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Abstract. A mechanistic understanding of how tropical tree mortality responds to climate variation is urgently needed to predict 17 
how tropical forest carbon pools will respond to anthropogenic global change, which is altering the frequency and intensity of 18 
storms, droughts, and other climate extremes in tropical forests. We used five years of approximately monthly drone-acquired 19 
RGB imagery for 50 ha of mature tropical forest on Barro Colorado Island, Panama, to quantify spatial structure, temporal 20 
variation, and climate correlates of canopy disturbances, i.e., sudden and major drops in canopy height due to treefalls, branchfalls, 21 
or collapse of standing dead trees. Canopy disturbance rates varied strongly over time and were higher in the wet season, even 22 
though wind speeds were lower in the wet season.  The strongest correlate of monthly variation in canopy disturbance rates was 23 
the frequency of extreme rainfall events. The size distribution of canopy disturbances was best fit by a Weibull function, and was 24 
close to a power function for sizes above 25 m2. Treefalls accounted for 74 % of the total area and 52 % of the total number of 25 
canopy disturbances in treefalls and branchfalls combined. We hypothesize that extreme high rainfall is a good predictor because 26 
it is an indicator of storms having high wind speeds, as well as saturated soils that increase uprooting risk. These results demonstrate 27 
the utility of repeat drone-acquired data for quantifying forest canopy disturbance rates at fine temporal and spatial resolutions 28 
over large areas, thereby enabling robust tests of how temporal variation in disturbance relates to climate drivers. Further insights 29 
could be gained by integrating these canopy observations with high-frequency measurements of windspeed and soil moisture in 30 
mechanistic models to better evaluate proximate drivers, and with focal tree observations to quantify the links to tree mortality and 31 
woody turnover.  32 

 33 

1 Introduction 34 

Moist tropical forests account for 40% of the global biomass carbon stocks (Xu et al., 2021), and uncertainty regarding 35 
the future of these stocks is a major contributor to uncertainty in the future global carbon cycle (Cavaleri et al., 2015). Tropical 36 
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 2 

forest carbon stocks depend critically on tree mortality rates, and recent studies suggest tropical tree mortality rates may be 84 
increasing due to anthropogenic global change (Brienen et al., 2015; McDowell et al., 2018). Tropical tree mortality can be caused 85 
by a diversity of drivers including windthrow (Fontes et al., 2018), droughts (McDowell et al., 2018; Silva et al., 2018), fires (Silva 86 
et al., 2018), lightning strikes (Yanoviak et al., 2017), and biotic agents (Fontes et al., 2018). The frequency of extreme rainfall 87 
and drought events is expected to increase in tropical regions, potentially increasing associated tree mortality (IPCC, 2014; Deb et 88 
al., 2018; Aubry-Kientz et al., 2019). An improved understanding of the processes of forest disturbance is critical to constrain 89 
estimates of current and future carbon cycling in tropical forests under climate change (Leitold et al., 2018; Johnson et al., 2016; 90 
Muller-Landau et al., 2021). 91 

 Despite the importance of tree mortality to forest structure and carbon turnover rates, the mechanisms underlying tree 92 
mortality remain unclear (McDowell et al., 2018). A key problem is that remeasurement intervals of permanent plots average 5 or 93 
more years, making it difficult to link mortality variation with particular climatic events (Phillips et al., 2010; Davies et al., 2021; 94 
Arellano et al., 2019).  The high rates of decomposition in tropical forests further obscure evidence of underlying mechanisms and 95 
risk factors (Arellano et al., 2019). The few studies that have quantified temporal variation of tree mortality at monthly and bi-96 
monthly scales using ground-based data have all found higher tree mortality in times of higher rainfall (Brokaw, 1982; Fontes et 97 
al., 2018; Aleixo et al., 2019). This is consistent with the understanding that many trees die in treefalls, which are proximately 98 
caused by trunk breakage or uprooting, and are associated with storms (Marra et al., 2014; Araujo et al., 2017; Fontes et al., 2018; 99 
Negrón-Juárez et al., 2017, 2018; Esquivel-Muelbert et al., 2020). The collection of additional high temporal resolution mortality 100 
data over large areas, together with high temporal resolution climatological data, can aid in linking mortality to particular climatic 101 
events and thereby elucidating mortality mechanisms (Arellano et al., 2019; McMahon et al., 2019). 102 

Drone-acquired imagery and digital aerial photogrammetry software now provide excellent tools for monitoring of forest 103 
canopies (Araujo et al., 2020) and repeat drone flights can quantify canopy dynamics over large areas at high temporal resolution. 104 
Photogrammetric analysis of simple RGB imagery enables reconstruction of the appearance and three-dimensional structure of the 105 
top of the canopy at high spatial resolution (Dandois and Ellis, 2013; Araujo et al., 2020; Zahawi et al., 2015). Comparison of 106 
photogrammetry products from successive drone flights allows easy detection and quantification of canopy disturbances due to 107 
treefalls and branchfalls of canopy trees. Canopy trees constitute a high proportion of stems, aboveground carbon stocks and woody 108 
productivity (Araujo et al., 2020), and thus information on their mortality rates is disproportionately useful to understanding forest 109 
dynamics and carbon cycling.  Treefalls do not necessarily result in tree mortality (trees may survive and resprout), but almost all 110 
treefalls and branchfalls result in a large flux of carbon (wood) from biomass to necromass within a short time period after the 111 
event, which translates to reduced woody residence time. Periods of higher canopy disturbance rates thus represent periods of 112 
higher biomass turnover, and likely correlate with higher tree mortality rates.  Further, even when trees do not die from a canopy 113 
disturbance event, suffering crown loss or damage increases the risk of subsequent mortality (Arellano et al., 2019).   114 

