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Abstract. Tree water access via roots is crucial for forest functioning and therefore forests have developed a vast variety of 23 

rooting strategies across the globe. However, Dynamic Global Vegetation Models (DGVMs), which are increasingly used to 24 

simulate forest functioning, often condense this variety of tree rooting strategies into biome-scale averages, potentially  25 

under- or overestimating forest response to intra- and inter-annual variability in precipitation. Here we present a new 26 

approach of implementing variable rooting strategies and dynamic root growth into the LPJmL4.0 DGVM and apply it to 27 

tropical and sub-tropical South-America under contemporary climate conditions. We show how competing rooting strategies 28 

which underlie the trade-off between above- and below-ground carbon investment lead to more realistic simulated intra-29 

annual productivity and evapotranspiration, and consequently forest cover and spatial biomass distribution. We find that 30 

climate and soil depth determine a spatially heterogeneous pattern of mean rooting depth and belowground biomass across 31 

the study region.  32 

1 Introduction 33 

Tropical evergreen forest is the naturally dominant biome type in South-America over a large climatic range including 34 

regions with a marked dry season (Hirota et al., 2011; Xiao et al., 2006). To withstand seasonal shortages of precipitation 35 

and sustain productivity, trees with evergreen phenology often gain access to deep soil water via deep roots (Brum et al., 36 

2019; Canadell et al., 1996; Johnson et al., 2018; Kim et al., 2012; Markewitz et al., 2010). Consequently, recent studies 37 

suggest a heterogeneous spatial pattern of maximum rooting depth across tropical forest biomes in South-America which 38 

differs over the order of magnitudes depending on local groundwater, soil and climate conditions (Canadell et al., 1996; Fan 39 

et al., 2017).  Therefore, tree rooting depth is regarded as a crucial variable to explain the geographical distribution of main 40 

phenology strategies such as “evergreen” and “deciduous”, as well as the observed local to continental pattern of 41 

productivity, biomass storage, evapotranspiration (ET) and consequently moisture recycling (Fan et al., 2017; Jobbágy and 42 

Jackson, 2000; Kleidon and Heimann, 2000; Langan et al., 2017; Nepstad et al., 1994; Stahl et al., 2013). While these 43 

variables and processes are in the focus of model-based earth system sciences projecting the development of vegetation 44 

formation and ecosystem functioning worldwide (Huntingford et al., 2013; Liu et al., 2018; Weber et al., 2009), most 45 

DGVMs and land-surface models (LSMs) still do not represent the diversity of rooting depth or tree rooting strategies 46 

(Warren et al., 2015a). In general these models condense the diversity of such functional plant traits to biome-scale averages, 47 
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to simulate so called plant functional types (PFTs) which reflect average plant individuals of a biome. Here, often a shallow 48 

rooting depth for tree PFTs is assumed, i.e. most roots are distributed downwards to a few meters of depths at maximum 49 

(Arora and Boer, 2003; Best et al., 2011; Guimberteau et al., 2017; Lawrence et al., 2011; Ostle et al., 2009; Schaphoff et al., 50 

2018; Smith et al., 2014). By ignoring natural local adaptations of rooting depth, DGVMs and LSMs in the past had 51 

problems reproducing the extent of South-America’s tropical evergreen forests, as well as its seasonal productivity and ET 52 

especially in regions with seasonal rainfall (Baudena et al., 2014; Liu et al., 2018, 2017; Restrepo-Coupe et al., 2017).  53 

So far different attempts were carried out trying to solve this problem in DGVMs and similar models by allowing for 54 

variable rooting strategies. More than 20 years ago a pioneering study by Kleidon and Heimann (1998) systematically 55 

searched for rooting strategies which yield highest net primary productivity over South America in a DGVM to explain intra-56 

annual rates of ET and vegetation cover. Follow up studies further underlined the importance of deep roots for the climate 57 

system of South America (Kleidon and Heimann, 2000). Lee et al. (2005) found that allowing for deep roots and hydraulic 58 

redistribution of water in the soil column in a general circulation model enhances Amazon forest productivity and 59 

evapotranspiration (ET) in the dry season. Baker et al. (2008) came to similar results when introducing deep roots in a land 60 

surface model. Ichii et al., (2007) found that constraining rooting depth across the Amazon based on satellite data yields 61 

similar results in a terrestrial ecosystem model. More recently, Langan, Higgins and Scheiter (2017) showed for the same 62 

study area how diverse rooting strategies in a tree individual and trait-based DGVM can improve simulated intra-annual 63 

productivity and ET and better explain patterns of different tropical biome types and biomass in connection with fire. 64 

While these studies are important steps to acknowledge the diversity of tree rooting strategies and its effects, some 65 

assumptions of the underlying models might decrease the liability of their results. These assumptions are related to 1) 66 

resource investment, 2) timing and 3) physical constraints of rooting depth. 1) Most models so far do not account for coarse 67 

roots (Warren et al., 2015a) even though they can make up the majority of total root biomass (Xiao et al., 2003). This 68 

approach may be sufficient when employing shallow tree rooting strategies only, but with increasing rooting depth costs for 69 

coarse roots increases substantially. Since the amount of resources trees can allocate to their processes and structures is 70 

finite, a local adaptation of tree rooting depth must follow a trade-off between above- and below-ground resource investment 71 

(Nikolova et al., 2011). Generally above-ground investments into leaf and stem growth can increase light absorption and 72 

CO2 uptake, while below-ground investments can increase the uptake of water and nutrients. Depending on local 73 

environmental and competitive conditions one or the other direction might be more advantageous, eventually leading to 74 

substantial regional variation in the mean below-ground to above-ground biomass ratios (Leuschner et al., 2007; Mokany et 75 

al., 2006). Therefore, the simulated spectrum of tree rooting strategies which can survive and co-exist should be in 76 

accordance with this crucial trade-off. 2) In contrast to above-ground stem growth, most DGVMs so far do not simulate 77 

gradual root growth (Warren et al., 2015a). Instead PFTs are assigned a constant relative distribution of fine roots throughout 78 

the soil column at any point in space and time (Best et al., 2011; Lawrence et al., 2011; Schaphoff et al., 2018; Smith et al., 79 

2014). As under the above mentioned simplification under 1), this approach may be sufficient when accounting for shallow 80 

rooting strategies only, but when the maximum tree rooting depth of PFTs strongly diverges, it is questionable that the time 81 

needed to reach this depth is negligible, especially when accounting for PFT competition. Rooting depth increases rather 82 

gradually and non-linear over a tree’s lifetime with a velocity driven by a mix of plastic optimization and allometric 83 

determination (Brum et al., 2019; Brunner et al., 2015; Nikolova et al., 2011; Poorter et al., 2012; Warren et al., 2015b). 84 

While the knowledge base for a mechanistic bottom-up modelling approach of plastic optimization is very sparse (Jenik, 85 

2010; Poorter et al., 2012; Warren et al., 2015b), knowledge on certain allometric rules (Brum et al., 2019; Eshel and 86 

Grünzweig, 2013; Mokany et al., 2006) seems enough to be applied in DGVMs. 3) Most DGVMs so far do not account for a 87 

location dependent soil depth, but apply a constant soil depth across the globe (Best et al., 2011; Guimberteau et al., 2017; 88 

Lawrence et al., 2011; Ostle et al., 2009; Schaphoff et al., 2018; Smith et al., 2014). Again this approach may be sufficient 89 

when accounting for shallow rooting strategies only, but allowing for deep tree rooting strategies should go in parallel with 90 
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their potential physical barriers. Recent data products on global soil depth now enable to better constrain rooting depth in 91 

DGVMs (Pelletier et al., 2016).  92 

Here we overcome the above mentioned limitations and present a new approach of diversifying tree rooting strategies in the 93 

DGVM LPJmL4.0 (Lund-Potsdam-Jena managed Lands; Schaphoff et al., 2018) which increases the ecological liability 94 

with the following aspects: 1) Maximum rooting depth is restricted to a recent global product of soil depth, 2) simulated tree 95 

rooting strategies were chosen to represent a wide range of maximum rooting depth between 0.5 and 18 m, 3) this spectrum 96 

of tree rooting strategies grows in competition and tree performance determines dominance, 4) dominance is supported by 97 

best performing rooting strategies producing more offspring, 5) trees have to invest into coarse roots as well, i.e. 98 

acknowledging the trade-off between growing deeper roots and allocating available carbon to other compartments (stem and 99 

leaf growth), and 6) tree roots are growing deeper over time depending on tree height. The objectives of this study are to 100 

describe an approach of how to diversify tree rooting strategies in a DGVM and to evaluate its effect on simulated 101 

evapotranspiration, productivity, biomass and spatial distribution of evergreen and deciduous tropical forests using different 102 

sources of validation data. 103 

2 Materials and Methods 104 

In the method sections below we describe the implementation of a new tree rooting scheme in LPJmL4.0 (Sect. 2.2) where 105 

maximum rooting depth is constrained by a recent map on maximum soil/sediment thickness (Sect. 2.3). We apply the model 106 

to several historical climate input data (Sect. 2.7) with details of the simulation protocol described in Sect. 2.9. The 107 

Evaluation of the new model version is described in Sect. 2.10. 108 

All data processing and statistical analysis described in the methods sections were performed with the commercial software 109 

MATLAB® (MATLAB and Statistics Toolbox Release 2012b; The MathWorks, Inc., Natick, MA, USA).  110 

2.1 The LPJmL4.0 model 111 

LPJmL4.0 is a process-based Dynamic Global Vegetation Model (DGVM) which simulates the surface energy balance, 112 

water fluxes, carbon fluxes and stocks of the global land (Schaphoff et al., 2018). Plant productivity is modelled on the basis 113 

of leaf-level photosynthesis responding to climatic and environmental conditions, atmospheric CO2 concentration, canopy 114 

conductance, autotrophic respiration, phenology and management intensity. The model employs 11 plant functional types 115 

(PFTs), 3 bioenergy types (BFTs) and 12 crop functional types (CFTs), to represent average plants of biomes, bioenergy 116 

plantations and agriculture, respectively. The standard spatial resolution is a 0.5° x 0.5° grid. For each grid cell the fractional 117 

coverage of bioenergy and agricultural BFTs and CFTs follows a prescribed land-use data set, whereas in the remaining area 118 

natural PFTs grow in competition.   119 

2.2 A new tree rooting scheme for LPJmL4.0 120 

In this section we describe the new basic scheme for soil layer partitioning, the new tree rooting scheme, the simulation of 121 

belowground carbon investment, and how different tree rooting schemes compete. All changes made to LPJmL4.0 described 122 

in the methods below result in a new sub-version of LPJmL4.0 we call LPJmL4.0-VR hereafter (where “VR” stands for 123 

variable roots). 124 

2.2.1 Scheme for soil layer partitioning 125 

LPJmL4.0 employs a globally universal soil depth of 3 m. For LPJmL4.0-VR we extended the general maximum soil depth 126 

to 20 m (but restrict it to local soil depth information at spatial model resolution; Sect. 2.3.2). We applied the same basic 127 

scheme for soil layer partitioning from LPJmL4.0 (Schaphoff et al., 2018), but continue this scheme down to 20 m (Tab. 1). 128 
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We chose a maximum of 20 m soil depth to considerably increase the maximum soil depth compared to constant 3 m in 129 

LPJmL4.0, while keeping the increment of computational intensiveness connected to adding more soil layers within an 130 

acceptable range. As for LPJmL4.0, a general soil texture information is applied to the whole soil column (Schaphoff et al., 131 

