
 1 

Strong temporal variation in treefall and branchfall rates in a tropical 1 
forest is explained by rainfall: results from five years of monthly drone 2 
data for a 50-ha plot 3 

 4 

Raquel Fernandes Araujo1, Samuel Grubinger2, Carlos Henrique Souza Celes1, Robinson I. Negrón-5 
Juárez3, Milton Garcia1, Jonathan P. Dandois4, and Helene C. Muller-Landau1 6 

 7 

1Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Balboa, Ancon, 8 
PO Box 0843-03092, Panama  9 
2Department of Forest Resources Management, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, 10 
Canada  11 
3Climate Sciences Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA 12 
4Johns Hopkins University, Facilities and Real Estate, 3910 Keswick Rd. Suite N3100 Baltimore, MD 21211, USA 13 
 14 
Correspondence to: Raquel Fernandes Araujo (araujo.raquelf@gmail.com) 15 

 16 

Abstract. A mechanistic understanding of how tropical tree mortality responds to climate variation is urgently needed to predict 17 
how tropical forest carbon pools will respond to anthropogenic global change, which is altering the frequency and intensity of 18 
storms, droughts, and other climate extremes in tropical forests. We used five years of approximately monthly drone-acquired 19 
RGB imagery for 50 ha of mature tropical forest on Barro Colorado Island, Panama, to quantify spatial structure, temporal 20 
variation, and climate correlates of canopy disturbances, i.e., sudden and major drops in canopy height due to treefalls, branchfalls, 21 
or collapse of standing dead trees. Treefalls accounted for 77 % of the total area and 60 % of the total number of canopy 22 
disturbances in treefalls and branchfalls combined. The size distribution of canopy disturbances was close to a power function for 23 
sizes above 25 m2, and best fit by a Weibull function overall. Canopy disturbance rates varied strongly over time and were higher 24 
in the wet season, even though windspeeds were lower in the wet season.  The strongest correlate of temporal variation in canopy 25 
disturbance rates was the frequency of 1-hour rainfall events above the 99.4th percentile (here 35.7 mm hour-1, r = 0.67). We 26 
hypothesize that extreme high rainfall is associated with both saturated soils, increasing risk of uprooting, and with gusts having 27 
high horizontal and vertical windspeeds that increase stresses on tree crowns. These results demonstrate the utility of repeat drone-28 
acquired data for quantifying forest canopy disturbance rates over large spatial scales at fine temporal and spatial resolution, thereby 29 
enabling strong tests of linkages to drivers. Future studies should include high frequency measurements of vertical and horizontal 30 
windspeeds and soil moisture to better capture proximate drivers, and incorporate additional image analyses to quantify standing 31 
dead trees in addition to treefalls. 32 

 33 

1 Introduction 34 

Tropical forests account for two-thirds of terrestrial biomass carbon stocks (Pan et al., 2013), and uncertainty regarding 35 
the future of these stocks is a major contributor to uncertainty in the future global carbon cycle (Cavaleri et al., 2015). Tropical 36 
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forest carbon stocks depend critically on tree mortality rates, and theory and evidence suggest tropical tree mortality rates may be 37 
increasing due to anthropogenic global change (Brienen et al., 2015; McDowell et al., 2018). Tropical tree mortality can be caused 38 
by a diversity of drivers including storms, droughts, fires, lightning strikes, and biotic agents (McDowell et al., 2018; Yanoviak et 39 
al., 2017; Fontes et al., 2018; Silva et al., 2018). The frequency of extreme rainfall and drought events is expected to increase in 40 
tropical regions, potentially increasing associated tree mortality (IPCC, 2014; Deb et al., 2018; Aubry-Kientz et al., 2019). An 41 
improved understanding of the processes of forest disturbance is critical to constrain estimates of current and future carbon cycling 42 
in tropical forests under alternative emissions scenarios (Leitold et al., 2018). 43 

 Despite the importance of tree mortality to forest structure and carbon turnover rates, the mechanisms underlying tree 44 
mortality remain unclear (McDowell et al., 2018). A key problem is that remeasurement intervals of permanent plots average five 45 
or more years, making it difficult to link mortality variation with particular climatic events (Phillips et al., 2010; Davies et al., 46 
2021; Arellano et al., 2019).  The high rates of decomposition in tropical forests further obscure evidence of underlying mechanisms 47 
and risk factors (Arellano et al., 2019). The few studies that have quantified temporal variation of tree mortality at monthly and bi-48 
monthly scales using ground-based data have all found higher tree mortality in times of higher rainfall (Brokaw, 1982; Fontes et 49 
al., 2018; Aleixo et al., 2019). This is consistent with the understanding that many trees die in treefalls, which are proximately 50 
caused by trunk breakage or uprooting, and are associated with storms (Marra et al., 2014; Araujo et al., 2017; Fontes et al., 2018; 51 
Negrón-Juárez et al., 2018; Esquivel-Muelbert et al., 2020). The collection of additional high temporal resolution mortality data 52 
over large areas, together with high temporal resolution climatological data, can aid in linking mortality to particular climatic 53 
events and thereby elucidating mortality mechanisms (Arellano et al., 2019; McMahon et al., 2019). 54 