Monitoring canopy disturbances with drones also provides the opportunity to precisely quantify the size distributions of 115 
these canopy disturbances, and to distinguish branchfalls from treefalls. Here we define a canopy disturbance as a substantial 116 
decrease in canopy height in a contiguous patch of canopy occurring over one measurement interval, such as typically results from 117 
a treefall or branchfall.  Marvin and Asner (2016) and Dalagnol et al. (2021) referred to these as “dynamic canopy gaps.” By 118 
definition, canopy disturbances reduce canopy height and thereby change light regimes for understory and neighboring trees, and 119 
the magnitude of the change depends on the disturbance size in area and depth (Hubbell et al., 1999). In general, larger canopy 120 
disturbances cause larger canopy gaps as traditionally measured on the ground. Previous studies have analyzed the size distributions 121 
of static gaps – areas with canopy height below a threshold – for insights into forest structure, habitat niches, and disturbance 122 
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 3 

regimes (e.g., Manrubia and Solé, 1997; Lobo and Dalling, 2013, 2014; Fisher et al., 2008). Tree species respond differently to 134 
canopy gaps of different sizes, with small gaps favoring a different set of species than large gaps (Brokaw, 1985; Denslow, 1980, 135 
1987; Dalling et al., 2004). Branchfalls, like treefalls, are important in generating canopy gaps and contributing to woody turnover, 136 
but also often go unmeasured (Marvin and Asner, 2016; Leitold et al., 2018). Quantifying tree mortality and other damage 137 
contributes to a better understanding on change of forest structure, necromass estimates and nutrient cycling. 138 

Here, we use five years of ~monthly drone-acquired RGB imagery for a 50 ha area of mature tropical forest on Barro 139 
Colorado Island, Panama to investigate canopy dynamics at high temporal resolution. We aim to (1) quantify temporal variation 140 
in canopy disturbance rates and its relationship to climate variation; (2) characterize the size structure of canopy disturbances; and 141 
(3) evaluate the role of branchfalls in canopy dynamics.  We expect that disturbance rates will be higher in the wet season than the 142 
dry season, we hypothesize disturbance rates will increase with the frequency of extreme rainfall and wind events, and we compare 143 
the correlations of various rainfall and wind statistics with temporal variation in disturbance rates. To characterize the size structure 144 
of canopy disturbances, we quantify the size (area) distribution and evaluate whether it is best fit by power, Weibull, or exponential 145 
functions. Finally, we quantify the proportion of canopy disturbance due to branchfalls (rather than treefalls), and test whether 146 
branchfalls and treefalls exhibit similar patterns of temporal variation.  Our results provide new insights into the patterns and 147 
drivers of canopy disturbance and tree mortality in this tropical forest, and illustrate the utility of drones for quantifying canopy 148 
dynamics over large areas at high temporal resolution.   149 

 150 

2. Methods 151 

 152 

2.1 Study site 153 

Barro Colorado Island (BCI; 9.15° N, 79.83° W) is a 15 km2 island in Central Panama, that was isolated from surrounding 154 
mainland when Lake Gatun was created as part of the construction of the Panama Canal. BCI supports tropical moist forest in the 155 
Holdridge Life Zone System (Holdridge, 1947). Annual precipitation averages approximately 2600 mm, with a pronounced dry 156 
season between January and April (a mean of about 3.5 months with < 100 mm mo-1). Mean of maximum 1-day wind speeds are 157 
8.1 m s-1 and 5.8 m s-1 during dry and wet seasons, respectively 158 
(https://smithsonian.figshare.com/articles/dataset/Yearly_Reports_Barro_Colorado_Island/11799111/2). Mean annual 159 
temperature is 26 °C and varies little throughout the year (Windsor, 1990). The 50 ha forest dynamics plot (1000 m x 500 m) was 160 
established on BCI in 1981 and is located in an old-growth forest (Leigh, 1999), with the exception of a small area of 1.92 ha of 161 
old secondary forest (~100 years old) in the north central part of the plot (Harms et al., 2001).  162 

 163 

2.2 Meteorological data 164 

 Meteorological data were collected in the lab clearing and Lutz tower, approximately 1.7 km NE of the center of the 50 165 
ha plot (https://smithsonian.figshare.com/articles/dataset/Yearly_Reports_Barro_Colorado_Island/11799111/2). Wind speed was 166 
measured using an anemometer (RM Young Wind Monitor Model 05103) installed at the top of Lutz tower, at 48 m height above 167 
ground and approximately 6 m above the top of the surrounding canopy. Wind speed measurements were made every 10 seconds, 168 
and the average, minimum and maximum values were recorded at the end of every 15-minute interval. We used the maximum 169 
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wind speeds for our analyses. Rainfall was measured in the lab clearing using a tipping bucket (Hydrological Services Model TB3), 188 
and recorded every 5 minutes; we aggregated these data to 15-minute periods to match the temporal resolution of the wind speed 189 
data. Rainfall and wind speed data are available in https://biogeodb.stri.si.edu/physical_monitoring/research/barrocolorado. The 190 
meteorological record had no gaps during our study period (Fig. S1). 191 

