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Abstract. Leading an effective response to the accelerating crisis of anthropogenic climate 

change will require improved understanding of global carbon cycling. A critical source of 

uncertainty in Earth Systems Models (ESMs) is the role of microbes in mediating both the 

formation and decomposition of soil organic matter, and hence in determining patterns of CO2 

efflux. Traditionally, ESMs model carbon turnover as a first order process impacted primarily by 

abiotic factors, whereas contemporary biogeochemical models often explicitly represent the 

microbial biomass and enzyme pools as the active agents of decomposition. However, the 

combination of non-linear microbial kinetics and ecological heterogeneity across space and time 

guarantees that upscaled dynamics will violate mean-field assumptions via Jensen’s Inequality. 

Violations of mean-field assumptions mean that parameter estimates from models fit to upscaled 

data (e.g., eddy covariance towers) are likely systematically biased. Likewise, predictions of CO2 

efflux from models conditioned on mean-field values will also be biased. Here we present a 

generic mathematical analysis of upscaling Michaelis-Menten kinetics under heterogeneity and 

provide solutions in dimensionless form. We illustrate how our dimensionless form facilitates 

qualitative insight into the significance of this scale transition and argue that it will facilitate 

cross site intercomparisons of flux data. We also identify the critical terms that need to be 

constrained in order to unbias parameter estimates. 

1 Introduction  

The current crisis of anthropogenic climate change is expected to accelerate during the 21st 

century. Despite considerable effort to better constrain global biogeochemical models, 

considerable uncertainty remains about how best to represent emerging mechanistic 

understanding of soil element cycling into process-based models (Wieder et al., 2015; Todd-

Brown et al., 2018). This is a critical gap in knowledge because variations among models predict 

hugely varying responses to global change drivers such as temperature, soil moisture, and 𝐶𝑂2 

enrichment. For example, a traditional first-order linear model forecasts no change or even slight 

enhancement of soil organic carbon (SOC) pools by 2100 whereas one microbial-explicit model 

forecasts a loss of ~70Pg of carbon (C), depending on whether microbial physiology acclimates 

to higher temperatures (Wieder et al., 2013). In general, our understanding of how carbon (and 

other elements) cycles in soil is undergoing significant revision toward a more microbial-centric 

paradigm. In contrast to traditional first-order linear models (e.g. CENTURY, Parton et al., 

1987), microbial explicit models feature non-linear dynamics in which microbial biomass (or, 

similarly, microbially-driven enzyme pools) are responsible for decomposition, in addition to 

providing substrate for synthesis of potentially long-term SOC (Blankinship and Schimel, 2018; 

Blankinship et al., 2018). While indisputably a better representation of our scientific knowledge, 

non-linear microbial models face several well-known challenges, including less analytical 

tractability, greater computational challenges, and uncertainty about structural formulation and 

dynamics (Georgiou et al., 2017; Sihi et al., 2016; Wang et al., 2014). However, one critical 

consequence of non-linear microbial models that is only recently gaining attention is their 

implications for addressing the upscaling challenge. 

While the fields of population and community ecology have long confronted the challenges 

posed by non-linearity and heterogeneity in spatiotemporal scaling of ecological dynamics 

(Chesson, 2009; Levin, 1992), ecosystem ecology and biogeochemistry have tended to approach 

the challenge of scale either by 1) utilizing mean-field assumptions, or 2) addressing the 



challenge of scaling via grid-based computational/numeric methods. While there is nothing 

wrong inherently with either approach, they unfortunately cannot yield theoretical insight into 

the consequences of non-linearity and heterogeneity for scaling. Briefly, the combination of non-

linearity and heterogeneity means that aggregated behavior differs systematically from mean-

field predictions, a special case of Jensen’s Inequality. In mathematical notation: 

E[𝑓(𝑥)] ≠ 𝑓(E[𝑥]) (1) 

Although Jensen’s Inequality is well-known from basic probability theory (Ross, 2002) it’s 

implications for ecological dynamics under heterogeneity were not well-appreciated until the 

pioneering work of Peter Chesson in the 1990s (Chesson, 1998). In the case of carbon cycle 

science, there are a few immediate and critical applications. For instance, most trace gas 

emission processes are well-known to be non-linear functions of underlying drivers such as 

temperature and soil moisture. For example, ecosystem respiration is an exponential function of 

temperature (usually expressed in 𝑄10), and a unimodal function of soil moisture. Thus, when 

matching observations of 𝐶𝑂2 efflux (“F”) to ecosystems, variations in soil temperature and 

moisture could imply that F differs systematically from a mean-field prediction. Likewise, 

variations in biotic interactions between microbes likely play a key role in biogeochemical 

cycling (Buchkowski et al. 2017). In addition to missing critical analytical insight, not 

accounting for this behavior might have severe consequences for inverse modeling and 

estimation of the parameters governing process-based models (Bradford et al., 2021). Moreover, 

a significant advance in recent research has focused not only on microbial-explicit formulations, 

but the role of microbe-substrate colocation in the complex and heterogeneous soil environment 

in both the synthesis and decomposition of organic matter (Schimel and Schaeffer 2012, 

Lehmann et al. 2020). This spatial colocation itself has very important implications for scale 

transitions in soil systems, and thus requires specific theoretical attention from this perspective. 

Overall, the basic consequences of Jensen’s Inequality for estimation of trace gas emission (𝐶𝐻4 

and 𝑁2𝑂) were first discussed by Van Oijen et al. (2017), but have not been picked up on 

elsewhere, until the present work and by Chakrawal et al. (2020) 

Chakrawal et al. (2020) provide a detailed and compelling first-pass application of scale 

transition theory to biogeochemical modeling. Our contribution here complements their laudable 

effort by providing a more generic mathematical analysis of the scale transition, equally 

applicable to both forward and reverse Michaelis-Menten microbial kinetics. As in Chakrawal et 

al. (2020), we address the consequences of heterogeneity in both substrate/microbes 

(“biochemical heterogeneity”) as well as in the kinetic parameters (“ecological heterogeneity”). 

However, we diverge from their approach in that, rather than explore detailed simulation models, 

we derive a completely non-dimensionalized expression for aggregating non-linear microbial 

kinetics over both types of heterogeneity simultaneously. We illustrate the clarity this brings in 

several special cases of our full analysis. Altogether, our approach provides new insight into the 

properties of the scale transition and enables clear conclusions to be drawn across systems in 

terms of the role of spatial variances and covariances in shaping ecosystem carbon efflux. Our 

work provides a simplified, yet systematic framework around which to base subsequent 

empirical and simulation-based studies. 