Drone-acquired aerial imagery and photogrammetry software now provide excellent tools for monitoring forest canopies 55 
(Araujo et al., 2020) and repeat drone flights can quantify canopy dynamics over large areas at high temporal resolution. 56 
Photogrammetric analysis of simple RGB imagery enables reconstruction of the appearance and three-dimensional structure of the 57 
top of the canopy at high spatial resolution (Dandois and Ellis, 2013; Araujo et al., 2020; Zahawi et al., 2015). Comparison of 58 
photogrammetry products from successive drone flights allows easy detection and quantification of treefalls and branchfalls of 59 
canopy trees. Canopy trees constitute a high proportion of stem density, aboveground carbon stocks and wood productivity (Araujo 60 
et al., 2020), and thus information on their dynamics is disproportionately useful.  Treefalls do not necessarily result in tree 61 
mortality (trees may survive and resprout), but all treefalls and branchfalls result in a large flux of carbon (wood) from biomass to 62 
necromass, i.e., biomass turnover, which translates to reduced woody residence time. Periods of higher canopy disturbance rates 63 
thus represent periods of higher biomass turnover, and likely correlate with higher tree mortality rates.  Further, even when trees 64 
don’t die from a canopy disturbance event, suffering crown loss or damage increases the risk of subsequent mortality (Arellano et 65 
al., 2019).   66 

Monitoring canopy disturbances with drones also provides the opportunity to precisely quantify the size distributions of 67 
these canopy disturbances, and to distinguish branchfalls from treefalls. Here we define a canopy disturbance as a substantial 68 
decrease in canopy height in a contiguous patch of canopy occurring over one measurement interval, such as typically results from 69 
a treefall or branchfall.  Marvin and Asner (2016) and Dalagnol et al. (2021) referred to these as “dynamic canopy gaps.” By 70 
definition, canopy disturbances reduce canopy height and thereby change light regimes for understory and neighboring trees, and 71 
the magnitude of the change depends on the disturbance size in area and depth (Hubbell et al., 1999). In general, larger canopy 72 
disturbances cause larger canopy gaps as traditionally measured on the ground. Previous studies have analyzed the size distributions 73 
of static gaps for insights into forest structure, habitat niches, and disturbance regimes (e.g., Manrubia and Solé, 1997; Lobo and 74 
Dalling, 2013, 2014; Fisher et al., 2008). Tree species respond differently to canopy gaps of different sizes, with small gaps favoring 75 
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a different set of species than large gaps (Brokaw, 1985; Denslow, 1980, 1987; Dalling et al., 2004). Branchfalls, like treefalls, are 76 
important in generating canopy gaps and contributing to woody turnover, but also often go unmeasured (Marvin and Asner, 2016; 77 
Leitold et al., 2018).  Quantifying tree mortality and other non-fatal damage such as branchfall thus contributes to a better 78 
understanding on change of forest structure, necromass estimates and nutrient cycling. 79 

Here, we use 5 years of ~monthly drone-acquired RGB imagery for a 50 ha area of mature tropical forest on Barro 80 
Colorado Island, Panama, to investigate canopy dynamics at high temporal resolution. We aim to (1) quantify temporal variation 81 
in canopy disturbance rates and its relationship to climate variation; (2) characterize the size structure of canopy disturbances; and 82 
(3) evaluate the role of branchfalls in canopy dynamics.  We expect that disturbance rates will be higher in the wet season than the 83 
dry season, and will increase with the frequency of extreme rainfall and wind events, and we compare models differing in the 84 
conditions for defining such extreme events. To characterize the size structure of canopy disturbances, we quantify the size (area) 85 
distribution and evaluate whether it is best fit by power, Weibull, or exponential functions. Finally, we quantify the proportion of 86 
canopy disturbance due to branchfalls (rather than treefalls), and test whether branchfalls and treefalls exhibit similar patterns of 87 
temporal variation.  Our results provide new insights into the patterns and drivers of canopy disturbance and tree mortality in this 88 
tropical forest, and illustrate the utility of drones for quantifying canopy dynamics over large areas at high temporal resolution.   89 

