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Abstract. A mechanistic understanding of how tropical tree mortality responds to climate variation is urgently needed to predict 

how tropical forest carbon pools will respond to anthropogenic global change, which is altering the frequency and intensity of 

storms, droughts, and other climate extremes in tropical forests. We used five years of approximately monthly drone-acquired 

RGB imagery for 50 ha of mature tropical forest on Barro Colorado Island, Panama, to quantify spatial structure, temporal 

variation, and climate correlates of canopy disturbances, i.e., sudden and major drops in canopy height due to treefalls, branchfalls, 

or collapse of standing dead trees. Canopy disturbance rates varied strongly over time and were higher in the wet season, even 

though wind speeds were lower in the wet season.  The strongest correlate of monthly variation in canopy disturbance rates was 

the frequency of extreme rainfall events. The size distribution of canopy disturbances was best fit by a Weibull function, and was 

close to a power function for sizes above 25 m2. Treefalls accounted for 74 % of the total area and 52 % of the total number of 

canopy disturbances in treefalls and branchfalls combined. We hypothesize that extreme high rainfall is a good predictor because 

it is an indicator of storms having high wind speeds, as well as saturated soils that increase uprooting risk. These results demonstrate 

the utility of repeat drone-acquired data for quantifying forest canopy disturbance rates at fine temporal and spatial resolutions 

over large areas, thereby enabling robust tests of how temporal variation in disturbance relates to climate drivers. Further insights 

could be gained by integrating these canopy observations with high-frequency measurements of windspeed and soil moisture in 

mechanistic models to better evaluate proximate drivers, and with focal tree observations to quantify the links to tree mortality and 

woody turnover.  

 

1 Introduction 

Moist tropical forests account for 40% of the global biomass carbon stocks (Xu et al., 2021), and uncertainty regarding 

the future of these stocks is a major contributor to uncertainty in the future global carbon cycle (Cavaleri et al., 2015). Tropical 
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forest carbon stocks depend critically on tree mortality rates, and recent studies suggest tropical tree mortality rates may be 

increasing due to anthropogenic global change (Brienen et al., 2015; McDowell et al., 2018). Tropical tree mortality can be caused 

by a diversity of drivers including windthrow (Fontes et al., 2018), droughts (McDowell et al., 2018; Silva et al., 2018), fires (Silva 

et al., 2018), lightning strikes (Yanoviak et al., 2017), and biotic agents (Fontes et al., 2018). The frequency of extreme rainfall 

and drought events is expected to increase in tropical regions, potentially increasing associated tree mortality (IPCC, 2014; Deb et 

al., 2018; Aubry-Kientz et al., 2019). An improved understanding of the processes of forest disturbance is critical to constrain 

estimates of current and future carbon cycling in tropical forests under climate change (Leitold et al., 2018; Johnson et al., 2016; 

Muller-Landau et al., 2021). 

 Despite the importance of tree mortality to forest structure and carbon turnover rates, the mechanisms underlying tree 

mortality remain unclear (McDowell et al., 2018). A key problem is that remeasurement intervals of permanent plots average 5 or 

more years, making it difficult to link mortality variation with particular climatic events (Phillips et al., 2010; Davies et al., 2021; 

Arellano et al., 2019).  The high rates of decomposition in tropical forests further obscure evidence of underlying mechanisms and 

risk factors (Arellano et al., 2019). The few studies that have quantified temporal variation of tree mortality at monthly and bi-

monthly scales using ground-based data have all found higher tree mortality in times of higher rainfall (Brokaw, 1982; Fontes et 

al., 2018; Aleixo et al., 2019). This is consistent with the understanding that many trees die in treefalls, which are proximately 

caused by trunk breakage or uprooting, and are associated with storms (Marra et al., 2014; Araujo et al., 2017; Fontes et al., 2018; 

Negrón-Juárez et al., 2017, 2018; Esquivel-Muelbert et al., 2020). The collection of additional high temporal resolution mortality 

data over large areas, together with high temporal resolution climatological data, can aid in linking mortality to particular climatic 

events and thereby elucidating mortality mechanisms (Arellano et al., 2019; McMahon et al., 2019). 

Drone-acquired imagery and digital aerial photogrammetry software now provide excellent tools for monitoring of forest 

canopies (Araujo et al., 2020) and repeat drone flights can quantify canopy dynamics over large areas at high temporal resolution. 

