cross-sectional area (SAind). In LPJmL4.0-VR we 821 
also apply the pipe model to root sapwood. Root sapwood cross-sectional area in the first soil layer is equal to stem sapwood 822 
cross-sectional area, as all water must be transported through the root sapwood within this soil layer. In the following soil 823 
layers downwards, root sapwood cross-sectional area decreases by the relative amount of fine roots in all soil layers above 824 
(Fig. 1). Root sapwood is turned into root heartwood at an equal rate as stem sapwood is turned into stem heartwood, i.e. 5% 825 
per year as implemented in LPJmL4.0 (see Schaphoff et al., 2018).  826 

1.5 Root growth 827 

In LPJmL4.0 (Schaphoff et al., 2018a) no vertical root growth is simulated, thus the relative distribution of fine roots over 828 
the soil column is constant over space and time. It means that PFTs starting from bare ground in a sapling stage display the 829 
same relative distribution of fine roots throughout the soil column as a full-grown forest which contradicts the principles of 830 
dynamic root growth over a tree’s lifetime. Applied to LPJmL4.0-VR, the belowground biomass of an initialized deep 831 
rooting-strategy sub-PFT would exceed its aboveground biomass (AGB) by order of magnitudes when considering coarse 832 
roots. Consequently, deep rooting strategies would always be disadvantageous, calling for modelling gradual root growth in 833 
LPJmL4.0-VR. Unfortunately, little is known about how roots of tropical trees grow over time, given the fact that this 834 
research field is strongly time and resource demanding, and at the same time the variety of tree species, rooting strategies 835 
and environmental conditions are large (Jenik, 2010). A recent promising study by Brum et al. (2019) was able to capture the 836 
effective functional rooting depth (EFRD) of different size classes of 12 dominant tree species in a seasonal Amazon forest 837 
where tree roots grow considerably deep with maximum values reaching below 30 m. To our knowledge this is the only 838 
study capturing the relation between the size of tropical trees and their maximum rooting depth in a high spatial resolution 839 
covering sufficient tree-height classes in order to derive a functional relation between tree height and rooting depth. 840 
Following the findings of Brum et al. (2019), we here implemented a logistic root growth function, which calculates a 841 
general maximum conceivable tree rooting depth D depending on tree height: 842 