2018).  132 

2.2.2 Diversifying general tree rooting strategies in LPJmL4.0-VR 133 

In LPJmL4.0 the tree rooting strategy of a PFT is reflected by a certain prescribed vertical distribution of fine roots 134 

throughout the soil column. Each soil layer l is assigned a PFT specific relative amount of fine roots rootdistl:  135 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑧𝑧𝑙𝑙) −  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑧𝑧𝑙𝑙−1)         Eq. (1) 136 

where zl is the soil layer boundary depth in cm of each soil layer l and rootdist(zl) is the relative amount of fine roots between 137 

the forest floor and the boundary of soil layer l. The function rootdist(z) is defined following Jackson et al. (1996):  138 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑧𝑧) =  1−𝛽𝛽𝑧𝑧

1−𝛽𝛽𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
           Eq. (2)  139 

where 𝛽𝛽 is a constant parameter shaping the vertical distribution of fine roots and therefore determining the tree rooting 140 

strategy and zbottom is the maximum soil depth in cm. In LPJmL4.0 each PFT is assigned a different 𝛽𝛽-value reflecting the 141 

average tree rooting strategy on this broad biome scale (Schaphoff et al., 2018).  142 

To quantify the maximum rooting depth of PFTs that actually results from this approach (Eq. 1&2) we here calculate the 143 

depth which is reached by 95% of the fine root biomass (D95_max) as follows: 144 

𝐷𝐷95_𝑚𝑚𝑚𝑚𝑥𝑥 =  𝑙𝑙𝑙𝑙𝑙𝑙 (1−0.95∙(1− 𝛽𝛽𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏))
𝑙𝑙𝑙𝑙𝑙𝑙 ( 𝛽𝛽)

            Eq. (3) 145 

In LPJmL4.0 the 𝛽𝛽-values of tropical tree PFTs are set to 0.962 for the evergreen PFT and 0.961 for the deciduous PFT. 146 

According to Eq. 3 both PFTs have a D95_max smaller than 1 m. For LPJmL4.0-VR we extended this representation of tree 147 

rooting strategies by splitting both tropical tree PFTs into 10 sub-PFTs and assigned each with a different 𝛽𝛽-value. These 148 

values were chosen to cover a range of different D95_max values between 0.5 and 18m (Tab. 2). Fig. 1 shows the new 149 

maximum distribution of fine roots throughout the soil column according to the chosen 𝛽𝛽-values (Tab. 2). 150 

2.2.3 Belowground carbon investment 151 

Tropical trees can avoid water stress under seasonally dry climate by growing relatively deep roots (Brum et al., 2019; Fan et 152 

al., 2017) which goes along with increased below-ground carbon investment. Thus, the need for deep water access creates a 153 

trade-off between below-ground and above-ground carbon investment. Therefore, a new tree rooting scheme for LPJmL4.0-154 

VR was necessary to account for this trade-off in order to reproduce observed local to regional patterns and distributions of 155 

tree rooting strategies instead of prescribing them. Therefore, we introduced two new carbon pools in LPJmL4.0-VR, namely 156 

root sapwood and root heartwood. Like stem sapwood in LPJmL4.0, also root sapwood in LPJmL4.0-VR needs to satisfy the 157 

assumptions of the pipe model (Shinozaki et al., 1964; Waring et al., 1982). The pipe model describes, that for a certain 158 

amount of leaf area a certain amount of water conducting tissue must be available. In LPJmL4.0 the cross-sectional area of 159 

stem sapwood needs to be proportional to the leaf area LAind as follows: 160 

𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑘𝑘𝑙𝑙𝑚𝑚:𝑠𝑠𝑚𝑚  ∙  𝑆𝑆𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖           Eq. (4)  161 

where kla:sa  is a constant describing the ratio of leaf area and stem sapwood cross-sectional area (SAind). In LPJmL4.0-VR we 162 

also apply the pipe model to root sapwood. Root sapwood cross-sectional area must be proportional to stem sapwood cross-163 

sectional area, but is decreasing with soil depth, depending on the relative amount of fine roots in each soil layer (Fig. 2). 164 

Root sapwood is turned into root heartwood at an equal rate as stem sapwood is turned into stem heartwood, i.e. 5% per year 165 

as in LPJmL4.0 (see Schaphoff et al., 2018).  166 
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2.2.4 Root growth 167 

In LPJmL4.0 (Schaphoff et al., 2018) no vertical root growth is simulated, thus the relative distribution of fine roots over the 168 

soil column is constant over space and time. It means that PFTs starting from bare ground in a sapling stage display the same 169 

relative distribution of fine roots throughout the soil column as a full-grown forest which contradicts the principles of 170 

dynamic root growth over a tree’s lifetime. Applied to LPJmL4.0-VR, the belowground biomass of an initialized deep 171 

rooting-strategy sub-PFT would exceed its aboveground biomass (AGB) by order of magnitudes when acknowledging 172 

coarse roots. Consequently, deep rooting strategies would always be disadvantageous, calling for modelling gradual root 173 

growth in LPJmL4.0-VR. Unfortunately, little is known about how roots of tropical trees grow over time, given the fact that 174 

this research field is strongly time and resource demanding, and at the same time the variety of tree species, rooting 175 

strategies and environmental conditions are large (Jenik, 2010). A recent promising study by Brum et al. (2019) was able to 176 

capture the effective functional rooting depth (EFRD) of different size classes of 12 dominant tree species in a seasonal 177 

Amazon forest where tree roots grow considerably deep with maximum values reaching below 30m. To our knowledge this 178 

is the only study capturing the relation between the size of tropical trees and their maximum rooting depth in a high spatial 179 

resolution covering sufficient tree-height classes in order to derive a function. Following the findings of Brum et al. (2019), 180 

we here implemented a logistic root growth function, which calculates a general maximum conceivable tree rooting depth D 181 

depending on tree height:  182 

𝐷𝐷 = 𝑆𝑆
𝑒𝑒−𝑘𝑘𝑘𝑘ℎ

∙ � 𝑆𝑆
𝐷𝐷0
− 1�           Eq. (5) 183 

where S is the maximum soil depth in the model (20 m), k is the growth rate (set to 0.02), h is the tree height in m and D0 is 184 

the initial rooting depth of tree saplings (set to 0.1 m; tree saplings in LPJmL4.0-VR are initialized with a height of 0.45 m as 185 

in LPJmL4.0). The distribution of fine root biomass of each sub-PFT in the soil column is then adjusted according to D each 186 

time step, by restricting zbottom in Eq. 2. Every time D crosses a specific soil layer boundary (Sect. 2.2.1) zbottom is assigned the 187 

value of the next soil layer boundary. Thus, zbottom increases in discrete steps. Consequently, each tree rooting strategy 188 

allowed for in this study (2.2.2) shows a logistic growth of rooting depth dependent on tree height which saturates towards 189 

its specific maximum rooting depth (Fig. 3). Therefore, limitations of aboveground tree growth due to below-ground carbon 190 

investment of different tree rooting strategies (Sect. 2.2.3) are equal in the tree sapling phase of all sub-PFTs) and start to 191 

diverge with increasing tree height. In the case D exceeds the grid cell specific local soil depth (as prescribed by the soil 192 

thickness input, see Sect. 2.3.2) all the respective fine root biomass exceeding this grid cell specific soil depth is transferred 193 

to the last soil layer which matches this soil depth (see also Fig. 2 right panel and Supplementary Video 1 for a visualization 194 

of root growth under http://www.pik-potsdam.de/~borissa/LPJmL4_VR/Supplementary_Video_1.pptx).  195 

The parameter k in Eq. 5 was chosen to preserve the slope of the 75%ile function describing the relation between tree height 196 

and effective functional rooting depth (EFRD) as found in Brum et al. (2019). We could not implement any of the original 197 

functions as suggested in Brum et al. (2019) since they deliver unrealistic low values of rooting depth (between 0 and 10cm) 198 

for trees <= 10 m, which results in a strong competitive disadvantage against herbaceous PFTs in LPJmL4.0-VR. We 199 

decided for the slope of the 75%ile function since we wanted to apply root growth rates close to the maximum which also 200 

allows for the largest D95_max values in this study (Sect. 2.2.1) to be reached. 201 

Note that Brum et al. (2019) originally propose a relation between tree diameter at breast height (DBH) and EFRD. For our 202 

purposes we related rooting depth to tree height (h), which is calculated from DBH in in LPJmL4.0 according to (Huang et 203 

al., 1992): 204 

ℎ = 𝑘𝑘𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚2  ∙  𝐷𝐷𝐷𝐷𝐷𝐷𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏3            Eq. (6) 205 

where kallom2 and kallom3 are constants set to 40 and 0.67, respectively (Schaphoff et al., 2018). 206 
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2.2.5 Competition of rooting strategies 207 

In each grid-cell all sub-PFTs of the evergreen and deciduous tree PFTs compete for light and water following LPJmL4.0’s 208 

approach to simulate plant competition. To allow for environmental filtering of tree rooting strategies which are best adapted 209 

to local environmental conditions, we changed the tree establishment scheme of LPJmL4.0-VR. In LPJmL4.0, the number of 210 

new PFT saplings per unit area (estPFT  in ind m-2 a-1) which are established each year is proportional to a maximum 211 

establishment rate kest and to the sum of foliage projected cover (FPC; a relative number between 0 and 1) of all tree PFTs 212 

present in a grid cell (FPCTREE). It declines in proportion to canopy light attenuation when the sum of woody FPCs exceeds 213 

0.95, thus simulating a decline in establishment success with canopy closure (Prentice et al., 1993): 214 

𝑒𝑒𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃  =  𝑘𝑘𝑒𝑒𝑠𝑠𝑒𝑒 ∙ (1 −  𝑒𝑒(−5∙(1−𝑃𝑃𝑃𝑃𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)) ∙ 1− 𝑃𝑃𝑃𝑃𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑖𝑖𝑒𝑒𝑒𝑒𝑏𝑏𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

         Eq. (7) 215 

where nestTREE  is the number of established tree individuals per m² per year. In LPJmL4.0-VR, establishment rates of sub-216 

PFTs (estsub_PFT) are additionally weighted by local dominance of each sub-PFT as follows: 217 

𝑒𝑒𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠_𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑘𝑘𝑒𝑒𝑠𝑠𝑒𝑒 ∙ �1 − 𝑒𝑒−5∙(1−𝑃𝑃𝑃𝑃𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)� ∙ 1−𝑃𝑃𝑃𝑃𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑖𝑖𝑒𝑒𝑒𝑒𝑏𝑏𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

∙ 𝑃𝑃𝑃𝑃𝐹𝐹𝑒𝑒𝑠𝑠𝑏𝑏_𝑃𝑃𝑃𝑃𝑇𝑇
𝑃𝑃𝑃𝑃𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

∙ 𝑛𝑛𝑒𝑒𝑠𝑠𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇     Eq. (8) 218 

where FPCsub_PFT  is the FPC of each sub-PFT. The new term allows productive sub-PFTs to establish more offspring relative 219 

to their spatial dominance and vice versa, without changing the overall establishment rate as set by (Prentice et al., 1993). 220 

This function has the effect that non-viable sub-PFTs are outcompeted over time. 221 

2.2.5 Background mortality 222 

In LPJmL4.0 background mortality is modelled by a fractional reduction of biomass, which depends on growth efficiency 223 

