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Abstract. Leading an effective response to the accelerating crisis of anthropogenic climate 19 

change will require improved understanding of global carbon cycling. A critical source of 20 

uncertainty in Earth Systems Models (ESMs) is the role of microbes in mediating both the 21 

formation and decomposition of soil organic matter, and hence in determining patterns of CO2 22 

efflux. Traditionally, ESMs model carbon turnover as a first order process impacted primarily by 23 

abiotic factors, whereas contemporary biogeochemical models often explicitly represent the 24 

microbial biomass and enzyme pools as the active agents of decomposition. However, the 25 

combination of non-linear microbial kinetics and ecological heterogeneity across space and time 26 

guarantees that upscaled dynamics will violate mean-field assumptions via Jensen’s Inequality. 27 

Violations of mean-field assumptions mean that parameter estimates from models fit to upscaled 28 

data (e.g., eddy covariance towers) are likely systematically biased. Likewise, predictions of CO2 29 

efflux from models conditioned on mean-field values will also be biased. Here we present a 30 

generic mathematical analysis of upscaling Michaelis-Menten kinetics under heterogeneity and 31 

provide solutions in dimensionless form. We illustrate how our dimensionless form facilitates 32 

qualitative insight into the significance of this scale transition and argue that it will facilitate 33 

cross site intercomparisons of flux data. We also identify the critical terms that need to be 34 

constrained in order to unbias parameter estimates. 35 

1 Introduction  36 

The current crisis of anthropogenic climate change is expected to accelerate during the 21st 37 

century. Despite considerable effort to better constrain global biogeochemical models, 38 

considerable uncertainty remains about how best to represent emerging mechanistic 39 

understanding of soil element cycling into process-based models (Wieder et al., 2015; Todd-40 

Brown et al., 2018). This is a critical gap in knowledge because variations among models predict 41 

hugely varying responses to global change drivers such as temperature, soil moisture, and 𝐶𝑂2 42 

enrichment. For example, a traditional first-order linear model forecasts no change or even slight 43 

enhancement of soil organic carbon (SOC) pools by 2100 whereas one microbial-explicit model 44 

forecasts a loss of ~70Pg of carbon (C), depending on whether microbial physiology acclimates 45 

to higher temperatures (Wieder et al., 2013). In general, our understanding of how carbon (and 46 

other elements) cycles in soil is undergoing significant revision toward a more microbial-centric 47 

paradigm. In contrast to traditional first-order linear models (e.g. CENTURY, Parton et al., 48 

1987), microbial explicit models feature non-linear dynamics in which microbial biomass (or, 49 

similarly, microbially-driven enzyme pools) are responsible for decomposition, in addition to 50 

providing substrate for synthesis of potentially long-term SOC (Blankinship and Schimel, 2018; 51 

Blankinship et al., 2018). While indisputably a better representation of our scientific knowledge, 52 

non-linear microbial models face several well-known challenges, including less analytical 53 

tractability, greater computational challenges, and uncertainty about structural formulation and 54 

dynamics (Georgiou et al., 2017; Sihi et al., 2016; Wang et al., 2014). However, one critical 55 

consequence of non-linear microbial models that is only recently gaining attention is their 56 

implications for addressing the upscaling challenge. 57 

While the fields of population and community ecology have long confronted the challenges 58 

posed by non-linearity and heterogeneity in spatiotemporal scaling of ecological dynamics 59 

(Chesson, 2009; Levin, 1992), ecosystem ecology and biogeochemistry have tended to approach 60 

the challenge of scale either by 1) utilizing mean-field assumptions, or 2) addressing the 61 



challenge of scaling via grid-based computational/numeric methods. While there is nothing 62 

wrong inherently with either approach, they unfortunately cannot yield theoretical insight into 63 

the consequences of non-linearity and heterogeneity for scaling. Briefly, the combination of non-64 

linearity and heterogeneity means that aggregated behavior differs systematically from mean-65 

field predictions, a special case of Jensen’s Inequality. In mathematical notation: 66 

E[𝑓(𝑥)] ≠ 𝑓(E[𝑥]) (1) 67 

Although Jensen’s Inequality is well-known from basic probability theory (Ross, 2002) it’s 68 

implications for ecological dynamics under heterogeneity were not well-appreciated until the 69 

pioneering work of Peter Chesson in the 1990s (Chesson, 1998). In the case of carbon cycle 70 

science, there are a few immediate and critical applications. For instance, most trace gas 71 

emission processes are well-known to be non-linear functions of underlying drivers such as 72 

temperature and soil moisture. For example, ecosystem respiration is an exponential function of 73 

temperature (usually expressed in 𝑄10), and a unimodal function of soil moisture. Thus, when 74 

matching observations of 𝐶𝑂2 efflux (“F”) to ecosystems, variations in soil temperature and 75 

moisture could imply that F differs systematically from a mean-field prediction. Likewise, 76 

variations in biotic interactions between microbes likely play a key role in biogeochemical 77 

cycling (Buchkowski et al. 2017). In addition to missing critical analytical insight, not 78 

accounting for this behavior might have severe consequences for inverse modeling and 79 

estimation of the parameters governing process-based models (Bradford et al., 2021). Moreover, 80 

a significant advance in recent research has focused not only on microbial-explicit formulations, 81 

but the role of microbe-substrate colocation in the complex and heterogeneous soil environment 82 

in both the synthesis and decomposition of organic matter (Schimel and Schaeffer 2012, 83 

Lehmann et al. 2020). This spatial colocation itself has very important implications for scale 84 

transitions in soil systems, and thus requires specific theoretical attention from this perspective. 85 