 90 

2. Methods 91 

 92 

2.1 Study site 93 

Barro Colorado Island (BCI; 9°9′ N, 79°50′ W) is a 15 km2 island in Central Panama, that was isolated from surrounding 94 
mainland when Lake Gatun was created as part of the construction of the Panama Canal. BCI supports tropical moist forest in the 95 
Holdridge Life Zone System (Holdridge, 1947). Annual precipitation averages approximately 2600 mm, with a pronounced dry 96 
season between January and April (a mean of about 3.5 months with < 100 mm mo-1). Mean annual temperature is 26 °C and varies 97 
little throughout the year (Windsor, 1990). The 50 ha forest dynamics plot (1000 m x 500 m) was established on BCI in 1981 98 
(Hubbell et al., 1999).  It is located in old-growth forest (Leigh, 1999), with the exception of a small area of 1.92 ha of old secondary 99 
forest (~100 years old) in the north central part of the plot (Harms et al., 2001).  100 

 101 

2.2 Meteorological data 102 

 Meteorological data were collected in the lab clearing and Lutz tower, approximately 1.7 km NE of the center of the 50 103 
ha plot. Wind speed was measured using an anemometer (RM Young Wind Monitor Model 05103) installed at the top of Lutz 104 
tower, at 48 m height above ground and approximately 6 m above the top of the surrounding canopy. The maximum wind speed 105 
was recorded for every 15 minute-interval. Rainfall was measured in the lab clearing using a tipping bucket (Hydrological Services 106 
Model TB3), and recorded every 5 minutes; we aggregated these data to 15-minute periods to match the temporal resolution of the 107 
wind speed data. Rainfall and wind speed data are available in 108 
https://biogeodb.stri.si.edu/physical_monitoring/research/barrocolorado. The meteorological record had no gaps during our study 109 
period (Fig. S1). 110 
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 111 

2.3 Canopy disturbance identification 112 

  We used approximately monthly orthomosaics and canopy surface models produced from drone-acquired imagery to 113 
analyze temporal variation in canopy disturbance rates in the 50 ha plot between 2 October 2014 and 28 November 2019. RGB 114 
imagery was collected using a variety of drones and cameras over the years, with a horizontal spatial resolution of 3-7 cm. Imagery 115 
for each sampling date was processed using the photogrammetry software Agisoft Metashape to obtain orthomosaics and surface 116 
elevation models, which were then aligned vertically and horizontally (details in Text S1).  117 

We defined a canopy disturbance as a substantial decrease in canopy height in a contiguous patch of canopy occurring 118 
over one measurement interval, such as typically results from a treefall or branchfall. We identified canopy disturbances through 119 
a combination of analysis of the canopy surface model changes and visual interpretation of the orthomosaics (Fig. 1). We first 120 
differenced surface elevation models for successive dates to obtain a raster of the canopy height changes for the associated interval 121 
(Fig. 1, Text S1). We then pre-delineated major canopy disturbances by filtering for areas in which canopy height decreased more 122 
than 10 m in contiguous areas of at least 25 m2 (the minimum area for canopy gaps in previous studies by Brokaw (1982) and 123 
Hubbell et al. (1999)), and that had an area-to-perimeter ratio greater than 0.6. (The area-to-perimeter condition removes artifacts 124 
associated with slight shifts in the measured positions of individual trees from one image set to another, whether due to wind or 125 
alignment errors.) Finally, we systematically examined orthomosaic images for 1-ha square subplots for each pair of successive 126 
dates and edited the pre-delineated polygons, removed false positives, and added visible new canopy disturbances that were not 127 
previously delineated (whether because they were too small in area or in canopy height drop). During the visual inspection of the 128 
data for the last three years we also classified disturbances as being due to treefalls (a whole previously live tree fell, creating a 129 
clearly visible gap on the forest floor, or the whole live crown disappeared), branchfalls (a portion of a live crown broke), or 130 
standing dead trees disintegrating (Fig. S2).  131 

 132 
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 133 

Figure 1. Canopy disturbance visualized on canopy surface models and orthomosaics calculated from photogrammetric analyses 134 
of drone imagery. (a,b) Elevation models for a portion of the study area on two successive dates, 28 August 2019 (a) and 23 135 
September 2019 (b). (c) Difference in elevation between the two dates, with black area indicating large decrease in canopy 136 
elevation. (d,e) RGB orthomosaics of the same dates. 137 

