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 2 

Abstract. Leading an effective response to the accelerating crisis of anthropogenic climate 19 

change will require improved understanding of global carbon cycling. A critical source of 20 

uncertainty in Earth Systems Models (ESMs) is the role of microbes in mediating both the 21 

formation and decomposition of soil organic matter, and hence in determining patterns of CO2 22 

efflux. Traditionally, ESMs model carbon turnover as a first order process impacted primarily by 23 

abiotic factors, whereas contemporary biogeochemical models often explicitly represent the 24 

microbial biomass and enzyme pools as the active agents of decomposition. However, the 25 

combination of non-linear microbial kinetics and ecological heterogeneity across space 26 

guarantees that upscaled dyamics will violate mean-field assumptions via Jensen’s Inequality. 27 

Violations of mean-field assumptions mean that parameter estimates from models fit to upscaled 28 

data (e.g. eddy covariance towers) are likely systematically biased. Here we present a generic 29 

mathematical analysis of upscaling michaelis-menten kinetics under heterogeneity, and provide 30 

solutions in dimensionless form. We illustrate how out dimensionless form facilitates qualitative 31 

insight into the significance of this scale transition, and argue that it will facilitate cross site 32 

intercomparisons of flux data. We also identify the critical terms that need to be constrained in 33 

order to unbias parameter estimates. 34 

1 Introduction  35 

The current crisis of anthropogenic climate change is expected to accelerate during the 21st 36 

century. Despite considerable effort to better constrain global biogeochemical models, 37 

considerable uncertainty remains about how best to represent emerging mechanistic 38 

understanding of soil element cycling into process-based models (Wieder et al. 2015, 2018; 39 

Todd-Brown, Zheng, and Crowther 2018). This is a critical gap in knowledge because variations 40 

among models predict hugely varying responses to global change drivers such as temperature, 41 

soil moisture, and 𝐶𝑂2 enrichment. For example, a traditional first-order linear model forecasts 42 

no change or even slight enhancement of soil organic carbon (SOC) pools by 2100 whereas one 43 

microbial-explicit model forecasts a loss of ~70Pg of carbon (C), depending on whether 44 

microbial physiology acclimates to higher temperatures (Wieder, Bonan, and Allison 2013). In 45 

general, our understanding of how carbon (and other elements) cycles in soil is undergoing 46 

significant revision toward a more microbial-centric paradigm. In contrast to traditional first-47 

order linear models (e.g. CENTURY, Parton et al. 1987), microbial explicit models feature non-48 

linear dynamics in which microbial biomass (or, similarly, microbially-driven enzyme pools) are 49 

responsible for decomposition, in addition to providing substrate for synthesis of potentially 50 

long-term SOC (Blankinship and Schimel 2018; Blankinship et al. 2018). While indisputably a 51 

better representation of our scientific knowledge, non-linear microbial models face several well-52 

known challenges, including less analytical tractability, greater computational challenges, and 53 

uncertainty about structural formulation and dynamics (Georgiou et al. 2017; Sihi et al. 2016). 54 

However, one critical consequence of non-linear microbial models that is only recently gaining 55 

attention is their implications for addressing the upscaling challenge. 56 

While the fields of population and community ecology have long confronted the challenges 57 

posed by non-linearity and heterogeneity in spatiotemporal scaling of ecological dynamics 58 

(Chesson 2009; Levin 1992), ecosystem ecology and biogeochemistry have tended to approach 59 

the challenge of scale either by 1) utilizing mean-field assumptions, or 2) addressing the 60 

challenge of scaling via grid-based computational/numeric methods. While there is nothing 61 
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wrong inherently with either approach, they unfortunately cannot yield theoretical insight into 62 

the consequences of non-linearity and heterogeneity for scaling. Briefly, the combination of non-63 

linearity and heterogeneity means that aggregated behavior differs systematically from mean-64 

field predictions, a special case of Jensen’s Inequality. In mathematical notation: 65 