(Schaphoff et al., 2018). This annual rate of mortality is limited by a constant maximum mortality rate of 3% of tree 224 

individuals per year which is applied to all tree PFTs. In other words the fastest total biomass loss of a tree PFT due to low 225 

growth efficiency can happen within 1/0.03 ~ 33 simulation years. In general, this maximum mortality rate can be regarded 226 

as a global tuning parameter of biomass accumulation as it caps the maximum biomass loss. Since many mechanisms 227 

influencing tree mortality in the real world, e.g. hydraulic failure (Johnson et al., 2018), are not yet implemented in most 228 

DGVMs including LPJmL4.0 (Allen et al., 2015), the parameterization of a background tree mortality remains a challenging 229 

topic. Under the current model status of LPJmL4.0 maximum mortality rates are a necessary feature, while future model 230 

development must overcome the concept of applying a maximum mortality rate by refining and implementing most 231 

important mechanisms that influence tree mortality. 232 

The new features of LPJmL4.0-VR head in this direction. Here tree PFTs can access water in soil depths which were 233 

formally inaccessible. This enhances the general growth efficiencies of tree PFTs and consequently decreases their overall 234 

background mortality. Since global biomass pattern simulated with LPJmL4.0 are already in an acceptable range, we 235 

increased the maximum background mortality in LPJmL4.0-VR to 7% in order to counter-balance increased survival rates 236 

and therefore biomass accumulation. This value keeps simulated mortality rates in real world boundaries, as a recent study 237 

comprising data of 167 forest plots finds that actual annual stem mortality rates generally do not exceed 6% across Amazonia 238 

(Johnson et al., 2016). We regard increasing the maximum mortality rate as a step into the right direction as its value can 239 

eventually be set close to 100% when model development progresses.  240 

2.3 Model input data 241 

2.3.1 Climate and land-use input data 242 

All versions of LPJmL used in this study (see Sect. 2.4) were forced with 4 different climate inputs each based on single or 243 

multiple available data products delivering the climate variables air temperature, precipitation, long-wave and shortwave 244 

downward radiation at daily or monthly resolution:  245 
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1) WATCH Forcing Data (WFD) + WATCH Forcing Data methodology applied to ERAInterim data. A combination of the 246 

WATCH data set (Weedon et al., 2011) and the WFDEI data set (Weedon et al., 2014) as used in the ISIMIP project 247 

(https://www.isimip.org/gettingstarted/input-data-bias-correction/details/5/). This input data set is called WATCH+WFDEI 248 

hereafter. 249 

2) Global Soil Wetness Project Phase 3 (GSWP3) (Kim et al., no date; http://hydro.iis.u-tokyo.ac.jp/GSWP3/index.html).  250 

3) NOAH Global Land Assimilation System version 2.0 (GLDAS, Rodell et al., 2004).  251 

4) Climate forcing as in Schaphoff et al. (2018) with monthly precipitation provided by the Global Precipitation Climatology 252 

Centre (GPCC Full Data Reanalysis version 7.0; (Becker et al., 2013), daily mean temperature from the Climate Research 253 

Unit (CRU TS version 3.23, University of East Anglia Climatic Research Unit, 2015; Harris et al., 2014), shortwave 254 

downward radiation and net downward radiation reanalysis data from ERA-Interim (Dee et al., 2011), and number of wet 255 

days from (New et al., 2000) used to allocate monthly precipitation to individual days. 256 

This input data set is called CRU hereafter. 257 

2.3.2 Soil and sediment thickness 258 

We regridded a global 1 x 1 km soil and sediment thickness product (Pelletier et al., 2016) to the 0.5° x 0.5° spatial 259 

resolution of LPJmL4.0-VR, set the global maximum value to 20 m according to the maximum soil depth chosen for 260 

LPJmL4.0-VR (Sect. 2.2.1), and used the resulting map as grid cell specific model input (Fig. 4).  261 

2.4 Model versions and simulation protocol 262 

In order to investigate the impact of simulating variable rooting strategies and root growth, we employ 3 model versions of 263 

LPJmL in this study: 1) LPJmL4.0, 2) LPJmL4.0-VR, and 3) LPJmL4.0-VR-base with the same settings as LPJmL4.0-VR 264 

but without variable rooting strategies, i.e. using the β-values of LPJmL4.0 for the tropical evergreen PFT (β = 0.962) and 265 

the tropical deciduous PFT (β=0.961) for all the respective 10 sub-PFTs. We regard the latter model version as a baseline 266 

model of this study, because comparisons to LPJmL4.0-VR enable to investigate differences which are caused by the amount 267 

of considered tree rooting strategies only. 268 

Each simulation was initialized with 5000 simulation years of spin up from bare ground without land-use by randomly 269 

recycling the first 30 years of respective climate data (1901-1930 for WATCH+WFDEI, GSWP3, CRU and 1948-1977 for 270 

GLDAS) and a pre-industrial atmospheric CO2 level of 278ppm, in order to ensure that carbon pools and local distribution of 271 

PFTs and sub-PFTs are in equilibrium with climate. This first spin-up phase was followed by another spin up phase of 390 272 

years using the same climate data, but employing historical land-use data (reshuffling the first 30 years 1851-1880). Land-273 

use input and routines were carried out according to the standard settings of LPJmL 4.0 as described in (Schaphoff et al., 274 

2018). This second spin-up phase was followed by transient simulations (1901-2010 for WATCH+WFDEI, GSWP3, CRU 275 

and 1948-2010 for GLDAS) with respective land-use change and changing levels of atmospheric CO2 concentration.  276 

At the beginning of the spin-up phase, all sub-PFTs in LPJmL4.0-VR and LPJmL4.0-VR-base have the same chance to 277 

establish, i.e. tree rooting strategies are uniformly distributed. During the spin-up simulation local environmental conditions 278 

lead to environmental filtering supported by competition and PFT-dominance dependent establishment rates (Sect. 2.2.4). 279 

Therefore, the following transient simulations already start with distinct distributions of tree rooting strategies. 280 

2.5 Model validation  281 

2.5.1 Validation data 282 

Regional biomass pattern 283 
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For evaluation of simulated regional pattern of AGB we compare the results of all LPJmL model versions used in this study 284 

to two remote sensing based biomass maps (Avitabile et al., 2016a; Saatchi et al., 2011) regridded to the spatial resolution of 285 

the LPJmL models.   286 

Inventory-based biomass 287 

Because of the contradicting spatial pattern of currently available AGB maps, we also perform a direct comparison of our 288 

modelled AGB patterns to inventory-based biomass estimates provided by (Brienen et al., 2015). The general problem of 289 

such a comparison is that AGB estimates from DGVMs represent large-scale (0.5 x 0.5 degree) averages, while inventory-290 

based AGB estimates are representative for forest plots of a typical size of ~1 ha. Because of the smaller spatial scale, plot 291 

estimates are affected by spatial variability and random measurement errors (Chave et al., 2004), which causes plot estimates 292 

to differ from large-scale average AGB. Thus, even a simulated AGB pattern that perfectly matches the real large-scale 293 

pattern would not yield a correlation coefficient of one when compared to small-scale plot observations. To address this 294 

problem, we apply the method from Rammig et al. (2018), which was specifically developed to compare spatial patterns of 295 

simulated large-scale ecosystem properties (𝑌𝑌) to ground-based observations (𝑋𝑋). The method assumes that a small scale 296 

“point” measurement consists of two components: the large-scale average and a normally-distributed random component 297 

originating from small-scale variability and measurement error. The standard deviation of the random component can be 298 

estimated from the data by analyzing differences among neighboring observation point, and then be used to obtain an 299 

estimate of the standard deviation of the underlying large-scale AGB pattern 𝜎𝜎𝑥𝑥, 𝐿𝐿𝑆𝑆 and to calculate a modified correlation 300 

coefficient 𝑟𝑟𝐿𝐿𝑆𝑆 that accounts for differences in the large-scale patterns by removing the diminishing effect of the random 301 

component in point observations. The subscript 𝐿𝐿𝑆𝑆 for 𝜎𝜎𝑥𝑥, 𝐿𝐿𝑆𝑆 and 𝑟𝑟𝐿𝐿𝑆𝑆 indicates that they represent estimates of the true large-302 

scale variability and the true correlation coefficient of the large-scale patterns. The uncertainty ranges for these two 303 

properties as well as for the pattern average 𝑥𝑥 (which does not require a correction and therefore no differentiation of ‘large-304 

scale’) are estimated by bootstrapping. For further details on the underlying methodology see (Rammig et al., 2018). 305 

For the evaluation of the modeled large-scale AGB pattern (𝑌𝑌) against inventory-based biomass estimates (𝑋𝑋) we employ 306 

three metrics to detect deviations in important pattern properties: 1. The ratio of means (𝑦𝑦 𝑥𝑥⁄ ) as a measure for the agreement 307 

of pattern average. 2. The ratio of standard deviations of large-scale AGB patterns (𝜎𝜎𝑦𝑦 𝜎𝜎𝑥𝑥, 𝐿𝐿𝑆𝑆⁄ ) as a measure for the agreement 308 

of pattern amplitude (the differences between grid cells). 3. The modified ‘large-scale’ Pearson correlation coefficient (𝑟𝑟𝐿𝐿𝑆𝑆) 309 

as a measure for the agreement of large-scale pattern shape (the location of maxima and minima). 310 

Local scale evapotranspiration and productivity 311 

To evaluate the performance of simulated local ET and net ecosystem exchange (NEE) of the LPJmL versions used in this 312 

study, we compare Fluxnet eddy covariance measurements of ET at 7 sites and NEE at 3sites  across the study region (Bonal 313 

et al., 2008; Saleska et al., 2013, table 3) to respective simulated rates of local ET and NEE. Fluxnet data was downloaded 314 

from https://fluxnet.fluxdata.org (under DOI: 10.18140/FLX/1440032 and DOI: 10.18140/FLX/1440165) in October 2017 315 

and from https://daac.ornl.gov/LBA/guides/CD32_Brazil_Flux_Network.html in November 2019.   316 

Continental scale gridded evapotranspiration products and selection of regions 317 

To evaluate the ET over large regions and during a long period (1981-2010), we use three global gridded datasets: Global 318 

Land Data Assimilation System Version 2 (Rodell et al., 2004), ERA-Interim/Land (ERAI-L, Balsamo et al., 2015) and 319 

Global Land Evaporation Amsterdam Model v3.2 (GLEAM, Miralles et al., 2011; Martens et al., 2017). 320 

GLDAS and ERAI-L are land-reanalysis products, meaning that they are land surface models forced with meteorological 321 

data that has been corrected with observations to give better estimates of land surface variables. The selection of these two 322 

products is based on the study of Sörensson and Ruscica (2018), who found that they have a better performance over South 323 

America than other reanalysis and satellite-based ET products. GLDAS uses the land surface model Noah (Ek et al., 2003) 324 

forced by Princeton meteorological dataset version 2.2  (Sheffield et al., 2006). The soil depth of Noah is 2 m and the model 325 

uses four soil layers and vegetation data from University of Maryland (http://glcf.umd.edu/data/landcover/). ERAI-L uses the 326 
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land surface model HTESSEL (Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land, Balsamo et al., 2009) 327 

forced by ERA-Interim atmospheric data with a GPCP based correction of monthly precipitation. The soil depth of ERAI-L 328 

is 2.89 m, the model uses four soil layers and vegetation data from ECOCLIMAP (Masson et al., 2003).  329 