We calculated the total number and area of canopy disturbances within the BCI 50 ha plot during the five years of the 138 
study. In calculating the number and total area of disturbances, we included all disturbed areas that were inside the plot boundaries 139 
(if a disturbance was on the boundary, only the area inside the plot was included). Our analyses of temporal variation employed 140 
the same definitions for numbers and areas of canopy disturbances within the 50 ha plot. For analyses of the size structure of 141 
disturbances, we included the complete areas of disturbances whose centroids were located within the plot (i.e., we excluded 142 
disturbances centered outside the plot, and included area outside the plot for disturbances centered inside the plot to avoid artifacts 143 
related to reducing disturbance size by trimming at the plot boundaries).   144 

 145 

2.4 Temporal variation in canopy disturbance rates and its relation to climate 146 

We calculated canopy disturbances rates for each measurement interval as the percentage of area disturbed per month 147 
(i.e., per 30-day period).  Specifically, we summed the total area disturbed during the measurement interval, and divided by the 148 
total area of the plot and the length of the time interval. We excluded one excessively long interval (237 days) from all analyses of 149 
temporal variation; the remaining intervals ranged from 14 to 91 days, with a median of 31.5 days (Table S1). We also calculated 150 
an incidence canopy disturbance rate as the number of canopy disturbances per hectare per month.  We calculated the mean, 151 
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minimum, maximum, and the 25th, 50th, and 75th percentiles of interval length in days, number and area of canopy disturbances, 152 
and the respective monthly rates. 153 

We compared canopy disturbance rates between wet and dry seasons and between early wet and late wet seasons. We 154 
defined the dry season as January 1 to April 30 (rainfall < 100 mm mo-1, Fig. S3), the early wet season as 1 May to 31 August, and 155 
the late wet season as 1 September to 31 December. Intervals that straddled more than one season were classified to the season in 156 
which they had more days. We tested for homogeneity of variances using the Levene test, and for differences between means using 157 
the two-tailed Student’s t-test for the log-transformed canopy disturbance rates. 158 

 We evaluated the relationship of temporal variation in canopy disturbance rates with temporal variation in climate 159 
extremes using linear regressions. We regressed canopy disturbance rates (area per time) against the frequency of extreme rainfall 160 
and windspeed events (number per time), for different definitions of extreme events. For example, one definition of an extreme 161 
event would be a 15-minute period with rainfall above the 99th percentile.  We evaluated three different temporal grains for defining 162 
extreme events (15-minute, 1-hour, and 1-day intervals), for two different meteorological variables (total rainfall and maximum 163 
windspeed), and 100 different thresholds, corresponding to every 0.1 percentile increment between the 90th and 99.9th percentile 164 
of the corresponding distributions. We compared the predictive ability of these 600 different definitions of extreme events in terms 165 
of their Pearson correlations.   166 

 167 

2.5 Size structure of canopy disturbances 168 

 We characterized the size structure of canopy disturbances whose geometric center was inside the plot, excluding 169 
disturbances from the one excessively long interval of 237 days. (Longer time intervals increase the likelihood that what is 170 
measured as a single disturbance event in fact constitutes multiple adjoining or overlapping events.) We calculated the mean, 171 
minimum, maximum, and median of area of individual canopy disturbances.  We graphed the cumulative distribution functions 172 
with respect to individual disturbance area of number and area of canopy disturbances, to quantify the proportions of canopy 173 
disturbances and of total area disturbed below any given size.  174 

We took advantage of the three-dimensional structure of our photogrammetry data to quantify canopy disturbances in 175 
terms of their vertical height drop as well as their horizontal area.  For each canopy disturbance, we calculated the average height 176 
drop from the differences in the canopy surface models. (We excluded 61 canopy disturbances in which heights increased because 177 
they reflect errors in the canopy height models.) We evaluated how average height drop was related to area across canopy 178 
disturbances, graphically and in terms of their Pearson correlation.  179 

We quantified the size distributions of canopy disturbances by fitting three alternative probability distributions: 180 
exponential, power, and Weibull.  Recognizing that our methods may miss smaller disturbances, we fit these distributions to 181 
truncated datasets, excluding disturbances below 2, 5, 10 or 25 m2.  (Note that 25 m2 is the minimum area for defining a canopy 182 
disturbance in our automated pre-delineation algorithm, and we are confident we captured all disturbances above this area.)  We 183 
binned the data into 1 m2 classes, and fitted each distribution to each truncated dataset using maximum likelihood, as described in 184 
(Araujo et al., 2020). We compared the goodness of fit of the different functions using Akaike’s Information Criterion (AIC). 185 

https://doi.org/10.5194/bg-2021-102
Preprint. Discussion started: 20 April 2021
c© Author(s) 2021. CC BY 4.0 License.