E[𝑓(𝑥)] ≠ 𝑓(E[𝑥]) (1) 66 

Although Jensen’s Inequality is well-known from basic probability theory (Ross 2002), it’s 67 

implications for ecological dynamics under heterogeneity were not well-appreciated until the 68 

pioneering work of Peter Chesson in the 1990s (Chesson 1998). In the case of carbon cycle 69 

science, there are a few immediate and critical applications. For instance, most trace gas 70 

emission processes are well-known to be non-linear functions of underlying drivers such as 71 

temperature and soil moisture. For example, ecosystem respiration (hereafter “𝑅𝑒𝑐𝑜”) is an 72 

exponential function of temperature (usually expressed in 𝑄10), and a unimodal function of soil 73 

moisture. Thus, when matching observations of 𝐶𝑂2 efflux (“F”) to ecosystems, variations in 74 

soil temperature and moisture could imply that F differs systematically from a mean-field 75 

prediction. In addition to missing critical analytical insight, not accounting for this behavior 76 

might have severe consequences for inverse modeling and estimation of the parameters 77 

governing process-based models (PBMs). The basic consequences of Jensen’s Inequality for 78 

estimation of trace gas emission (𝐶𝐻4 and 𝑁2𝑂) were first discussed by Van Oijen et al. (2017), 79 

but have not been picked up on elsewhere, until the present work and by Chakrawal et al. (2019). 80 

Chakrawal et al. (2019) provide a detailed and compelling first-pass application of scale 81 

transition theory to biogeochemical modeling. Our contribution here complements their laudable 82 

effort by providing a more generic mathematical analysis of the scale transition, equally 83 

applicable to both forward and reverse michaelis-menten microbial kinetics. As in Chakrawal et 84 

al. (2019), we address the consequences of heterogeneity in both substrate/microbes 85 

(“biochemical heterogeneity”) as well as in the kinetic parameters (“ecological heterogeneity”). 86 

However, we diverge from their approach in that, rather than explore detailed simulation models, 87 

we derive a completely non-dimensionalized expression for aggregating non-linear microbial 88 

kinetics over both types of heterogeneity simultaneously. We illustrate the enormous clarity this 89 

brings in several special cases of our full analysis. Altogether, our approach provides universal 90 

insight into the properties of the scale transition, and enables clear conclusions to be drawn 91 

across systems in terms of the role of spatial variances and covariances in shaping ecosystem 92 

carbon efflux. Our work provides a simplified, yet systematic framework around which to base 93 

subsequent empirical and simulation-based studies. 94 

2. Carbon Efflux and the Scale Transition 95 

A variety of microbial-explicit PBMs have been proposed in the literature, starting with the 96 

classic enzyme pool model of Schimel and Weintraub (2003). In order to elucidate universal 97 

properties of the scale transition, we focus here on the 𝐶𝑂2 efflux following decomposition of a 98 

single substrate by a single microbial pool obeying Michaelis-Menten (MM) dynamics: 99 

𝐹 = −𝑓(𝐶, 𝑀𝐵, 𝜃) (2) 100 

 101 
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where F is the 𝐶𝑂2 flux, 𝜃 is a vector of parameters, specifically 𝑉𝑚𝑎𝑥 (the maximum reaction 102 

rate given saturation of either C, in forward MM, or microbial biomass (MB), in reverse MM), 103 

𝑘ℎ (the half-saturation constant), and 1 − 𝜖 (accounting for carbon-use efficiency, ). 104 

Our specific model for F is: 105 

𝐹 = (1 − 𝜀) × 𝐶 ×
𝑉𝑚𝑎𝑥𝑀𝐵

𝑘ℎ + 𝑀𝐵
(3) 106 

 107 

Following the terminology of Chesson (1998,2012), the above is our “patch” model and our goal 108 

is to understand how spatial variances and covariances impact the integrated flux, which 109 

represents the spatial expectation or E[𝐹] (hereafter denoted 𝐹), which represents 110 

−𝐶 × (1 − 𝜀) ×
𝑉𝑚𝑎𝑥𝑀𝐵

𝑘ℎ+𝑀𝐵
. 111 

The incorrect approach to solving for E[𝐹] is to simply plug-in the mean-field solution: 112 