Overall, the basic consequences of Jensen’s Inequality for estimation of trace gas emission (𝐶𝐻4 86 

and 𝑁2𝑂) were first discussed by Van Oijen et al. (2017), but have not been picked up on 87 

elsewhere, until the present work and by Chakrawal et al. (2020) 88 

Chakrawal et al. (2020) provide a detailed and compelling first-pass application of scale 89 

transition theory to biogeochemical modeling. Our contribution here complements their laudable 90 

effort by providing a more generic mathematical analysis of the scale transition, equally 91 

applicable to both forward and reverse Michaelis-Menten microbial kinetics. As in Chakrawal et 92 

al. (2020), we address the consequences of heterogeneity in both substrate/microbes 93 

(“biochemical heterogeneity”) as well as in the kinetic parameters (“ecological heterogeneity”). 94 

However, we diverge from their approach in that, rather than explore detailed simulation models, 95 

we derive a completely non-dimensionalized expression for aggregating non-linear microbial 96 

kinetics over both types of heterogeneity simultaneously. We illustrate the clarity this brings in 97 

several special cases of our full analysis. Altogether, our approach provides new insight into the 98 

properties of the scale transition and enables clear conclusions to be drawn across systems in 99 

terms of the role of spatial variances and covariances in shaping ecosystem carbon efflux. Our 100 

work provides a simplified, yet systematic framework around which to base subsequent 101 

empirical and simulation-based studies. 102 



2. Carbon Efflux and the Scale Transition 103 

A variety of microbial-explicit process-based models have been proposed in the literature, 104 

starting with the classic enzyme pool model of Schimel and Weintraub (2003). In order to 105 

elucidate universal properties of the scale transition, we focus here on the 𝐶𝑂2 efflux following 106 

decomposition of a single substrate by a single microbial pool obeying Michaelis-Menten (MM) 107 

dynamics: 108 

𝐹 = −𝑓(𝐶, 𝑀𝐵, 𝜃) (2) 109 

 110 

where F is the 𝐶𝑂2 flux, C is the carbon substrate, MB the live microbial biomass, 𝜃 is a vector 111 

of parameters, specifically 𝑉𝑚𝑎𝑥 (the maximum reaction rate given saturation of either C, in 112 

forward MM, or microbial biomass (MB), in reverse MM), 𝑘ℎ (the half-saturation constant), and  113 

carbon-use efficiency, . 114 

Our specific model for F is: 115 

𝐹 = (1 − 𝜀) × 𝐶 ×
𝑉𝑚𝑎𝑥𝑀𝐵

𝑘ℎ + 𝑀𝐵
(3) 116 

 117 

Following the terminology of Chesson (1998,2012), the above is our “patch” model and our goal 118 

is to understand how spatial variances and covariances impact the integrated flux, which 119 

represents the spatial expectation or E[𝐹] (hereafter denoted 𝐹), which represents 120 

                                                     𝐹̅ = −𝐶 × (1 − 𝜀) ×
𝑉𝑚𝑎𝑥𝑀𝐵

𝑘ℎ+𝑀𝐵
            (4)  121 

Where the bar over the expression represents the mean. The incorrect approach to solving for 122 

E[𝐹] is to simply plug-in the mean-field solution: 123 

𝐹̅ = −𝐶 × (1 − 𝜀) ×
𝑉𝑚𝑎𝑥 𝑀𝐵

𝑘ℎ + 𝑀𝐵 
(5) 124 

 125 

Analytically, an exact solution would require specification of a joint distribution for C, MB and 126 

parameters, 𝜋(𝑀𝐵, 𝐶, 𝜃), and solution of the convolution integral: 127 

∭ −𝑓(𝑀𝐵, 𝐶, 𝜃)𝜋(𝑀𝐵, 𝐶, 𝜃)𝑑𝑀𝐵𝑑𝐶𝑑𝜃 (6) 128 

 129 

However, following Chesson (2012) and Chakrawal et al. (2019) we are free to approximate the 130 

solution for arbitrary distributions using a Taylor Series approximation expanded to the 2nd 131 

moment. Specifically, we take the expectation over a multivariable Taylor Series expansion, 132 



centered around the mean-field values of all parameters 𝜃 (for simplicitiy, the variables 𝑀𝐵 and 133 

𝐶 are included in the parameter vector 𝜃): 134 

𝐹 ≈ E [𝑓(𝜃) +
1

2
𝜃

𝜃−𝜃
𝑇 𝐻𝜃

[𝑓(𝜃)]𝜃𝜃−𝜃] (7) 135 

 136 

where 𝐻[𝑓(𝜃)] represents the Hessian matrix of the function that determines the 𝐶𝑂2 efflux 𝐹 137 

(in this case Michaelis-Menten), 𝜃𝜃−𝜃 represents the deviation from the mean at each instance 138 

and for each of the parameters. It can easily be seen that 𝜃
𝜃−𝜃
𝑇 × 𝜃𝜃−𝜃 is the variance-covariance 139 

matrix, and that the first moment of the Taylor expansion cancels because the first derivative of 140 

𝜃𝜃−𝜃 is zero. 141 

2.1 Non-dimensionalization 142 

Expanding equation 7 out, we have 5 terms involving the variances of 𝐶, 𝑀𝐵, 1 − 𝜀, 𝑉𝑚𝑎𝑥, and 143 