Photogrammetric analysis of simple RGB imagery enables reconstruction of the appearance and three-dimensional structure of the 

top of the canopy at high spatial resolution (Dandois and Ellis, 2013; Araujo et al., 2020; Zahawi et al., 2015). Comparison of 

photogrammetry products from successive drone flights allows easy detection and quantification of canopy disturbances due to 

treefalls and branchfalls of canopy trees. Canopy trees constitute a high proportion of stems, aboveground carbon stocks and woody 

productivity (Araujo et al., 2020), and thus information on their mortality rates is disproportionately useful to understanding forest 

dynamics and carbon cycling.  Treefalls do not necessarily result in tree mortality (trees may survive and resprout), but almost all 

treefalls and branchfalls result in a large flux of carbon (wood) from biomass to necromass within a short time period after the 

event, which translates to reduced woody residence time. Periods of higher canopy disturbance rates thus represent periods of 

higher biomass turnover, and likely correlate with higher tree mortality rates.  Further, even when trees do not die from a canopy 

disturbance event, suffering crown loss or damage increases the risk of subsequent mortality (Arellano et al., 2019).   

Monitoring canopy disturbances with drones also provides the opportunity to precisely quantify the size distributions of 

these canopy disturbances, and to distinguish branchfalls from treefalls. Here we define a canopy disturbance as a substantial 

decrease in canopy height in a contiguous patch of canopy occurring over one measurement interval, such as typically results from 

a treefall or branchfall.  Marvin and Asner (2016) and Dalagnol et al. (2021) referred to these as “dynamic canopy gaps.” By 

definition, canopy disturbances reduce canopy height and thereby change light regimes for understory and neighboring trees, and 

the magnitude of the change depends on the disturbance size in area and depth (Hubbell et al., 1999). In general, larger canopy 

disturbances cause larger canopy gaps as traditionally measured on the ground. Previous studies have analyzed the size distributions 

of static gaps – areas with canopy height below a threshold – for insights into forest structure, habitat niches, and disturbance 
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regimes (e.g., Manrubia and Solé, 1997; Lobo and Dalling, 2013, 2014; Fisher et al., 2008). Tree species respond differently to 

canopy gaps of different sizes, with small gaps favoring a different set of species than large gaps (Brokaw, 1985; Denslow, 1980, 

1987; Dalling et al., 2004). Branchfalls, like treefalls, are important in generating canopy gaps and contributing to woody turnover, 

but also often go unmeasured (Marvin and Asner, 2016; Leitold et al., 2018). Quantifying tree mortality and other damage 

contributes to a better understanding on change of forest structure, necromass estimates and nutrient cycling. 

Here, we use five years of ~monthly drone-acquired RGB imagery for a 50 ha area of mature tropical forest on Barro 

Colorado Island, Panama to investigate canopy dynamics at high temporal resolution. We aim to (1) quantify temporal variation 

in canopy disturbance rates and its relationship to climate variation; (2) characterize the size structure of canopy disturbances; and 

(3) evaluate the role of branchfalls in canopy dynamics.  We expect that disturbance rates will be higher in the wet season than the 

dry season, we hypothesize disturbance rates will increase with the frequency of extreme rainfall and wind events, and we compare 

the correlations of various rainfall and wind statistics with temporal variation in disturbance rates. To characterize the size structure 

of canopy disturbances, we quantify the size (area) distribution and evaluate whether it is best fit by power, Weibull, or exponential 

functions. Finally, we quantify the proportion of canopy disturbance due to branchfalls (rather than treefalls), and test whether 

branchfalls and treefalls exhibit similar patterns of temporal variation.  Our results provide new insights into the patterns and 

drivers of canopy disturbance and tree mortality in this tropical forest, and illustrate the utility of drones for quantifying canopy 

dynamics over large areas at high temporal resolution.   

 

2. Methods 

 

2.1 Study site 

Barro Colorado Island (BCI; 9.15° N, 79.83° W) is a 15 km2 island in Central Panama, that was isolated from surrounding 

mainland when Lake Gatun was created as part of the construction of the Panama Canal. BCI supports tropical moist forest in the 

Holdridge Life Zone System (Holdridge, 1947). Annual precipitation averages approximately 2600 mm, with a pronounced dry 

season between January and April (a mean of about 3.5 months with < 100 mm mo-1). Mean of maximum 1-day wind speeds are 

8.1 m s-1 and 5.8 m s-1 during dry and wet seasons, respectively 

(https://smithsonian.figshare.com/articles/dataset/Yearly_Reports_Barro_Colorado_Island/11799111/2). Mean annual 

temperature is 26 °C and varies little throughout the year (Windsor, 1990). The 50 ha forest dynamics plot (1000 m x 500 m) was 

established on BCI in 1981 and is located in an old-growth forest (Leigh, 1999), with the exception of a small area of 1.92 ha of 

old secondary forest (~100 years old) in the north central part of the plot (Harms et al., 2001).  