GLEAM uses the Priestley-Taylor equation to estimate the potential ET and a set of algorithms with meteorological and 330 

vegetation satellite data as input to calculate the actual ET. The version used here, GLEAMv3.2a (Martens et al., 2017, 331 

downloaded from https://www.gleam.eu/#downloads) uses precipitation input from MSWEP v1.0 (Beck et al., 2017), 332 

vegetation cover from the MODIS product MOD44B, remotely sensed Vegetation Optical Index from CCI-LPRM (Liu et 333 

al., 2013) and assimilates soil moisture from both remote sensing (ESA CCI SM v2.3, Liu et al., 2012) and land-reanalysis 334 

(GLDAS Noah, Rodell et al., 2004). 335 

For the temporal analysis of ET we used five climatological regions across the study area called Northern South America 336 

(NSA), Equatorial Amazon West (EQ W), Equatorial Amazon East (EQ E), Southern Amazon (SAMz), and South American 337 

Monsoon System region (SAMS) (see Figure 11f). These regions result from a K-means clustering analysis of the annual 338 

cycles of the main drivers of ET: precipitation and surface net radiation (for details see Sörensson and Ruscica, 2018). For 339 

the purpose of this study we divided the large EQ region used by Sörensson and Ruscica (2018) in two smaller (EQ W and 340 

EQ E) at 60ºW, since this is the approximate division between regimes that have a maximum climatological water deficit 341 

(MCWD) of around -200 mm per year (EQ W), and of around -500 mm per year (EQ E). MCWD is an indicator of seasonal 342 

water stress (see section 2.5.3).  343 

The original spatio-temporal resolution of GLDAS and GLEAM is 0.25º x 0.25º while for ERAI-L it is 0.75º x 0.75º. 344 

Monthly time series were calculated from daily values for the three datasets. Hereafter, we use the short names GLDAS, 345 

ERAI-L and GLEAM for the described reference datasets.  346 

Spatial distribution of vegetation types 347 

To evaluate the regional distribution of simulated biome types in all LPJmL versions we compare our results to satellite-348 

derived vegetation composition maps from ESA Land cover CCI V2.0.7 (Li et al., 2018) reclassified to the PFTs of LPJmL 349 

from Forkel et al. (2014). In this dataset PFT dominance is indicated by foliage projected cover (FPC) which is also a 350 

standard output variable of all LPJmL models enabling a direct comparison of model results. 351 

Spatial pattern of rooting depth 352 

We compare regional patterns of mean rooting depth simulated with LPJmL4.0-VR to a maximum depth of root water 353 

uptake map (Fan et al., 2017) regridded to the 0.5° x 0.5° spatial resolution of LPJmL4.0-VR. This product was inversely 354 

modelled by taking the dynamically interacting variables soil water supply and plant water demand into account. Here, 355 

supply was based on climate, soil properties and topography and demand on plant transpiration deduced from satellite based 356 

reanalysis of atmospheric water fluxes and leaf area index (LAI) data. 357 

2.5.2 Validation metrics 358 

Except for inventory biomass all statistical evaluations of model results were based on 1) Pearson Correlation and 2) 359 

normalized mean squared error  (NME; Kelley et al., 2013). NME is calculated as: 360 

𝑁𝑁𝑁𝑁𝑁𝑁 =  ∑ |𝑦𝑦𝑖𝑖− 𝑥𝑥𝑖𝑖|
𝑁𝑁
𝑖𝑖=1
∑ |𝑥𝑥𝑖𝑖−�̅�𝑥|𝑁𝑁
𝑖𝑖=1

            Eq. (9) 361 

where yi is the simulated and xi the reference value in the grid cell or time step i. �̅�𝑥 is the mean reference value. NME takes 362 

the value 0 at perfect agreement, 1 when the model performs as well as the reference mean and values > 2 indicate complete 363 

disagreement.  364 
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2.5.3 Maximum cumulative water deficit as indicator of seasonal water stress 365 

For this study we use the maximum cumulative water deficit (MCWD) as an explanatory variable, since it is a widely used 366 

indicator for seasonal water stress for studies in South America (Aragão et al., 2007; Lewis et al., 2011; Malhi et al., 2009). 367 

MCWD captures the seasonal difference of ET and precipitation in a cumulative way and therefore reveals dry season 368 

strength and duration. Here we calculate MCWD on a monthly basis. Therefore, we first calculate the cumulative water 369 

deficit CWDn of each month n as: 370 

𝐶𝐶𝐶𝐶𝐷𝐷𝑖𝑖 =  𝐶𝐶𝐶𝐶𝐷𝐷𝑖𝑖−1 −  𝑃𝑃𝑁𝑁𝑃𝑃𝑖𝑖 + 𝑃𝑃𝑖𝑖                       Eq. (10) 371 

where PET is the potential monthly ET and P the monthly sum of precipitation. CWD is constrained to values <=0 and is set 372 

to 0 at the end of each hydrological year, here the last day of September, as in Lewis et al. (2011). We use P from climate 373 

input used for model forcing (Sect. 2.3.1) and PET as it is simulated by LPJmL4.0 (Schaphoff et al., 2018) which is only 374 

dependent on net surface radiation and air temperature, therefore remaining an explanatory variable independent of 375 

vegetation dynamics. We chose this PET over using the commonly used constant ET of 100 mm/month to calculate CWD 376 

(Aragão et al., 2007; Lewis et al., 2011; Malhi et al., 2009), because in this way, the CWD better corresponds to the actual 377 

climatological conditions in the different LPJmL model versions used in this study (see Sect. 2.4). MCWD is then calculated 378 

as: 379 

𝑁𝑁𝐶𝐶𝐶𝐶𝐷𝐷𝑦𝑦 = 𝑚𝑚𝑟𝑟𝑛𝑛 (𝐶𝐶𝐶𝐶𝐷𝐷𝑂𝑂𝑂𝑂𝑒𝑒𝑙𝑙𝑠𝑠𝑒𝑒𝑂𝑂,𝑦𝑦−1, … ,𝐶𝐶𝐶𝐶𝐷𝐷𝑆𝑆𝑒𝑒𝑆𝑆𝑒𝑒𝑒𝑒𝑚𝑚𝑠𝑠𝑒𝑒𝑂𝑂,𝑦𝑦)         Eq. (11) 380 

where y indicates the calendrical year. 381 

3 Results 382 

3. 1 Local and regional pattern of tree rooting strategies 383 

The results of LPJmL4.0-VR show a high variation in dominance and compositions of tree rooting strategies across the study 384 

region. The contribution of each tree rooting strategy to the overall net primary productivity (NPP) appears highly dependent 385 

on local environmental conditions. Comparisons at the local scale show that shallow-rooted (deep-rooted) sub-PFTs 386 

contribute more to the overall NPP under generally wetter (drier) and less (more) seasonal climate conditions (Fig. 5). At the 387 

Fluxnet site MAN K34, which exhibits a mean annual precipitation (MAP) of 2609 mm and a mean MCWD of -222 mm 388 

under CRU climate input (2001-2010), the sub-PFT with a maximum rooting depth (D95_max) of 0.5 m  contributes most to 389 

overall NPP and the whole distribution of NPP weighted D95_max classes shows a mean of 1.52 m (Fig. 5a). At the Fluxnet 390 

site STM K67, which exhibits a lower MAP of 2144 mm and a stronger dry season reflected in a mean MCWD of -465 mm, 391 

the NPP weighted distribution of D95_max  shows a peak at 10 m and a corresponding mean of 10.26 m (Fig. 5b). Since both 392 

sites have a soil thickness of 20 m (according to the soil depth input; Sect. 2.3.2) differences in rooting strategy compositions 393 

must emerge from climatic differences. It is important to note that D95_max values in Fig. 5 do not necessarily reflect the true 394 

achieved rooting depth of each sub-PFT, but the maximum value. For reasons of visual clarity for this figure we kept the 395 

bins of the x-axes as chosen in Tab. 1. 396 

Based on this NPP information of each sub-PFT in each grid cell we derived maps of mean rooting depth over the whole 397 

study region for the time span 2001-2010 for each climate input used in this study (Fig. 6). In contrast to Fig. 5 we computed 398 

the mean of the actually achieved D95 of each sub-PFT (evergreen and deciduous combined) weighted by the respective 399 

relative NPP contribution of each sub-PFT to total forest NPP (we call 𝐷𝐷95�����). The regional pattern of 𝐷𝐷95����� is a result of 400 

environmental filtering and sub-PFT competition, reflecting the effects of climate and sediment thickness. A general East to 401 

West gradient of 𝐷𝐷95����� over the Amazon region follows climatic gradients of precipitation and MCWD (Fig. S1-2) while soil 402 

depth (Fig. 4) constrains 𝐷𝐷95����� especially in the South-eastern Amazon (compare Fig. 4 & 6). In general, areas with higher 403 
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mean annual rainfall and weaker dry season show lower 𝐷𝐷95����� and vice versa. This pattern holds true under all climate inputs, 404 

with some minor local differences.  405 

Focussing on the climatological clusters (see Sect. 2.5.1 and Fig. 9f) under CRU climate input, the western Amazon (EQ-W), 406 

with a MAP of 2708 mm and MCWD of -163 mm, displays an overall mean 𝐷𝐷95����� of 1.14 m and a maximum of 5.47 m, 407 

despite considerably deeper soils present. In the Northern, Western and Southern Amazon clusters (NSA, EQ E, SAMz) with 408 

lower MAP of 2299, 2190 and 2035 mm and considerably lower MCWD of -488, -438 and -497 mm (meaning higher 409 

seasonality), respectively, mean 𝐷𝐷95����� increases to 2.32, 3.20 and 2.68 m, respectively. Here maximum 𝐷𝐷95����� values reach 11.97, 410 

11.27 and 9.04 m. In the monsoon dominated region (SAMS) displaying the lowest MAP of 1449 mm and MCWD of -649 411 

mm, mean 𝐷𝐷95����� decreases to 1.37 m. The maximum 𝐷𝐷95����� of this region reaches 11.17 m located at the border to SAMz.  412 

Comparing our results to an inversely modelled global gridded product of maximum depth of root water uptake (MDRU; 413 

Fan et al. 2017) we find considerable absolute differences to simulated 𝐷𝐷95����� while overall patterns coincide (Fig. 7). As 𝐷𝐷95����� 414 

(Fig. 6) also the original product by Fan et al. (2017) regridded to LPJmL4.0-VR’s spatial resolution (Fig. 7a) shows a 415 

northwest to southeast gradient of MDRU across the Amazon region. Lowest mean MDRU is found in cluster EQ W with 416 

1.38 m, followed by NSA with 2.98 m, SAMz with 5 m, SAMS with 5.47 m and EQ E with 5.88 m. All cluster have a 417 

maximum MDRU > 20 m with the highest value found in SAMS with 64.4 m. Fig. 7c shows a difference map between 418 

MDRU and simulated 𝐷𝐷95����� using CRU climate input. Largest differences are found over a wide area (most pronounced in EQ 419 