𝑘ℎ, and 10 terms involving covariances among the parameters. We can redistribute the 144 

expectation operator over this approximation to see that we are dealing with the contributions 145 

from the variance-covariance terms, weighted by the second partial derivatives evaluated at the 146 

mean for each parameter. However, the resulting expression does not readily yield insight into 147 

the impact of scale transition upon the dynamics, since second partial derivatives and cross 148 

partial derivatives do not have easy intuition. Moreover, variances and covariances depend 149 

arbitrarily upon the scale of units and measurements involved, hindering both intuition and cross-150 

site comparisons. Therefore, we non-dimensionalize equation 7 for 𝐹̅ as follows: 151 

1) We define a dimensionless quantity 𝜆 as 
𝑀𝐵

𝑘ℎ
. 𝜆 thus represents a multiplicative factor 152 

expressing the ratio of the mean microbial biomass over it’s half-saturation value, indicating 153 

the microbial saturation for the decomposition. 154 

2) We divide all of the terms in 6 by their mean-field value, and represent the whole equation 155 

as a product:    156 

 𝐹̅ ≈ 𝑓(𝜃) + 𝑓(𝜃)((𝜃 − 𝜃)𝑇

𝜕2𝑓

𝜕𝜃2𝜃=𝜃

𝑓(𝜃)
(𝜃 − 𝜃)) = 𝑓(𝜃)(1 + ((𝜃 − 𝜃)𝑇

𝜕2𝑓

𝜕𝜃2𝜃=𝜃

𝑓(𝜃)
(𝜃 − 𝜃))                         157 

(8) 158 

3) We calculate the resulting expression for 𝐹 159 

4) We notice that 
𝑉𝑎𝑟(𝜃)

𝜃
2  can be re-expressed as (

𝑆𝐷(𝜃)

𝜃
)2 which in turn is the square of the 160 

dimensionless coefficient of variation (𝐶𝑉(𝜃))2. This enables us to reformulate the 161 

variance terms in (7). 162 

5) Similarly, since the covariance terms can be rewritten as 𝐶𝑂𝑉(𝑋, 𝑌) = 𝜌𝑋,𝑌𝑆𝐷(𝑋)𝑆𝐷(𝑌), 163 

we have the following equality: 164 

𝐶𝑂𝑉(𝑋, 𝑌)

𝑋𝑌
= 𝜌𝑋,𝑌𝐶𝑉(𝑋)𝐶𝑉(𝑌) (9) 165 



 166 

Applying steps 1-5 to all the terms in the equation, we end up with a fully dimensionless 167 

equation: 168 

𝐹 ≈ 𝑓(𝜃)(1 +
𝜆

(1+𝜆)2 [𝜌𝑘ℎ,𝑀𝐵𝐶𝑉(𝑘ℎ)𝐶𝑉(𝑀𝐵) − 𝐶𝑉(𝑀𝐵)2] +
1

(1+𝜆)2 [𝐶𝑉(𝑘ℎ)2 −169 

𝜌𝑘ℎ,𝑀𝐵𝐶𝑉(ℎ)𝐶𝑉(𝑀𝐵)] +
1

(1+𝜆)
[𝜌𝐶,𝑀𝐵𝐶𝑉(𝐶)𝐶𝑉(𝑀𝐵) + 𝜌𝑉𝑚,𝑀𝐵𝐶𝑉(𝑉𝑚)𝐶𝑉(𝑀𝐵) +170 

𝜌𝜖,𝑀𝐵𝐶𝑉(𝜖)𝐶𝑉(𝑀𝐵) + 𝜌𝐶,𝑘ℎ
𝐶𝑉(𝐶)𝐶𝑉(𝑘ℎ) − 𝜌𝑉𝑚,𝑘ℎ

𝐶𝑉(𝑉𝑚)𝐶𝑉(𝑘ℎ) − 𝜌𝑘ℎ,𝜖𝐶𝑉(𝑘ℎ)𝐶𝑉(𝜖)] +171 

𝜌𝑉𝑚,𝐶𝐶𝑉(𝑉𝑚)𝐶𝑉(𝐶) + 𝜌𝐶,𝜖𝐶𝑉(𝐶)𝐶𝑉(𝜖) + 𝜌𝜖,𝑉𝑚
𝐶𝑉(𝜖)𝐶𝑉(𝑉𝑚)                 172 

 (10) 173 

 174 

Note that by symmetry, we have also solved for the case of the forward Michaelis-Menten 175 

kinetics. This can be expressed simply by interchanging 𝐶 and 𝑀𝐵, and by correspondingly 176 

altering 𝜆 to represent the ratio of substrate availability over half-saturation. 177 

3. Discussion  178 

Having fully non-dimensionalized equation 7, we are in a much better position to gain analytical 179 

insight into the scale transition. To begin, we note the pivotal role played by the quantity 𝜆 180 

throughout this equation. 𝜆 scales the contributions of the parameter variation and correlation 181 

terms to the deviation from mean field behavior according to the ratios 
𝜆

(1+𝜆)2, 
1

(1+𝜆)2, and 
1

1+𝜆
. All 182 

of the parameter variance terms (which have become 𝐶𝑉(𝜃)2 upon non-dimensionalization), are 183 

scaled by one of these three 𝜆 ratios, alongside 7 out of 10 of the covariance terms. Overall, low 184 

𝜆 (here 𝜆 <≈ 1) keeps all the spatial correction terms in play, while increasing 𝜆 tends to 185 

simplify matters. As noted by others (Sihi et al., 2016; Buchkowski et al., 2017), as 𝑀𝐵 → ∞ 186 