 

2.2 Meteorological data 

 Meteorological data were collected in the lab clearing and Lutz tower, approximately 1.7 km NE of the center of the 50 

ha plot (https://smithsonian.figshare.com/articles/dataset/Yearly_Reports_Barro_Colorado_Island/11799111/2). Wind speed was 

measured using an anemometer (RM Young Wind Monitor Model 05103) installed at the top of Lutz tower, at 48 m height above 

ground and approximately 6 m above the top of the surrounding canopy. Wind speed measurements were made every 10 seconds, 

and the average, minimum and maximum values were recorded at the end of every 15-minute interval. We used the maximum 
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wind speeds for our analyses. Rainfall was measured in the lab clearing using a tipping bucket (Hydrological Services Model TB3), 

and recorded every 5 minutes; we aggregated these data to 15-minute periods to match the temporal resolution of the wind speed 

data. Rainfall and wind speed data are available in https://biogeodb.stri.si.edu/physical_monitoring/research/barrocolorado. The 

meteorological record had no gaps during our study period (Fig. S1). 

 

2.3 Canopy disturbance identification 

  We used approximately monthly orthomosaics and canopy surface models produced from drone-acquired imagery to 

analyze temporal variation in canopy disturbance rates in the 50 ha forest dynamics plot between 2 October 2014 and 28 November 

2019. RGB imagery was collected using a variety of drones and cameras over the years, with a horizontal spatial resolution of 3-

7 cm. Imagery for each sampling date was processed using the photogrammetry software Agisoft Metashape to obtain orthomosaics 

and surface elevation models, which were then aligned vertically and horizontally.  

We defined a canopy disturbance as a substantial decrease in canopy height in a contiguous patch of canopy occurring 

over one measurement interval, such as typically results from a treefall or branchfall. We identified canopy disturbances through 

a combination of analysis of the canopy surface model changes and visual interpretation of the orthomosaics (Fig. 1). We first 

differenced surface elevation models for successive dates to obtain a raster of the canopy height changes for the associated interval 

(Fig. 1, Text S1). We then pre-delineated major canopy disturbances by filtering for areas in which canopy height decreased more 

than 10 m in contiguous areas of at least 25 m2, and that had an area-to-perimeter ratio greater than 0.6. We note that 25 m2 is the 

minimum gap area used in previous studies of this site by Brokaw (1982) and Hubbell et al. (1999). The area-to-perimeter condition 

removes artifacts associated with slight shifts in the measured positions of individual trees from one image set to another, whether 

due to wind or alignment errors (note that this criterion involves a combination of shape and size). Finally, we systematically 

examined 1-ha square subplots for each pair of successive dates and edited the pre-delineated polygons, removed false positives, 

and added visible new canopy disturbances that were not previously delineated (whether because they were too small in area or in 

canopy height drop). We also classified disturbances as being due to treefalls (a whole previously live tree fell, creating a clearly 

visible gap on the forest floor, or the whole live crown disappeared), branchfalls (a portion of a live crown broke), or standing dead 

trees disintegrating based on visual inspection of the orthomosaics (Fig. S2).  
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Figure 1. Canopy disturbance visualized on canopy surface models and orthomosaics calculated from photogrammetric analyses 

of drone imagery. (a,b) Elevation models for a portion of the study area on two successive dates, 28 August 2019 (a) and 23 

September 2019 (b). (c) Difference in elevation between the two dates, with black area indicating large decrease in canopy 

elevation. (d,e) RGB orthomosaics of the same dates. 

We calculated the total number and area of canopy disturbances within the BCI 50 ha plot during the 5 years of the study. 

In calculating the number and total area of disturbances, we included all disturbed areas that were inside the plot boundaries (if a 

disturbance was on the boundary, only the area inside the plot was included). Our analyses of temporal variation employed the 

same definitions for numbers and areas of canopy disturbances within the 50 ha plot. For analyses of the size structure of 

disturbances, we included the complete areas of disturbances whose centroids were located within the plot (i.e., we excluded 

disturbances centered outside the plot, and included area outside the plot for disturbances centered inside the plot to avoid artifacts 

related to reducing disturbance size by trimming at the plot boundaries).   

 

2.4 Temporal variation in canopy disturbance rates and its relation to climate 

We calculated canopy disturbances rates for each measurement interval as the % of area disturbed per month (i.e., per 30-

day period).  Specifically, we summed the total area disturbed during the measurement interval, and divided by the total area of 

the plot and the length of the time interval. We excluded one excessively long interval (237 days – image acquisition gap) from all 

analyses of temporal variation; the remaining intervals ranged from 14 to 91 days, with a median of 31.5 days (Table S1). We also 

calculated an incidence canopy disturbance rate as the number of canopy disturbances per hectare per month.  We calculated the 
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mean, minimum, maximum, and the 25th, 50th, and 75th percentiles of interval length, number and area of canopy disturbances, and 

the respective monthly rates. 

We compared canopy disturbance rates between wet and dry seasons and between early wet and late wet seasons. We 

defined the dry season as January 1 to April 30 (rainfall < 100 mm mo-1, Fig. S3), the early wet season as 1 May to 31 August, and 

the late wet season as 1 September to 31 December. Intervals that straddled more than one season were classified to the season in 

which they had more days. We tested for differences in canopy disturbance rates between seasons using two-tailed Student’s t-test 

on the log-transformed canopy disturbance rates for each measurement interval, after first confirming that these rates met 

assumptions for normality (Shapiro-Wilk test) and homogeneity of variance (Levene test). 