E, SAMz and SAMS) especially where MDRU exceeds 𝐷𝐷95�����. It appeared that for many grid cells in this area MDRU even 420 

exceeds the soil depth input used in this study (2.3.2) substantially. To overcome this technical bias we set MDRU to our soil 421 

depth input values in cases where MDRU exceeded them (Fig. 7b) to make MDRU and 𝐷𝐷95����� more comparable. The 422 

differences between this adjusted MDRU and 𝐷𝐷95����� are more likely caused by model architecture than prescribed abiotic 423 

limits, enabling for a more meaningful comparison. After this adjustment mean and maximum values of MDRU in the 424 

clusters converge to results of LPJmL4.0-VR by decreasing to 1.85 and 14.28 m for NSA, 1.26 and 17.95 m for EQ W, 2.84 425 

and 13.47 m for EQ E, 3.28 and 16.57 m for SAMz, and 2.61 and 49.37 m for SAMS. Consequently, the geographical 426 

pattern of 𝐷𝐷95����� and adjusted MDRU shows a better agreement (Fig. 7d). Largest differences remain in north-western NSA, 427 

eastern EQ W, along the Amazon River in EQ E and in eastern SAMz where 𝐷𝐷95����� exceeds MDRU. On the other hand MDRU 428 

substantially exceeds 𝐷𝐷95����� in south-western SAMz and south-western SAMS. These differences might easily emerge from 429 

different model settings and assumptions, e.g. related to differences in spatial model resolution, simulated water percolation 430 

and underlying vegetation features. 431 

The regional validation of 𝐷𝐷95����� now allows us to generalize which tree rooting strategies occupy which climate space. Using 432 

MCWD and MAP to define a climate space we find a clear separation of 𝐷𝐷95����� (Fig. 8). A core region with deep-rooted forests 433 

(mean 𝐷𝐷95> 4 m) is found where MCWD ranges between -1300 and -400 and where MAP is at least 1500 mm (see maps of 434 

MCWD and MAP in Fig. S1-2) if soil depth allows for it. This core region is surrounded by a small band of medium rooting 435 

depth forests (mean 𝐷𝐷95�����~ 2-4 m) forming a crescent shape. Rather shallow-rooted forests (mean 𝐷𝐷95�����< 2 m) are found where 436 

MAP is less than 1000 mm and MCWD is below -500 mm, i.e. in increasing seasonally dry climates with MAP at the edge 437 

to support closed tropical evergreen forest. Shallow-rooted forests are also simulated in very wet conditions where MCWD is 438 

greater than -300 mm and MAP is 1200 mm or higher.   439 

3.2 Evapotranspiration rates and productivity 440 

3.2.1 Local evapotranspiration 441 

Differences of intra-annual ET rates between LPJmL4.0, LPJmL4.0-VR and LPJmL4.0-VR-base are most pronounced at 442 

Fluxnet sites showing a high seasonality of rainfall (Fig. 9b, e, g and Fig. 10b, e, g). Here, the results of LPJmL4.0-VR show 443 

how variable tree rooting strategies lead to a major improvement of matching measured Fluxnet NEE and ET expressed in 444 
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reduced NME and increased r2-values (Table 4 and 5). This improvement arises from an important new model behaviour: 445 

Whereas, LPJmL4.0-VR-base and LPJmL4.0 simulate decreasing ET and increasing NEE during dry seasons at these sites, 446 

which is anticorrelated to Fluxnet measurements, LPJmL4.0-VR shows the opposite and follows the Fluxnet signals. This 447 

means LPJmL4.0-VR’s variable rooting strategies buffer precipitation deficits by usage of deep water. Together with a 448 

generally lower mean cloud cover during the dry season, this leads to an increase of productivity and ET as suggested by 449 

numerous studies (Nemani et al., 2003; da Rocha et al., 2004). Most pronounced improvements are found at STM K67 and 450 

STM K83 where NME of ET and NEE drop below or close to 1 and r²-values considerably increase compared to the other 2 451 

model versions (Table 4-5). For STM K67 r² of NEE is higher under LPJmL4.0 and LPJmL4.0-VR-base, but this refers to a 452 

significant anti-correlation. At STM K77 (Fig. 9f) the influence of variable rooting strategies is reversely demonstrated. This 453 

former rainforest site was converted to pasture before Eddy covariance measurements began. This local land-use at STM 454 

K77 is not representative for the respective 0.5° grid cell, and all 3 LPJmL model versions simulate natural forest. In this 455 

case, the shallow rooting systems of LPJmL4.0 and LPJmL4.0-VR-base show a better match to ET measurements. 456 

Nevertheless, at STM K83, a selectively logged primary forest site which shares the same model grid cell as STM K77 due 457 

to their geographical proximity, LPJmL4.0-VR is the only model reproducing increased ET and decreased NEE during the 458 

dry season. At sites with weaker to no dry season (Fig. 9c, d, h) differences between model versions become less 459 

pronounced, as water availability is more stable throughout the year leading to less variability in ET. Generally, all models 460 

show a better match with ET than with NEE, most likely explainable by the fact that DGVMs a) miss or underestimate 461 

important mechanisms driving seasonal productivity and respiration and b) have a coarse spatial resolution and therefore 462 

miss site specific environmental factors. The latter might also explain why LPJmL4.0-VR overestimates ET at GF GUY in 463 

the dry season. Here the soil depth input for the corresponding grid cell most likely exceeds the soil depth at this site, thus 464 

the model overestimates rooting depth and resulting ET. 465 

3.2.2 Continental Evapotranspiration  466 

Results of regional ET are in line with results of site-specific ET. The climatological clusters within the Amazon region 467 

which undergo the strongest dry season (EQ E and SAMz) show the largest differences between LPJmL4.0-VR and the other 468 

2 models and also here LPJmL4.0-VR shows a higher agreement with validation data (Fig. 11c, d and Table 6). 469 

Improvement is largest for EQ E where NME and r² show values of 0.62 and 0.91, respectively, whereas the other 2 models 470 

show values of NME >= 1.92 and r² <= 0.21. As expected in NSA and EQ W model differences become less pronounced as 471 

annual precipitation deficits are lower and deep rooting systems play a lesser role, but still there is noticeable improvement 472 

e.g. in NSA between January and April, where monthly precipitation is lower than during the rest of the year. In the 473 

monsoon dominated cluster outside the Amazon region (SAMS) model differences are least pronounced, since shallow 474 

rooting forests in LPJmL4.0-VR dominate this area (Fig. 5) which are similar to the forests with constant rooting systems in 475 

the other 2 model versions.  476 

3.3 Biome distributions 477 

The simulated relative dominance of tropical tree PFTs across the study area differs substantially between model versions 478 

(Fig. 12). More than half of the grid cells of LPJmL4.0 show the evergreen and deciduous PFTs equally dominant (Fig. 11g-479 

h). Only in areas outside tropical moist climate regions the model shows a clear dominance of the deciduous PFT, whereas 480 

e.g. in the Amazon region evergreen and deciduous PFTs co-exist in almost equal abundance. These patterns strongly differ 481 

to satellite-derived vegetation composition maps (Fig. 12a-b) and therefore yield in respective comparisons the highest NME 482 

values among all models (Table 7). In contrast LPJmL4.0-VR and LPJmL4.0-VR-base show clear dominance patterns of 483 

both tropical tree PFTs across the study area (Fig. 12c-f). This can be attributed to the dominance dependent PFT 484 

establishment introduced in this study (Sect. 2.2.5) and applied to LPJmL4.0-VR and LPJmL4.0-VR-base, which makes it 485 
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possible that one PFT (or sub-PFT) can fully outcompete others. Nevertheless, differences between LPJmL4.0-VR and 486 

LPJmL4.0-VR-base are quite substantial. In LPJmL4.0-VR-base the tropical evergreen PFT dominates the North-Western 487 

Amazon region only, negligibly extending further than the borders of climatological clusters NSA and EQ W combined. 488 

Beyond these borders the tropical deciduous PFT is dominating. In contrast, in LPJmL4.0-VR (Fig. 12e-f) the evergreen tree 489 

PFT dominance extends closer to its observed borders including EQ E and SAMz, and the deciduous PFT is pushed towards 490 

drier and more seasonal climate (including parts of SAMS). Therefore, LPJmL4.0-VR yields lowest NME values in 491 

comparison to satellite-derived vegetation composition maps (Table 7).  492 

3.4 Aboveground biomass (AGB) 493 

3.4.1 Regional AGB pattern 494 

The simulated mean AGB pattern (2001-2010) of LPJmL4.0-VR (Fig. 13c) shows how deep water access produces a 495 

contiguous high biomass over the Amazon region. Especially towards the borders of the South-Eastern Amazon region in the 496 

climatological clusters EQ E and SAMz AGB values appear rather homogenous in contrast to the other 2 model versions 497 

(Fig. 13d-e). In connection with the significantly improved underlying vegetation composition (Fig. 12) it is clear that 498 

LPJmL4.0-VR is the only model version capable of simulating high AGB evergreen rainforests across the climatic gradient 499 

of the Amazon region (Fig. S1-2). This pattern is suggested by one satellite derived AGB  product chosen for evaluation of 500 

our model results (Saatchi et al., 2011; Fig 12b) which yields a corresponding NME close to 0 (Table 8), even though this is 501 

true for all model versions. Surprisingly, for the other AGB validation product (Avitabile et al., 2016b; Fig. 12a) LPJmL4.0-502 

VR-base yields a smaller NME than LPJmL4.0-VR. Taking into account the significantly less accurate underlying 503 

vegetation composition of LPJmL4.0-VR-base (Fig. 12) we regard the comparison as obsolete in this context. The same 504 

holds true for LPJmL4.0. A known problem with AGB maps for South America is their poor overall agreement especially in 505 

the Amazon region (Mitchard et al., 2014), making it hard to interpret such geographical evaluations. The divergence 506 

between the 2 AGB evaluation products chosen for this study clearly displays this problem (Fig. 13a-b). Therefore, we also 507 

conducted a site specific AGB comparison with results in the following section (Sect. 3.4.2).                                                                                        508 

3.4.2 AGB at specific sites 509 

For site specific comparisons of simulated and observed AGB we calculated 3 indicators, 1) the ratio of means (𝑦𝑦 𝑥𝑥⁄ ) as a 510 

measure for the agreement of pattern average, 2) the ratio of standard deviations of large-scale AGB patterns (𝜎𝜎𝑦𝑦 𝜎𝜎𝑥𝑥, 𝐿𝐿𝑆𝑆⁄ ) as a 511 

measure for the agreement of pattern amplitude (the differences between grid cells), and 3) the modified ‘large-scale’ 512 

Pearson correlation coefficient (𝑟𝑟𝐿𝐿𝑆𝑆) as a measure for the agreement of large-scale pattern shape (the location of maxima and 513 

minima). 514 

Fig. 14 shows a site-specific AGB comparison for LPJmL4.0, LPJmL4.0-VR and LPJmL4.0-VR-base for the four climate 515 

input data sets used in this study against inventory data from Brienen et al. (2015). We find that for all climate datasets, 516 

LPJmL4.0 tends to overestimate and LPJmL4.0-VR-base tends to underestimate average AGB across forest plots in the 517 

Amazon region. Except for GLDAS, average AGB from LPJmL4.0-VR lies between these two cases, showing the closest 518 

match with average AGB derived from forest plots. However, uncertainties in average AGB from forest plots is quite large 519 

(as indicated in spread of violine) so that for all but two cases (LPJmL4.0-VR-base with GSWP3 and WATCH+WFDEI) 520 