𝐷𝐷 = 𝑆𝑆

1+ 𝑒𝑒−𝑘𝑘𝑘𝑘ℎ ∙ � 𝑆𝑆
𝐷𝐷0
−1�

                          Eq. (A5) 843 

where S is the maximum soil depth in the model (20 m), k is a dimensionless constant defining the growth rate of the 844 
standard logistic growth function (set to 0.02), h is the average tree height of a PFT in m and D0 is the initial rooting depth of 845 
tree PFT saplings (set to 0.1 m; tree saplings in LPJmL4.0-VR are initialized with a height of 0.45 m as in LPJmL4.0). The 846 
distribution of fine root biomass of each sub-PFT in the soil column is then adjusted according to D at each time step, by 847 
restricting zbottom in Eq. A2. Every time D crosses a specific soil layer boundary (Appendix A Sect. 1.1) zbottom is assigned the 848 
value of the next soil layer boundary. Thus, zbottom increases in discrete steps. Consequently, each tree rooting strategy 849 
allowed for in this study (Appendix A Sect. 1.3) shows a logistic growth of rooting depth which is dependent on the sub-PFT 850 
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height and which saturates towards its specific maximum rooting depth (Fig. A2). Therefore, limitations of aboveground 851 
sub-PFT growth due to below-ground carbon investment of different tree rooting strategies (Appendix A Sect. 1.4) are equal 852 
in the sapling phase of all sub-PFTs (starting from bare ground) and start to diverge with increasing sub-PFT height. In the 853 
case D exceeds the grid cell specific local soil depth (as prescribed by the soil thickness input, see Manuscript Sect. 2.3.2) all 854 
the respective fine root biomass exceeding this soil depth is transferred to the last soil layer matching this soil depth (see also 855 
Fig. 1 right panel and Supplementary Video 1 for a visualization of root growth under http://www.pik-856 
potsdam.de/~borissa/LPJmL4_VR/Supplementary_Video_1.pptx).  857 
The parameter k in Eq. A5 was chosen to preserve the slope of the 75%ile function describing the relation between tree 858 
height and EFRD as found in Brum et al. (2019). We could not implement any of the original functions as suggested in 859 
Brum et al. (2019) since they deliver unrealistic low values of rooting depth (between 0 and 10cm) for trees <= 10 m, which 860 
results in a strong competitive disadvantage against herbaceous PFTs in LPJmL4.0-VR. We decided for the slope of the 861 
75%ile function to allow for root growth rates close to the maximum which also allows for the largest D95_max values in this 862 
study (Appendix A Sect. 1.3) to be reached. Note that Brum et al. (2019) originally propose a relation between tree diameter 863 
at breast height (DBH) and EFRD. For our purposes we related rooting depth to tree height (h), which is calculated from 864 
DBH in in LPJmL4.0 according to Huang et al. (1992): 865 
ℎ = 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2  ∙  𝐷𝐷𝐷𝐷𝐷𝐷𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎3                        Eq. (A6) 866 
where kallom2 and kallom3 are constants set to 40 and 0.67, respectively (Schaphoff et al., 2018a). 867 

1.6 Competition of rooting strategies 868 

In each grid-cell all sub-PFTs of the evergreen and deciduous tree PFTs compete for light and water following LPJmL4.0’s 869 
approach to simulate plant competition. In LPJmL4.0, the number of new PFT saplings per unit area (estPFT  in ind m-2 a-1) 870 
which are established each year is proportional to a maximum establishment rate kest and to the sum of foliage projected 871 
cover (FPC; a relative number between 0 and 1) of all tree PFTs present in a grid cell (FPCTREE). It declines in proportion to 872 
canopy light attenuation when the sum of woody FPCs exceeds 0.95, thus simulating a decline in establishment success with 873 
canopy closure (Prentice et al., 1993): 874 

𝑒𝑒𝑒𝑒𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃  =  𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 ∙ (1 −  𝑒𝑒(−5∙(1−𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)) ∙ 1− 𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

                         Eq. (A7) 875 

where nestTREE  is the number of established tree individuals (ind m-2 a-1). It is important to note that LPJmL4.0 does not 876 
simulate individual trees. As a common method of DGVM’s, tree saplings enter the average individual of a PFT as described 877 
in Schaphoff et al. (2018).  878 
To allow for environmental filtering of tree rooting strategies which are best adapted to local environmental conditions, we 879 
changed the standard tree establishment scheme in LPJmL4.0-VR. Now, the establishment rates of sub-PFTs (estsub_PFT) are 880 
additionally weighted by the local dominance of each sub-PFT as follows: 881 

𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠_𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 ∙ �1 − 𝑒𝑒−5∙(1−𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)� ∙ 1−𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

∙ 𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠_𝑃𝑃𝑃𝑃𝑃𝑃
𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

∙ 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇                        Eq. (A8) 882 

where FPCsub_PFT  is the FPC of each sub-PFT. The new term leads to a higher establishment rate for productive sub-PFTs 883 
relative to their spatial dominance and vice versa, without changing the overall establishment rate as set by Prentice et al. 884 
(1993). This function has the effect that non-viable sub-PFTs are outcompeted over time. 885 