 We evaluated the relationship of temporal variation in canopy disturbance rates with temporal variation in the frequencies 

of climate extremes using parametric correlations. We calculated the Pearson correlations of the log-transformed canopy 

disturbance rates (area per time) with the log-transformed frequency of extreme rainfall and windspeed events (number per time) 
(i.e. log(y)~log(x+1)), for different definitions of extreme events. For example, one definition of an extreme event would be a 15-

minute period with rainfall above the 99th percentile.  We evaluated three different temporal grains for defining extreme events 

(15-minute, 1-hour, and 1-day intervals), for two different meteorological variables (total rainfall and maximum windspeed), and 

100 different thresholds, corresponding to every 0.1 percentile increment between the 90th and 99.9th percentile of the 

corresponding distributions. We compared the predictive ability of these 600 different definitions of extreme events in terms of 

their Pearson correlations.   

 

2.5 Size structure of canopy disturbances 

 We characterized the size structure of canopy disturbances whose geometric center was inside the plot, excluding 

disturbances from the one excessively long interval of 237 days. Longer time intervals increase the likelihood that what is measured 

as a single disturbance event in fact constitutes multiple adjoining or overlapping events. We calculated the mean, minimum, 

maximum, and median of area of individual canopy disturbances.  We calculated the cumulative distribution functions with respect 

to disturbance size (area) of number and total area of canopy disturbances, to quantify the proportions of canopy disturbances and 

of total area disturbed in disturbances below any given size.  

We took advantage of the three-dimensional structure of our photogrammetry data to quantify canopy disturbances in 

terms of their vertical height drop as well as their horizontal area.  For each canopy disturbance, we calculated the average height 

drop from the differences in the canopy surface models. We excluded 61 canopy disturbances in which mean heights increased 

because they reflect errors in the canopy height models. We fit a generalized additive model (GAM) for average height drop as a 

function of the log-transformed area to better visualize the trend in how these were related.  

We quantified the size distributions of canopy disturbances by fitting three alternative probability distributions: 

exponential, power (or Pareto), and Weibull Eqs. (1-3).  

 𝑓"#$ 𝑥 =
1
𝑁
𝜆𝑒+,# (1) 
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where 𝜆 and 𝛼 are fitted parameters, 𝑥 is canopy disturbance area in m2, 𝑒 is the natural exponential basis, and 𝑁 are normalization 

constants such that the truncated distribution integrates to 1. Recognizing that our methods are likely to miss smaller disturbances, 

we fit these distributions to truncated datasets, excluding disturbances below 2, 5, 10 or 25 m2. Note that 25 m2 is the minimum 

area for defining a canopy disturbance in our automated pre-delineation algorithm, and we are confident we captured all 

disturbances above this area. We are progressively less confident of our ability to capture smaller disturbances.  We also truncated 

the fitted distributions above at the maximum possible disturbance area we could have observed using our methods (50 ha, or 

500,000 m2). We fit each type of distribution (exponential, power, Weibull) to each dataset (different minimum disturbance area 

and corresponding truncation) using maximum likelihood.  The maximum likelihood estimates of the parameters were those that 

maximized the likelihood function (Eq. (4)):  

 𝐿 = 𝑙𝑜𝑔 𝑓 𝑥
/

 (4) 

We selected the model that minimized Akaike’s Information Criterion (AIC) (Burnham and Anderson, 2002). We also evaluated 

goodness of fit using the Kolmogorov-Smirnov statistic, the maximum difference in the cumulative probability distributions 

between the observed data and the fitted distribution (Carvalho, 2015). 

2.6 Branchfalls vs. treefalls 

We classified each canopy disturbance as being a branchfall, treefall, or standing dead tree, except for those disturbances 

occurring in the exceptionally long time interval. In 35 cases we could not distinguish the type of disturbance, and these cases were 

omitted from analyses that required disturbance classification. We evaluated the relative contributions of branchfalls vs. treefalls, 

and we did not include standing dead trees in the analysis because our methods possibly missed standing dead trees. We separately 

calculated treefall and branchfall disturbance rates for each interval, and relative contributions to their summed number and area. 

We calculated the Pearson correlations of branchfall disturbance rates with treefall disturbance rates, for both area- and number-

based rates. 