(equivalent to MB >> 𝑘ℎ or 𝜆 → ∞), reverse Michaelis-Menten kinetics converge to first order, 187 

leaving: 188 

𝐹 = −𝐶 × (1 − 𝜖) × 𝑉𝑚𝑎𝑥 (11) 189 

Accordingly, in our setup, the multiplicative factor for the scale transition correction approaches 190 

a simplified expression, as 𝜆 → ∞: 191 

𝐹 → 𝑓(𝜃) (1 + 𝜌𝑉𝑚,𝐶𝐶𝑉(𝑉𝑚)𝐶𝑉(𝐶) + 𝜌𝐶,𝜖𝐶𝑉(𝐶)𝐶𝑉(𝜖) + 𝜌𝜖,𝑉𝑚
𝐶𝑉(𝜖)𝐶𝑉(𝑉𝑚)) (12) 192 

This is quite remarkable. Despite invoking the situation where microbial biomass (and its 193 

enzyme supply) is effectively infinite - thus linearizing the underlying patch models - we cannot 194 

eliminate the possibility of a potentially substantial deviation from mean-field when scaling 195 

decomposition kinetics. We note that in this resulting expression, we have reduced the situation 196 

to a set of three critical correlations involving two microbial physiological parameters (𝜖, and 197 

𝑉𝑚), and substrate availability (𝐶). Regardless of their respective variabilities (CV terms), if 198 

these correlations are close to zero, then the whole expression converges to mean field. 199 



Returning to the situation where 𝜆 is not large, if we ignore the correlation terms (temporarily 200 

setting to zero), we see that there are direct contributions to the scale transition from the 201 

variability in 𝑀𝐵 and 𝑘ℎ that may, to some extent, balance each other: 202 

𝐹 = 𝑓(𝜃)(1 +
1

((1+𝜆)2)
[𝐶𝑉(𝑘ℎ)2] −

𝜆

(1+𝜆)2
[𝐶𝑉(𝑀𝐵)2])     (13) 203 

Focusing on the offsetting correction terms, we can re-write as: 204 

𝜆

(1+𝜆)2
[

𝐶𝑉(𝑘ℎ)2

𝜆
− 𝐶𝑉(𝑀𝐵)2]       (14) 205 

and for the case of 𝜆 = 1, this becomes: 206 

                                                        
1

4
[𝐶𝑉(𝑘ℎ)2 − 𝐶𝑉(𝑀𝐵)2]         (15) 207 

Thus, variability in the factors of soil protection that impact upon 𝑘ℎ in practice, can offset the 208 

impact of variability in microbial biomass itself. 209 

More generally, starting with our dimensionless equation 10 puts modelers and empiricists in a 210 

better position to assess the quantitative significance of the scale transition correction across 211 

systems compared to expressions with opaque second partial derivatives and cross derivatives, 212 

and arbitrarily scaled variance terms. By re-expressing 𝐹 in terms of dimensionless coefficients 213 

of variation, correlation coefficients and 𝜆, we can plug-in realistic values for variability in any 214 

relevant parameter and assess the % effect on 𝐹 in terms of deviation from mean field behavior. 215 

We argue that this formulation possesses significant advantages not only in understanding how 216 

to scale flux estimates (𝐹) within a site, but going forward will help facilitate intercomparison 217 

among sites in terms of their scale-free variability. In particular, we explore variation in 218 

dominant environmental drivers of inter-site variation (temperature and soil moisture) below. But 219 

first, we analyze how the scale transition sheds new light on microbe-substrate colocation.  220 

3.1 Spatial Colocation of Microbes and Substrate 221 

To illustrate these advantages in interpretability, we first take the special case of a model where 222 

we treat all parameters as constant (and known) except substrate and microbial biomass. This 223 

corresponds to setting the other CV and 𝜌 terms to 0. In this case, we are isolating the impact of 224 

the spatial colocation of substrate and decomposers. Our equation becomes: 225 

𝐹 ≈ 𝑓(𝜃)(1 −
𝜆

(1+𝜆)2 𝐶𝑉(𝑀𝐵)2 +
1

(1+𝜆)
(𝜌𝐶,𝑀𝐵𝐶𝑉(𝐶)𝐶𝑉(𝑀𝐵)))    (16) 226 

In the case of this formulation, there is a very clear dual convergence as 𝜆 increases: 227 

1. deviation from mean-field behavior declines, and 228 

2. first order kinetics are approached 229 

Indeed, our equation 16 reveals the exact speed of this convergence in terms of dimensionless 𝜆 230 

and a balance of 𝐶𝑉(𝑀𝐵), 𝐶𝑉(𝐶) and their correlation. 231 

We illustrate the scale transition solutions to equation 16 as a function of  for various choices of 232 

CV(C), CV(MB) and 𝜌 in Fig. 1: 233 



 234 

Figure 1: Scale transition correction for models given spatial colocation between microbes and 235 

substrate across a gradient of 𝜆 values, and for a variety of correlation 𝜌 values (0-1), with 236 

CV(SOC) held constant at 0.5, a) CV(MB) = 0.25, b) CV(MB) = 0.5, and c) CV(MB) = 1.Note 237 

that in panel c) the system appears to converge on a value lower than 1. However, as 𝜆 238 

increases, convergence to 1 does occur, albeit slowly, as it must according to equation 16.  239 

In the case of pure spatial colocation, with no variation in the kinetic parameters, the scale 240 

transition correction factor varies from a maximum of 1.5 to a minimum around 0.75, and in all 241 

cases indeed converges to 1 as  increases. The variability assumed for C and MB impacts only 242 

the scale of the correction factor, not the qualitative behavior as 𝜆 and 𝜌 vary. One benefit of 243 

having a simplified, generic dimensionless equation of this sort is that it enables us to think in a 244 

unit-free/scale-free manner about the plausible range of the scale transition correction given 245 

transparent assumptions about variability and correlations. 246 

Another benefit is that it is mathematically tractable to see how the variance and covariance 247 

terms can balance each other, and to solve for where they are equal. If we introduce a new term 248 