2. Carbon Efflux and the Scale Transition 

A variety of microbial-explicit process-based models have been proposed in the literature, 

starting with the classic enzyme pool model of Schimel and Weintraub (2003). In order to 

elucidate universal properties of the scale transition, we focus here on the 𝐶𝑂2 efflux following 

decomposition of a single substrate by a single microbial pool obeying Michaelis-Menten (MM) 

dynamics: 

𝐹 = −𝑓(𝐶, 𝑀𝐵, 𝜃) (2) 

 

where F is the 𝐶𝑂2 flux, C is the carbon substrate, MB the live microbial biomass, 𝜃 is a vector 

of parameters, specifically 𝑉𝑚𝑎𝑥 (the maximum reaction rate given saturation of either C, in 

forward MM, or microbial biomass (MB), in reverse MM), 𝑘ℎ (the half-saturation constant), and  

carbon-use efficiency, . 

Our specific model for F is: 

𝐹 = (1 − 𝜀) × 𝐶 ×
𝑉𝑚𝑎𝑥𝑀𝐵

𝑘ℎ + 𝑀𝐵
(3) 

 

Following the terminology of Chesson (1998,2012), the above is our “patch” model and our goal 

is to understand how spatial variances and covariances impact the integrated flux, which 

represents the spatial expectation or E[𝐹] (hereafter denoted 𝐹), which represents 

                                                     𝐹̅ = −𝐶 × (1 − 𝜀) ×
𝑉𝑚𝑎𝑥𝑀𝐵

𝑘ℎ+𝑀𝐵
            (4)  

Where the bar over the expression represents the mean. The incorrect approach to solving for 

E[𝐹] is to simply plug-in the mean-field solution: 

𝐹̅ = −𝐶 × (1 − 𝜀) ×
𝑉𝑚𝑎𝑥 𝑀𝐵

𝑘ℎ + 𝑀𝐵 
(5) 

 

Analytically, an exact solution would require specification of a joint distribution for C, MB and 

parameters, 𝜋(𝑀𝐵, 𝐶, 𝜃), and solution of the convolution integral: 

∭ −𝑓(𝑀𝐵, 𝐶, 𝜃)𝜋(𝑀𝐵, 𝐶, 𝜃)𝑑𝑀𝐵𝑑𝐶𝑑𝜃 (6) 

 

However, following Chesson (2012) and Chakrawal et al. (2019) we are free to approximate the 

solution for arbitrary distributions using a Taylor Series approximation expanded to the 2nd 

moment. Specifically, we take the expectation over a multivariable Taylor Series expansion, 



centered around the mean-field values of all parameters 𝜃 (for simplicitiy, the variables 𝑀𝐵 and 

𝐶 are included in the parameter vector 𝜃): 

𝐹 ≈ E [𝑓(𝜃) +
1

2
𝜃

𝜃−𝜃
𝑇 𝐻𝜃

[𝑓(𝜃)]𝜃𝜃−𝜃] (7) 

 

where 𝐻[𝑓(𝜃)] represents the Hessian matrix of the function that determines the 𝐶𝑂2 efflux 𝐹 

(in this case Michaelis-Menten), 𝜃𝜃−𝜃 represents the deviation from the mean at each instance 

and for each of the parameters. It can easily be seen that 𝜃
𝜃−𝜃
𝑇 × 𝜃𝜃−𝜃 is the variance-covariance 

matrix, and that the first moment of the Taylor expansion cancels because the first derivative of 

𝜃𝜃−𝜃 is zero. 

2.1 Non-dimensionalization 

Expanding equation 7 out, we have 5 terms involving the variances of 𝐶, 𝑀𝐵, 1 − 𝜀, 𝑉𝑚𝑎𝑥, and 

𝑘ℎ, and 10 terms involving covariances among the parameters. We can redistribute the 

expectation operator over this approximation to see that we are dealing with the contributions 

from the variance-covariance terms, weighted by the second partial derivatives evaluated at the 

mean for each parameter. However, the resulting expression does not readily yield insight into 

the impact of scale transition upon the dynamics, since second partial derivatives and cross 

partial derivatives do not have easy intuition. Moreover, variances and covariances depend 

arbitrarily upon the scale of units and measurements involved, hindering both intuition and cross-

site comparisons. Therefore, we non-dimensionalize equation 7 for 𝐹̅ as follows: 

1) We define a dimensionless quantity 𝜆 as 
𝑀𝐵

𝑘ℎ
. 𝜆 thus represents a multiplicative factor 

expressing the ratio of the mean microbial biomass over it’s half-saturation value, indicating 

the microbial saturation for the decomposition. 

2) We divide all of the terms in 6 by their mean-field value, and represent the whole equation 

as a product:    

 𝐹̅ ≈ 𝑓(𝜃) + 𝑓(𝜃)((𝜃 − 𝜃)𝑇

𝜕2𝑓

𝜕𝜃2𝜃=𝜃

𝑓(𝜃)
(𝜃 − 𝜃)) = 𝑓(𝜃)(1 + ((𝜃 − 𝜃)𝑇

𝜕2𝑓

𝜕𝜃2𝜃=𝜃

𝑓(𝜃)
(𝜃 − 𝜃))                         

(8) 

3) We calculate the resulting expression for 𝐹 

4) We notice that 
𝑉𝑎𝑟(𝜃)

𝜃
2  can be re-expressed as (

𝑆𝐷(𝜃)

𝜃
)2 which in turn is the square of the 

dimensionless coefficient of variation (𝐶𝑉(𝜃))2. This enables us to reformulate the 

variance terms in (7). 