 7 

 186 

2.6 Branchfalls vs. treefalls 187 

For the last three years, for which we classified each canopy disturbance as being a branchfall, treefall, or standing dead 188 
tree, we evaluated the relative contributions of branchfalls vs. treefalls. We did not include standing dead trees in the analysis 189 
because our methods possibly missed many standing dead trees. We separately calculated treefall and branchfall disturbance rates 190 
for each interval, and relative contributions to their summed number and area. We regressed branchfall disturbance rates against 191 
treefall disturbance rates, for both area- and number-based rates, and calculated their Pearson correlations. 192 

 193 

3. Results 194 

We identified 1056 canopy disturbances with a combined area of 56,595.12 m2 that affected the area within the BCI 50 195 
ha plot between 2 October 2014 and 28 November 2019 (Fig. 2). During the 5 years of the study, 10.7 % of the area of the BCI 196 
50-ha plot was affected by canopy disturbances, and 0.7 % was disturbed more than once (Fig. 2).   197 

 198 

Figure 2. Map of canopy disturbances on the 50 ha plot (red rectangle, 1000 x 500 m) on Barro Colorado Island, Panama, from 2 199 
October 2014 to 28 November 2019.  Areas that were disturbed a single time are shown in grey, those disturbed more than once 200 
in red. 201 

 202 

3.1 Temporal variation in canopy disturbance rates 203 

 Temporal variation analyses included 906 disturbances or partial disturbances encompassing 50,202.8 m2 of area that 204 
were located inside the 50 ha plot and were not part of the excluded long interval. There was strong temporal variation in canopy 205 
disturbance rates among the 46 time intervals analyzed, with parallel variation in the total area disturbed (Fig. 3) and the number 206 
of disturbances (Fig. S4). The mean rate of canopy disturbance creation was 916 m2 mo-1 (range of 75 m2 mo-1 to 8040.9 m2 mo-1) 207 
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and median 499 m2 mo-1 (other statistics in Table S1). 208 

The highest disturbance rates occurred during May-July 2016, May-August 2018, and August-September 2019 (Fig. S5). 209 
The single highest disturbance rate was observed between 1 June and 13 July 2016, when 11,257 m2 of disturbances were created 210 
in just 42 days (a rate of 268 m2 day-1). A full 2.3 % of the total area of the plot was converted to new canopy disturbances during 211 
this time interval. In contrast, the total area of new disturbances across the rest of the 5-year period was 38,946 m2 (a rate of 24.3 212 
m2 day-1). 213 

 214 

Figure 3.  Temporal variation in canopy disturbance rates in the 50 ha plot on Barro Colorado Island, Panama, across measurement 215 
intervals. Gray shading indicates the wet seasons (May to December) of each year and ticks on the x axis indicate the first day of 216 
each year. Rates are shown in units of percent of area per month (30-day period). Note that the total area of each rectangle is 217 
proportional to the total area of canopy disturbed during that measurement interval. 218 

Rates of canopy disturbances were higher during the wet season (p = 0.03; Fig. 4a).  There was no significant difference 219 
in rates between the early and late wet season (p = 0.27, Fig. 4b). Very high rates of disturbance (> 0.3 % per month) were observed 220 
only in the wet season. 221 
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 222 

Figure 4. Comparisons of canopy disturbances rates between wet and dry seasons (a), and between early and late wet seasons (b). 223 
Violin plots depict the distributions of disturbance rates (% area disturbed per month) over time intervals, with the number of time 224 
intervals listed above each violin plot. Black dots and bars show means and 95% confidence intervals, respectively.  225 

 The best predictor of temporal variation in canopy disturbance rates was the frequency of 1-hour rainfall events above the 226 
99.4th percentile, here 35.7 mm hour-1, which explained 45 % of the variation (Fig. 5a). This threshold outperformed all other tested 227 
rainfall thresholds (all percentiles from 90.0 to 99.9, by 0.1 % of the different frequency time scales – Fig. 5b). Only two of these 228 
high rainfall events occurred during the same day (Table S2). The measurement interval with the highest disturbance rate (June 1 229 
to July 13 2016) included four such high rainfall events: 41.7 mm hour-1 on June 17, 41.9 mm hour-1 on June 23, 49.3 mm hour-1 230 
on June 30, and 36.1 mm hour-1 on July 4 (Table S2). The frequency of high horizontal maximum wind speed events was not 231 
significantly related with canopy disturbance rates. Indeed, Pearson correlations were negative for almost all wind speed variables 232 
(Fig. S6). 233 
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 234 

Figure 5. Relation of temporal variation in canopy disturbance rates to the frequency of extreme rainfall events. (a) The relationship 235 
for the single best predictor of canopy disturbance rate: the frequency of 1-hour periods with rainfall exceeding the 99.4th percentile; 236 
each point represents one measurement interval, and the dashed line shows the linear regression. (b) Variation in Pearson 237 
correlation between canopy disturbance rate and frequency of extreme rainfall events depending on the temporal grain (colors) and 238 
percentile threshold (x axis) for defining extreme rainfall events; the open red circle indicates the best correlation. 239 