 

3. Results 

We identified 1048 canopy disturbances with a combined area of 56,134.37 m2 (5.61 ha) that affected the area within the 

BCI 50 ha plot between 2 October 2014 and 28 November 2019 (Fig. 2). During the 5 years of the study, 11.2 % of the area of the 

BCI 50-ha plot was affected by canopy disturbances (Fig. 2), and 0.6 % was disturbed more than once (Fig. S4).   
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Figure 2. Map of canopy disturbances on the 50 ha plot (black rectangle, 1000 x 500 m) on Barro Colorado Island, Panama, from 

2 October 2014 to 28 November 2019. 

 

3.1 Temporal variation in canopy disturbance rates 

 Temporal variation analyses included 898 disturbances or partial disturbances encompassing 49,742.1 m2 of area inside 

the 50 ha plot in 46 time intervals (excluding the single long interval). There was strong temporal variation in canopy disturbance 

rates, with similar temporal variation in the total area disturbed (Fig. 3) and in the number of disturbances (Fig. S5). The mean rate 

of canopy disturbance creation was 905.1 m2 mo-1 (range of 75 m2 mo-1 to 8040.9 m2 mo-1) and the median 499 m2 mo-1 (other 

statistics in Table S1). 

The highest disturbance rates occurred during May-July 2016, May-August 2018, and August-September 2019 (Fig. S6). 

The single highest disturbance rate was observed between 1 June and 13 July 2016, when 11,257 m2 of disturbances were created 

in just 42 days (a rate of 268 m2 day-1). A full 2.3 % of the total area of the plot was converted to new canopy disturbances during 

this time interval.  
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Figure 3.  Temporal variation in canopy disturbance rates in the 50 ha plot on Barro Colorado Island, Panama, across measurement 

intervals. Gray shading indicates the wet seasons (May to December) of each year and ticks on the x axis indicate the first day of 

each year. Rates are shown in units of percent of area per month (sum of total area disturbed during the measurement interval, 

divided by the total area of the plot and the length of the time interval times 30-days). Note that the total area of each rectangle is 

proportional to the total area of canopy disturbed during that measurement interval. 

Rates of canopy disturbances were higher during the wet season (p = 0.036; Fig. 4a).  There was no significant difference 

in rates between the early and late wet season (p = 0.226, Fig. 4b). Very high rates of disturbance (> 0.3 % per month) were 

observed only in the wet season. 
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Figure 4. Comparisons of canopy disturbances rates between wet and dry seasons (a), between early and late wet seasons (b). 

Violin plots depict the distributions of disturbance rates (% area disturbed per month) over time intervals, with the number of time 

intervals listed above each violin plot. Black dots and bars show mean and 95% confidence intervals, respectively. P-values are 

based on two-tailed Student’s t tests for differences in log-transformed canopy disturbance rates between seasons. 

The best correlate of temporal variation in canopy disturbance rates was the frequency of 15-min rainfall events above 

the 98.2th percentile, which explained 22 % of the variation (Fig. 5a). This relationship was mainly driven by events occurred 

during wet seasons (Fig. 5a).  This threshold outperformed all other tested rainfall thresholds (all percentiles from 90.0 to 99.9, by 

0.1 % of the different frequency time scales – Fig. 5b). The 98.2th percentile corresponds to a rainfall rate of 24.3 mm hour-1 (Fig. 

5c). There were a total of 141 15-min rainfall events exceeding this threshold, which occurred on 98 different days (Table S2).  The 

measurement interval with the highest disturbance rate (June 1 to July 13 2016) included eleven such high 15-min rainfall events 

on six days (Table S2). The frequency of high maximum wind speed events was not significantly related with canopy disturbance 

rates. Indeed, Pearson correlations were negative for most wind speed variables (Fig. S7). 
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Figure 5. Relation of temporal variation in canopy disturbance rates to the frequency of extreme rainfall events. (a) The relationship 

for the single best predictor of canopy disturbance rate: the frequency of 15-min periods with rainfall exceeding the 98.2th 

percentile; each point represents one measurement interval. (b)Variation in Pearson correlation between canopy disturbance rate 

and frequency of extreme rainfall events depending on the temporal grain (colors) and percentile threshold (x axis) for defining 

extreme rainfall events, open red circle represents the best correlation. (c) The relationship of percentile threshold (x axis) and 

rainfall rate (y axis) for different temporal scales. Dashed red line indicates the rainfall rate in mm.hour-1 of the 98.2th percentile. 

 

3.2 Size structure of canopy disturbances 

 Size distribution analyses included  870 canopy disturbances (with 49,495.5 m2 total area) that had their centers inside the 

plot and were not part of the excluded long interval. The area of an individual canopy disturbance ranged from 2.2 m2 to 486.7 m2, 

with a mean of 56.9 m2. The median disturbance area was 36.1 m2, whereas 50 % of the total area was in disturbances greater than 

87.1 m2 (Fig. 6a).  

The size distribution of observed canopy disturbances was close to a power function for areas above 25 m2, and was 

relatively flat over the range of 5 to 25 m2 (Fig. 6b). The fitted exponent of the power function was -2.16 for canopy disturbances 

above 25 m2, but the Weibull distribution provided a better fit than the power function (Table 1). When distributions were fit to 

data including smaller size classes (> 2 m2, > 5 m2 or > 10 m2), the distribution is further from a power function; the Weibull 

remains the best fit, the exponential becomes the second-best fit, and the power function the worst fit of the three (Fig. S8, Fig. S9, 

Table 1). Canopy disturbances with larger areas tended to have larger mean decreases in canopy height (Fig. 6c, Fig. 6d). 
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Figure 6. Size structure of canopy disturbances. (a) Cumulative number and area of canopy disturbances in relation to their area. 