𝑦𝑦 𝑥𝑥⁄ = 1 falls within the 95 % confidence interval of 𝑦𝑦 𝑥𝑥⁄ .  521 

With regard to the pattern’s amplitude (𝜎𝜎), we find that for all climate datasets all model versions tend to overestimate AGB 522 

differences across the Amazon, but only for LPJmL4.0 with GSWP3 and WATCH+WFDEI unity is outside the 95 % 523 

confidence interval of 𝜎𝜎𝑦𝑦 𝜎𝜎𝑥𝑥, 𝐿𝐿𝑆𝑆⁄ . In other words the spatial difference between grid cell biomass is generally larger than 524 

observations imply. Nevertheless, pattern amplitude decreases with increasing model complexity (from LPJmL4.0 over 525 
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LPJmL4.0-VR-base to LPJmL4.0-VR) so that for LPJmL4.0-VR unity falls within the interquartile range of 𝜎𝜎𝑦𝑦 𝜎𝜎𝑥𝑥, 𝐿𝐿𝑆𝑆⁄  for all 526 

climate datasets. Note, however, that for GLDAS median 𝜎𝜎𝑦𝑦 𝜎𝜎𝑥𝑥, 𝐿𝐿𝑆𝑆⁄  for LPJmL4.0-VR is slightly larger than for LPJmL4.0-527 

VR-base but the 25 % percentile is lower for LPJmL4.0-VR due to the wider uncertainty distribution. 528 

Evaluation of the shape of the large-scale average AGB pattern shows that median 𝑟𝑟𝐿𝐿𝑆𝑆 increases with increasing model 529 

complexity. In other words LPJmL4.0-VR matches large scale maxima and minima of biomass across the Amazon forests 530 

best. Highest median 𝑟𝑟𝐿𝐿𝑆𝑆 are found for LPJmL4.0-VR with 0.43 for CRU, GSWP3, and WATCH+WFDEI and 0.51 for 531 

GLDAS (upper bounds of the 95 % interval are 0.61 for CRU, 0.68 for GLDAS, and 0.48 for GSWP3 and 532 

WATCH+WFDEI).  533 

In summary, we conclude that LPJmL4.0-VR reproduces the ‘observed’ large scale AGB pattern in the Amazon in all three 534 

relevant aspects (pattern mean, amplitude and shape) better than either of the two other model versions. Still LPJmL4.0-VR 535 

cannot completely reproduce all features of the large-scale AGB pattern in the Amazon, which points to bias in model input 536 

connected to climate and soil depth as well as insufficient representation of other important processes for modelling carbon 537 

dynamics in tropical forests such as tree mortality (Pillet et al., 2018), gap dynamics (Espírito-Santo et al., 2014), and 538 

nutrient limitation (Quesada et al., 2012). However, it is important to acknowledge that AGB estimates derived from 539 

inventory plots may be subject to large errors and spatial biases themselves (Saatchi et al., 2015). 540 

3.5 Belowground biomass  541 

Simulations with LPJml4.0-VR enable an unprecedented analysis of root carbon pools due to the implementation of 542 

belowground carbon investment into tree coarse root structures (Sect. 2.2.3). Fig. 15 shows the mean sum (2001-2010) of 543 

coarse and fine root carbon pools of tropical evergreen and deciduous tree PFTs under CRU climate over the study region. 544 

As expected the pattern follows simulated mean rooting depth (Fig. 6) as coarse root carbon investment increases 545 

accordingly. In the Amazon region drier and more seasonal climate selects for sub-PFTs with deeper tree rooting strategies 546 

which comes with higher investments into below-ground root structures, implying lower growth rates of these forests 547 

compared to wetter and less seasonal regions.  548 

4 Discussion 549 

This study demonstrates a generalizable approach to improve the representation of tree root system diversity in a DGVM by 550 

employing gradual root growth and a trade-off between below- and aboveground carbon investment. A major advance of the 551 

new sub-model version LPJmL4.0-VR is that simulations start with a uniform input distribution of tree rooting strategies for 552 

each PFT (tropical evergreen and deciduous) in each location, thus ensuring that all tree rooting strategies have the same 553 

chance to establish. This uniform distribution then shapes into a local distribution of abundance driven by local 554 

environmental conditions and competition (Fig. 5). Therefore, these distributions are not a pre-selected input, but a model 555 

output, enabling to investigate patterns like mean rooting depth over the study region (Fig. 6, 7). Since the simulated 556 

vegetation can now adjust its root systems to environmental conditions, the quality of simulated biome distributions (Fig. 12) 557 

and subsequently the quality of simulated ET and NEE fluxes (Fig. 9-11) and state variables like AGB (Fig. 13-14) is 558 

considerably increased. 559 

4.1 Climate and soil determine tree rooting strategies 560 

Simulated 𝐷𝐷95����� (Fig. 6) clearly follows climate gradients and soil depth of the study region (Fig. 4, Fig. S1). Our findings are 561 

in line with the general ecological expectation and former studies that seasonal water depletion of upper soil layers, as a 562 

combination of annual precipitation sums and dry season length and strength, is positively correlated with the rooting depth 563 

of tropical evergreen trees (Baker et al., 2009; Ichii et al., 2007; Kleidon and Heimann, 1998, 1999). We also find lower 564 
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thresholds for MAP and MCWD were 𝐷𝐷95����� strongly decreases again which can be explained by different mechanisms leading 565 

to a regime shift from the evergreen to the deciduous growing strategy as discussed below (see 4.2).  566 

In this study, we focus on the NPP weighted mean rooting depth (𝐷𝐷95�����) to detect the tree rooting strategies which are most 567 

important for water and carbon fluxes (ET, NEE) as well as biomass. The comparisons of mapped mean MDRU of Fan et al. 568 

(2017) to 𝐷𝐷95����� (Fig. 9) should be treated with caution as the latter does not necessarily reflect the productivity nor the 569 

dominance of certain tree rooting strategies. Fan et al. (2017) back-calculate the necessary water uptake depth to meet 570 

observed plant productivity derived from satellites while our results are based on DGVM simulations which yield 571 

communities of different tree rooting systems. A number of additional general differences of both approaches and underlying 572 

assumptions could have easily led to the observed mismatches: 1) Fan et al. (2017) use a different soil depth input, i.e. 573 

assuming a different physical boundary of  maximum rooting depth. Even though we adjusted MDRU of Fan et al. (2017) to 574 

the soil depth input used in this study (Fig. 8b), this adjustment was only for cases where MDRU exceeds our soil depth 575 

input. Therefore, cases where adjusted MDRU exceeds simulated 𝐷𝐷95����� in Fig. 8d, e.g. in western SAMz, could be caused by a 576 

higher soil depth input assumed in Fan et al. (2017) for the respective grid cells. 2) LPJmL4.0-VR simulates the growth and 577 

competition of (sub-)PFTs on the basis of leaf level photosynthesis and allocation of accumulated carbon. Their traits, such 578 

as the rooting strategy, determine performance and subsequently competitiveness. Therefore, competition could lead to a 579 

different 𝐷𝐷95����� as would be expected when considering water supply and demand of each (sub-)PFT alone. 3) Satellite derived 580 

productivity of tropical vegetation can be biased, e.g. due to strong cloud cover all year round, potentially leading to biased 581 

plant water demand and deduced MDRU. 4) Different water percolation schemes and soil textures in both models lead to 582 

different seasonal plant water supply determining MDRU and 𝐷𝐷95�����. 5) LPJmL4.0-VR does not employ a ground-water model 583 

or static ground-water table. By considering ground-water aquifers the simulated dominance of tree rooting strategies and 584 

consequently 𝐷𝐷95����� could locally shift towards lower values, e.g. in the EQ-E and SAMz cluster, if ground-water depth would 585 

be lower than the simulated 𝐷𝐷95�����. Applying a ground-water model in LPJmL4.0-VR is in the focus of future studies. 6) The 586 

tropical deciduous PFT of LPJmL4.0-VR avoids water stress during the dry season by shedding its leaves. Therefore the 587 

need for deeper roots to withstand a dry season is relatively low. Generally, areas where the deciduous PFT dominates, e.g. 588 

the most southwestern part of the study region (Fig. 6), display a low 𝐷𝐷95����� whereas this area shows amongst the highest 589 

values of MDRU in Fan et al. (2017). Since deciduous tree types dominate this area also in reality (Fig. 12b), MDRU values 590 

might be overestimated. 7) LPJmL4.0-VR does account for tropical tree PFTs only. Bush and shrub PFT types which might 591 

be evergreen and gain access to deep water while stem size remains relatively small (Oliveira et al., 2005) are not accounted 592 

for. Implementing more general PFTs into LPJmL4.0-VR is in the focus of future studies.  593 

For this study we checked the data availability on maximum rooting depth across South America in the TRY database 594 

(Kattge et al., 2020; data downloaded September 2019). As it is also shown in Fan et al. (2017; Fig. 2) we found the number 595 

of sites within the TRY data base where maximum rooting depth has been measured in South America to be very low. 596 

Moreover, the number of data entries per site appeared very small, where 33 TRY sites falling within our study area showed 597 

a mean of ~9 and a median of 6 data entries, while 15 sites showed <=5 data entries. Therefore, we decided to not include 598 

site specific comparisons of rooting depth as it is not clear how representative these measurements are for the local forest 599 

communities. Nevertheless, as shown in Fan et al. (2017; Fig. 2) measured site-specific maximum rooting depth across the 600 

Amazon region seems to follow the expected climatic gradient and gives confidence to our results. More measurements 601 

gathered in openly available databases like TRY will help to evaluate future simulation results more sophistically. 602 

4.2 Rooting depth influences the distribution of tropical biomes and biomass 603 

Seasonal water deficit and annual precipitation are the main determinants of which tree rooting strategies perform best, are 604 

able co-exist and outcompete others in LPJmL4.0-VR (Fig. 8). Avoiding seasonal drought stress due to deep roots broadens 605 

the geographical extent of simulated tropical evergreen forest. This vegetation type appears to be competitive over a 606 
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substantially wider climatic range than anticipated when employing the tree rooting strategies of LPJmL4.0. With 607 

LPJmL4.0-VR, drier and more seasonal environments now appear suited for the evergreen PFT (Fig. 10).  Below certain 608 

thresholds of annual precipitation (around 1000 mm) and of MCWD (around -500 mm) mean 𝐷𝐷95����� decreases again, indicating 609 

a transition from the evergreen to the deciduous growing strategy or more open grasslands (Fig. 8). Whether this transition 610 

for each of those thresholds is mainly caused by (a) environmental filtering of deep tree rooting strategies, (b) their 611 

competitive exclusion by shallow rooted deciduous tree types together with grass PFTs, (c) fire feedbacks or most probably, 612 

a combination of all is yet to be determined and in the focus of further studies. 613 

The climatic thresholds of vegetation types we find are comparable to thresholds between evergreen forests and savannah 614 

found by e.g. Malhi et al. (2009) at an annual precipitation of 1500 mm and at an MCWD of -300 mm. The substantially 615 

lower MCWD value found in this study can be explained by the differences in calculating CWD. While Malhi et al. (2009) 616 

assume a constant rate of ET per month of 100 mm, we use the monthly variable PET (Sect. 2.5.3). Since PET often is 617 

significantly higher than 100 mm our monthly CWD and therefore MCWD values are respectively lower. Similarly to Malhi 618 

et al. (2009), Staver, Archibald and Levin (2011) find that evergreen tree cover appears to be bi-modal within a range of 619 

MAP of 1000-2500 mm and ascribe this to climate-fire-vegetation feedbacks. Many recent studies investigating potential 620 

forest-savanna bi-stability and tipping points of the Amazon region rely solely on such climatic ranges of tropical biomes 621 