𝜆2 representing the relationship between 𝐶𝑉(𝑀𝐵) and 𝐶𝑉(𝐶) as follows 𝐶𝑉(𝑀𝐵) = 𝜆2𝐶𝑉(𝐶), 249 

we can re-express the the deviation of the mean-field correction from 1 as: 250 

                                                𝐶𝑉(𝑀𝐵)2[
1

1+𝜆
(𝜌𝜆2 −

𝜆

(1+𝜆)
)]          (17) 251 

Thus, whether the correction is positive or negative depends crucially on the product of the 252 

colocation correlation coefficient 𝜌 and the extent of variability in substrate relative to variability 253 

in microbes. 254 

If we fix 𝜆 to unity, as done in our Fig.1, our mean-field deviation simplifies to: 255 

𝐶𝑉(𝑀𝐵)2[
1

2
(𝜌𝜆2 −

1

2
)]              (18) 256 



In general, the scale transition correction is larger to the extent that microbial variability exceeds 257 

substrate variability under reverse Michaelis-Menten kinetics (the opposite relation holds for 258 

forward Michaelis-Menten by symmetry). Thus, variability in microbial biomass is not only 259 

important by itself in driving Jensen’s Inequality, but also with respect to variability in substrate 260 

supply. Our analysis thus highlights another route of convergence back to the mean field 261 

beyond the simple increase of 𝜆: variability in substrate increasing to match variability in 262 

microbes in the presence of positive spatial colocation factor. We also note that the 263 

magnitude of the scale transition correction scales as the square of the coefficient of variation of 264 

microbial biomass. Quadratic scaling means that at low to moderate levels of variability, the 265 

deviation from mean field behavior is likely to be minimal, but at moderately high to high levels 266 

of variability, severe deviations can be expected. Finally, we note that throughout, our 267 

development of these kinetics assume proportionality to microbial biomass, but it is really the 268 

live/active fraction that matters. Since the active fraction vary considerably with environmental 269 

conditions (e.g. soil temperature and moisture explored below), we believe it is reasonable to 270 

expect large coefficients of variation overall in most real-world ecosystems.  271 

3.2 Environmental Heterogeneity 272 

So far, we have analyzed in depth the role of variability in microbes and their substrate, but not 273 

in the ecological drivers underlying maximal reaction rates (i.e. 𝑉𝑚𝑎𝑥) or half-saturation (i.e. 𝑘ℎ). 274 

We start with the observation that both linear first order and non-linear microbial models will 275 

show characteristic scale transitions given heterogeneity in temperature and soil moisture. 276 

Consider the asymptotic convergence of the reverse MM to first order 277 

𝑑𝐶

𝑑𝑡
= −𝑉𝑚𝑎𝑥𝐶       (19) 278 

This is mathematically equivalent to the more standard way of writing these models down as 279 

𝑑𝐶

𝑑𝑡
= −𝑘𝐶       (20) 280 

In the analysis that follows, we will consider both temperature and soil moisture as factors that 281 

could drive variations in 𝑉𝑚𝑎𝑥 over space or time.  282 

 283 

3.2.1 Scale Transition over Temperature Heterogeneity   284 

To make matters clear, we re-express the rate limiting maximal reaction velocity 𝑉𝑚𝑎𝑥 first as a 285 

function of temperature (assuming all else constant): 286 

𝑉𝑚𝑎𝑥 = 𝑒𝑎𝑇       (21) 287 

In this case, our integrated flux equation will be: 288 

𝑑𝐶

𝑑𝑡
= −𝑒𝑎𝑇 × (1 − ϵ) × 𝐶                    (22) 289 

Allowing for variability in 𝑇, this integrated equation will show characteristic scale transitions 290 

given the convex (exponential) relationship with 𝑇. 291 



Using the Taylor expansion again to second order we have: 292 

𝑉𝑚𝑎𝑥 ≈ 𝑒𝑎𝑇(1 +
1

2
𝑎2𝑉𝑎𝑟(𝑇))     (23) 293 

The critical scale transition correction term here is again multiplicative, and we re-express it into 294 

a function of a dimensionless coefficient of variation parameter more suited to ready 295 

interpretation. First, the exponential dependence of respiration on temperature is canonically 296 

codified in terms of 𝑄10 scaling. We substitute 𝑎 =
𝑙𝑜𝑔(𝑄10)

10
, and end up with: 297 

1 +
1

2
𝑎2𝑉𝑎𝑟(𝑇) = 1 +

1

2
(

𝑙𝑜𝑔(𝑄10)

10
)2𝑉𝑎𝑟(𝑇) = 1 +

1

200
(𝑙𝑜𝑔(𝑄10))2(𝑆𝐷(𝑇))2 =298 

1 +
1

200
(𝑙𝑜𝑔(𝑄10))2(𝑇𝐶𝑉(𝑇))2            (24) 299 

For a “typical” 𝑄10 of 2.5, and a 𝑇 of 25, we see the multiplicative scale transition correction in 300 

figure 2: 301 

 302 

Figure 2: Scale transition correction for Q10 temperature response scaling given coefficient of 303 

variation CV(Temp) from 0 to 0.5 304 

As is clear in Fig. 2, the scale transition for temperature is extremely convex. Integration of 305 

fluxes over ecosystems with significant heterogeneity in temperature invokes substantial 306 

deviation from a mean-field model. For instance, at a CV of 0.2, the scale transition correction is 307 