(b) Size distribution of canopy disturbances, together with Weibull and power function fits for canopy disturbances larger than 25 

m2 (this threshold was chosen because we are confident we identified all canopy disturbances above this area, but we may have 

missed some smaller ones). (c) Relationship of mean vertical height drop to horizontal area among canopy disturbances (points), 

together with a GAM fit (red line) to illustrate the trend. (d) Distribution of canopy disturbances across area and height drop classes. 

The shaded gray in b indicates canopy disturbance area lower than the 25 m2 threshold.  

 

Table 1. Parameter values, Kolmogorov-Smirnov statistic, log-likelihood, and delta AIC values for maximum likelihood fits of 

exponential, power and Weibull probability density functions to size distributions for canopy disturbances larger than 2 m2, 5 m2, 

10 m2 and 25 m2. Delta AIC is the difference in AIC from the best model. The best-fit models for each dataset, and those within 2 

delta AIC of the best model, are highlighted in bold. 

Minimum 
size (m2) Distribution λ (95% CI) 𝛼 (95% CI) K-S Log 

likelihood ΔAIC 

2 Exponential 0.0182 (0.0166 - 0.0199)  0.068 -4354.66 0.00 
2 Power 1.313 (1.293 - 1.329)  0.339 -4950.99 1192.67 
2 Weibull 1.027 (0.938 - 1.197) 55.8 (49.8 - 63.5) 0.071 -4354.24 1.16 

5 Exponential 0.0191 (0.0173 - 0.0211)  0.069 -4286.15 4.27 
5 Power 1.481 (1.447 - 1.507)  0.270 -4628.98 689.94 
5 Weibull 0.917 (0.809 - 1.106) 48.6 (41.3 - 59.3) 0.055 -4283.01 0.00 

10 Exponential 0.0196 (0.0181 - 0.0219)  0.076 -3956.39 18.05 
10 Power 1.679 (1.644 - 1.711)  0.220 -4131.05 367.38 
10 Weibull 0.821 (0.732 - 0.978) 41.0 (33.8 - 50.4) 0.053 -3946.36 0.00 

25 Exponential 0.0197 (0.0180 - 0.0229)  0.103 -2954.95 56.59 
25 Power 2.162 (2.112 - 2.262)  0.080 -2956.97 60.65 
25 Weibull 0.529 (0.437 - 0.694) 12.1 (5.5 - 24.8) 0.020 -2925.65 0.00 

 

 

3.3 Treefalls and branchfalls 

 Analyses of the relative contributions of branchfalls, treefalls and standing dead trees included 863 canopy disturbances 

or partial disturbances with 48,424.7 m2 total area inside the 50 ha plot that could be visually classified into one of these categories 

and that were not part of the excluded long interval.  Treefalls accounted for 66.3% of the total observed disturbance area and 

47.9% of the total number of observed disturbances; branchfalls accounted for 23.5% of area and 43.5% of number, and standing 

dead trees accounted for 10.2% of area and 8.6% of number. Treefall and branchfall disturbance rates varied largely in parallel, 

although the ratios of their rates varied among measurement periods (Fig. 7, Fig. S10). The ratio of area in branchfalls to area in 

treefalls ranged from 0.024 to 1.4 among measurement periods, and the ratio of number of branchfalls to number of treefalls ranged 

from 0.083 to 2.3.   
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Figure 7. Relationship of temporal variation in branchfall rates to temporal variation in treefall rates, when measured by total area 

(a) and number of events (b).  The 1:1 line is shown for reference.   

  

4. Discussion 

 The use of high frequency drone imagery enabled us to quantify temporal variation in canopy disturbance rates and to 

quantify the sizes of canopy disturbances at high temporal and spatial resolutions. We found that canopy disturbance rates of the 

BCI 50 ha plot varied strongly over time, and were higher in the wet season. The frequency of extreme rainfall events was the best 

correlate of monthly variation in canopy disturbance rate during the 5-year study period. In contrast, maximum wind speed was 

not significantly correlated. The size distribution of canopy disturbances was close to a power function for larger canopy 

disturbances, but best fit by a Weibull function overall. Branchfalls accounted for 26 % of the total area of disturbances from 

treefalls and branchfalls combined, and branchfall rates varied largely in parallel with treefall rates over time. These findings 

contributed to improve the understanding of the size distribution, temporal variation and meteorological drivers of canopy 

disturbances in tropical forests. 