(Hirota et al., 2011; Wuyts, Champneys and House, 2017; Zemp et al., 2017; Staal et al., 2018; Ciemer et al., 2019). The 622 

results of LPJmL4.0-VR show that knowledge on local tree root adaptations is another important explanatory variable of 623 

vegetation cover reducing the uncertainty and width of anticipated climatic ranges where evergreen tree cover can be bi-624 

modal. This will help future studies to quantify climate-fire-vegetation feedbacks, forest resilience and potential individual 625 

tipping points of forests in the Amazon region in a new way. 626 

Especially the current and potential extent of evergreen forests into drier and more seasonal environments can be better 627 

explained when considering local adaptations of tree rooting strategies. In these environments an evergreen growing strategy 628 

requires deeper root systems to access deep water. Deeper roots require higher BGB investments (Fig. 12) which on the one 629 

hand side has a negative effect on productivity, because during growth the allocation of assimilated carbon shifts towards 630 

respiring BGB, while investments into productive AGB need to be reduced. On the other hand drier and more seasonal 631 

environments show less cloud cover during the dry season (Nemani et al., 2003), enhancing photosynthesis which increases 632 

productivity as long as water access is assured (Costa et al., 2010; Wu et al., 2016). The trade-off between AGB and BGB 633 

investment most probably leads to a more homogenous AGB pattern across the Amazon region with similar values over a 634 

wide climatic range (compare EQ E and SAMz in Fig. 13c-e). This effect is also visible in lower amplitudes and higher 635 

correlation in the large scale AGB pattern from different evaluation sites (Fig. 14). 636 

In fact comparisons of biomass pattern between all model versions of this study and different biomass products are difficult, 637 

since only LPJmL4.0-VR shows a reasonable geographical distribution of underlying biome types across the study area (Fig. 638 

12, Table 7). Therefore, differences in biomass are not solely the consequence of different productivities directly related to 639 

diversity in tree rooting strategies, but also the consequence of simulated biome type which can be regarded as an indirect 640 

effect of diversity in tree rooting strategies. In LPJmL4.0-VR the evergreen growing strategy dominates the entire Amazon 641 

region, which is more productive and accumulates more biomass than the deciduous growing strategy. The latter dominates 642 

EQ E and SAMz in LPJmL4.0-VR-base and is equally abundant throughout the Amazon region in LPJmL4.0.  643 

Concentrating on LPJmL4.0-VR only, the model matches substantially better with the gridded biomass product of Saatchi et 644 

al. (2011b), since this product shows generally higher biomass values across the Amazon region which are more similar to 645 

LPJmL4.0-VR (Table 8). Therefore, the differences in NME are mainly caused by mean biomass values of rainforests across 646 

the whole study area rather than pattern divergence. Thus, we argue lowering overall biomass values in LPJmL4.0-VR 647 

would improve its match with (Avitabile et al., 2016b) which is a matter of adjusting overall maximum tree mortality rates 648 

(see Sect. 2.2.5). Differences to site-specific measurements (Fig. 14) are rather caused by additional factors, such as a) the 649 
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coarse model resolution leading to a different climate and soil information input than found at specific sites and b) 650 

insufficient representation of important processes forcing carbon dynamics in tropical forests such as tree mortality (Pillet et 651 

al., 2018), gap dynamics (Espírito-Santo et al., 2014), and nutrient limitation (Quesada et al., 2012). 652 

4.3 Diverse tree rooting strategies improve simulated evapotranspiration and productivity 653 

In LPJmL4.0-VR variable tree rooting strategies decrease the intra-annual variability of ET and maintain high rates of NEE 654 

and ET during the dry season in accordance with the intra-annual trends suggested by evaluation data (Fig. 9-11). More than 655 

that simulated rates of ET and productivity peak during the dry season in EQ E which is explained by increased solar 656 

radiation while trees having access to deep water in the model and in reality (Costa et al., 2010; Wu et al., 2016). While 657 

recent parameter optimization against FAPAR data (Forkel et al., 2015) tried to improve the simulated productivity by 658 

adjusting phenology pattern in LPJmL4.0, the seasonal offset in simulated ET for Fluxnet sites in the Amazon region 659 

remained a challenge (Schaphoff et al., 2018). In this study we can show for the first time on the regional scale how PFTs 660 

with variable tree rooting strategies adjust to local environmental conditions and in return improve simulated rates of ET and 661 

NEE (Fig. 9-11). Being able to mechanistically reproduce and explain this broad-scale stabilization of water fluxes into the 662 

atmosphere has wide implications for DGVM modelling frameworks and simulation of ET as moisture input to the 663 

atmosphere in Earth System Models (ESMs). Our approach can help to better quantify the role of forests for local-to-664 

continental scale moisture recycling and to project the fate of forests under future climate and land-use change. The approach 665 

presented here is easily applicable for a wide range of DGVMs and ESMs which simulate fine root distribution in a similar 666 

way as the LPJmL model family (based on Jackson et al., 1996). A first and easy to implement step for other models could 667 

be to prescribe the relative fine root distribution in a spatial explicit way in accordance to the mean rooting depth (𝐷𝐷95�����) 668 

presented in this study. 669 

5 Conclusions 670 

In this study we show for the first time that diverse tree rooting strategies across South-America can indeed explain the 671 

spatial distribution of biome types, biomass, as well as the spatial and temporal pattern of the ecosystem fluxes of ET and 672 

NEE even when the competition of tree rooting strategies, carbon investment into gradually growing deep roots, and local 673 

soil depth are considered. Because LPJmL4.0-VR allows for a whole spectrum of tree rooting strategies, where each strategy 674 

has the same theoretical chance to establish in every location, the simulated local distributions of tree rooting strategies are 675 

an emergent simulation output which results from local environmental filtering and competition. This enables to estimate 676 

mean rooting depth and below-ground biomass on a continental scale as presented here, as well as future estimates of 677 

functional diversity of tree rooting strategies. Moreover, we conclude that tree root adaptation is a key explanatory variable 678 

to explain forest cover and to estimate the climatic range of potential forest cover bi-stability in connection with climate-fire-679 

vegetation feedbacks in tropical regions. Generally, we are convinced that our approach is of high importance to all 680 

modelling frameworks of DGVMs and Earth System Models (ESMs) aiming at quantifying continental scale moisture 681 

recycling, forest tipping points and resilience. So far the continental scale importance of local scale tree root adaptations 682 

shows that this potential treasure of below-ground functional diversity must be protected not only in the scope of future 683 

global change. 684 

6 Code availability 685 

In case of manuscript acceptance all model code and post-processing scripts will be made available. The first author of this 686 

manuscript is also willing to share all information with all reviewers upon request. 687 
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 1026 

 1027 
Figure 1: Fine root distributions in LPJmL4.0 and fine root distribution at maximum rooting depth in LPJmL4.0-VR as the 1028 
relative amount of fine roots over soil depth. In the legend “β old1-2” correspond to the β-values of the 2 tropical tree PFTs 1029 
(deciduous and evergreen) employed in LPJmL4.0. The corresponding graphs lie on top of each other due to marginal differences 1030 
in their β-values. “β1-10” correspond to the 10 β-values used in LPJmL4.0-VR (table 2) used to create the 10 sub-PFTs of the 1031 
tropical evergreen and deciduous tree PFTs (see 2.2.2). Please note, the first 3 soil layer (as described in 2.2.1) in this visualization 1032 
are treated as 1 layer of 1 m thickness for reasons of visual clarity. 1033 

 1034 
Figure 2: Visualization of belowground carbon allocation to different carbon pools of a tree PFT in LPJmL4.0-VR with a height of 1035 
40m and a D95_max of 14m (sub-PFT no. 8 in Table 2) growing in a grid cell with a soil depth of 20m (left panel) and a soil depth of 1036 
7m (right panel). As for stem sapwood, also root sapwood needs to satisfy the pipe model. In the first soil layer root sapwood cross-1037 
sectional area is equal to stem sapwood cross-sectional area, as all water taken up by fine roots needs to pass this layer. In each 1038 
following soil layer the root sapwood cross-sectional area is reduced by the sum of the relative amount of fine roots of all soil layers 1039 
above, thus adjusting the amount of sapwood needed to satisfy the pipe model. Please also see Supplementary Video 1 for a 1040 
visualization of root growth and development of belowground carbon pools over time under http://www.pik-1041 
potsdam.de/~borissa/LPJmL4_VR/Supplementary_Video_1.pptx. 1042 

 1043 
Figure 3: Relation between tree height and rooting depth in LPJmL4.0-VR. Black line: Implemented general growth function of 1044 
rooting depth (Eq. 5). Lines with colour scale from yellow to blue: Growth functions of rooting depth for each of the 10 sub-PFTs 1045 
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(see 2.2.2). Here temporal rooting depth is expressed as D95 and eventually reaches D95_max (Eq. 3). Red solid line: Mean effective 1046 
functional rooting depth over tree height (EFRD) adapted from Brum et al. (2019) using Eq. 6. Red dashed line: Respective 75%ile 1047 
EFRD over tree height adapted from Brum et al. (2019). Please also see Supplementary Video 1 for a visualization of root growth 1048 
and development of belowground carbon pools over time under http://www.pik-1049 
potsdam.de/~borissa/LPJmL4_VR/Supplementary_Video_1.pptx.  1050 

 1051 
Figure 4: Soil/sediment thickness from (Pelletier et al., 2016) regridded to the 0.5° x 0.5° longitude-latitude grid of LPJmL4.0-VR 1052 
and restricted to a maximum of 20 m. Colorbar in decadic logarithm. 1053 

 1054 
Figure 5: Distributions of simulated mean monthly NPP for each D95_max-class for 2001-2010 under CRU climate input at two 1055 
FluxNet sites. a) Site MAN K34 near the city of Manaus. b) Site STM K67 near the city of Santarem. For more site information see 1056 
table 3 and figure 9a). 1057 

 1058 
Figure 6: Regional NPP-weighted mean rooting depth (𝑫𝑫𝟗𝟗𝟗𝟗�����) of all sub-PFTs (evergreen and deciduous combined) for 2001-2010 1059 
and different climate inputs simulated with LPJmL4.0-VR. a) CRU climate input. b) GSWP3 climate input. c) WATCH+WFDEI 1060 
climate input. d) GLDAS climate input. The color scale maximum is set to 10 m. 1061 
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 1062 
Figure 7: Comparison of simulated 𝑫𝑫𝟗𝟗𝟗𝟗����� to product of maximum tree root water uptake depth (MDRU). a) Original (Fan et al., 1063 
2017) MDRU regridded to 0.5°x0.5° resolution of LPJmL4.0-VR. b) Same as a) but adjusted to soil depth input used in this study 1064 
(see 2.3.2), in cases where values of (Fan et al., 2017) exceeded this soil depth. The color scale maximum for a) and b) is set to 10 m. 1065 
c) Difference between a) and  𝑫𝑫𝟗𝟗𝟗𝟗����� simulated with LPJmL4.0-VR under CRU climate forcing (Fig. 6a). d) Difference between b) 1066 
and  𝑫𝑫𝟗𝟗𝟗𝟗����� simulated with LPJmL4.0-VR under CRU climate forcing (Fig. 6a). Red/blue colors denote higher/lower rooting depths 1067 
in LPJmL4.0-VR. 1068 