5) Similarly, since the covariance terms can be rewritten as 𝐶𝑂𝑉(𝑋, 𝑌) = 𝜌𝑋,𝑌𝑆𝐷(𝑋)𝑆𝐷(𝑌), 

we have the following equality: 

𝐶𝑂𝑉(𝑋, 𝑌)

𝑋𝑌
= 𝜌𝑋,𝑌𝐶𝑉(𝑋)𝐶𝑉(𝑌) (9) 



 

Applying steps 1-5 to all the terms in the equation, we end up with a fully dimensionless 

equation: 

𝐹 ≈ 𝑓(𝜃)(1 +
𝜆

(1+𝜆)2 [𝜌𝑘ℎ,𝑀𝐵𝐶𝑉(𝑘ℎ)𝐶𝑉(𝑀𝐵) − 𝐶𝑉(𝑀𝐵)2] +
1

(1+𝜆)2 [𝐶𝑉(𝑘ℎ)2 −

𝜌𝑘ℎ,𝑀𝐵𝐶𝑉(ℎ)𝐶𝑉(𝑀𝐵)] +
1

(1+𝜆)
[𝜌𝐶,𝑀𝐵𝐶𝑉(𝐶)𝐶𝑉(𝑀𝐵) + 𝜌𝑉𝑚,𝑀𝐵𝐶𝑉(𝑉𝑚)𝐶𝑉(𝑀𝐵) +

𝜌𝜖,𝑀𝐵𝐶𝑉(𝜖)𝐶𝑉(𝑀𝐵) + 𝜌𝐶,𝑘ℎ
𝐶𝑉(𝐶)𝐶𝑉(𝑘ℎ) − 𝜌𝑉𝑚,𝑘ℎ

𝐶𝑉(𝑉𝑚)𝐶𝑉(𝑘ℎ) − 𝜌𝑘ℎ,𝜖𝐶𝑉(𝑘ℎ)𝐶𝑉(𝜖)] +

𝜌𝑉𝑚,𝐶𝐶𝑉(𝑉𝑚)𝐶𝑉(𝐶) + 𝜌𝐶,𝜖𝐶𝑉(𝐶)𝐶𝑉(𝜖) + 𝜌𝜖,𝑉𝑚
𝐶𝑉(𝜖)𝐶𝑉(𝑉𝑚)                 

 (10) 

 

Note that by symmetry, we have also solved for the case of the forward Michaelis-Menten 

kinetics. This can be expressed simply by interchanging 𝐶 and 𝑀𝐵, and by correspondingly 

altering 𝜆 to represent the ratio of substrate availability over half-saturation. 

3. Discussion  

Having fully non-dimensionalized equation 7, we are in a much better position to gain analytical 

insight into the scale transition. To begin, we note the pivotal role played by the quantity 𝜆 

throughout this equation. 𝜆 scales the contributions of the parameter variation and correlation 

terms to the deviation from mean field behavior according to the ratios 
𝜆

(1+𝜆)2, 
1

(1+𝜆)2, and 
1

1+𝜆
. All 

of the parameter variance terms (which have become 𝐶𝑉(𝜃)2 upon non-dimensionalization), are 

scaled by one of these three 𝜆 ratios, alongside 7 out of 10 of the covariance terms. Overall, low 

𝜆 (here 𝜆 <≈ 1) keeps all the spatial correction terms in play, while increasing 𝜆 tends to 

simplify matters. As noted by others (Sihi et al., 2016; Buchkowski et al., 2017), as 𝑀𝐵 → ∞ 

(equivalent to MB >> 𝑘ℎ or 𝜆 → ∞), reverse Michaelis-Menten kinetics converge to first order, 

leaving: 

𝐹 = −𝐶 × (1 − 𝜖) × 𝑉𝑚𝑎𝑥 (11) 

Accordingly, in our setup, the multiplicative factor for the scale transition correction approaches 

a simplified expression, as 𝜆 → ∞: 

𝐹 → 𝑓(𝜃) (1 + 𝜌𝑉𝑚,𝐶𝐶𝑉(𝑉𝑚)𝐶𝑉(𝐶) + 𝜌𝐶,𝜖𝐶𝑉(𝐶)𝐶𝑉(𝜖) + 𝜌𝜖,𝑉𝑚
𝐶𝑉(𝜖)𝐶𝑉(𝑉𝑚)) (12) 

This is quite remarkable. Despite invoking the situation where microbial biomass (and its 

enzyme supply) is effectively infinite - thus linearizing the underlying patch models - we cannot 

eliminate the possibility of a potentially substantial deviation from mean-field when scaling 

decomposition kinetics. We note that in this resulting expression, we have reduced the situation 

to a set of three critical correlations involving two microbial physiological parameters (𝜖, and 

𝑉𝑚), and substrate availability (𝐶). Regardless of their respective variabilities (CV terms), if 

these correlations are close to zero, then the whole expression converges to mean field. 



Returning to the situation where 𝜆 is not large, if we ignore the correlation terms (temporarily 

setting to zero), we see that there are direct contributions to the scale transition from the 

variability in 𝑀𝐵 and 𝑘ℎ that may, to some extent, balance each other: 

𝐹 = 𝑓(𝜃)(1 +
1

((1+𝜆)2)
[𝐶𝑉(𝑘ℎ)2] −

𝜆

(1+𝜆)2
[𝐶𝑉(𝑀𝐵)2])     (13) 

Focusing on the offsetting correction terms, we can re-write as: 

𝜆

(1+𝜆)2
[

𝐶𝑉(𝑘ℎ)2

𝜆
− 𝐶𝑉(𝑀𝐵)2]       (14) 

and for the case of 𝜆 = 1, this becomes: 

                                                        
1

4
[𝐶𝑉(𝑘ℎ)2 − 𝐶𝑉(𝑀𝐵)2]         (15) 

Thus, variability in the factors of soil protection that impact upon 𝑘ℎ in practice, can offset the 

impact of variability in microbial biomass itself. 

More generally, starting with our dimensionless equation 10 puts modelers and empiricists in a 

better position to assess the quantitative significance of the scale transition correction across 

systems compared to expressions with opaque second partial derivatives and cross derivatives, 

and arbitrarily scaled variance terms. By re-expressing 𝐹 in terms of dimensionless coefficients 

of variation, correlation coefficients and 𝜆, we can plug-in realistic values for variability in any 

relevant parameter and assess the % effect on 𝐹 in terms of deviation from mean field behavior. 

We argue that this formulation possesses significant advantages not only in understanding how 

to scale flux estimates (𝐹) within a site, but going forward will help facilitate intercomparison 

among sites in terms of their scale-free variability. In particular, we explore variation in 

dominant environmental drivers of inter-site variation (temperature and soil moisture) below. But 

first, we analyze how the scale transition sheds new light on microbe-substrate colocation.  