1.7 Background mortality 886 

In LPJmL4.0 background mortality is modelled by a fractional reduction of PFT biomass, which depends on growth 887 
efficiency (Schaphoff et al., 2018a). This annual rate of mortality is limited by a constant maximum mortality rate of 3% of 888 
tree individuals per year which is applied to all tree PFTs. In other words, the fastest total biomass loss of a tree PFT due to 889 
low growth efficiency can happen within about 33 simulation years. In general, this maximum mortality rate can be regarded 890 
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as a global tuning parameter of biomass accumulation as it caps the maximum biomass loss. Since many mechanisms 891 
influencing tree mortality in the real world, e.g. hydraulic failure (Johnson et al., 2018), are not yet implemented in most 892 
DGVMs including LPJmL4.0 (Allen et al., 2015), the parameterization of a background tree mortality remains a challenging 893 
topic. Under the current model status of LPJmL4.0 maximum mortality rates are a necessary feature, while future model 894 
development must overcome the concept of applying a maximum mortality rate by refining and implementing most 895 
important mechanisms that influence tree mortality. 896 
In LPJmL4.0-VR tree PFTs can access water in soil depths which were formerly inaccessible. This enhances the general 897 
growth efficiencies of tree PFTs and consequently decreases their overall background mortality. Since global biomass 898 
pattern simulated with LPJmL4.0 were already in acceptable range, the maximum background mortality in LPJmL4.0-VR 899 
was calibrated and is now increased to 7% in order to counter-balance increased survival rates and therefore biomass 900 
accumulation. 901 

1.8 Figures 902 

 903 
Figure A1: Relative amount of fine roots in each soil layer for different β-values in LPJmL4.0 and LPJmL4.0-VR.   In the legend 904 
“β old1-2” correspond to the β-values of the 2 tropical tree PFTs (deciduous and evergreen) simulated in LPJmL4.0. The 905 
corresponding graphs lie on top of each other due to marginal differences in their β-values. “β1-10” correspond to the 10 β-values 906 
used in LPJmL4.0-VR (Table A2) used to create the 10 sub-PFTs of the tropical evergreen and deciduous tree PFTs (Appendix A 907 
Sect. 1.3). For LPJmL4.0-VR the fine root distribution at maximum rooting depth is shown. Please note, the first 3 soil layer (as 908 
described in Appendix A Sect. 1.1) in this visualization are treated as 1 layer of 1 m thickness for reasons of visual clarity. 909 

 910 
Figure A2: Relation between tree height and rooting depth in LPJmL4.0-VR. Black line: Implemented general growth function of 911 
rooting depth (Eq. A5). Lines with colour scale from yellow to blue: Growth functions of rooting depth for each of the 10 sub-PFTs 912 
(Sect. 2.2.3). Here temporal rooting depth is expressed as D95 and eventually reaches D95_max (Eq. A3). Red solid line: Mean 913 
effective functional rooting depth over tree height (EFRD) adapted from Brum et al. (2019) using Eq. A5. Red dashed line: 914 
Respective 75%ile EFRD over tree height adapted from Brum et al. (2019). Please also see Supplementary Video 1 for a 915 
visualization of root growth and development of belowground carbon pools over time under http://www.pik-916 
potsdam.de/~borissa/LPJmL4_VR/Supplementary_Video_1.pptx.  917 
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 918 
Figure A3: Soil/sediment thickness from (Pelletier et al., 2016) regridded to the 0.5° x 0.5° longitude-latitude grid of LPJmL4.0-VR 919 
and restricted to a maximum of 20 m. Colorbar in decadic logarithm. 920 
 921 
1.9 Tables 922 
Table A1: Soil layer partitioning scheme used in LPJmL4.0-VR. The first meter of the soil column is split into 3 soil layers and 923 
after 1m of soil depth each following soil layer is assigned a thickness of 1 m as in LPJmL4.0. Whereas LPJmL4.0’s last soil layer 924 
reaches 3 m, LPJmL4.0-VR’s last soil layer reaches 20 m. 925 
Soil layer 
number 

Soil layer 
boundary (m) 

Soil layer 
thickness (m) 