 192 

2.3 Canopy disturbance identification 193 

  We used approximately monthly orthomosaics and canopy surface models produced from drone-acquired imagery to 194 
analyze temporal variation in canopy disturbance rates in the 50 ha forest dynamics plot between 2 October 2014 and 28 November 195 
2019. RGB imagery was collected using a variety of drones and cameras over the years, with a horizontal spatial resolution of 3-196 
7 cm. Imagery for each sampling date was processed using the photogrammetry software Agisoft Metashape to obtain orthomosaics 197 
and surface elevation models, which were then aligned vertically and horizontally.  198 

We defined a canopy disturbance as a substantial decrease in canopy height in a contiguous patch of canopy occurring 199 
over one measurement interval, such as typically results from a treefall or branchfall. We identified canopy disturbances through 200 
a combination of analysis of the canopy surface model changes and visual interpretation of the orthomosaics (Fig. 1). We first 201 
differenced surface elevation models for successive dates to obtain a raster of the canopy height changes for the associated interval 202 
(Fig. 1, Text S1). We then pre-delineated major canopy disturbances by filtering for areas in which canopy height decreased more 203 
than 10 m in contiguous areas of at least 25 m2, and that had an area-to-perimeter ratio greater than 0.6. We note that 25 m2 is the 204 
minimum gap area used in previous studies of this site by Brokaw (1982) and Hubbell et al. (1999). The area-to-perimeter condition 205 
removes artifacts associated with slight shifts in the measured positions of individual trees from one image set to another, whether 206 
due to wind or alignment errors (note that this criterion involves a combination of shape and size). Finally, we systematically 207 
examined 1-ha square subplots for each pair of successive dates and edited the pre-delineated polygons, removed false positives, 208 
and added visible new canopy disturbances that were not previously delineated (whether because they were too small in area or in 209 
canopy height drop). We also classified disturbances as being due to treefalls (a whole previously live tree fell, creating a clearly 210 
visible gap on the forest floor, or the whole live crown disappeared), branchfalls (a portion of a live crown broke), or standing dead 211 
trees disintegrating based on visual inspection of the orthomosaics (Fig. S2).  212 
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 224 

Figure 1. Canopy disturbance visualized on canopy surface models and orthomosaics calculated from photogrammetric analyses 225 
of drone imagery. (a,b) Elevation models for a portion of the study area on two successive dates, 28 August 2019 (a) and 23 226 
September 2019 (b). (c) Difference in elevation between the two dates, with black area indicating large decrease in canopy 227 
elevation. (d,e) RGB orthomosaics of the same dates. 228 

We calculated the total number and area of canopy disturbances within the BCI 50 ha plot during the 5 years of the study. 229 
In calculating the number and total area of disturbances, we included all disturbed areas that were inside the plot boundaries (if a 230 
disturbance was on the boundary, only the area inside the plot was included). Our analyses of temporal variation employed the 231 
same definitions for numbers and areas of canopy disturbances within the 50 ha plot. For analyses of the size structure of 232 
disturbances, we included the complete areas of disturbances whose centroids were located within the plot (i.e., we excluded 233 
disturbances centered outside the plot, and included area outside the plot for disturbances centered inside the plot to avoid artifacts 234 
related to reducing disturbance size by trimming at the plot boundaries).   235 

 236 

2.4 Temporal variation in canopy disturbance rates and its relation to climate 237 

We calculated canopy disturbances rates for each measurement interval as the % of area disturbed per month (i.e., per 30-238 
day period).  Specifically, we summed the total area disturbed during the measurement interval, and divided by the total area of 239 
the plot and the length of the time interval. We excluded one excessively long interval (237 days – image acquisition gap) from all 240 
analyses of temporal variation; the remaining intervals ranged from 14 to 91 days, with a median of 31.5 days (Table S1). We also 241 
calculated an incidence canopy disturbance rate as the number of canopy disturbances per hectare per month.  We calculated the 242 
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mean, minimum, maximum, and the 25th, 50th, and 75th percentiles of interval length, number and area of canopy disturbances, and 244 
the respective monthly rates. 245 

We compared canopy disturbance rates between wet and dry seasons and between early wet and late wet seasons. We 246 
defined the dry season as January 1 to April 30 (rainfall < 100 mm mo-1, Fig. S3), the early wet season as 1 May to 31 August, and 247 
the late wet season as 1 September to 31 December. Intervals that straddled more than one season were classified to the season in 248 
which they had more days. We tested for differences in canopy disturbance rates between seasons using two-tailed Student’s t-test 249 
on the log-transformed canopy disturbance rates for each measurement interval, after first confirming that these rates met 250 
assumptions for normality (Shapiro-Wilk test) and homogeneity of variance (Levene test). 251 

 We evaluated the relationship of temporal variation in canopy disturbance rates with temporal variation in the frequencies 252 
of climate extremes using parametric correlations. We calculated the Pearson correlations of the log-transformed canopy 253 
disturbance rates (area per time) with the log-transformed frequency of extreme rainfall and windspeed events (number per time) 254 
(i.e. log(y)~log(x+1)), for different definitions of extreme events. For example, one definition of an extreme event would be a 15-255 
minute period with rainfall above the 99th percentile.  We evaluated three different temporal grains for defining extreme events 256 
(15-minute, 1-hour, and 1-day intervals), for two different meteorological variables (total rainfall and maximum windspeed), and 257 
100 different thresholds, corresponding to every 0.1 percentile increment between the 90th and 99.9th percentile of the 258 
corresponding distributions. We compared the predictive ability of these 600 different definitions of extreme events in terms of 259 
their Pearson correlations.   260 