−𝐶 × (1 − 𝜀) ×
𝑉𝑚𝑎𝑥 𝑀𝐵

𝑘ℎ + 𝑀𝐵 
(4) 113 

 114 

Analytically, an exact solution would require specification of a joint distribution for C and MB 115 

𝜋(𝑀𝐵, 𝐶, 𝜃), and solution of the convolution integral: 116 

∫ −𝑓(𝑀𝐵, 𝐶, 𝜃)𝜋(𝑀𝐵, 𝐶, 𝜃)𝑑𝑀𝐵𝑑𝐶𝑑𝜃 (5) 117 

 118 

However, following Chesson (2012) and Chakrawal et al. (2019) we are free to approximate the 119 

solution for arbitrary distributions using a Taylor Series approximation expanded to the 2nd 120 

moment. Specifically, we take the expectation over a multivariable Taylor Series expansion, 121 

centered around the mean-field values of all parameters 𝜃 (for simplicitiy, the variables 𝑀𝐵 and 122 

𝐶 are included in the parameter vector 𝜃): 123 

𝐹 ≈ E [𝑓(𝜃) +
1

2
𝜃

𝜃−𝜃
𝑇 𝐻𝜃

[𝑓(𝜃)]𝜃𝜃−𝜃] (6) 124 

 125 

where 𝐻[𝑓(𝜃)] represents the Hessian matrix of the function that determines the 𝐶𝑂2 efflux 𝐹 126 

(in this case Michaelis-Menten), 𝜃𝜃−𝜃 represents the deviation from the mean at each instance 127 

and for each of the parameters. It can easily be seen that 𝜃
𝜃−𝜃
𝑇 × 𝜃𝜃−𝜃 is the variance-covariance 128 

matrix, and that the first moment of the Taylor expansion cancels because the first derivative of 129 

𝜃𝜃−𝜃 is zero. 130 
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2.1 Non-dimensionalization 131 

Expanding equation 6 out, we have 5 terms involving the variances of 𝐶, 𝑀𝐵, 1 − 𝜀, 𝑉𝑚𝑎𝑥, and 132 

𝑘ℎ, and 10 terms involving covariances among the parameters. We can redistribute the 133 

expectation operator over this approximation to see that we are dealing with the contributions 134 

from the variance-covariance terms, weighted by the second partial derivatives evaluated at the 135 

mean for each parameter. However, the resulting expression does not readily yield insight into 136 

the impact of scale transition upon the dynamics, since second partial derivatives and cross 137 

partial derivatives do not have easy intuition. Morever, variances and covariances depend 138 

arbitrarily upon the scale of units and measurements involved, hindering both intuition and cross-139 

site comparisons. Therefore, we non-dimensionalize equation 6 for E[𝐹] as follows: 140 

1) We define a dimensionless quanity 𝜆 as 
𝑀𝐵

𝑘ℎ
. 𝜆 thus represents a multiplicative factor 141 

expressing the ratio of the mean microbial biomass over it’s half-saturation value, indicating 142 

the microbial saturation for the decomposition. 143 

2) We divide all of the terms in 6 by their mean-field value, and represent the whole equation 144 

as a product:    145 

 𝐹̅ ≈ 𝑓(𝜃) + 𝑓(𝜃)((𝜃 − 𝜃)𝑇

𝜕2𝑓

𝜕𝜃2𝜃=𝜃

𝑓(𝜃)
(𝜃 − 𝜃)) = 𝑓(𝜃)(1 + (𝜃 − 𝜃)𝑇

𝜕2𝑓

𝜕𝜃2𝜃=𝜃

𝑓(𝜃)
(𝜃 − 𝜃))                         146 

(7) 147 

3) We calculate the resulting expression for 𝐹 148 

4) We notice that 
𝑉𝑎𝑟(𝜃)

𝜃
2  can be re-expressed as (

𝑆𝐷(𝜃)