1 0.2 0.2 
2 0.5 0.3 
3 1 0.5 
4 2 1 
… … … 
23 20 1 

Table A2: 𝜷𝜷-values assigned to the 10 sub-PFTs of each tropical PFT (evergreen and deciduous) in LPJmL4.0-VR and the 926 
corresponding maximum rooting depth reached by 95% of the roots (D95_max). 927 
sub-PFT 
number β-value 

D95_max 
(m) 

1 0.9418 0.5 
2 0.9851 2 
3 0.9925 4 
4 0.995 6 
5 0.9963 8 
6 0.9971 10 
7 0.9976 12 
8 0.9981 14 
9 0.9986 16 
10 0.9993 18 

Table A3: Description of Fluxnet sites used for the evaluation of simulated ET. 928 

Site name Short name Country LPJmL coordinate 
latitude longitude 

Ecotone Bananal Island/BR-Ban TOC_BAN Brazil -9.75 -50.25 

Manaus-ZF2 K34/BR-Ma2 MAN_K34 Brazil -2.75 -60.25 

Santarem-Km67- 
Primary Forest/BR-Sa1 STM_K67 Brazil -2.75 -54.75 

Santarem-Km77- 
Pasture/BR-Sa2 STM_K77 Brazil -3.25 -54.75 

Santarem-Km83- 
Logged Forest/BR-Sa3 STM_K83 Brazil -3.25 -54.75 
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Rond.- Rebio Jaru Ji Parana-
Tower B/BR-Ji3 RON_RJA Brazil -10.25 -61.75 

Guyaflux GF_GUY French Guiana 5.25 -52.75 

Appendix B 929 

1 Results 930 

1.1 Local evapotranspiration 931 

Differences of intra-annual rates of ET and NEE between the 3 LPJmL model versions are most pronounced at Fluxnet sites 932 
with high seasonality of rainfall (Fig. B6b, e, g and Fig. B7b, e, g). Here, variable tree rooting strategies (LPJmL4.0-VR) 933 
lead to a major improvement in reproducing measured Fluxnet NEE and ET, also expressed in reduced NME and increased 934 
r2-values (Table B1-B2). Whereas, constant tree rooting strategies (LPJmL4.0-VR-base and LPJmL4.0) simulate decreasing 935 
ET and increasing NEE during dry seasons at these sites, which is anticorrelated to Fluxnet measurements, variable tree 936 
rooting strategies (LPJmL4.0-VR) follow the intra-annual Fluxnet signals. Most pronounced improvements are found at 937 
STM K67 and STM K83, where the NME of ET and NEE drop below or close to 1, and where r²-values considerably 938 
increase compared to the other 2 model versions (Table B1-B2). For STM K67, the r² of NEE is higher under LPJmL4.0 and 939 
LPJmL4.0-VR-base, but this refers to a significant negative correlation.  940 
At STM K77 (Fig. B6f) local circumstances show the influence of variable rooting strategies on ET in a different way. This 941 
former rainforest site was converted to pasture before Eddy covariance measurements began. This local land-use at STM 942 
K77 is not representative for the respective 0.5° grid cell, and thus all 3 LPJmL model versions simulate mainly natural 943 
vegetation instead of pasture. Therefore, the shallow rooting systems of LPJmL4.0 and LPJmL4.0-VR-base show a better 944 
match to ET measurements at STM K77. The site STM K83 (Fig. B6g) is a selectively logged primary forest site which 945 
shares the same model grid cell as STM K77 due to their geographical proximity. Again, here only simulations with variable 946 
tree rooting strategies (LPJmL4.0-VR) reproduce increased ET and decreased NEE during the dry season. At sites with 947 
weaker to no dry season (Fig. B6c, d, h) differences between model versions become less pronounced, as water availability is 948 
more stable throughout the year leading to less variable ET.  949 