 261 

2.5 Size structure of canopy disturbances 262 

 We characterized the size structure of canopy disturbances whose geometric center was inside the plot, excluding 263 
disturbances from the one excessively long interval of 237 days. Longer time intervals increase the likelihood that what is measured 264 
as a single disturbance event in fact constitutes multiple adjoining or overlapping events. We calculated the mean, minimum, 265 
maximum, and median of area of individual canopy disturbances.  We calculated the cumulative distribution functions with respect 266 
to disturbance size (area) of number and total area of canopy disturbances, to quantify the proportions of canopy disturbances and 267 
of total area disturbed in disturbances below any given size.  268 

We took advantage of the three-dimensional structure of our photogrammetry data to quantify canopy disturbances in 269 
terms of their vertical height drop as well as their horizontal area.  For each canopy disturbance, we calculated the average height 270 
drop from the differences in the canopy surface models. We excluded 61 canopy disturbances in which mean heights increased 271 
because they reflect errors in the canopy height models. We fit a generalized additive model (GAM) for average height drop as a 272 
function of the log-transformed area to better visualize the trend in how these were related.  273 

We quantified the size distributions of canopy disturbances by fitting three alternative probability distributions: 274 
exponential, power (or Pareto), and Weibull Eqs. (1-3).  275 

 !"#$ % = 1
( )*

+,# 
(1) 
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 316 

where ) and 1 are fitted parameters, % is canopy disturbance area in m2, * is the natural exponential basis, and ( are normalization 317 
constants such that the truncated distribution integrates to 1. Recognizing that our methods are likely to miss smaller disturbances, 318 
we fit these distributions to truncated datasets, excluding disturbances below 2, 5, 10 or 25 m2. Note that 25 m2 is the minimum 319 
area for defining a canopy disturbance in our automated pre-delineation algorithm, and we are confident we captured all 320 
disturbances above this area. We are progressively less confident of our ability to capture smaller disturbances.  We also truncated 321 
the fitted distributions above at the maximum possible disturbance area we could have observed using our methods (50 ha, or 322 
500,000 m2). We fit each type of distribution (exponential, power, Weibull) to each dataset (different minimum disturbance area 323 
and corresponding truncation) using maximum likelihood.  The maximum likelihood estimates of the parameters were those that 324 
maximized the likelihood function (Eq. (4)):  325 

 5 = 678 ! %
/

 (4) 

We selected the model that minimized Akaike’s Information Criterion (AIC) (Burnham and Anderson, 2002). We also evaluated 326 
goodness of fit using the Kolmogorov-Smirnov statistic, the maximum difference in the cumulative probability distributions 327 
between the observed data and the fitted distribution (Carvalho, 2015). 328 

2.6 Branchfalls vs. treefalls 329 

We classified each canopy disturbance as being a branchfall, treefall, or standing dead tree, except for those disturbances 330 
occurring in the exceptionally long time interval. In 35 cases we could not distinguish the type of disturbance, and these cases were 331 
omitted from analyses that required disturbance classification. We evaluated the relative contributions of branchfalls vs. treefalls, 332 
and we did not include standing dead trees in the analysis because our methods possibly missed standing dead trees. We separately 333 
calculated treefall and branchfall disturbance rates for each interval, and relative contributions to their summed number and area. 334 
We calculated the Pearson correlations of branchfall disturbance rates with treefall disturbance rates, for both area- and number-335 
based rates. 336 

 337 

3. Results 338 

We identified 1048 canopy disturbances with a combined area of 56,134.37 m2 (5.61 ha) that affected the area within the 339 
BCI 50 ha plot between 2 October 2014 and 28 November 2019 (Fig. 2). During the 5 years of the study, 11.2 % of the area of the 340 
BCI 50-ha plot was affected by canopy disturbances (Fig. 2), and 0.6 % was disturbed more than once (Fig. S4).   341 
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 375 

Figure 2. Map of canopy disturbances on the 50 ha plot (black rectangle, 1000 x 500 m) on Barro Colorado Island, Panama, from 376 
2 October 2014 to 28 November 2019. 377 

 378 

3.1 Temporal variation in canopy disturbance rates 379 

 Temporal variation analyses included 898 disturbances or partial disturbances encompassing 49,742.1 m2 of area inside 380 
the 50 ha plot in 46 time intervals (excluding the single long interval). There was strong temporal variation in canopy disturbance 381 
rates, with similar temporal variation in the total area disturbed (Fig. 3) and in the number of disturbances (Fig. S5). The mean rate 382 
of canopy disturbance creation was 905.1 m2 mo-1 (range of 75 m2 mo-1 to 8040.9 m2 mo-1) and the median 499 m2 mo-1 (other 383 
statistics in Table S1). 384 

The highest disturbance rates occurred during May-July 2016, May-August 2018, and August-September 2019 (Fig. S6). 385 
The single highest disturbance rate was observed between 1 June and 13 July 2016, when 11,257 m2 of disturbances were created 386 
in just 42 days (a rate of 268 m2 day-1). A full 2.3 % of the total area of the plot was converted to new canopy disturbances during 387 
this time interval.  388 
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 406 

Figure 3.  Temporal variation in canopy disturbance rates in the 50 ha plot on Barro Colorado Island, Panama, across measurement 407 
intervals. Gray shading indicates the wet seasons (May to December) of each year and ticks on the x axis indicate the first day of 408 
each year. Rates are shown in units of percent of area per month (sum of total area disturbed during the measurement interval, 409 
divided by the total area of the plot and the length of the time interval times 30-days). Note that the total area of each rectangle is 410 
proportional to the total area of canopy disturbed during that measurement interval. 411 