𝜃
)2 which in turn is the square of the 149 

dimensionless coefficient of variation (𝐶𝑉(𝜃))2. This enables us to reformulate the 150 

variance terms in (7). 151 

5) Similarly, since the covariance terms can be rewritten as 𝐶𝑂𝑉(𝑋, 𝑌) = 𝜌𝑋,𝑌𝑆𝐷(𝑋)𝑆𝐷(𝑌), 152 

we have the following equality: 153 

𝐶𝑂𝑉(𝑋, 𝑌)

𝑋𝑌
= 𝜌𝑋,𝑌𝐶𝑉(𝑋)𝐶𝑉(𝑌) (8) 154 

 155 

Applying steps 1-5 to all the terms in the equation, we end up with a fully dimensionless 156 

equation: 157 

𝐹 ≈ 𝑓(𝜃)(1 +
𝜆

(1+𝜆)2 [𝜌𝑘ℎ,𝑀𝐵𝐶𝑉(𝑘ℎ)𝐶𝑉(𝑀𝐵) − 𝐶𝑉(𝑀𝐵)2] +
1

(1+𝜆)2 [𝐶𝑉(𝑘ℎ)2 −158 

𝜌𝑘ℎ,𝑀𝐵𝐶𝑉(ℎ)𝐶𝑉(𝑀𝐵)] +
1

(1+𝜆)
[𝜌𝐶,𝑀𝐵𝐶𝑉(𝐶)𝐶𝑉(𝑀𝐵) + 𝜌𝑉𝑚,𝑀𝐵𝐶𝑉(𝑉𝑚)𝐶𝑉(𝑀𝐵) +159 

𝜌𝜖,𝑀𝐵𝐶𝑉(𝜖)𝐶𝑉(𝑀𝐵) + 𝜌𝐶,𝑘ℎ
𝐶𝑉(𝐶)𝐶𝑉(𝑘ℎ) − 𝜌𝑉𝑚,𝑘ℎ

𝐶𝑉(𝑉𝑚)𝐶𝑉(𝑘ℎ) − 𝜌𝑘ℎ,𝜖𝐶𝑉(𝑘ℎ)𝐶𝑉(𝜖)] +160 

𝜌𝑉𝑚,𝐶𝐶𝑉(𝑉𝑚)𝐶𝑉(𝐶) + 𝜌𝐶,𝜖𝐶𝑉(𝐶)𝐶𝑉(𝜖) + 𝜌𝜖,𝑉𝑚
𝐶𝑉(𝜖)𝐶𝑉(𝑉𝑚)                 161 

 (9) 162 

 163 
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Note that by symmetry, we have also solved for the case of the forward Michaelis-Menten 164 

kinetics. This can be expressed simply by interchanging 𝐶 and 𝑀𝐵, and by correspondingly 165 

altering 𝜆 to represent the ratio of substrate availability over half-saturation. 166 

3. Discussion  167 

Having fully non-dimensionalized equation 6, we are in a much better position to gain analytical 168 

insight into the scale transition. To begin, we note the pivotal role played by the quantity 𝜆 169 

throughout this equation. 𝜆 scales the contributions of the parameter variation and correlation 170 

terms to the deviation from mean field behavior according to the ratios 
𝜆

(1+𝜆)2, 
1

(1+𝜆)2, and 
1

1+𝜆
. In 171 

particular, all of the parameter variance terms (which have become 𝐶𝑉(𝜃)2 upon non-172 

dimensionalization), are scaled by one of these three 𝜆 ratios, alongside 7 out of 10 of the 173 

covariance terms. Overall, low 𝜆 (here 𝜆 <≈ 1) keeps all of the spatial correction terms in play, 174 

while increasing 𝜆 tends to simplify matters. As noted by Sihi et al. (2018), as 𝑀𝐵 → ∞ 175 