1.2 Regional pattern of simulated above- and belowground biomass 950 

The simulated mean AGB pattern (2001-2010) of LPJmL4.0-VR (Fig. B10) shows that variable tree rooting strategies lead 951 
to a contiguous high biomass over the Amazon region. Especially towards the borders of the South-Eastern Amazon region 952 
in the climatological clusters EQ E and SAMz, AGB values appear rather homogenous in contrast to constant shallow tree 953 
rooting strategies simulated in the other 2 model versions (Fig. B10d-e). In connection with the significantly improved 954 
underlying vegetation composition (Fig. 4e-f) it is clear that LPJmL4.0-VR is the only model version capable of simulating 955 
high AGB evergreen rainforests across the climatic gradient of the Amazon region (Fig. B1-B2). This pattern is also found 956 
by one satellite derived AGB  product chosen for evaluation of our model results (Saatchi et al., 2011; Fig B10b) which 957 
yields a corresponding NME close to 0 (Table B6). However, compared to this product low NME values are found for all 958 
model versions. Surprisingly, in comparison to the other AGB validation product (Avitabile et al., 2016a; Fig. B9a) 959 
LPJmL4.0-VR-base yields a smaller NME than LPJmL4.0-VR. Considering the significantly less accurate underlying 960 
vegetation composition of LPJmL4.0-VR-base as well as LPJmL4.0 (Fig. 4) we regard such comparisons as critical in this 961 
context.  962 
Comparisons of AGB pattern between all model versions of this study and different biomass products are difficult, since 963 
only LPJmL4.0-VR shows a reasonable geographical distribution of underlying PFTs across the study area (Fig. 4, Table 964 
B4). Therefore, differences in biomass are not solely the consequence of different productivities directly related to diversity 965 
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in tree rooting strategies, but also the consequence of simulated PFT dominance, i.e. rather an indirect effect of diversity in 966 
tree rooting strategies. Concentrating on LPJmL4.0-VR only, the model matches substantially better with the gridded 967 
biomass product of Saatchi et al. (2011; Table B5), since this product shows generally higher biomass values across the 968 
Amazon region which are more similar to LPJmL4.0-VR. Therefore, the higher NME found in the comparison to the 969 
biomass product of Avitabile et al. (2016) is mainly caused by divergence of mean biomass values of the evergreen PFT 970 
across the whole study area rather than pattern divergence. Thus, we argue lowering overall biomass values in LPJmL4.0-971 
VR would improve its match with Avitabile et al. (2016) which is a matter of adjusting overall maximum tree mortality rates 972 
(Appendix A Sect. 1.7).  973 
Simulating diverse tree rooting strategies in connection with investment into coarse root structures in LPJmL4.0-VR allows 974 
analysing carbon investment into the newly implemented root carbon pools (Appendix A Sect. 1.4 & Sect. 2.2). As expected, 975 
belowground biomass (BGB; Fig. B9) follows the simulated pattern 𝐷𝐷95����� (Fig. 2). Highest BGB is found at maximum values 976 
of 𝐷𝐷95����� and vice versa.  977 
It is important to note that LPJmL4.0-VR appears to underestimate BGB compared to empirical findings in the Amazon 978 
region. While LPJmL4.0-VR shows BGB making up a range of 3.6-16.2% of total biomass across the Amazon region, 979 
different site specific empirical studies found mean values at the upper end or significantly exceeding this range (Fearnside, 980 
2016). The most plausible explanation for underestimating BGB is that LPJmL4.0-VR does not account for root structures 981 
needed for tree statics. Acknowledging tree statics would increase below ground carbon investment and therefore BGB. 982 
Nevertheless, below-ground carbon investment for tree statics would apply for all sub-PFTs simultaneously and would 983 
therefore most likely not significantly change competition dynamics and resulting distributions of tree rooting strategies 984 
found in this study. 985 

1.3 Figures 986 

 987 

 988 
Figure B1: Mean annual precipitation for 2001-2010 under CRU climate input. 989 
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990 
 Figure B2: Mean annual MCWD for 2001-2010 under CRU climate input. 991 