  240 

3.2 Size structure of canopy disturbances 241 

 A total of 878 canopy disturbances with 49,958 m2 total area had their centers inside the plot and were not part of the 242 
excluded long interval, and thus were included in the size distribution analyses. The areas of mapped individual canopy 243 
disturbances ranged from 2.2 m2 to 486.7 m2, with a mean of 56.9 m2. The median disturbance area was 36.4 m2, whereas 50 % of 244 
the total area was in disturbances greater than 86.6 m2 (see Fig. 6a for the full cumulative distributions by gap number and area). 245 
Canopy disturbances with larger areas tended to have larger mean decreases in canopy height (Pearson r = 0.39, Fig. 6b).  246 

The size distribution of canopy disturbances was close to a power function for areas above 25 m2, and was relatively flat 247 
over the range of 5 to 25 m2 (Fig. 6c). The fitted exponent of the power function was -1.96 for canopy disturbances above 25 m2, 248 
but the Weibull distribution provided a better fit than the power function (Table 1). When distributions were fit to data including 249 
smaller size classes (> 2 m2, > 5 m2 or > 10 m2), the distribution is further from a power function; the Weibull remains the best fit, 250 
the exponential becomes the second-best fit, and the power function the worst fit of the three (Fig. S7, Table S3). 251 
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 252 

Figure 6. Size structure of canopy disturbances. (a) Cumulative number and area of canopy disturbances in relation to their area. 253 
(b) Relationship of mean vertical height drop to horizontal area among canopy disturbances. (c) Size distribution of canopy 254 
disturbances, together with Weibull and power function fits for canopy disturbances larger than 25 m2 (this threshold was chosen 255 
because we are confident we identified all canopy disturbances above this area, but we may have missed some smaller ones). The 256 
vertical dashed gray line indicates the 25 m2 threshold.  257 

 258 

  259 
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Table 1. Parameter values and delta AIC values for maximum likelihood fits of exponential, power and Weibull probability density 260 
functions to size distributions for canopy disturbances larger than 25 m2. Delta AIC is the difference in AIC from the best model. 261 
The best-fit model is highlighted in bold. 262 

Distribution λ k Delta AIC 

Exponential 0.020  62.45 

Power 1.963  16.50 

Weibull 6.745 0.448 0.00 

 263 

 264 

3.3 Treefalls and branchfalls 265 

 A total of 411 canopy disturbances with 23,289.9 m2 total area occurred during the final three years, and thus were 266 
included in the analyses of branchfall contributions. Branchfalls accounted for 23 % of the total area and 40 % of total number of 267 
disturbances in treefalls and branchfalls combined. Treefall and branchfall disturbance rates varied largely in parallel (Fig. 7, Fig. 268 
S8). Branchfalls were a larger proportion of events and area in some measurement periods than others. The ratio of area in 269 
branchfalls to area in treefalls ranged from 0.07 to 1.4 among measurement periods (Fig. 7a), and the ratio of number of branchfalls 270 
to number of treefalls ranged from 0.2 to 2.3 (Fig. 7b).  Standing dead trees accounted for 6.6 % of the total number and 6.7 % of 271 
the total area of mapped canopy disturbances.   272 

 273 

Figure 7. Relationship of temporal variation in branchfall rates to temporal variation in treefall rates, when measured by total area 274 
(a) and number of events (b). This includes measurement intervals from 23 December 2016 to 28 November 2019. 275 

   276 
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4. Discussion 277 

 The use of high frequency (approximately monthly) drone imagery enabled us to quantify temporal variation in canopy 278 
disturbance rates and to quantify the sizes of canopy disturbances at high temporal and spatial resolutions. We found that canopy 279 
disturbance rates of the BCI 50 ha plot varied strongly over time, and were higher in the wet season. The frequency of extreme 280 
rainfall events was the single best predictor of monthly variation in canopy disturbance rate during the 5-year study period. In 281 
contrast, maximum horizontal wind speed was not significantly related. The size distribution of canopy disturbances was close to 282 
a power function for larger canopy disturbances, but best fit by a Weibull function overall. Branchfalls accounted for 23 % of the 283 
total area of disturbances from treefalls and branchfalls combined, and branchfall rates varied largely in parallel with treefall rates 284 
over time. These findings contributed to an improved understanding of the size distribution, temporal variation and meteorological 285 
drivers of canopy disturbances in tropical forests. 286 