(equivalent to MB >> 𝑘ℎ or 𝜆 → ∞), reverse Michaelis-Menten kinetics converge to first order, 176 

leaving: 177 

𝐹 = −𝐶 × (1 − 𝜖) × 𝑉𝑚𝑎𝑥 (10) 178 

Accordingly, in our setup, the multiplicative factor for the scale transition correction approaches 179 

a simplified expression, as 𝜆 → ∞: 180 

𝐹 → 𝑓(𝜃) (1 + 𝜌𝑉𝑚,𝐶𝐶𝑉(𝑉𝑚)𝐶𝑉(𝐶) + 𝜌𝐶,𝜖𝐶𝑉(𝐶)𝐶𝑉(𝜖) + 𝜌𝜖,𝑉𝑚
𝐶𝑉(𝜖)𝐶𝑉(𝑉𝑚)) (11) 181 

This is actually quite remarkable. Despite invoking the situation where microbial biomass (and 182 

its enzyme supply) is effectively infinite - thus linearizing the underlying patch models - we 183 

cannot eliminate the possibility of a potentially substantial deviation from mean-field when 184 

scaling decomposition kinetics. We note that in this resulting expression, we have reduced the 185 

situation to a set of three critical correlations involving two microbial physiological parameters 186 

(𝜖, and 𝑉𝑚), and substrate availability (𝐶). Regardless of their respective variabilities (CV terms), 187 

if these correlations are close to zero, then the whole expression converges to mean field. 188 

Returning to the situation where 𝜆 is not large, if we ignore the correlation terms (temporarily 189 

setting to zero), we see that there are direct contributions to the scale transition from the 190 

variability in 𝑀𝐵 and 𝑘ℎ that may, to some extent, balance each other: 191 

𝐹 = 𝑓(𝜃)(1 +
1

((1+𝜆)2)
[𝐶𝑉(𝑘ℎ)2] −

𝜆

(1+𝜆)2
[𝐶𝑉(𝑀𝐵)2])     (12) 192 

Focusing on the offsetting correction terms, we can re-write as: 193 

𝜆

(1+𝜆)2 [
𝐶𝑉(𝑘ℎ)2

𝜆
− 𝐶𝑉(𝑀𝐵)2]       (13) 194 

 195 

 196 

and for the case of 𝜆 = 1, this becomes: 197 
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1

4
[𝐶𝑉(𝑘ℎ)2 − 𝐶𝑉(𝑀𝐵)2]      (14) 198 

 199 

Thus, variability in the factors of soil protection that impact upon 𝑘ℎ in practice, can offset the 200 

impact of variability in microbial biomass itself. 201 

More generally, starting with our dimensionless equation 9 puts modelers and empiricists in a 202 

better position to assess the quantitative significance of the scale transition correction across 203 

systems compared to expressions with opaque second partial derivatives and cross derivatives, 204 

and arbitrarily scaled variance terms. By re-expressing 𝐹 in terms of dimensionless coefficients 205 

of variation, correlation coefficients and 𝜆, we can plug-in realistic values for variability in any 206 

relevant parameter and assess the % effect on 𝐹 in terms of deviation from mean field behavior. 207 

We argue that this formulation possesses significant advantages not only in understanding how 208 

to scale flux estimates (𝐹) within a site, but going forward will help facilitate intercomparison 209 

among sites in terms of their scale-free variability. 210 

3.1 Spatial Colocation of Microbes and Substrate 211 

To illustrate these advantages in interpretability, we first take the special case of a model where 212 

we treat all parameters as constant (and known) except substrate and microbial biomass. This 213 

corresponds to setting the other CV and 𝜌 terms to 0. In this case, we are isolating the impact of 214 

the spatial colocation of substrate and decomposers. Our equation becomes: 215 

𝐹 ≈ 𝑓(𝜃)(1 −
𝜆

(1+𝜆)2 𝐶𝑉(𝑀𝐵)2 +
1

(1+𝜆)
(𝜌𝐶,𝑀𝐵𝐶𝑉(𝐶)𝐶𝑉(𝑀𝐵)))    (15) 216 

In the case of this formulation, there is a very clear dual convergence as𝜆 increases: 217 