 992 
Figure B3: Distributions of simulated mean monthly NPP for each D95_max-class for 2001-2010 under CRU climate input at two 993 
FluxNet sites. a) Site MAN K34 near the city of Manaus. b) Site STM K67 near the city of Santarem. For more site information see 994 
Table A3 and Fig. B6a. At the Fluxnet site MAN K34 (a), which exhibits a mean annual precipitation (MAP) of 2609 mm and a 995 
mean MCWD of -222 mm under CRU climate input (2001-2010), the sub-PFT with a maximum rooting depth (D95_max) of 0.5 m 996 
contributes most to overall NPP and the whole distribution of NPP weighted D95_max classes shows a mean of 1.52 m. At the 997 
Fluxnet site STM K67 (b), which exhibits a lower MAP of 2144 mm and a stronger dry season reflected in a mean MCWD of -465 998 
mm, the NPP weighted distribution of D95_max shows a peak at 10 m and a corresponding mean of 10.26 m. Since both sites have 999 
a soil depth of 20 m (according to the soil depth input; Sect. 2.3.2, Fig. A3) differences in rooting strategy compositions must 1000 
emerge from the climatic differences of those sites. It is important to note that D95_max values (i.e. the bins on the x-axes) do not 1001 
necessarily reflect the true achieved rooting depth of each sub-PFT, but their maximum value. For reasons of visual clarity for this 1002 
figure we kept the bins of the x-axes as chosen in Table A2. 1003 
 1004 
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 1005 
Figure B4: Comparison of simulated 𝑫𝑫𝟗𝟗𝟗𝟗����� to product of maximum tree root water uptake depth (MDRU). a) Original (Fan et al., 1006 
2017) MDRU regridded to 0.5°x0.5° resolution of LPJmL4.0-VR. b) Same as a) but adjusted to soil depth input used in this study 1007 
(see 2.3.2), in cases where values of (Fan et al., 2017) exceeded this soil depth. The color scale maximum for a) and b) is set to 10 m. 1008 
c) Difference between a) and  𝑫𝑫𝟗𝟗𝟗𝟗����� simulated with LPJmL4.0-VR under CRU climate forcing (Fig. 2a). d) Difference between b) 1009 
and  𝑫𝑫𝟗𝟗𝟗𝟗����� simulated with LPJmL4.0-VR under CRU climate forcing (Fig. 2a). Red/blue colors denote higher/lower rooting depths 1010 
in LPJmL4.0-VR. 1011 

 1012 
Figure B5: Mean rooting depth depicted as mean 𝑫𝑫𝟗𝟗𝟗𝟗����� over classes of MCWD and annual precipitation sums. Class step size for 1013 
precipitation was set to 250 mm and class size for MCWD was set to 50 mm. Regions with high amounts of annual rainfall and 1014 
lower seasonality exclusively favour shallow rooted forests (low 𝑫𝑫𝟗𝟗𝟗𝟗�����). 𝑫𝑫𝟗𝟗𝟗𝟗����� increases with decreasing MCWD (increasing seasonal 1015 
drought stress) and decreasing sums of annual precipitation. Below 1200 mm of annual rainfall or -1100 mm of MCWD  𝑫𝑫𝟗𝟗𝟗𝟗����� 1016 
sharply decreases again. Note this figure does not consider soil depth. The color scale maximum is set to 10 m. 1017 
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   1018 
Figure B6: Comparisons of monthly ET between different Fluxnet sites (“Reference”; see also Sect. 2.5.1) and respective 1019 
simulation output of the different LPJmL model versions used in this study forced with CRU climate. a) Geographical location of 1020 
different Fluxnet sites (see also Table A3).  For statistical measures of the individual comparison see Table B1. 1021 