Rates of canopy disturbances were higher during the wet season (p = 0.036; Fig. 4a).  There was no significant difference 412 
in rates between the early and late wet season (p = 0.226, Fig. 4b). Very high rates of disturbance (> 0.3 % per month) were 413 
observed only in the wet season. 414 
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 418 

Figure 4. Comparisons of canopy disturbances rates between wet and dry seasons (a), between early and late wet seasons (b). 419 
Violin plots depict the distributions of disturbance rates (% area disturbed per month) over time intervals, with the number of time 420 
intervals listed above each violin plot. Black dots and bars show mean and 95% confidence intervals, respectively. P-values are 421 
based on two-tailed Student’s t tests for differences in log-transformed canopy disturbance rates between seasons. 422 

The best correlate of temporal variation in canopy disturbance rates was the frequency of 15-min rainfall events above 423 
the 98.2th percentile, which explained 22 % of the variation (Fig. 5a). This relationship was mainly driven by events occurred 424 
during wet seasons (Fig. 5a).  This threshold outperformed all other tested rainfall thresholds (all percentiles from 90.0 to 99.9, by 425 
0.1 % of the different frequency time scales – Fig. 5b). The 98.2th percentile corresponds to a rainfall rate of 24.3 mm hour-1 (Fig. 426 
5c). There were a total of 141 15-min rainfall events exceeding this threshold, which occurred on 98 different days (Table S2).  The 427 
measurement interval with the highest disturbance rate (June 1 to July 13 2016) included eleven such high 15-min rainfall events 428 
on six days (Table S2). The frequency of high maximum wind speed events was not significantly related with canopy disturbance 429 
rates. Indeed, Pearson correlations were negative for most wind speed variables (Fig. S7). 430 

 431 

Formatted: Font:10 pt, Font color: Black
Deleted: 461 

Formatted: Font:Not Italic
Deleted: 462 ... [12]
Formatted: Indent: First line:  0.5"
Deleted: predictor 464 
Deleted: hour …in rainfall events above the 989…24…h 493 
percentile, here 35.7 mm hour-1… which explained 45 …2 % 494 
of the variation (Fig. 5a). …This relationship was mainly 495 
driven by events occurred during wet seasons (Fig. 5a).  This 496 ... [13]
Formatted: Highlight

Deleted: . Indeed, …earson correlations were negative for 488 
almost all489 ... [14]
Deleted: ly490 
Deleted:  …Fig. SS…6…..491 ... [15]
Formatted: Font:10 pt, Font color: Black

Deleted: 492 



 11 

Figure 5. Relation of temporal variation in canopy disturbance rates to the frequency of extreme rainfall events. (a) The relationship 497 
for the single best predictor of canopy disturbance rate: the frequency of 15-min periods with rainfall exceeding the 98.2th 498 
percentile; each point represents one measurement interval. (b)Variation in Pearson correlation between canopy disturbance rate 499 
and frequency of extreme rainfall events depending on the temporal grain (colors) and percentile threshold (x axis) for defining 500 
extreme rainfall events, open red circle represents the best correlation. (c) The relationship of percentile threshold (x axis) and 501 
rainfall rate (y axis) for different temporal scales. Dashed red line indicates the rainfall rate in mm.hour-1 of the 98.2th percentile. 502 

 503 

3.2 Size structure of canopy disturbances 504 

 Size distribution analyses included  870 canopy disturbances (with 49,495.5 m2 total area) that had their centers inside the 505 
plot and were not part of the excluded long interval. The area of an individual canopy disturbance ranged from 2.2 m2 to 486.7 m2, 506 
with a mean of 56.9 m2. The median disturbance area was 36.1 m2, whereas 50 % of the total area was in disturbances greater than 507 
87.1 m2 (Fig. 6a).  508 

The size distribution of observed canopy disturbances was close to a power function for areas above 25 m2, and was 509 
relatively flat over the range of 5 to 25 m2 (Fig. 6b). The fitted exponent of the power function was -2.16 for canopy disturbances 510 
above 25 m2, but the Weibull distribution provided a better fit than the power function (Table 1). When distributions were fit to 511 
data including smaller size classes (> 2 m2, > 5 m2 or > 10 m2), the distribution is further from a power function; the Weibull 512 
remains the best fit, the exponential becomes the second-best fit, and the power function the worst fit of the three (Fig. S8, Fig. S9, 513 
Table 1). Canopy disturbances with larger areas tended to have larger mean decreases in canopy height (Fig. 6c, Fig. 6d). 514 

 515 
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Figure 6. Size structure of canopy disturbances. (a) Cumulative number and area of canopy disturbances in relation to their area. 586 
(b) Size distribution of canopy disturbances, together with Weibull and power function fits for canopy disturbances larger than 25 587 
m2 (this threshold was chosen because we are confident we identified all canopy disturbances above this area, but we may have 588 
missed some smaller ones). (c) Relationship of mean vertical height drop to horizontal area among canopy disturbances. (d) 589 
Distribution of canopy disturbances across area and height drop classes. The vertical dashed gray line in b indicates the 25 m2 590 
threshold.  591 

 592 

Table 1. Parameter values, Kolmogorov-Smirnov statistic, log-likelihood, and delta AIC values for maximum likelihood fits of 593 
exponential, power and Weibull probability density functions to size distributions for canopy disturbances larger than 2 m2, 5 m2, 594 
10 m2 and 25 m2. Delta AIC is the difference in AIC from the best model. The best-fit models for each dataset, and those within 2 595 
delta AIC of the best model, are highlighted in bold. 596 