1. deviation from mean-field behavior declines, and 218 

2. first order kinetics are approached 219 

Indeed, our equation 15 reveals the exact speed of this convergence in terms of dimensionless 𝜆 220 

and a balance of 𝐶𝑉(𝑀𝐵), 𝐶𝑉(𝐶) and their correlation. 221 

We illustrate the scale transition solutions to equation 15 as a function of lambda for various 222 

choices of CV(C), CV(MB) and 𝜌: 223 

 224 
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Figure 1: Scale correction factor for models given spatial colocation between microbes and 225 

substrate across a gradient of 𝜆 values, and for a variety of correlation 𝜌 values (0-1), with 226 

CV(SOC) held constant at 0.5, a) CV(MB) = 0.25, b) CV(MB) = 0.5, and c) CV(MB) = 1. 227 

We see in Fig. 1 that in the case of pure spatial colocation, with no variation in the kinetic 228 

parameters, the scale transition correction factor varies from a maximum of 1.5 to a minimum 229 

around 0.75, and in all cases indeed converges to 1 as lambda increases. The variability assumed 230 

for C and MB impacts only the scale of the correction factor, not the qualitative behavior as 𝜆 231 

and 𝜌 vary. One virtue of having a simplified, generic dimensionless equation of this sort is that 232 

it enables us to think in a unit-free/scale-free manner about the plausible range of the scale 233 

transition correction given transparent assumptions about variability and correlations. 234 

Another virtus is that it is mathematically tractable to see how the variance and covariance terms 235 

can balance each other, and to solve for where they are equal. If we introduce a new term 𝜆2 236 

representing the relationship between 𝐶𝑉(𝑀𝐵) and 𝐶𝑉(𝐶) as follows 𝐶𝑉(𝑀𝐵) = 𝜆2𝐶𝑉(𝐶), we 237 

can re-express the the deviation of the mean-field correction from 1 as: 238 

𝐶𝑉(𝑀𝐵)2[
1

1+𝜆
(𝜌𝜆2 −

𝜆

(1+𝜆)
)]     (16) 239 

Thus, whether the correction is positive or negative depends crucially on the product of the 240 

colocation correlation coefficient 𝜌 and the extent of variability in substrate relative to variability 241 

in microbes. 242 

If we fix 𝜆2 to unity, as done in our Fig.1, our mean-field deviation simplifies to: 243 

𝐶𝑉(𝑀𝐵)2[
1

2
(𝜌𝜆2 −

1

2
)]              (17) 244 

In general, it is clear that the scale transition correction is larger to the extent that microbial 245 

variability exceeds substrate variability under reverse michaelis-menten kinetics (the opposite 246 

relation holds for forward Michaelis-Menten by symmetry). Thus, variability in microbial 247 

biomass is not only important in itself in driving Jensen’s Inequality, but also with respect to 248 

variability in substrate supply. Our analysis thus highlights another route of convergence 249 

back to the mean field beyond the simple increase of 𝜆: variability in substrate increasing 250 

to match variability in microbes in the presence of positive spatial colocation factor. We 251 

also note that the magnitude of the mean field correction scales as the square of the coefficient of 252 

variation of microbial biomass. Quadratic scaling means that at low to moderate levels of 253 

variability, the deviation from mean field behavior is likely to be fairly minimal, but at 254 

moderately high to high levels of variability, severe deviations can be expected. 255 

3.2 Environmental Heterogeneity 256 

So far we have analyzed in depth the role of variability in microbes and their substrate, but not in 257 

the ecological drivers underlying maximal reaction rates (i.e. 𝑉𝑚𝑎𝑥) or half-saturation (i.e. 𝑘ℎ). 258 

We start with the observation that both linear first order and non-linear microbial models will 259 

show characteristic scale transitions given heterogeneity in temperature and soil moisture. 260 

Consider the asymptotic convergence of the reverse MM to first order 261 
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𝑑𝐶

𝑑𝑡
= −𝑉𝑚𝑎𝑥𝐶       (18) 262 

This is mathematically equivalent to the more standard way of writing these models down as 263 