4.1 Temporal variation in canopy disturbance  

Canopy disturbance rates varied strongly over time in this moist tropical forest, and were higher in the wet season. A 

single time interval (June 1 to July 13 2016) accounted for 20 % of the total disturbed area of the BCI 50-ha plot. The frequency 

of extreme rainfall events was a strong correlate of the variation in canopy disturbance rates among measurement intervals, whereas 

the frequency of high maximum wind speeds was not related. At our site, wind speeds are higher during the dry season, when 

canopy disturbance rates are lower (Fig. 4a, Fig. S1), and it is possible that wind speed is systematically underestimated in periods 

of high rainfall. We also note that wind speed and rainfall measurements were from a site 1.7 km from the boundary of the plot.  

Given the highly local nature of convective storms in the tropics, these measurements are imperfect proxies for conditions in the 

focal plot. Treefall and branchfall disturbance rates varied largely in parallel, but not entirely. Differences in temporal patterns 

could in part reflect different sensitivity to particular abiotic drivers (e.g. wind regime, soil saturation).  
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These results are consistent with previous findings on seasonal variation and the role of rainfall in gap formation in tropical 

forests.  A previous 4-year study on BCI found seasonal peaks in August and September, in the middle of the wet season, with 

monthly treefall rates significantly correlated with rainfall (r = 0.47, p < 0.02) (Brokaw, 1982). Monthly tree mortality was also 

strongly and positively correlated with rainfall (r = 0.85) in a 1-year study of a 10-ha site in the Central Amazon (Fontes et al., 

2018). Similarly, a study monitoring canopy trees monthly over five decades in the Central Amazon found that trees died more 

often during wet months, even in drought years (Aleixo et al., 2019). A regional study of the Central Amazon based on 12 years 

of satellite data found that major windthrows (visible on LANDSAT) occurred more frequently between September and February, 

months characterized by heavy rainfall, than the rest of the year (Negrón-Juárez et al., 2017). Studies have highlighted the 

importance of mesoscale convective systems, such as squall lines, for windthrows (Garstang et al., 1998; Negrón-Juárez et al., 

2010, 2017; Araujo et al., 2017). In Panama, the period of June to August has the higher number of mesoscale convective systems 

(Jaramillo et al., 2017), and these were the months when we observed the highest canopy disturbance rates. The threshold rainfall 

rate of 24.3 mm hour-1, which defined the extreme rainfall rate that was the best predictor of canopy disturbance formation in our 

study, is four times higher than the mean rate for mesoscale convective systems in the Panama region (Jaramillo et al., 2017), 

highlighting the importance of extreme events. Analysis of spatial variation in forest damage from Hurricane María in Puerto Rico 

found that total rainfall was the most important meteorological risk factor and maximum sustained one-minute wind speeds the 

second-most-important; these two variables were moderately correlated (r = 0.43) (Hall et al., 2020).  

 

4.2 Mechanisms and size structure canopy disturbances 

 Gaps in the forest canopy can be caused proximally by treefalls of canopy trees, branchfalls of canopy branches, the decay 

of standing dead canopy trees, or the decay of canopy branches. Treefalls and branchfalls of canopy trees are well-captured in our 

analyses, which focus on short-term changes that indicate loss of major canopy elements.  In contrast, the decay of dead trees and 

senescing branches generally involves more subtle changes in the canopy over a longer period of time, and is possibly mostly 

missed by our methods. Treefalls account for a majority of canopy tree mortality in most tropical forests, but standing tree mortality 

also plays a major role, especially in drought periods. Overall, treefalls (in which trees were uprooted or their trunks snapped) 

accounted for 51.2 % of all mortality of trees > 10 cm DBH in a large-scale study of tree mortality in 189 Amazonian plots  

(Esquivel-Muelbert et al., 2020) and 65 % in a study that monitored tree mortality in 10 ha of forest in the Central Amazon bi-

monthly over one year (Fontes et al., 2018). Treefalls can involve a single canopy tree, or multiple canopy trees. Multi-tree treefalls 

can result from coordinated disturbances over a large area (e.g., large footprint wind disturbance) and/or from domino effects in 

which the failure of one canopy tree directly stresses one or more neighboring trees and causes them to fall as well (e.g., when 

additional trees are knocked down by the first tree, or pulled down because of connections via lianas). It has been hypothesized 

that canopy disturbances may also be contagious over longer time intervals, with increased risk of treefall near canopy gaps, but 

evidence for this in tropical forests is mixed (Jansen et al., 2008). Given that our measurement intervals are relatively short (~one 

month), almost all of our mapped canopy disturbances are likely to reflect single catastrophic events.   