Minimum 
size (m2) Distribution λ (95% CI) 1 (95% CI) K-S Log 

likelihood ΔAIC 

2 Exponential 0.0182 (0.0166 - 0.0199)  0.068 -4354.66 0.00 

2 Power 1.313 (1.293 - 1.329)  0.339 -4950.99 1192.67 
2 Weibull 1.027 (0.938 - 1.197) 55.8 (49.8 - 63.5) 0.071 -4354.24 1.16 

5 Exponential 0.0191 (0.0173 - 0.0211)  0.069 -4286.15 4.27 
5 Power 1.481 (1.447 - 1.507)  0.270 -4628.98 689.94 
5 Weibull 0.917 (0.809 - 1.106) 48.6 (41.3 - 59.3) 0.055 -4283.01 0.00 

10 Exponential 0.0196 (0.0181 - 0.0219)  0.076 -3956.39 18.05 
10 Power 1.679 (1.644 - 1.711)  0.220 -4131.05 367.38 
10 Weibull 0.821 (0.732 - 0.978) 41.0 (33.8 - 50.4) 0.053 -3946.36 0.00 

25 Exponential 0.0197 (0.0180 - 0.0229)  0.103 -2954.95 56.59 
25 Power 2.162 (2.112 - 2.262)  0.080 -2956.97 60.65 
25 Weibull 0.529 (0.437 - 0.694) 12.1 (5.5 - 24.8) 0.020 -2925.65 0.00 

 597 

 598 

3.3 Treefalls and branchfalls 599 

 Analyses of the relative contributions of branchfalls, treefalls and standing dead trees included 863 canopy disturbances 600 
or partial disturbances with 48,424.7 m2 total area inside the 50 ha plot that could be visually classified into one of these categories 601 
and that were not part of the excluded long interval.  Treefalls accounted for 66.3% of the total observed disturbance area and 602 
47.9% of the total number of observed disturbances; branchfalls accounted for 23.5% of area and 43.5% of number, and standing 603 
dead trees accounted for 10.2% of area and 8.6% of number. Treefall and branchfall disturbance rates varied largely in parallel, 604 
although the ratios of their rates varied among measurement periods (Fig. 7, Fig. S10). The ratio of area in branchfalls to area in 605 
treefalls ranged from 0.024 to 1.4 among measurement periods, and the ratio of number of branchfalls to number of treefalls ranged 606 
from 0.083 to 2.3.   607 

Deleted: (b) Relationship of mean vertical height drop to 608 
horizontal area among canopy disturbances. 609 
Deleted: c610 

Formatted: Font:10 pt

Formatted: Font:10 pt

Deleted: is611 

Deleted: Distribution612 ... [23]
Deleted: A total of 613 
Deleted: 411614 
Deleted: 23615 
Deleted: 289616 
Deleted: 9617 
Deleted: occurred during the final threefive years, and thus 618 
were included in the analyses of branchfall contributions619 
Deleted: Branchfalls accounted for 26.23 % of the total area 620 
and 47.60 % of total number of disturbances in treefalls and 621 
branchfalls combined622 
Deleted: 8623 
Deleted: Branchfalls were a larger proportion of events and 624 
area in some measurement periods than others. 625 
Deleted: 7626 
Deleted:  (Fig. 7a)627 
Deleted: 2628 
Deleted:  (Fig. 7b)629 
Deleted: Standing dead trees accounted for 86.6 % of the 630 
total number and 106.7 2 % of the total area of mapped 631 
canopy disturbances.  632 



 13 

 633 

Figure 7. Relationship of temporal variation in branchfall rates to temporal variation in treefall rates, when measured by total area 634 
(a) and number of events (b).  The 1:1 line is shown for reference.   635 

  636 

4. Discussion 637 

 The use of high frequency drone imagery enabled us to quantify temporal variation in canopy disturbance rates and to 638 
quantify the sizes of canopy disturbances at high temporal and spatial resolutions. We found that canopy disturbance rates of the 639 
BCI 50 ha plot varied strongly over time, and were higher in the wet season. The frequency of extreme rainfall events was the best 640 
correlate of monthly variation in canopy disturbance rate during the 5-year study period. In contrast, maximum wind speed was 641 
not significantly correlated. The size distribution of canopy disturbances was close to a power function for larger canopy 642 
disturbances, but best fit by a Weibull function overall. Branchfalls accounted for 26 % of the total area of disturbances from 643 
treefalls and branchfalls combined, and branchfall rates varied largely in parallel with treefall rates over time. These findings 644 
contributed to improve the understanding of the size distribution, temporal variation and meteorological drivers of canopy 645 
disturbances in tropical forests. 646 

4.1 Temporal variation in canopy disturbance  647 

Canopy disturbance rates varied strongly over time in this moist tropical forest, and were higher in the wet season. A 648 
single time interval (June 1 to July 13 2016) accounted for 20 % of the total disturbed area of the BCI 50-ha plot. The frequency 649 
of extreme rainfall events was a strong correlate of the variation in canopy disturbance rates among measurement intervals, whereas 650 
the frequency of high maximum wind speeds was not related. At our site, wind speeds are higher during the dry season, when 651 
canopy disturbance rates are lower (Fig. 4a, Fig. S1), and it is possible that wind speed is systematically underestimated in periods 652 
of high rainfall. We also note that wind speed and rainfall measurements were from a site 1.7 km from the boundary of the plot.  653 
Given the highly local nature of convective storms in the tropics, these measurements are imperfect proxies for conditions in the 654 
focal plot. Treefall and branchfall disturbance rates varied largely in parallel, but not entirely. Differences in temporal patterns 655 
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could in part reflect different sensitivity to particular abiotic drivers (e.g. wind regime, soil saturation).  678 