 1069 
Figure 8: Mean rooting depth depicted as mean 𝑫𝑫𝟗𝟗𝟗𝟗����� over classes of MCWD and annual precipitation sums. Class step size for 1070 
precipitation was set to 250 mm and class size for MCWD was set to 50 mm. Regions with high amounts of annual rainfall and 1071 
lower seasonality exclusively favour shallow rooted forests (low 𝑫𝑫𝟗𝟗𝟗𝟗�����). 𝑫𝑫𝟗𝟗𝟗𝟗����� increases with decreasing MCWD (increasing seasonal 1072 
drought stress) and decreasing sums of annual precipitation. Below 1200 mm of annual rainfall or -1100 mm of MCWD  𝑫𝑫𝟗𝟗𝟗𝟗����� 1073 
sharply decreases again. Note this figure does not consider soil depth. The color scale maximum is set to 10 m. 1074 
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   1075 
Figure 9: Comparisons of monthly ET between different Fluxnet sites and respective simulation output of the different LPJmL 1076 
model versions used in this study forced with CRU climate. a) Geographical location of different Fluxnet sites (see also table 3).  1077 
For statistical measures of the individual comparison see Table 4. 1078 

 1079 
Figure 10: Comparisons of monthly NEE between different Fluxnet sites and respective simulation output of the different LPJmL 1080 
model versions used in this study forced with CRU climate. a) Geographical location of different Fluxnet sites (see also table 3).  1081 
For statistical measures of the individual comparison see table 5. Note due to data scarcity only 3 Fluxnet sites are shown. Plots of 1082 
all sites are shown in Fig. S3. We kept panel labelling as in Fig. 9 to ensure easy comparability.  1083 
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 1084 
Figure 11: Comparisons of continental scale gridded ET products (2.4.2) against simulated ET within 5 regional climatological 1085 
clusters (a-e) as defined in 2.4.2). Shown is the mean annual cycle of 1981-2010 and the mean for the whole cluster area. Corridors 1086 
denote the minimum-maximum range between either the ET products or the model outputs under the different climate forcings 1087 
used in this study. f) Geographical extent of climatological clusters (adapted from Sörensson and Ruscica, 2018). Statistical 1088 
measures of the individual comparisons can be found in Table 6 (comparisons of corridor means).  1089 
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 1090 
Fig. 12: Foliage projected cover (FPC) of evergreen (a, c, e ,g) and deciduous (b, d, f, h) PFTs over the study region. a)-b) Satellite-1091 
derived vegetation composition from ESA Land cover CCI V2.0.7 (Li et al., 2018) reclassified to the PFTs of LPJmL as in (Forkel et 1092 
al., 2014). b)-c) LPJmL4.0-VR. d)-e) LPJmL4.0-VR-base. f)-g) LPJmL4.0. All LPJmL model versions were forced with CRU 1093 
climate input. The shown FPC for all models refers to 2001-2010. For statistical measures of individual comparisons between 1094 
model versions (c-h) and satellite derived vegetation composition (a-b) see Table 7.  1095 
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 1096 
Fig. 13: Comparison of simulated AGB and satellite derived AGB validation products regridded to the spatial resolution of 1097 
LPJmL models. a) Biomass validation product from Avitabile et al. (2016b). b) AGB validation product from Saatchi et al., (2011). 1098 
c)-e) Mean AGB simulated for the time span 2001-2010 with c) LPJmL4.0-VR. d) LPJmL4.0-VR-base and e) LPJmL4.0. For 1099 
statistical measures of individual comparisons between model versions (c-e) and satellite derived AGB evaluation products (a-b) 1100 
see Table 8. 1101 

 1102 
Fig. 14: Comparison of simulated large-scale average AGB (𝒀𝒀) from LPJmL4.0, LPJmL4.0-VR-base and LPJmL4.0-VR for 1103 
different climate datasets to forest inventory data (𝑿𝑿) from Brienen et al. (2015) using the method from Rammig et al. (2019). 1104 
Three metrics are shown: the ratio of means (𝒚𝒚 𝒙𝒙⁄ ) as a measure for the agreement of pattern average (left), the ratio of standard 1105 
deviations of large scale AGB patterns (𝝈𝝈𝒚𝒚 𝝈𝝈𝒙𝒙, 𝑳𝑳𝑳𝑳⁄ ) as a measure for the agreement of pattern amplitude (middle), the corrected 1106 
Pearson correlation coefficient (𝒓𝒓𝑳𝑳𝑳𝑳) as a measure for the agreement of pattern shape (right). 1107 
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  1108 
Fig. 15: Mean sum (2001-2010) of belowground biomass (BGB; sum of tree coarse and fine roots) of evergreen and deciduous tree 1109 
PFTs simulated with LPJmL4.0-VR under CRU climate forcing.  1110 

Soil layer 
number 

Soil layer 
boundary (m) 

Soil layer 
thickness (m) 

1 0.2 0.2 
2 0.5 0.3 
3 1 0.5 
4 2 1 
… … … 
23 20 1 

 1111 

Table 1: Soil layer partitioning scheme used in LPJmL4.0-VR. The first meter of the soil column is split into 3 soil layers and after 1112 
1m of soil depth each following soil layer is assigned a thickness of 1 m as in LPJmL4.0. Whereas LPJmL4.0’s last soil layer 1113 
reaches 3 m, LPJmL4.0-VR’s last soil layer reaches 20 m. 1114 

sub-
PFT 
number 

β-value 
D95_max 

(m) 

1 0.9418 0.5 
2 0.9851 2 
3 0.9925 4 
4 0.995 6 
5 0.9963 8 
6 0.9971 10 
7 0.9976 12 
8 0.9981 14 
9 0.9986 16 
10 0.9993 18 

 1115 

Table 2: 𝜷𝜷-values assigned to the 10 sub-PFTs of each tropical PFT (evergreen and deciduous) in LPJmL4.0-VR and the 1116 
corresponding maximum rooting depth reached by 95% of the roots (D95_max). 1117 

Site name Short name Country LPJmL coordinate 
latitude longitude 

Ecotone Bananal 
Island/BR-Ban TOC_BAN Brazil -9.75 -50.25 

Manaus-ZF2 K34/BR-Ma2 MAN_K34 Brazil -2.75 -60.25 

Santarem-Km67-Primary 
Forest/BR-Sa1 STM_K67 Brazil -2.75 -54.75 
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Santarem-Km77-
Pasture/BR-Sa2 STM_K77 Brazil -3.25 -54.75 

Santarem-Km83-Logged 
Forest/BR-Sa3 STM_K83 Brazil -3.25 -54.75 

Rond.- Rebio Jaru Ji 
Parana-Tower B/BR-Ji3 RON_RJA Brazil -10.25 -61.75 

Guyaflux GF_GUY French Guiana 5.25 -52.75 
 1118 

Table 3: Description of Fluxnet sites used for the evaluation of simulated ET. 1119 

Statistic Model TOC_BAN MAN_K34 STM_K67 STM_K77 STM_K83 RON_RJA GF_GUY 
NME LPJmL4.0-VR 2.41 1.11 0.75 1.38 1.10 2.28 1.57 

 
LPJmL4.0-VR-base 2.92 1.22 2.29 0.98 2.74 2.73 2.38 

  LPJmL4.0 2.93 1.23 2.27 0.98 2.74 2.70 2.36 
r² LPJmL4.0-VR 0.09 0.03 0.53 0.17 0.43 0.01 0.08 

 
LPJmL4.0-VR-base 0.10 0.00 0.33 0.14 0.03 0.01 0.01 

  LPJmL4.0 0.09 0.00 0.33 0.14 0.03 0.01 0.01 
p-value LPJmL4.0-VR 0.075 0.041 < 0.001 0.002 < 0.001 0.575 0.005 

 
LPJmL4.0-VR-base 0.067 0.585 < 0.001 0.005 0.221 0.517 0.277 

 
LPJmL4.0 0.068 0.672 < 0.001 0.005 0.221 0.514 0.274 

 1120 

Table 4: Normalized mean error (NME), coefficient of determination (r²) and p-value of F-statistic piecewise calculated for 1121 
simulated ET of the different LPJmL model versions used in this study forced with CRU climate input and Fluxnet data of ET at 7 1122 
Fluxnet sites (in accordance with  Fig. 8). 1123 

Statistic Model STM_K67 STM_K83 GF_GUY 
NME LPJmL4.0-VR 0.90 0.84 1.30 

 
LPJmL4.0-VR-base 1.62 1.36 1.52 

  LPJmL4.0 1.68 1.39 1.52 
r² LPJmL4.0-VR 0.16 0.14 0.00 

 
LPJmL4.0-VR-base 0.32 0.06 0.03 

  LPJmL4.0 0.33 0.07 0.03 
p-value LPJmL4.0-VR < 0.001 0.003 0.515 

 
LPJmL4.0-VR-base < 0.001 0.055 0.046 

 
LPJmL4.0 < 0.001 0.047 0.059 

 1124 

Table 5: Normalized mean error (NME), coefficient of determination (r²) and p-value of F-statistic piecewise calculated for 1125 
simulated NEE of the different LPJmL model versions used in this study forced with CRU climate input and Fluxnet data of NEE 1126 
at 3 Fluxnet sites (in accordance with  Fig. 10). 1127 

Statistic Model NSA EQ W EQ E SAmz SAMS 
NME  LPJmL4.0-VR 0.08 0.26 0.62 0.20 0.06 

 
 LPJmL4.0-VR-base 0.37 0.42 1.95 0.58 0.13 

   LPJmL4.0 0.34 0.26 1.92 0.58 0.11 
r²  LPJmL4.0-VR 0.98 0.94 0.91 0.98 1.00 

 
 LPJmL4.0-VR-base 0.94 0.96 0.20 0.91 0.99 

   LPJmL4.0 0.93 0.96 0.21 0.90 0.99 
p-value  LPJmL4.0-VR < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

 
 LPJmL4.0-VR-base < 0.001 < 0.001 0.143 < 0.001 < 0.001 

 
 LPJmL4.0 < 0.001 < 0.001 0.135 < 0.001 < 0.001 

 1128 

Table 6: Normalized mean error (NME), coefficient of determination (r²) and p-value of F-statistic piecewise calculated for the 1129 
simulated ET of the different LPJmL model versions used in this study and continental scale gridded ET products within 5 1130 
regional climatological clusters. With respect to Fig. 11 comparisons are based on the monthly mean of corridors shown, i.e. 1) the 1131 
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monthly mean of all outputs produced by one LPJmL model version but forced with different climate inputs and 2) the monthly 1132 
mean of all continental scale gridded ET data products.  1133 

Statistic Model FPC Evergreen FPC Deciduous 
NME LPJmL4.0-VR 0.31 1.01 

 
LPJmL4.0-VR-base 0.38 1.5 

 
LPJmL4.0 0.47 1.76 

 1134 

Table 7: Normalized mean error (NME) of FPC comparison piecewise calculated between 1) the satellite-derived vegetation 1135 
composition from ESA Land cover CCI V2.0.7 (Li et al., 2018) reclassified to the PFTs of LPJmL as in Forkel et al. (2014) and 2) 1136 
all LPJmL model versions used in this study forced with CRU climate data (in accordance with Fig. 10). 1137 

Statistic Model Avitabile et al. Saatchi et al. 
NME LPJmL4.0-VR 0.78 0.12 

 
LPJmL4.0-VR-base 0.69 0.11 

 
LPJmL4.0 1.09 0.14 

 1138 

Table 8: Normalized mean error (NME) of AGB comparison piecewise calculated between 1) the satellite-derived AGB validation 1139 
products and 2) all LPJmL model versions used in this study forced with CRU climate data (in accordance with Fig. 12). 1140 
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