 Our study is one of several that have documented size distributions of canopy disturbances (dynamic gaps) or of static 

canopy gaps above some size that are approximately power functions, both on BCI (Solé and Manrubia, 1995; Lobo and Dalling, 

2014) and in other tropical forests (Marvin and Asner, 2016; Asner et al., 2013; Kellner and Asner, 2009; Silva et al., 2019; Fisher 

et al., 2008). Static canopy gaps are areas in which the forest canopy is below a threshold height, e.g., 10 m, at a given time.  A 
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power function distribution of disturbance event sizes (here canopy disturbances) and of the sizes of disturbed areas (canopy gaps) 

can emerge from self-organization of dynamic systems such as forests in which individual tree growth and death depend on the 

sizes of neighbors (Solé and Manrubia, 1995). These same self-organized dynamics lead to the development of equilibrium size 

distributions of trees, which are typically well-fit by Weibull distributions in tropical forests (Muller-Landau et al., 2006b, a). The 

relative dearth of canopy disturbances smaller than 25 m2 in our dataset, compared to what would be expected under a power 

function, may be explained in part by lower detection frequencies, i.e., measurement bias. Our methods are expected to capture all 

treefall and branchfalls above this threshold, but we may increasingly have missed smaller events, especially below ~ 5 m2. 

However, we consider it unlikely that this is a sufficient explanation for the shortfall in small disturbances, and suggest that it is 

more likely explained largely by the low frequency of small trees and branches in the canopy of this mature tropical forest, and 

thus a dearth of small treefall and branchfall events.  

Although rarely quantified, branchfall is an important ecological process, with major contributions to woody turnover and 

necromass production. We found that branchfalls were almost as common as treefalls in number, although they contributed a 

substantially smaller total area of disturbance. Similarly, a ground survey of 78 canopy turnover events in a Brazilian Amazon 

forest found that 44 % were branchfalls, and accounted for 15 % of the total affected area (Leitold et al., 2018). In contrast, a 

landscape level analysis of LiDAR data concluded that branchfalls were seven times more frequent than treefalls and accounted 

for five times more area (Marvin and Asner, 2016).  However, Marvin and Asner (2016) classified branchfalls and treefalls based 

purely on the proportional decrease in canopy height (10-40 % decrease and 70-100 % decrease, respectively), a process liable to 

misclassification. It entirely ignored disturbances involving intermediate decreases in canopy height (40-70 %), and did not 

consider the possibility that any of these disturbances might be standing dead trees.  Thus the differences in branchfall contribution 

between our work and that of Marvin and Asner (Marvin and Asner, 2016) may be due as much to methodological differences as 

to real variation in canopy dynamics. 

 

5. Conclusions and future directions 

A mechanistic understanding of the controls on woody residence time in tropical forests is urgently needed to predict the 

future of tropical forest carbon stocks and biodiversity under global change (Johnson et al., 2016; McDowell et al., 2018; Muller-

Landau et al., 2021). Canopy trees account for a majority of the productivity and carbon stocks in tropical forests, and their fates 

are disproportionately important for determining stand-level woody residence time (Araujo et al., 2020). Advances in drone 

hardware and photogrammetric software now make it relatively inexpensive and straightforward to quantify forest canopy structure 

and dynamics at high spatial and temporal resolution through digital aerial photogrammetry and repeat drone imagery acquisitions.  

Here we applied these methods to 50 ha of old-growth tropical forest for 5 years, and analyzed the resulting products to quantify 

major drops in canopy height such as those created by branchfalls and treefalls, and thus calculate the canopy disturbance rate. We 

found that canopy disturbance rates are highly temporally variable, and are well-predicted by extreme rainstorms. Spatial 

resolutions of 3-7 cm in the orthomosaics, as used here, are now easily attained, and proved sufficient to capture canopy dynamics 

and visually classify disturbances as treefalls, branchfalls, or decomposition of standing dead trees.   

Future research building on these approaches and expanding them to additional sites has much to contribute to our 

understanding of tropical forest dynamics.  The relationship of standing dead tree mortality to temporal climate variation could be 

investigated from these same data by conducting additional analyses of the orthomosaics to quantify temporal changes in leafing 
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status of standing dead trees, prior to these trees decomposing.  A better understanding of the relationship of storm conditions to 

treefall and branchfall rates could be obtained by combining such drone-acquired data with mechanistic models of wind damage 

risk (Jackson et al., 2019), collecting higher frequency three-dimensional wind data, and/or measuring canopy dynamics at even 

higher temporal resolution. The use of drones with high accuracy GPS systems, either post-processed kinematic (PPK) or real-

time kinematic (RTK) systems, would also be advantageous, and could enable elimination of the alignment step of the processing 

as well as automation of the identification of canopy disturbances based on elevation model differences alone. Finally, we 

recommend carrying out flights under cloudy conditions when possible, as these diffuse lighting conditions improve visibility 

deeper in the canopy and reduce complications associated with shadows. The expansion of these methods to additional and larger 

areas, potentially in part through citizen science initiatives, has great potential to improve our understanding of tropical forest tree 

mortality, and the future of tropical forests under changing climate regimes. 

 

Code and data availability. Analysis codes, input data and output results are available at https://github.com/Raquel-

Araujo/gap_dynamics_BCI50ha. All orthomosaics, elevation models and shapefiles are available at Smithsonian Figshare 

repository https://doi.org/10.25573/data.c.5389043. 
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