These results are consistent with previous findings on seasonal variation and the role of rainfall in gap formation in tropical 679 
forests.  A previous 4-year study on BCI found seasonal peaks in August and September, in the middle of the wet season, with 680 
monthly treefall rates significantly correlated with rainfall (r = 0.47, p < 0.02) (Brokaw, 1982). Monthly tree mortality was also 681 
strongly and positively correlated with rainfall (r = 0.85) in a 1-year study of a 10-ha site in the Central Amazon (Fontes et al., 682 
2018). Similarly, a study monitoring canopy trees monthly over five decades in the Central Amazon found that trees died more 683 
often during wet months, even in drought years (Aleixo et al., 2019). A regional study of the Central Amazon based on 12 years 684 
of satellite data found that major windthrows (visible on LANDSAT) occurred more frequently between September and February, 685 
months characterized by heavy rainfall, than the rest of the year (Negrón-Juárez et al., 2017). Studies have highlighted the 686 
importance of mesoscale convective systems, such as squall lines, for windthrows (Garstang et al., 1998; Negrón-Juárez et al., 687 
2010, 2017; Araujo et al., 2017). In Panama, the period of June to August has the higher number of mesoscale convective systems 688 
(Jaramillo et al., 2017), and these were the months when we observed the highest canopy disturbance rates. The threshold rainfall 689 
rate of 24.3 mm hour-1, which defined the extreme rainfall rate that was the best predictor of canopy disturbance formation in our 690 
study, is four times higher than the mean rate for mesoscale convective systems in the Panama region (Jaramillo et al., 2017), 691 
highlighting the importance of extreme events. Analysis of spatial variation in forest damage from Hurricane María in Puerto Rico 692 
found that total rainfall was the most important meteorological risk factor and maximum sustained one-minute wind speeds the 693 
second-most-important; these two variables were moderately correlated (r = 0.43) (Hall et al., 2020).  694 

 695 

4.2 Mechanisms and size structure canopy disturbances 696 

 Gaps in the forest canopy can be caused proximally by treefalls of canopy trees, branchfalls of canopy branches, the decay 697 
of standing dead canopy trees, or the decay of canopy branches. Treefalls and branchfalls of canopy trees are well-captured in our 698 
analyses, which focus on short-term changes that indicate loss of major canopy elements.  In contrast, the decay of dead trees and 699 
senescing branches generally involves more subtle changes in the canopy over a longer period of time, and is possibly mostly 700 
missed by our methods. Treefalls account for a majority of canopy tree mortality in most tropical forests, but standing tree mortality 701 
also plays a major role, especially in drought periods. Overall, treefalls (in which trees were uprooted or their trunks snapped) 702 
accounted for 51.2 % of all mortality of trees > 10 cm DBH in a large-scale study of tree mortality in 189 Amazonian plots  703 
(Esquivel-Muelbert et al., 2020) and 65 % in a study that monitored tree mortality in 10 ha of forest in the Central Amazon bi-704 
monthly over one year (Fontes et al., 2018). Treefalls can involve a single canopy tree, or multiple canopy trees. Multi-tree treefalls 705 
can result from coordinated disturbances over a large area (e.g., large footprint wind disturbance) and/or from domino effects in 706 
which the failure of one canopy tree directly stresses one or more neighboring trees and causes them to fall as well (e.g., when 707 
additional trees are knocked down by the first tree, or pulled down because of connections via lianas). It has been hypothesized 708 
that canopy disturbances may also be contagious over longer time intervals, with increased risk of treefall near canopy gaps, but 709 
evidence for this in tropical forests is mixed (Jansen et al., 2008). Given that our measurement intervals are relatively short (~one 710 
month), almost all of our mapped canopy disturbances are likely to reflect single catastrophic events.   711 

 Our study is one of several that have documented size distributions of canopy disturbances (dynamic gaps) or of static 712 
canopy gaps above some size that are approximately power functions, both on BCI (Solé and Manrubia, 1995; Lobo and Dalling, 713 
2014) and in other tropical forests (Marvin and Asner, 2016; Asner et al., 2013; Kellner and Asner, 2009; Silva et al., 2019; Fisher 714 
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et al., 2008). Static canopy gaps are areas in which the forest canopy is below a threshold height, e.g., 10 m, at a given time.  A 734 
power function distribution of disturbance event sizes (here canopy disturbances) and of the sizes of disturbed areas (canopy gaps) 735 
can emerge from self-organization of dynamic systems such as forests in which individual tree growth and death depend on the 736 
sizes of neighbors (Solé and Manrubia, 1995). These same self-organized dynamics lead to the development of equilibrium size 737 
distributions of trees, which are typically well-fit by Weibull distributions in tropical forests (Muller-Landau et al., 2006b, a). The 738 
relative dearth of canopy disturbances smaller than 25 m2 in our dataset, compared to what would be expected under a power 739 
function, may be explained in part by lower detection frequencies, i.e., measurement bias. Our methods are expected to capture all 740 
treefall and branchfalls above this threshold, but we may increasingly have missed smaller events, especially below ~ 5 m2. 741 
However, we consider it unlikely that this is a sufficient explanation for the shortfall in small disturbances, and suggest that it is 742 
more likely explained largely by the low frequency of small trees and branches in the canopy of this mature tropical forest, and 743 
thus a dearth of small treefall and branchfall events.  744 