 1022 
Figure B7: Comparisons of monthly NEE between different Fluxnet sites (“Reference”; see also Sect. 2.5.1) and respective 1023 
simulation output of the different LPJmL model versions used in this study forced with CRU climate. a) Geographical location of 1024 
different Fluxnet sites (see also Table A3).  For statistical measures of the individual comparison see Table B2. Note due to data 1025 
scarcity only 3 Fluxnet sites are shown. Plots of all sites are shown in Fig. B12. We kept panel labelling as in Fig. B6 to ensure easy 1026 
comparability. 1027 
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 1028 
Figure B8: Foliage projected cover (FPC) of the tropical herbaceous PFT over the study region. a) Satellite-derived vegetation 1029 
composition from ESA Land cover CCI V2.0.7 (Li et al., 2018) reclassified to the PFTs of LPJmL as in (Forkel et al., 2014). b) 1030 
LPJmL4.0-VR. c) LPJmL4.0-VR-base. d) LPJmL4.0. All LPJmL model versions were forced with CRU climate input. The shown 1031 
FPC for all models refers to 2001-2010. 1032 

  1033 
Fig. B9: Mean sum (2001-2010) of belowground biomass (BGB; sum of tree coarse and fine roots) of evergreen and deciduous tree 1034 
PFTs simulated with LPJmL4.0-VR under CRU climate forcing.  1035 
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 1036 
Fig. B10: Comparison of simulated AGB and satellite derived AGB validation products regridded to the spatial resolution of 1037 
LPJmL models. a) Biomass validation product from Avitabile et al. (2016b). b) AGB validation product from Saatchi et al., (2011). 1038 
c)-e) Mean AGB simulated for the time span 2001-2010 with c) LPJmL4.0-VR. d) LPJmL4.0-VR-base and e) LPJmL4.0. For 1039 
statistical measures of individual comparisons between model versions (c-e) and satellite derived AGB evaluation products (a-b) 1040 
see Table A7. 1041 

 1042 
Figure B11: Difference in soil water reaction to seasonal precipitation between LPJmL4.0-VR-base and LPJmL4.0-VR at Fluxnet 1043 
site STM KM67 a) Mean monthly precipitation input from CRU for 2001-2010. b) Difference in monthly relative soil water 1044 
content between LPJmL4.0-VR-base and LPJmL4.0-VR forced with CRU climate for 2001-2010. The underlying model output 1045 
variable “soil water content” of each model version is a number between 0 and 1 depicting the relative water saturation of the soil. 1046 
Blue colors denote lower soil water content in LPJmL4.0-VR and red colors a lower soil water content in LPJmL4.0-VR-base. 1047 
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 1048 
Fig. B12: Comparisons of monthly NEE between different Fluxnet sites (“Reference”; see also Sect. 2.5.1) and respective 1049 
simulation output of the different LPJmL model versions used in this study forced with CRU climate. a) Geographical location of 1050 
different Fluxnet sites (see also Table A2). 1051 