1.10, but by a CV of 0.5 it is 1.66. Obviously, the significance of this depends on the scale and 308 

heterogeneity over which an accurate flux model is desired. For a smaller footprint eddy 309 

covariance tower (e.g. Gomez-Casanovas et al., 2018) over a uniform habitat type, soil (and near 310 

surface) temperatures probably do not vary by much more than 20%. Regardless, our general 311 

mathematical analysis quantifies and clarifies exactly how the scale of variation influences the 312 

degree of the scale transition correction. 313 

Notably, the only difference between the scale transition correction for first order and for reverse 314 

Michaelis-Menten kinetics is that in the latter there would be additional correlation terms to 315 



consider, e.g. the correlation between temperature and 𝑉𝑚𝑎𝑥, temperature and 𝑘ℎ, as well as 316 

temperature and 𝐶 and 𝑀𝐵. 317 

3.2.2 Scale Transition over Soil Moisture Heterogeneity   318 

Unlike soil temperature, we expect heterotrophic respiration to respond in a unimodal fashion to 319 

soil moisture. At low levels of soil moisture, microbes are moisture limited, and at high levels 320 

they are oxygen limited, with some optimum range of values in the middle. Although a 321 

considerable amount of work has gone into developing soil moisture functions, including both 322 

empirical and theoretical derivations (Yan et al., 2018; Tang and Riley, 2019) , there is no clear 323 

consensus on an optimal representation. Moreover, many of the candidate functions complicate 324 

analysis considerably by virtue of stepwise formulation (Linn and Doran, 1984). Therefore, to 325 

study the implications of the scale transition we proceed via a powerful simplifying abstraction, 326 

and simply represent the soil moisture response as a quadratic of the form: 327 

   𝑉𝑚𝑎𝑥 =  𝛽𝜙 − 𝛽𝜙2                  (25) 328 

where 𝜙 represents the soil moisture content. We normalize our function in two senses: first in 329 

output space we assume that it has a maximum of 1 (i.e. represents heterotrophic respiration 330 

relative to a maximum value of 1), and second that the soil moisture content 𝜙 is itself bounded 331 

between 0 and 1, with a peak in the middle at 0.5. Thus, our function captures the unimodal 332 

abstraction in a symmetric form. Given these conditions, there is a unique solution at 𝛽 = 4.  333 

We seek the scale transition:  334 

                                                    𝑉𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ =  4𝜙 − 4𝜙2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                  (26) 335 

As before, we can approximate this as a mean-field plus a correction to the mean field, which 336 

after some re-writing becomes:  337 

                                         𝑉𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ≅  4(𝜙 ̅̅ ̅̅  −  𝜙̅2 − 𝑉𝑎𝑟(𝜙))        (27) 338 

We then substitute: 𝑉𝑎𝑟(𝜙)  = 𝜙̅2𝐶𝑉(𝜙)2, and re-express:  339 

                                     𝑉𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ≅  4(𝜙 ̅̅ ̅̅  −  𝜙̅2(1 + 𝐶𝑉(𝜙)2))       (28) 340 

 341 



Figure 3: a. heterotrophic respiration as a function of soil moisture given solution in equation 342 

25. Note that soil moisture is normalized with a maximum response at 0.5, where 1 represents 343 

complete waterlogging, and respiration is normalized to a maximum of 1. b. Scale transition 344 

approximate solution for respiration as a function of the dimensionless coefficient of variation of 345 

soil moisture where mean field soil moisture is either 0.5 (top curve) or 0.25 (bottom curve, 346 

equivalent to 0.75 by symmetry).  347 

As shown in Fig. 3, where mean field soil moisture is close to the optimal value, scale transition 348 

effects are expected to be quite large. For instance, by the time the coefficient of variation is 0.5, 349 

efflux would only be 75%, and declines rapidly to 0 as the coefficient of variation approaches 1. 350 

Clearly, this latter outcome is not necessarily biologically realistic, and a more detailed 351 

numerical experiment should be done to explore scenarios with that much variation. However, 352 

our abstractions yield the simple insight that mean-field solutions invariably overestimate the 353 

real flux, and this overestimation can be considerable. In our experience, soil moisture varies 354 

tremendously both over space, especially given contrasts in topography, relief and underlying 355 

soils, but perhaps even more so over time, including within a small area, due to day-day and even 356 

hour-by-hour variations in precipitation, evapotranspiration and drainage. To the extent that 357 

ecosystems deviate from a stable, consistent soil moisture regime, we should expect strong scale 358 

transition effects.  359 

Our results on soil moisture relate to the argument by Tang and Riley (2019) that heterotrophic 360 

respiration arises from a two-step process whereby substrate must diffuse into the vicinity of 361 

microbes, and then be taken up – the latter by a Michaelis-Menten kinetic. However, microscale 362 

variations in soil moisture mediate and regulate the first step of the process, so that the “effective 363 

substrate affinity” (the kh term in the Michaelis-Menten model) deviates from the base substrate 364 

affinity of the second step. Tang and Riley (2019) point out that the effective substrate affinity 365 

therefore reflects microscale heterogeneity, and they argue that experimentalists should account 366 

for this when fitting efflux data to models. But what about scaling up in the field from small 367 

plots to fields to larger ecosystem units? Fortunately, our analytical framework can be readily 368 

queried to account for heterogeneity in substrate affinity (kh).   369 



3.2.2.1 Heterogeneity in Substrate Affinity  370 

We proceed by first by holding all terms constant except allowing the half saturation constant kh 371 

to vary, reflecting variations in soil moisture, or frankly any other factor regulating microbial 372 

access to substrate (e.g. soil aggregation, organomineral complexes, etc. Schmidt et al., 2011, 373 