3.1 Spatial Colocation of Microbes and Substrate 

To illustrate these advantages in interpretability, we first take the special case of a model where 

we treat all parameters as constant (and known) except substrate and microbial biomass. This 

corresponds to setting the other CV and 𝜌 terms to 0. In this case, we are isolating the impact of 

the spatial colocation of substrate and decomposers. Our equation becomes: 

𝐹 ≈ 𝑓(𝜃)(1 −
𝜆

(1+𝜆)2 𝐶𝑉(𝑀𝐵)2 +
1

(1+𝜆)
(𝜌𝐶,𝑀𝐵𝐶𝑉(𝐶)𝐶𝑉(𝑀𝐵)))    (16) 

In the case of this formulation, there is a very clear dual convergence as 𝜆 increases: 

1. deviation from mean-field behavior declines, and 

2. first order kinetics are approached 

Indeed, our equation 16 reveals the exact speed of this convergence in terms of dimensionless 𝜆 

and a balance of 𝐶𝑉(𝑀𝐵), 𝐶𝑉(𝐶) and their correlation. 

We illustrate the scale transition solutions to equation 16 as a function of  for various choices of 

CV(C), CV(MB) and 𝜌 in Fig. 1: 



 

Figure 1: Scale transition correction for models given spatial colocation between microbes and 

substrate across a gradient of 𝜆 values, and for a variety of correlation 𝜌 values (0-1), with 

CV(SOC) held constant at 0.5, a) CV(MB) = 0.25, b) CV(MB) = 0.5, and c) CV(MB) = 1.Note 

that in panel c) the system appears to converge on a value lower than 1. However, as 𝜆 

increases, convergence to 1 does occur, albeit slowly, as it must according to equation 16.  

In the case of pure spatial colocation, with no variation in the kinetic parameters, the scale 

transition correction factor varies from a maximum of 1.5 to a minimum around 0.75, and in all 

cases indeed converges to 1 as  increases. The variability assumed for C and MB impacts only 

the scale of the correction factor, not the qualitative behavior as 𝜆 and 𝜌 vary. One benefit of 

having a simplified, generic dimensionless equation of this sort is that it enables us to think in a 

unit-free/scale-free manner about the plausible range of the scale transition correction given 

transparent assumptions about variability and correlations. 

Another benefit is that it is mathematically tractable to see how the variance and covariance 

terms can balance each other, and to solve for where they are equal. If we introduce a new term 

𝜆2 representing the relationship between 𝐶𝑉(𝑀𝐵) and 𝐶𝑉(𝐶) as follows 𝐶𝑉(𝑀𝐵) = 𝜆2𝐶𝑉(𝐶), 

we can re-express the the deviation of the mean-field correction from 1 as: 

                                                𝐶𝑉(𝑀𝐵)2[
1

1+𝜆
(𝜌𝜆2 −

𝜆

(1+𝜆)
)]          (17) 

Thus, whether the correction is positive or negative depends crucially on the product of the 

colocation correlation coefficient 𝜌 and the extent of variability in substrate relative to variability 

in microbes. 

If we fix 𝜆 to unity, as done in our Fig.1, our mean-field deviation simplifies to: 

𝐶𝑉(𝑀𝐵)2[
1

2
(𝜌𝜆2 −

1

2
)]              (18) 



In general, the scale transition correction is larger to the extent that microbial variability exceeds 

substrate variability under reverse Michaelis-Menten kinetics (the opposite relation holds for 

forward Michaelis-Menten by symmetry). Thus, variability in microbial biomass is not only 

important by itself in driving Jensen’s Inequality, but also with respect to variability in substrate 

supply. Our analysis thus highlights another route of convergence back to the mean field 

beyond the simple increase of 𝜆: variability in substrate increasing to match variability in 

microbes in the presence of positive spatial colocation factor. We also note that the 

magnitude of the scale transition correction scales as the square of the coefficient of variation of 

microbial biomass. Quadratic scaling means that at low to moderate levels of variability, the 

deviation from mean field behavior is likely to be minimal, but at moderately high to high levels 

of variability, severe deviations can be expected. Finally, we note that throughout, our 

development of these kinetics assume proportionality to microbial biomass, but it is really the 

live/active fraction that matters. Since the active fraction vary considerably with environmental 

conditions (e.g. soil temperature and moisture explored below), we believe it is reasonable to 

expect large coefficients of variation overall in most real-world ecosystems.  

3.2 Environmental Heterogeneity 

So far, we have analyzed in depth the role of variability in microbes and their substrate, but not 

in the ecological drivers underlying maximal reaction rates (i.e. 𝑉𝑚𝑎𝑥) or half-saturation (i.e. 𝑘ℎ). 

We start with the observation that both linear first order and non-linear microbial models will 

show characteristic scale transitions given heterogeneity in temperature and soil moisture. 

Consider the asymptotic convergence of the reverse MM to first order 

𝑑𝐶

𝑑𝑡
= −𝑉𝑚𝑎𝑥𝐶       (19) 

This is mathematically equivalent to the more standard way of writing these models down as 

𝑑𝐶

𝑑𝑡
= −𝑘𝐶       (20) 

In the analysis that follows, we will consider both temperature and soil moisture as factors that 

could drive variations in 𝑉𝑚𝑎𝑥 over space or time.  

 

3.2.1 Scale Transition over Temperature Heterogeneity   

To make matters clear, we re-express the rate limiting maximal reaction velocity 𝑉𝑚𝑎𝑥 first as a 

function of temperature (assuming all else constant): 

𝑉𝑚𝑎𝑥 = 𝑒𝑎𝑇       (21) 

In this case, our integrated flux equation will be: 

𝑑𝐶

𝑑𝑡
= −𝑒𝑎𝑇 × (1 − ϵ) × 𝐶                    (22) 

Allowing for variability in 𝑇, this integrated equation will show characteristic scale transitions 

given the convex (exponential) relationship with 𝑇. 