1.4 Tables 1052 

Table B1: Normalized mean error (NME), coefficient of determination (r²) and p-value of F-statistic piecewise calculated for 1053 
simulated ET of the different LPJmL model versions used in this study forced with CRU climate input and Fluxnet data of ET at 7 1054 
Fluxnet sites (in accordance with  Fig. B6). 1055 
Statistic Model TOC_BAN MAN_K34 STM_K67 STM_K77 STM_K83 RON_RJA GF_GUY 
NME LPJmL4.0-VR 2.41 1.11 0.75 1.38 1.10 2.28 1.57 
 LPJmL4.0-VR-base 2.92 1.22 2.29 0.98 2.74 2.73 2.38 
  LPJmL4.0 2.93 1.23 2.27 0.98 2.74 2.70 2.36 
r² LPJmL4.0-VR 0.09 0.03 0.53 0.17 0.43 0.01 0.08 
 LPJmL4.0-VR-base 0.10 0.00 0.33 0.14 0.03 0.01 0.01 
  LPJmL4.0 0.09 0.00 0.33 0.14 0.03 0.01 0.01 
p-value LPJmL4.0-VR 0.075 0.041 < 0.001 0.002 < 0.001 0.575 0.005 
 LPJmL4.0-VR-base 0.067 0.585 < 0.001 0.005 0.221 0.517 0.277 
 LPJmL4.0 0.068 0.672 < 0.001 0.005 0.221 0.514 0.274 
 1056 
Table B2: Normalized mean error (NME), coefficient of determination (r²) and p-value of F-statistic piecewise calculated for 1057 
simulated NEE of the different LPJmL model versions used in this study forced with CRU climate input and Fluxnet data of NEE 1058 
at 3 Fluxnet sites (in accordance with  Fig. B7). 1059 
Statistic Model STM_K67 STM_K83 GF_GUY 
NME LPJmL4.0-VR 0.90 0.84 1.30 
 LPJmL4.0-VR-base 1.62 1.36 1.52 
  LPJmL4.0 1.68 1.39 1.52 
r² LPJmL4.0-VR 0.16 0.14 0.00 
 LPJmL4.0-VR-base 0.32 0.06 0.03 
  LPJmL4.0 0.33 0.07 0.03 
p-value LPJmL4.0-VR < 0.001 0.003 0.515 
 LPJmL4.0-VR-base < 0.001 0.055 0.046 
 LPJmL4.0 < 0.001 0.047 0.059 
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 1060 
Table B3: Normalized mean error (NME), coefficient of determination (r²) and p-value of F-statistic piecewise calculated for the 1061 
simulated ET of the different LPJmL model versions used in this study and continental scale gridded ET products within 5 1062 
regional climatological clusters. With respect to Fig. 3 comparisons are based on the monthly mean of corridors shown, i.e. 1) the 1063 
monthly mean of all outputs produced by one LPJmL model version but forced with different climate inputs and 2) the monthly 1064 
mean of all continental scale gridded ET data products. 1065 
Statistic Model NSA EQ W EQ E SAmz SAMS 
NME  LPJmL4.0-VR 0.08 0.26 0.62 0.20 0.06 
  LPJmL4.0-VR-base 0.37 0.42 1.95 0.58 0.13 
   LPJmL4.0 0.34 0.26 1.92 0.58 0.11 
r²  LPJmL4.0-VR 0.98 0.94 0.91 0.98 1.00 
  LPJmL4.0-VR-base 0.94 0.96 0.20 0.91 0.99 
   LPJmL4.0 0.93 0.96 0.21 0.90 0.99 
p-value  LPJmL4.0-VR < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 
  LPJmL4.0-VR-base < 0.001 < 0.001 0.143 < 0.001 < 0.001 
  LPJmL4.0 < 0.001 < 0.001 0.135 < 0.001 < 0.001 

 1066 
Table B4: Normalized mean error (NME) of FPC comparison piecewise calculated between 1) the satellite-derived vegetation 1067 
composition from ESA Land cover CCI V2.0.7 (Li et al., 2018) reclassified to the PFTs of LPJmL as in Forkel et al. (2014) and 2) 1068 
all LPJmL model versions used in this study forced with CRU climate data (in accordance with Fig. 4). 1069 
Statistic Model FPC Evergreen FPC Deciduous 
NME LPJmL4.0-VR 0.31 1.01 
 LPJmL4.0-VR-base 0.38 1.5 
 LPJmL4.0 0.47 1.76 
 1070 
Table B5: Normalized mean error (NME) of AGB comparison piecewise calculated between 1) the satellite-derived AGB 1071 
validation products and 2) all LPJmL model versions used in this study forced with CRU climate data (in accordance with Fig. 1072 
B10). 1073 
Statistic Model Avitabile et al. Saatchi et al. 
NME LPJmL4.0-VR 0.78 0.12 
 LPJmL4.0-VR-base 0.69 0.11 
 LPJmL4.0 1.09 0.14 
 1074 
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