Lehmann et al., 2020). As usual, we seek the scale transition over 
𝑉𝑚𝑎𝑥𝑀𝐵

𝑘ℎ+𝑀𝐵
= 𝑓(𝑘ℎ). We can 374 

recover this transition quickly from equation (10) by extracting only the term with (kh), or 375 

rederive from scratch holding everything else as constant. The result is that the dimensionless 376 

scale transition correction term is:  377 

                                                         1 + 
1

(1+𝜆)2 𝐶𝑉(𝑘ℎ)2      (29)  378 

Intriguingly, this result shows that heterogeneity in substrate affinity per se results in a convex 379 

correction term, implying that mean-field models will under-estimate rather than overestimate 380 

the resulting fluxes. Given that the correction is proportional to the inverse of the square of , 381 

this correction converges rapidly to 1 (no scale transition) as mean microbial biomass increases 382 

(Figure 4). Nevertheless, where heterogeneity is high and  is around 1 or lower, the correction 383 

could be substantial.  384 

More broadly, our analysis highlights that, under non-linear Michaelis-Menten kinetics for 385 

representing carbon processing, the impact of environmental heterogeneity acting on the 386 

substrate affinity parameter is opposite of when it acts on the Vmax parameter. Thus, if we 387 

represent soil moisture as a modifier to the Vmax in the numerator, heterogeneity in soil moisture 388 

should result in lower carbon efflux than mean field, whereas if we represent soil moisture 389 

heterogeneity by way of substrate affinity it is the opposite. At first glance, this finding appears 390 

inconsistent with Tang and Riley (2019). However, we note that their full kinetic formulations 391 

include soil moisture acting in both roles ultimately, and therefore resulting in the familiar 392 

unimodal soil moisture-respiration relationship. For instance, their application of ‘Dual Monod’ 393 

kinetics include soil moisture driving effective substrate affinity terms for both carbon and water, 394 

as well as an effective fraction of active microbes (which modifies the numerator).  395 

Thus, for the analysis of upscaling fluxes in the presence of soil moisture heterogeneity, we 396 

expect the concave corrections of Figure 3b to hold, regardless of the fine-scale details of the soil 397 

moisture function used.  398 



 399 

Figure 4: Scale transition factor for variations in the substrate affinity (“k”) parameter in 400 

Michaelis-Menten kinetics as a function of dimensionless  (the ratio of mean-field microbial 401 

biomass over mean-field k), for two scenarios of variability in affinity, one where coefficient of 402 

variation = 1 (top curve), the other where coefficient of variation = 0.5 (bottom curve).  403 

3.3 Lessons for Scientific Inference 404 

We close our discussion by considering the implications of the scale transition for advancing the 405 

state of biogeochemical modeling. Critically, the representation of non-linear (microbial driven) 406 

kinetics is a crucial modeling choice with large implications for long-term SOC forecasts. 407 

Traditional first-order process-based models dodge explicit representation of these kinetics, but 408 

nonetheless have worked well in practice. This state of affairs persists because both non-linear 409 

and linear kinetics are capable of representing coarse-scaled biogeochemistry reasonably well, at 410 

least in certain respects. Since first order kinetics are known to be a crude approximation, the 411 

crucial question for practice is not whether they are “true”, but rather whether there is significant, 412 

systematic information loss inherent to their use. Fortunately, the scale transition offers a clear, 413 

clean path to discriminate between these alternative model formulations. 414 

As noted throughout, the dimensionless term 𝜆 plays a critical role in linking the non-linear 415 

(Michaelis-Menten) kinetics to the first order kinetics. As 𝜆 increases, the non-linear kinetics 416 

converge to first order. Thus, in seeking to infer where the non-linear kinetic models provide 417 

substantial advantages, ensuring that 𝜆 is not too large (>>1) is the first priority.  418 

Previous work Sihi et al. (2016) has approached this question theoretically, from first principles. 419 

Here, we point out that demonstrating substantial deviation from mean-field model when fitting 420 



non-linear kinetics to data is both a necessary and sufficient condition for inferring that 𝜆 is not 421 

too large. Thus, we recommend that time series of flux data be fit to both a first order and a non-422 

linear kinetic model, where crucial covariates including substrate (SOC), microbial biomass, and 423 

possibly environmental parameters such as temperature, have been measured sufficiently well to 424 

quantify the relevant variances and covariances. Where predictive performance and forecasting 425 

are the primary goals, we recommend careful consideration of model parameterizations 426 

(i.e. based on leave-one-out cross validation), and model combination via “stacking” where it is 427 

difficult to infer a decisive “winner” (Yao et al., 2018) acknowledging that carrying this out is a 428 

significant enterprise.  429 

In addition to the role of 𝜆, our analysis also cleanly shows the contribution of other terms to the 430 

scale transition, and thus alternative metrics to assess. First and foremost, accounting for the 431 

spatial colocation of microbial biomass and substrate (according to equation 16 above) or the 432 

various correlation terms between microbial biomass and kinetic/environmental factors in 433 

equation 10. Moreover, recent theoretical developments offer quantitative insights into the 434 

interpretation of the half saturation constant (or the substrate affinity parameter) and thus 435 

 (Tang and Riley, 2019). Tang and Riley (2019) decompose microbial access to substrate into a 436 

two-step process, which is often strongly modified by soil moisture. Moreover, conceptual 437 

advances suggest that colocation is a potentially important factor in organic matter 438 

decomposition vs. stabilization (Schimel and Schaeffer 2012, Lehmann et al. 2020). Here, we 439 

show that both affinity and colocation are co-dependent in their effects on scale transition.  440 