Using the Taylor expansion again to second order we have: 

𝑉𝑚𝑎𝑥 ≈ 𝑒𝑎𝑇(1 +
1

2
𝑎2𝑉𝑎𝑟(𝑇))     (23) 

The critical scale transition correction term here is again multiplicative, and we re-express it into 

a function of a dimensionless coefficient of variation parameter more suited to ready 

interpretation. First, the exponential dependence of respiration on temperature is canonically 

codified in terms of 𝑄10 scaling. We substitute 𝑎 =
𝑙𝑜𝑔(𝑄10)

10
, and end up with: 

1 +
1

2
𝑎2𝑉𝑎𝑟(𝑇) = 1 +

1

2
(

𝑙𝑜𝑔(𝑄10)

10
)2𝑉𝑎𝑟(𝑇) = 1 +

1

200
(𝑙𝑜𝑔(𝑄10))2(𝑆𝐷(𝑇))2 =

1 +
1

200
(𝑙𝑜𝑔(𝑄10))2(𝑇𝐶𝑉(𝑇))2            (24) 

For a “typical” 𝑄10 of 2.5, and a 𝑇 of 25, we see the multiplicative scale transition correction in 

figure 2: 

 

Figure 2: Scale transition correction for Q10 temperature response scaling given coefficient of 

variation CV(Temp) from 0 to 0.5 

As is clear in Fig. 2, the scale transition for temperature is extremely convex. Integration of 

fluxes over ecosystems with significant heterogeneity in temperature invokes substantial 

deviation from a mean-field model. For instance, at a CV of 0.2, the scale transition correction is 

1.10, but by a CV of 0.5 it is 1.66. Obviously, the significance of this depends on the scale and 

heterogeneity over which an accurate flux model is desired. For a smaller footprint eddy 

covariance tower (e.g. Gomez-Casanovas et al., 2018) over a uniform habitat type, soil (and near 

surface) temperatures probably do not vary by much more than 20%. Regardless, our general 

mathematical analysis quantifies and clarifies exactly how the scale of variation influences the 

degree of the scale transition correction. 

Notably, the only difference between the scale transition correction for first order and for reverse 

Michaelis-Menten kinetics is that in the latter there would be additional correlation terms to 



consider, e.g. the correlation between temperature and 𝑉𝑚𝑎𝑥, temperature and 𝑘ℎ, as well as 

temperature and 𝐶 and 𝑀𝐵. 

3.2.2 Scale Transition over Soil Moisture Heterogeneity   

Unlike soil temperature, we expect heterotrophic respiration to respond in a unimodal fashion to 

soil moisture. At low levels of soil moisture, microbes are moisture limited, and at high levels 

they are oxygen limited, with some optimum range of values in the middle. Although a 

considerable amount of work has gone into developing soil moisture functions, including both 

empirical and theoretical derivations (Yan et al., 2018; Tang and Riley, 2019) , there is no clear 

consensus on an optimal representation. Moreover, many of the candidate functions complicate 

analysis considerably by virtue of stepwise formulation (Linn and Doran, 1984). Therefore, to 

study the implications of the scale transition we proceed via a powerful simplifying abstraction, 

and simply represent the soil moisture response as a quadratic of the form: 

   𝑉𝑚𝑎𝑥 =  𝛽𝜙 − 𝛽𝜙2                  (25) 

where 𝜙 represents the soil moisture content. We normalize our function in two senses: first in 

output space we assume that it has a maximum of 1 (i.e. represents heterotrophic respiration 

relative to a maximum value of 1), and second that the soil moisture content 𝜙 is itself bounded 

between 0 and 1, with a peak in the middle at 0.5. Thus, our function captures the unimodal 

abstraction in a symmetric form. Given these conditions, there is a unique solution at 𝛽 = 4.  

We seek the scale transition:  

                                                    𝑉𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ =  4𝜙 − 4𝜙2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                  (26) 

As before, we can approximate this as a mean-field plus a correction to the mean field, which 

after some re-writing becomes:  

                                         𝑉𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ≅  4(𝜙 ̅̅ ̅̅  −  𝜙̅2 − 𝑉𝑎𝑟(𝜙))        (27) 

We then substitute: 𝑉𝑎𝑟(𝜙)  = 𝜙̅2𝐶𝑉(𝜙)2, and re-express:  

                                     𝑉𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ≅  4(𝜙 ̅̅ ̅̅  −  𝜙̅2(1 + 𝐶𝑉(𝜙)2))       (28) 

 



Figure 3: a. heterotrophic respiration as a function of soil moisture given solution in equation 

25. Note that soil moisture is normalized with a maximum response at 0.5, where 1 represents 

complete waterlogging, and respiration is normalized to a maximum of 1. b. Scale transition 

approximate solution for respiration as a function of the dimensionless coefficient of variation of 

soil moisture where mean field soil moisture is either 0.5 (top curve) or 0.25 (bottom curve, 

equivalent to 0.75 by symmetry).  

As shown in Fig. 3, where mean field soil moisture is close to the optimal value, scale transition 

effects are expected to be quite large. For instance, by the time the coefficient of variation is 0.5, 

efflux would only be 75%, and declines rapidly to 0 as the coefficient of variation approaches 1. 

Clearly, this latter outcome is not necessarily biologically realistic, and a more detailed 

numerical experiment should be done to explore scenarios with that much variation. However, 

our abstractions yield the simple insight that mean-field solutions invariably overestimate the 

real flux, and this overestimation can be considerable. In our experience, soil moisture varies 

tremendously both over space, especially given contrasts in topography, relief and underlying 

soils, but perhaps even more so over time, including within a small area, due to day-day and even 

hour-by-hour variations in precipitation, evapotranspiration and drainage. To the extent that 

ecosystems deviate from a stable, consistent soil moisture regime, we should expect strong scale 

transition effects.  

Our results on soil moisture relate to the argument by Tang and Riley (2019) that heterotrophic 

respiration arises from a two-step process whereby substrate must diffuse into the vicinity of 

microbes, and then be taken up – the latter by a Michaelis-Menten kinetic. However, microscale 

variations in soil moisture mediate and regulate the first step of the process, so that the “effective 

substrate affinity” (the kh term in the Michaelis-Menten model) deviates from the base substrate 

affinity of the second step. Tang and Riley (2019) point out that the effective substrate affinity 

therefore reflects microscale heterogeneity, and they argue that experimentalists should account 

for this when fitting efflux data to models. But what about scaling up in the field from small 

plots to fields to larger ecosystem units? Fortunately, our analytical framework can be readily 

queried to account for heterogeneity in substrate affinity (kh).   