𝑑𝐶

𝑑𝑡
= −𝑘𝐶       (19) 264 

To make matters clear, we re-express the rate limiting maximal reaction velocity 𝑉𝑚𝑎𝑥 first as a 265 

function of temperature (assuming all else constant): 266 

𝑉𝑚𝑎𝑥 = 𝑒𝑎𝑇       (20) 267 

In this case, our integrated flux equation will be: 268 

𝑑𝐶

𝑑𝑡
= −𝑒𝑎𝑇 × (1 − ϵ) × 𝐶                       269 

(21) 270 

Allowing for variability in 𝑇, this integrated equation will show characteristic scale transitions 271 

given the convex (exponential) relationship with 𝑇. 272 

Using the Taylor expansion again to second order we have: 273 

𝑉𝑚𝑎𝑥 ≈ 𝑒𝑎𝑇(1 +
1

2
𝑎2𝑉𝑎𝑟(𝑇))     (22) 274 

The critical scale correction term here is again multiplicative, and we re-express it into a function 275 

of a dimensionless coefficient of variation parameter more suited to ready interpretation. First, 276 

the exponential dependence of respiration on temperature is canonically codified in terms of 𝑄10 277 

scaling. We substitute 𝑎 =
𝑙𝑜𝑔(𝑄10)

10
, and end up with: 278 

1 +
1

2
𝑎2𝑉𝑎𝑟(𝑇) = 1 +

1

2
(

𝑙𝑜𝑔(𝑄10)

10
)2𝑉𝑎𝑟(𝑇) = 1 +

1

200
(𝑙𝑜𝑔(𝑄10))2(𝑆𝐷(𝑇))2 =279 

1 +
1

200
(𝑙𝑜𝑔(𝑄10))2(𝑇𝐶𝑉(𝑇))2  280 

(23) 281 

For a “typical” 𝑄10 of 2.5, and a 𝑇 of 25, we see the multiplicative scale transition correction in 282 

figure 2: 283 
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 284 

Figure 2: Scale correction factor for Q10 temperature response scaling given coefficient of 285 

variation CV(Temp) from 0 to 0.5 286 

As is clear in Fig. 2, the scale transition for temperature is extremely convex. Integration of 287 

fluxes over ecosystems with significant heterogeneity in temperature invokes substantial 288 

deviation from a mean-field model. For instance, at a CV of 0.2, the scale correction factor is 289 

1.10, but by a CV of 0.5 it is 1.66. Obviously, the significance of this depends on the scale and 290 

heterogeneity over which an accurate flux model is desired. For a smaller footprint eddy 291 

covariance tower (nuria) over a uniform habitat type, soil (and near surface) temperatures 292 

probably do not vary by much more than 20%. Regardless, our general mathematical analysis 293 

quantifies and clarifies exactly how the scale of variation influences the degree of the scale 294 

transition correction. 295 

Notably, the only difference between the scale transition correction for first order and for reverse 296 

MM kinetics, is that in the latter, there would be additional correlation terms to consider, e.g. the 297 

correlation between temperature and 𝑉𝑚𝑎𝑥, temperature and 𝑘ℎ, as well as temperature and 𝐶 and 298 

𝑀𝐵. 299 

3.3 Lessons for Scientific Inference 300 

We close our discussion by considering the implications of the scale transition for advancing the 301 

state of biogeochemical modeling. Critically, the representation of non-linear (microbial driven) 302 

kinetics is a crucial modeling choice with large implications for long-term SOC forecasts. 303 

Traditional first-order PBMs dodge explicit representation of these kinetics, but nonetheless have 304 

worked well in practice. This state of affairs persists because both non-linear and linear kinetics 305 

are capable of representing coarse-scaled biogeochemistry reasonably well, at least in certain 306 

respects. Since first order kinetics are known to be a crude approximation, the crucial question 307 

for practice is not whether they are “true”, but rather whether there is significant, systematic 308 

information loss inherent to their use. Fortunately, the scale transition offers a clear, clean path to 309 

discriminate between these alternative model formulations. 310 
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As noted throughout, the dimensionless term 𝜆 plays a critical role in linking the non-linear 311 