4.1 Temporal variation in canopy disturbance  287 

Canopy disturbance rates varied strongly over time in this moist tropical forest, and were higher in the wet season. A 288 
single time interval (June 1 to July 13 2016) accounted for 21 % of the total disturbed area of the BCI 50-ha plot. Treefall and 289 
branchfall disturbance rates varied largely in parallel, but not entirely. Some of the differences in temporal patterns simply reflect 290 
the stochastic nature of these processes, but different temporal patterns in branchfalls vs. treefalls could also reflect different 291 
sensitivity to particular abiotic drivers (e.g. wind regime, soil saturation). The frequency of rainfall events > 35.7 mm hour-1 292 
explained much of the variation in canopy disturbance rates among measurement intervals, whereas the frequency of high 293 
maximum horizontal wind speeds was not related. At our site, horizontal wind speeds are higher during the dry season, when 294 
canopy disturbance rates are lower (Fig. 4a, Fig. S1). We hypothesize that extreme high rainfall is associated with both saturated 295 
soils, increasing risk of uprooting, and with gusts having high horizontal and vertical windspeeds that increase stresses on tree 296 
crowns. Future studies should include high frequency measurements of vertical and horizontal windspeeds and soil moisture to 297 
better capture proximate drivers, and evaluate mechanistically formulated predicted models that include multiple variables.   298 

These results are consistent with previous findings on seasonal variation and the role of rainfall in gap formation in tropical 299 
forests.  A previous 4-year study on BCI found seasonal peaks in August and September, in the middle of the wet season, with 300 
monthly treefall rates significantly correlated with rainfall (r = 0.47, p < 0.02) (Brokaw, 1982). Tree mortality was also strongly 301 
and positively correlated with monthly rainfall (r = 0.85) in a 1-year study of a 10-ha site in the Central Amazon (Fontes et al., 302 
2018). A study monitored canopy trees monthly over five decades in the Central Amazon and found that trees died more often 303 
during wet months, even in drought years (Aleixo et al., 2019). A regional study of the Central Amazon based on 12 years of 304 
satellite data found that major windthrows (visible on LANDSAT) occurred more frequently between September and February, 305 
months characterized by heavy rainfall, than the rest of the year (Negrón-Juárez et al., 2017). Analysis of spatial variation in forest 306 
damage from Hurricane María in Puerto Rico found that total rainfall was the most important meteorological risk factor and 307 
maximum sustained one-minute wind speeds the second-most-important; these two variables were moderately correlated (r = 0.43) 308 
(Hall et al., 2020).  309 

Multiple studies have highlighted the importance of mesoscale convective systems, such as squall lines, for windthrows 310 
(Garstang et al., 1998; Negrón-Juárez et al., 2010, 2017; Araujo et al., 2017). In Panama, the period of June to August has the 311 
higher number of mesoscale convective systems (Jaramillo et al., 2017), and these were the months when we observed the highest 312 

https://doi.org/10.5194/bg-2021-102
Preprint. Discussion started: 20 April 2021
c© Author(s) 2021. CC BY 4.0 License.



 14 

canopy disturbance rates. The threshold rainfall rate of 35.7 mm hour-1, which defined the extreme rainfall rate that was the best 313 
predictor of canopy disturbance formation in our study, is six times higher than the mean rate for mesoscale convective systems in 314 
the Panama region (Jaramillo et al., 2017), highlighting the importance of extreme events.  315 

 316 

4.2 Mechanisms and size structure canopy disturbances 317 

 Gaps in the forest canopy can be caused proximally by treefalls of canopy trees, branchfalls of canopy branches, standing 318 
dead canopy trees, or senescing major canopy branches. Treefalls and branchfalls of canopy trees are well-captured in our analyses, 319 
which focus on short-term changes that indicate loss of major canopy elements.  In contrast, standing dead trees and senescing 320 
branches generally involve more subtle changes in the canopy over a longer period of time, and may be missed by our methods. 321 
Treefalls account for a majority of canopy tree mortality in most tropical forests, but standing tree mortality also plays a major 322 
role, especially in drought periods. Overall, treefalls (in which trees were uprooted or their trunks snapped) accounted for 51.2 % 323 
of all mortality of trees > 10 cm DBH in a large-scale study of tree mortality in 189 Amazonian plots  (Esquivel-Muelbert et al., 324 
2020) and 65 % in a study that monitored tree mortality in 10 ha of forest in the Central Amazon bi-monthly over one year (Fontes 325 
et al., 2018). Treefalls can involve a single canopy tree, or multiple canopy trees. Multi-tree treefalls can result from coordinated 326 
disturbances over a large area (e.g., large footprint wind disturbance) and/or from domino effects in which the failure of one canopy 327 
tree directly stresses one or more neighboring trees and causes them to fall as well (e.g., when additional trees are knocked down 328 
by the first tree, or pulled down because of connections via lianas). It has been hypothesized that canopy disturbances may also be 329 
contagious over longer time intervals, with increased risk of treefall near canopy gaps, but evidence for this in tropical forests is 330 
mixed (Jansen et al., 2008). Given that our measurement intervals are relatively short (~one month), almost all of our mapped 331 
canopy disturbances are likely to reflect single catastrophic events.   332 