3.2.2.1 Heterogeneity in Substrate Affinity  

We proceed by first by holding all terms constant except allowing the half saturation constant kh 

to vary, reflecting variations in soil moisture, or frankly any other factor regulating microbial 

access to substrate (e.g. soil aggregation, organomineral complexes, etc. Schmidt et al., 2011, 

Lehmann et al., 2020). As usual, we seek the scale transition over 
𝑉𝑚𝑎𝑥𝑀𝐵

𝑘ℎ+𝑀𝐵
= 𝑓(𝑘ℎ). We can 

recover this transition quickly from equation (10) by extracting only the term with (kh), or 

rederive from scratch holding everything else as constant. The result is that the dimensionless 

scale transition correction term is:  

                                                         1 + 
1

(1+𝜆)2 𝐶𝑉(𝑘ℎ)2      (29)  

Intriguingly, this result shows that heterogeneity in substrate affinity per se results in a convex 

correction term, implying that mean-field models will under-estimate rather than overestimate 

the resulting fluxes. Given that the correction is proportional to the inverse of the square of , 

this correction converges rapidly to 1 (no scale transition) as mean microbial biomass increases 

(Figure 4). Nevertheless, where heterogeneity is high and  is around 1 or lower, the correction 

could be substantial.  

More broadly, our analysis highlights that, under non-linear Michaelis-Menten kinetics for 

representing carbon processing, the impact of environmental heterogeneity acting on the 

substrate affinity parameter is opposite of when it acts on the Vmax parameter. Thus, if we 

represent soil moisture as a modifier to the Vmax in the numerator, heterogeneity in soil moisture 

should result in lower carbon efflux than mean field, whereas if we represent soil moisture 

heterogeneity by way of substrate affinity it is the opposite. At first glance, this finding appears 

inconsistent with Tang and Riley (2019). However, we note that their full kinetic formulations 

include soil moisture acting in both roles ultimately, and therefore resulting in the familiar 

unimodal soil moisture-respiration relationship. For instance, their application of ‘Dual Monod’ 

kinetics include soil moisture driving effective substrate affinity terms for both carbon and water, 

as well as an effective fraction of active microbes (which modifies the numerator).  

Thus, for the analysis of upscaling fluxes in the presence of soil moisture heterogeneity, we 

expect the concave corrections of Figure 3b to hold, regardless of the fine-scale details of the soil 

moisture function used.  



 

Figure 4: Scale transition factor for variations in the substrate affinity (“k”) parameter in 

Michaelis-Menten kinetics as a function of dimensionless  (the ratio of mean-field microbial 

biomass over mean-field k), for two scenarios of variability in affinity, one where coefficient of 

variation = 1 (top curve), the other where coefficient of variation = 0.5 (bottom curve).  

3.3 Lessons for Scientific Inference 

We close our discussion by considering the implications of the scale transition for advancing the 

state of biogeochemical modeling. Critically, the representation of non-linear (microbial driven) 

kinetics is a crucial modeling choice with large implications for long-term SOC forecasts. 

Traditional first-order process-based models dodge explicit representation of these kinetics, but 

nonetheless have worked well in practice. This state of affairs persists because both non-linear 

and linear kinetics are capable of representing coarse-scaled biogeochemistry reasonably well, at 

least in certain respects. Since first order kinetics are known to be a crude approximation, the 

crucial question for practice is not whether they are “true”, but rather whether there is significant, 

systematic information loss inherent to their use. Fortunately, the scale transition offers a clear, 

clean path to discriminate between these alternative model formulations. 

As noted throughout, the dimensionless term 𝜆 plays a critical role in linking the non-linear 

(Michaelis-Menten) kinetics to the first order kinetics. As 𝜆 increases, the non-linear kinetics 

converge to first order. Thus, in seeking to infer where the non-linear kinetic models provide 

substantial advantages, ensuring that 𝜆 is not too large (>>1) is the first priority.  

Previous work Sihi et al. (2016) has approached this question theoretically, from first principles. 

Here, we point out that demonstrating substantial deviation from mean-field model when fitting 



non-linear kinetics to data is both a necessary and sufficient condition for inferring that 𝜆 is not 

too large. Thus, we recommend that time series of flux data be fit to both a first order and a non-

linear kinetic model, where crucial covariates including substrate (SOC), microbial biomass, and 

possibly environmental parameters such as temperature, have been measured sufficiently well to 

quantify the relevant variances and covariances. Where predictive performance and forecasting 

are the primary goals, we recommend careful consideration of model parameterizations 

(i.e. based on leave-one-out cross validation), and model combination via “stacking” where it is 

difficult to infer a decisive “winner” (Yao et al., 2018) acknowledging that carrying this out is a 

significant enterprise.  

In addition to the role of 𝜆, our analysis also cleanly shows the contribution of other terms to the 

scale transition, and thus alternative metrics to assess. First and foremost, accounting for the 

spatial colocation of microbial biomass and substrate (according to equation 16 above) or the 

various correlation terms between microbial biomass and kinetic/environmental factors in 

equation 10. Moreover, recent theoretical developments offer quantitative insights into the 

interpretation of the half saturation constant (or the substrate affinity parameter) and thus 

 (Tang and Riley, 2019). Tang and Riley (2019) decompose microbial access to substrate into a 

two-step process, which is often strongly modified by soil moisture. Moreover, conceptual 

advances suggest that colocation is a potentially important factor in organic matter 

decomposition vs. stabilization (Schimel and Schaeffer 2012, Lehmann et al. 2020). Here, we 

show that both affinity and colocation are co-dependent in their effects on scale transition.  

In addition to fitting fully parameterized flux models (as above), simpler statistical models could 

be fit examining the role of variations in microbial biomass, or colocation of microbial biomass 

and SOC, in explaining across-site variations in ecosystem respiratory fluxes (F). A substantial 

role for either correlation of MB and C, or their variability, would constitute ipso facto 

evidence of the preferability of well-formulated non-linear kinetic models. On the other 

hand, small roles for colocation, or evidence of large values of 𝜆 in practice would suggest 

minimal advantage to abandoning first order models in favor of more complex microbial models. 

A meta-analytical approach across sites will benefit greatly from our formulation in terms of 

dimensionless quantities like 𝜆 and the various coefficients of variation.  

We further note that the scale transition presented here is closely related to global sensitivity 

analysis (GSA, Saltelli et al. 2010). In its fundamental setup, a GSA tests effects of variability in 

parameters. While GSA has been typically used towards characterizing the uncertainty of 

parameters, it is directly applicable to spatial and temporal variability. For example, the first 

order results of a GSA (or the result of a one at a time parameter substitution), provides the 

contribution of that parameter to the scale transition. Similarly, the ‘all but one’ perturbation 

offers insights into how the net effect of all parameters (and variables) violates the mean field 

approximation. Therefore, a computationally expensive GSA can be leveraged to garner further 

insights on top of sensitivity effects, allowing for the characterization of the scale transition. 