In addition to fitting fully parameterized flux models (as above), simpler statistical models could 441 

be fit examining the role of variations in microbial biomass, or colocation of microbial biomass 442 

and SOC, in explaining across-site variations in ecosystem respiratory fluxes (F). A substantial 443 

role for either correlation of MB and C, or their variability, would constitute ipso facto 444 

evidence of the preferability of well-formulated non-linear kinetic models. On the other 445 

hand, small roles for colocation, or evidence of large values of 𝜆 in practice would suggest 446 

minimal advantage to abandoning first order models in favor of more complex microbial models. 447 

A meta-analytical approach across sites will benefit greatly from our formulation in terms of 448 

dimensionless quantities like 𝜆 and the various coefficients of variation.  449 

We further note that the scale transition presented here is closely related to global sensitivity 450 

analysis (GSA, Saltelli et al. 2010). In its fundamental setup, a GSA tests effects of variability in 451 

parameters. While GSA has been typically used towards characterizing the uncertainty of 452 

parameters, it is directly applicable to spatial and temporal variability. For example, the first 453 

order results of a GSA (or the result of a one at a time parameter substitution), provides the 454 

contribution of that parameter to the scale transition. Similarly, the ‘all but one’ perturbation 455 

offers insights into how the net effect of all parameters (and variables) violates the mean field 456 

approximation. Therefore, a computationally expensive GSA can be leveraged to garner further 457 

insights on top of sensitivity effects, allowing for the characterization of the scale transition. 458 

Indeed, a computationally intensive approach to simulating scale transitions was utilized by 459 

Chakrawal et al. (2020) to good effect. However, we suggest future computational studies build 460 

off of the dimensionless approach studied here, including those extended to multiple microbial 461 

populations which would result in multiple dimensionless lambdas and corresponding 462 

multiplicative contributions to the scale transition. Obviously, the parameter space needs to be 463 

properly chosen (or subsetted) to reflect appropriate means, variabilities, and perhaps most 464 



challenging - correlations. Equation 10 would then provide analytical, albeit approximate, insight 465 

into the scale transition effects, while the GSA would enable study of any shortcomings from 466 

approximation, and also allow for quantification of individual variable importance for those 467 

parameters that enter into the dynamics in multiple places.  468 

Finally, our analysis of environmental factors including temperature and soil moisture leads to 469 

readily testable predictions. For temperature, the scale transition is convex and thus, ceteris 470 

paribus, variation in soil temperature should lead to greater effluxes than mean field models 471 

would predict. The implications of this for climate-feedback should be studied in greater detail. 472 

For soil moisture, which varies considerably across both space and especially time, our analysis 473 

based on an idealized quadratic representation yields a concave scale transition correction, i.e. 474 

the mean-field soil moisture will over-estimate efflux. Likewise, when represented in both 475 

substrate affinity and multiplicative active microbial biomass fraction terms, as in Tang and 476 

Riley (2019), the scale transition remains concave. However, environmental factors that act only 477 

through substrate affinity would result in a convex correction as in Figure 4. Once again, we 478 

highlight that the nature of scaling corrections, wherever it is possible to be studied empirically, 479 

can provide insight into the most productive representations of our models.  480 

4. Conclusions 481 

Here, we have illustrated how the spatial scale transition can be expressed in dimensionless form, 482 

yielding insight into the systematic operation of Jensen’s Inequality in upscaling microbial 483 

decomposition kinetics. Our analysis has identified the central role of the dimensionless quantity 484 

𝜆 - representing the ratio of mean-field microbial biomass over its half-saturation value - in 485 

governing the extent of the scale transition correction, expressed here in multiplicative form best 486 

facilitating comparison among systems. For somewhat simplified scenarios - such as restricting 487 

to spatial colocation of substrate and microbes - as 𝜆 → ∞, the mean-field correction goes to 0 488 

and the model converges to first order. 489 

This dual sense of convergence also provides opportunity to empirically test for the presence of 490 

significant non-linear microbial dynamics in upscaled field data: to the extent that upscaled 491 

fluxes deviate from the flux estimated at mean-field conditions, we have ipso facto evidence for 492 

the importance of formulating our biogeochemical models with these non-linear terms. 493 

Conversely, where there is close agreement between mean-field and upscaled fluxes, there are 494 

arguably stronger reasons for retaining first-order process model formulations. 495 

In closing, we would like to point out how this mathematical analysis illustrates the challenge of 496 

scaling quite nicely. In the context of non-linear models, for each parameter that is allowed to 497 

vary in space, there is not only a new variance parameter, but a number of new covariance terms 498 

are induced, growing as the factorial of the number of varying parameters (5
2
)! (Fig. 3). Thus, in 499 

the case of the 5 parameter function considered here, the full approximation has 5 mean field 500 

terms, 5 coefficients of variation, 10 correlation coefficients, and the dimensionless quantity 𝜆. 501 



 502 

Figure 3: Model complexity grows exponentially with number of spatially varying parameters. 503 

We argue to keep models as simple as possible for both analytical and computational 504 

tractability. 505 

Even with a maximally generic and simplified expression, fitting such non-linear time series 506 

models to field data still represents quite a challenge, especially while adequately accounting for 507 

and propagating uncertainty.  Modelers and theoreticians should appreciate the complexity of the 508 

task at hand. Fortunately, our analysis has identified a potentially robust route to limiting model 509 

complexity: screen systematically for the importance of various correlations in explaining 510 

variations in fluxes. Accordingly, we recommend that research focus first upon spatial colocation 511 

of MB and C, which is readily measured, and then to thoughtfully and carefully expand models 512 

with additional terms as needed. 513 
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