 Our study is one of several that have documented size distributions of canopy disturbances (dynamic gaps) or of static 333 
canopy gaps above some size that are approximately power functions, both on BCI (Solé and Manrubia, 1995; Lobo and Dalling, 334 
2014) and in other tropical forests (Marvin and Asner, 2016; Asner et al., 2013; Kellner and Asner, 2009; Silva et al., 2019; Fisher 335 
et al., 2008). Static canopy gaps are areas in which the forest canopy is below a threshold height, e.g., 10 m, at a given time.  A 336 
power function distribution of disturbance event sizes (here canopy disturbances) and of the sizes of disturbed areas (canopy gaps) 337 
can emerge from self-organization of dynamic systems such as forests (Solé and Manrubia, 1995). These same self-organized 338 
dynamics lead to the development of equilibrium size distributions of trees, which are typically well-fit by Weibull distributions 339 
in tropical forests (Muller-Landau et al., 2006b, a). The relative dearth of canopy disturbances smaller than 25 m2 in our dataset, 340 
compared to what would be expected under a power function, may be explained in part by lower detection frequencies. Our 341 
methods are expected to capture all treefall and branchfalls above this threshold, but we may increasingly have missed smaller 342 
events, especially below ~ 5 m2. However, we consider it unlikely that this is a sufficient explanation for the shortfall in small 343 
trees, and suggest that it is more likely explained largely by the low frequency of small trees and branches in the canopy of this 344 
mature tropical forest, and thus a scarcity of small treefall and branchfall events.  345 

Although rarely quantified, branchfall is an important ecological process, with major contributions to woody turnover and 346 
necromass production. We found that branchfalls were almost as common as treefalls in number, although they contributed a 347 
substantially smaller total area of disturbance. Similarly, a ground survey of 78 canopy turnover events in a Brazilian Amazon 348 

https://doi.org/10.5194/bg-2021-102
Preprint. Discussion started: 20 April 2021
c© Author(s) 2021. CC BY 4.0 License.



 15 

forest found that 44 % were branchfalls, and that they accounted for 15 % of the total affected area (Leitold et al., 2018). In contrast, 349 
a landscape level analysis of LiDAR data concluded that branchfalls were seven times more frequent than treefalls and accounted 350 
for five times more area (Marvin and Asner, 2016).  However, this study classified branchfalls and treefalls based purely on the 351 
proportional decrease in canopy height (10-40 % decrease and 70-100 % decrease, respectively), a process liable to 352 
misclassification, it entirely ignored disturbances involving intermediate decreases in canopy height (40-70 %), and did not 353 
consider the possibility that any of these disturbances might be standing dead trees.  Thus the contrast between our findings and 354 
those of Marvin and Asner (2016) on the contributions of branchfalls may be due as much to methodological differences as to real 355 
variation in canopy dynamics.   356 

 357 

5. Conclusions and future directions 358 

A mechanistic understanding of the controls on woody residence time in tropical forests is urgently needed to predict the 359 
future of tropical forest carbon stocks and biodiversity under global change. Canopy trees account for a majority of the productivity 360 
and carbon stocks in tropical forests, and their fates are disproportionately important for determining stand-level woody residence 361 
time. Advances in drone hardware and photogrammetric software now make it relatively inexpensive and straightforward to 362 
quantify forest canopy structure and dynamics at high spatial and temporal resolution through digital aerial photogrammetry and 363 
repeat drone imagery acquisitions.  Here we applied these methods to 50 ha of old-growth tropical forest for five years, and 364 
analyzed the resulting products to quantify major drops in canopy height such as those created by branchfalls and treefalls, and 365 
thus calculate the canopy disturbance rate. We found that canopy disturbance rates are highly temporally variable, and are well-366 
predicted by extreme rainfall events. Even higher temporal resolution canopy dynamics data together with higher frequency three-367 
dimensional wind data would enable an even stronger assessment of the link to storm conditions, and additional analyses of the 368 
photogrammetry data could shed light on standing tree mortality.  The expansion of these methods to additional and larger areas, 369 
potentially in part through citizen science initiatives, has great potential to improve our understanding of tropical forest tree 370 
mortality, and the future of tropical forests under changing climate regimes.   371 
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