Indeed, a computationally intensive approach to simulating scale transitions was utilized by 

Chakrawal et al. (2020) to good effect. However, we suggest future computational studies build 

off of the dimensionless approach studied here. Obviously, the parameter space needs to be 

properly chosen (or subsetted) to reflect appropriate means, variabilities, and perhaps most 

challenging - correlations. Equation 10 would then provide analytical, albeit approximate, insight 

into the scale transition effects, while the GSA would enable study of any shortcomings from 



approximation, and also allow for quantification of individual variable importance for those 

parameters that enter into the dynamics in multiple places.  

Finally, our analysis of environmental factors including temperature and soil moisture leads to 

readily testable predictions. For temperature, the scale transition is convex and thus, ceteris 

paribus, variation in soil temperature should lead to greater effluxes than mean field models 

would predict. The implications of this for climate-feedback should be studied in greater detail. 

For soil moisture, which varies considerably across both space and especially time, our analysis 

based on an idealized quadratic representation yields a concave scale transition correction, i.e. 

the mean-field soil moisture will over-estimate efflux. Likewise, when represented in both 

substrate affinity and multiplicative active microbial biomass fraction terms, as in Tang and 

Riley (2019), the scale transition remains concave. However, environmental factors that act only 

through substrate affinity would result in a convex correction as in Figure 4. Once again, we 

highlight that the nature of scaling corrections, wherever it is possible to be studied empirically, 

can provide insight into the most productive representations of our models.  

4. Conclusions 

Here, we have illustrated how the spatial scale transition can be expressed in dimensionless form, 

yielding insight into the systematic operation of Jensen’s Inequality in upscaling microbial 

decomposition kinetics. Our analysis has identified the central role of the dimensionless quantity 

𝜆 - representing the ratio of mean-field microbial biomass over its half-saturation value - in 

governing the extent of the scale transition correction, expressed here in multiplicative form best 

facilitating comparison among systems. For somewhat simplified scenarios - such as restricting 

to spatial colocation of substrate and microbes - as 𝜆 → ∞, the mean-field correction goes to 0 

and the model converges to first order. 

This dual sense of convergence also provides opportunity to empirically test for the presence of 

significant non-linear microbial dynamics in upscaled field data: to the extent that upscaled 

fluxes deviate from the flux estimated at mean-field conditions, we have ipso facto evidence for 

the importance of formulating our biogeochemical models with these non-linear terms. 

Conversely, where there is close agreement between mean-field and upscaled fluxes, there are 

arguably stronger reasons for retaining first-order process model formulations. 

In closing, we would like to point out how this mathematical analysis illustrates the challenge of 

scaling quite nicely. In the context of non-linear models, for each parameter that is allowed to 

vary in space, there is not only a new variance parameter, but a number of new covariance terms 

are induced, growing as the factorial of the number of varying parameters (5
2
)! (Fig. 3). Thus, in 

the case of the 5 parameter function considered here, the full approximation has 5 mean field 

terms, 5 coefficients of variation, 10 correlation coefficients, and the dimensionless quantity 𝜆. 



 

Figure 3: Model complexity grows exponentially with number of spatially varying parameters. 

We argue to keep models as simple as possible for both analytical and computational 

tractability. 

Even with a maximally generic and simplified expression, fitting such non-linear time series 

models to field data still represents quite a challenge, especially while adequately accounting for 

and propagating uncertainty.  Modelers and theoreticians should appreciate the complexity of the 

task at hand. Fortunately, our analysis has identified a potentially robust route to limiting model 

complexity: screen systematically for the importance of various correlations in explaining 

variations in fluxes. Accordingly, we recommend that research focus first upon spatial colocation 

of MB and C, which is readily measured, and then to thoughtfully and carefully expand models 

with additional terms as needed. 

Author Contributions: CHW conceived the original concept, developed the mathematical 

analysis, and wrote the manuscript. SG developed the concepts, contributed to the mathematical 

analysis, and co-authored and edited the manuscript.  

Competing Interests: None declared. 

Acknowledgements: We stand on the shoulders of giants: Peter Chesson’s research program on 

Scale Transition was enormously influential. We thank T. Trevor Caughlin for introducing us to 

Chesson’s papers many years ago, and to everyone who has humored discussions of Jensen’s 

Inequality ever since. Will Wieder and an anonymous reviewer provided constructive reviews 

that improved our manuscript, and Kathe Todd-Brown provided valuable discussion as we 

worked through revisions.  

References 

 



Blankinship, J. C. and Schimel, J. P.: Biotic versus Abiotic Controls on Bioavailable Soil 
Organic Carbon, 2, 10, https://doi.org/10.3390/soilsystems2010010, 2018. 

Blankinship, J. C., Berhe, A. A., Crow, S. E., Druhan, J. L., Heckman, K. A., Keiluweit, M., 
Lawrence, C. R., Marín-Spiotta, E., Plante, A. F., Rasmussen, C., Schädel, C., Schimel, J. P., 
Sierra, C. A., Thompson, A., Wagai, R., and Wieder, W. R.: Improving understanding of soil 
organic matter dynamics by triangulating theories, measurements, and models, 
Biogeochemistry, 140, 1–13, https://doi.org/10.1007/s10533-018-0478-2, 2018. 

Bradford, M. A., Wood, S. A., Addicott, E. T., Fenichel, E. P., Fields, N., González-Rivero, J., 
Jevon, F. V., Maynard, D. S., Oldfield, E. E., Polussa, A., Ward, E. B., and Wieder, W. R.: 
Quantifying microbial control of soil organic matter dynamics at macrosystem scales, 
Biogeochemistry, https://doi.org/10.1007/s10533-021-00789-5, 2021. 

Buchkowski, R. W., Bradford, M. A., Grandy, A. S., Schmitz, O. J., and Wieder, W. R.: Applying 
population and community ecology theory to advance understanding of belowground 
biogeochemistry, 20, 231–245, https://doi.org/10.1111/ele.12712, 2017. 