Although rarely quantified, branchfall is an important ecological process, with major contributions to woody turnover and 745 
necromass production. We found that branchfalls were almost as common as treefalls in number, although they contributed a 746 
substantially smaller total area of disturbance. Similarly, a ground survey of 78 canopy turnover events in a Brazilian Amazon 747 
forest found that 44 % were branchfalls, and accounted for 15 % of the total affected area (Leitold et al., 2018). In contrast, a 748 
landscape level analysis of LiDAR data concluded that branchfalls were seven times more frequent than treefalls and accounted 749 
for five times more area (Marvin and Asner, 2016).  However, Marvin and Asner (2016) classified branchfalls and treefalls based 750 
purely on the proportional decrease in canopy height (10-40 % decrease and 70-100 % decrease, respectively), a process liable to 751 
misclassification. It entirely ignored disturbances involving intermediate decreases in canopy height (40-70 %), and did not 752 
consider the possibility that any of these disturbances might be standing dead trees.  Thus the differences in branchfall contribution 753 
between our work and that of Marvin and Asner (Marvin and Asner, 2016) may be due as much to methodological differences as 754 
to real variation in canopy dynamics. 755 

 756 

5. Conclusions and future directions 757 

A mechanistic understanding of the controls on woody residence time in tropical forests is urgently needed to predict the 758 
future of tropical forest carbon stocks and biodiversity under global change (Johnson et al., 2016; McDowell et al., 2018; Muller-759 
Landau et al., 2021). Canopy trees account for a majority of the productivity and carbon stocks in tropical forests, and their fates 760 
are disproportionately important for determining stand-level woody residence time (Araujo et al., 2020). Advances in drone 761 
hardware and photogrammetric software now make it relatively inexpensive and straightforward to quantify forest canopy structure 762 
and dynamics at high spatial and temporal resolution through digital aerial photogrammetry and repeat drone imagery acquisitions.  763 
Here we applied these methods to 50 ha of old-growth tropical forest for 5 years, and analyzed the resulting products to quantify 764 
major drops in canopy height such as those created by branchfalls and treefalls, and thus calculate the canopy disturbance rate. We 765 
found that canopy disturbance rates are highly temporally variable, and are well-predicted by extreme rainstorms. Spatial 766 
resolutions of 3-7 cm in the orthomosaics, as used here, are now easily attained, and proved sufficient to capture canopy dynamics 767 
and visually classify disturbances as treefalls, branchfalls, or decomposition of standing dead trees.   768 

Future research building on these approaches and expanding them to additional sites has much to contribute to our 769 
understanding of tropical forest dynamics.  The relationship of standing dead tree mortality to temporal climate variation could be 770 
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investigated from these same data by conducting additional analyses of the orthomosaics to quantify temporal changes in leafing 798 
status of standing dead trees, prior to these trees decomposing.  A better understanding of the relationship of storm conditions to 799 
treefall and branchfall rates could be obtained by combining such drone-acquired data with mechanistic models of wind damage 800 
risk (Jackson et al., 2019), collecting higher frequency three-dimensional wind data, and/or measuring canopy dynamics at even 801 
higher temporal resolution. The use of drones with high accuracy GPS systems, either post-processed kinematic (PPK) or real-802 
time kinematic (RTK) systems, would also be advantageous, and could enable elimination of the alignment step of the processing 803 
as well as automation of the identification of canopy disturbances based on elevation model differences alone. Finally, we 804 
recommend carrying out flights under cloudy conditions when possible, as these diffuse lighting conditions improve visibility 805 
deeper in the canopy and reduce complications associated with shadows. The expansion of these methods to additional and larger 806 
areas, potentially in part through citizen science initiatives, has great potential to improve our understanding of tropical forest tree 807 
mortality, and the future of tropical forests under changing climate regimes. 808 

 809 

Code and data availability. Analysis codes, input data and output results are available at https://github.com/Raquel-810 
Araujo/gap_dynamics_BCI50ha. All files will be published in a permanent form at Smithsonian Figshare repository 811 
10.25573/data.c.5389043 when the manuscript is published. 812 
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incorporating additional image analyses to better quantify standing dead trees in addition to treefalls and 

branchfalls.Future studies should include high frequency measurements of vertical and horizontal windspeeds and soil 

moisture to better capture proximate drivers, and incorporate additional image analyses to quantify standing dead trees 

in addition to treefalls. 
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 Recognizing that our methods may miss smaller disturbances, we fit these distributions to truncated datasets, 

excluding disturbances below 2, 5, 10 or 25 m2.  (Note that 25 m2 is the minimum area for defining a canopy 

disturbance in our automated pre-delineation algorithm, and we are confident we captured all disturbances above this 

area.)  We binned the data into 1 m2 classes, and fitted each distribution to each truncated dataset using maximum 

likelihood, as described in (Araujo et al., 2020). We compared the goodness of fit of the different functions using 

Akaike’s Information Criterion (AIC). 
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(a) The relationship for the single best predictor of canopy disturbance rate: the frequency of 1-hour periods with 

rainfall exceeding the 99.4th percentile; each point represents one measurement interval, and the dashed line shows 

the linear regression.  
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Distribution λ k Delta AIC 

Exponential 0.020  62.45 

Power 1.963  16.50 

Weibull 6.745 0.448 0.00 



 

 

 