Chakrawal, A., Herrmann, A. M., Koestel, J., Jarsjö, J., Nunan, N., Kätterer, T., and Manzoni, S.: 
Dynamic upscaling of decomposition kinetics for carbon cycling models, 13, 1399–1429, 
https://doi.org/10.5194/gmd-13-1399-2020, 2020. 

Chesson, P.: Spatial scales in the study of reef fishes: A theoretical perspective, 23, 209–215, 
https://doi.org/10.1111/j.1442-9993.1998.tb00722.x, 1998. 

Chesson, P.: Scale transition theory with special reference to species coexistence in a 
variable environment, 3, 149–163, https://doi.org/10.1080/17513750802585491, 2009. 

Chesson, P.: Scale transition theory: Its aims, motivations and predictions, Ecological 
Complexity, 10, 52–68, https://doi.org/10.1016/j.ecocom.2011.11.002, 2012. 

Georgiou, K., Abramoff, R. Z., Harte, J., Riley, W. J., and Torn, M. S.: Microbial community-
level regulation explains soil carbon responses to long-term litter manipulations, 8, 1223, 
https://doi.org/10.1038/s41467-017-01116-z, 2017. 

Gomez-Casanovas, N., DeLucia, N. J., Bernacchi, C. J., Boughton, E. H., Sparks, J. P., 
Chamberlain, S. D., and DeLucia, E. H.: Grazing alters net ecosystem C fluxes and the global 
warming potential of a subtropical pasture, 28, 557–572, 
https://doi.org/10.1002/eap.1670, 2018. 

Lehmann, J., Hansel, C. M., Kaiser, C., Kleber, M., Maher, K., Manzoni, S., Nunan, N., 
Reichstein, M., Schimel, J. P., Torn, M. S., Wieder, W. R., and Kögel-Knabner, I.: Persistence of 
soil organic carbon caused by functional complexity, 13, 529–534, 
https://doi.org/10.1038/s41561-020-0612-3, 2020. 

Levin, S. A.: The problem of pattern and scale in Ecology: the Robert H. MacArthur award 
lecture, Ecology, 73, 1943–1967, https://doi.org/10.2307/1941447, 1992. 



Linn, D. M. and Doran, J. W.: Effect of Water-Filled Pore Space on Carbon Dioxide and 
Nitrous Oxide Production in Tilled and Nontilled Soils, 48, 1267–1272, 
https://doi.org/10.2136/sssaj1984.03615995004800060013x, 1984. 

Parton, W. J., Schimel, D. S., Cole, C. V., and Ojima, D. S.: Analysis of factors controlling soil 
organic matter levels in Great Plains grasslands, 51, 1173, 
https://doi.org/10.2136/sssaj1987.03615995005100050015x, 1987. 

Ross, S.: A first course in probability, Pearson Education India, 2002. 

Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, 
M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., 
and Trumbore, S. E.: Persistence of soil organic matter as an ecosystem property, Nature, 
478, 49–56, https://doi.org/10.1038/nature10386, 2011. 

Sihi, D., Gerber, S., Inglett, P. W., and Inglett, K. S.: Comparing models of microbial–substrate 
interactions and their response to warming, Biogeosciences, 13, 1733–1752, 
https://doi.org/10.5194/bg-13-1733-2016, 2016. 

Tang, J. and Riley, W. J.: A Theory of Effective Microbial Substrate Affinity Parameters in 
Variably Saturated Soils and an Example Application to Aerobic Soil Heterotrophic 
Respiration, 124, 918–940, https://doi.org/10.1029/2018JG004779, 2019. 

Todd-Brown, K. E. O., Zheng, B., and Crowther, T. W.: Field-warmed soil carbon changes 
imply high 21st-century modeling uncertainty, 15, 3659–3671, 
https://doi.org/10.3929/ethz-b-000272804, 2018. 

Van Oijen, M., Cameron, D., Levy, P. E., and Preston, R.: Correcting errors from spatial 
upscaling of nonlinear greenhouse gas flux models, Environmental Modelling & Software, 
94, 157–165, https://doi.org/10.1016/j.envsoft.2017.03.023, 2017. 

Wang, Y. P., Chen, B. C., Wieder, W. R., Leite, M., Medlyn, B. E., Rasmussen, M., Smith, M. J., 
Agusto, F. B., Hoffman, F., and Luo, Y. Q.: Oscillatory behavior of two nonlinear microbial 
models of soil carbon decomposition, 11, 1817–1831, https://doi.org/10.5194/bg-11-
1817-2014, 2014. 

Wieder, W. R., Bonan, G. B., and Allison, S. D.: Global soil carbon projections are improved 
by modelling microbial processes, Nature Clim. Change, 3, 909–912, 
https://doi.org/10.1038/nclimate1951, 2013. 

Wieder, W. R., Allison, S. D., Davidson, E. A., Georgiou, K., Hararuk, O., He, Y., Hopkins, F., 
Luo, Y., Smith, M. J., Sulman, B., Todd-Brown, K., Wang, Y.-P., Xia, J., and Xu, X.: Explicitly 
representing soil microbial processes in Earth system models, Global Biogeochem. Cycles, 
29, 2015GB005188, https://doi.org/10.1002/2015GB005188, 2015. 



Yan, Z., Bond-Lamberty, B., Todd-Brown, K. E., Bailey, V. L., Li, S., Liu, C., and Liu, C.: A 
moisture function of soil heterotrophic respiration that incorporates microscale processes, 
9, 2562, https://doi.org/10.1038/s41467-018-04971-6, 2018. 

Yao, Y., Vehtari, A., Simpson, D., and Gelman, A.: Using stacking to average bayesian 
predictive distributions, Bayesian Anal., https://doi.org/10.1214/17-BA1091, 2018. 

 


	Abstract. Leading an effective response to the accelerating crisis of anthropogenic climate change will require improved understanding of global carbon cycling. A critical source of uncertainty in Earth Systems Models (ESMs) is the role of microbes in...
	1 Introduction
	2. Carbon Efflux and the Scale Transition
	2.1 Non-dimensionalization
	3.2 Environmental Heterogeneity
	Figure 4: Scale transition factor for variations in the substrate affinity (“k”) parameter in Michaelis-Menten kinetics as a function of dimensionless  (the ratio of mean-field microbial biomass over mean-field k), for two scenarios of variability in...
	3.3 Lessons for Scientific Inference
	4. Conclusions
	References