(michaelis-menten) kinetics to the first order kinetics. As 𝜆 increases, the non-linear kinetics 312 

converge to first order. Thus, in seeking to infer where the non-linear kinetic models provide 313 

substantial advantages, ensuring that 𝜆 is not too large (>>1) is the first priority. Previous work 314 

Sihi et al. (2016) has approached this question theoretically, from first principles. Here, we point 315 

out that demonstrating substantial deviation from mean-field model when fitting non-linear 316 

kinetics to data is both a necessary and sufficient condition for infering that 𝜆 is not too large. 317 

Thus we recommend that time series of flux data be fit to both a first order and a non-linear 318 

kinetic model, where crucial covariates including subtrate (SOC), microbial biomass, and 319 

possibly environmental parameters such as temperature, have been measured sufficiently well to 320 

quantify the relevant variances and covariances. Where predictive performance and forecasting 321 

are the primary goals, we recommend careful consideration of model parameterizations 322 

(i.e. based on leave-one-out cross validation), and model combination via “stacking” where it is 323 

difficult to infer a decisive “winner” (Yao et al. 2018).  324 

In addition to the role of 𝜆, our analysis also cleanly shows the contribution of other terms to the 325 

scale transition, and thus alternative metrics to assess. First and foremost, accounting for the 326 

spatial colocation of microbial biomass and substrate (according to equation 15 above) or the 327 

various correlation terms between microbial biomass and kinetic/environmental factors in 328 

equation 9. In addition to fitting fully parameterized flux models (as above), simpler statistical 329 

models could be fit examining the role of variations in microbial biomas, or colocation of 330 

microbial biomass and SOC, in explaining across-site variations in ecosystem respiratory fluxes 331 

(F). A substantial role for either correlation of MB and C, or their variability, would 332 

constitute ipso facto evidence of the preferability of well-formulated non-linear kinetic 333 

models. On the other hand, small roles for colocation, or evidence of large values of 𝜆 in practice 334 

would suggest minimal advantage to abandoning first order models in favor of more complex 335 

microbial models. A meta-analytical approach across sites will benefit greatly from our 336 

formulation in terms of dimensionless quantities like 𝜆 and the various coefficients of variation.  337 

4. Conclusions 338 

Here, we have illustrated how the spatial scale transition can be expressed in dimensionless form, 339 

yielding insight into the systematic operation of Jensen’s Inequality in upscaling microbial 340 

decomposition kinetics. Our analysis has identified the central role of the dimensionless quantity 341 

𝜆 - representing the ratio of mean-field microbial biomass over its half-saturation value - in 342 

governing the extent of the scale transition correction, expressed here in multiplicative form best 343 

facilitating comparison among systems. For somewhat simplified scenarios - such as restricting 344 

to spatial colocation of substrate and microbes - as 𝜆 → ∞, the mean-field correction goes to 0 345 

and the model converges to first order. 346 

This dual sense of convergence also provides opportunity to empirically test for the presence of 347 

significant non-linear microbial dynamics in upscaled field data: to the extent that upscaled 348 

fluxes deviate from the flux estimated at mean-field conditions, we have ipso facto evidence for 349 

the importance of formulating our biogeochemical models with these non-linear terms. 350 

Conversely, where there is close agreement between mean-field and upscaled fluxes, there are 351 

arguably stronger reasons for retaining first-order process model formulations. 352 
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In closing, we would like to point out how this mathematical analysis illustrates the challenge of 353 

scaling quite nicely. In the context of non-linear models, for each parameter that is allowed to 354 

vary in space, there is not only a new variance parameter, but a number of new covariance terms 355 

are induced, growing as the factorial of the number of varying parameters (5
2
)! (Fig. 3). Thus, in 356 

the case of the 5 parameter function considered here, the full approximation has 5 mean field 357 

terms, 5 coefficients of variation, 10 correlation coefficients, and the dimensionless quantity 𝜆. 358 

 359 

Figure 3: Model complexity grows exponentially with number of spatially varying parameters. 360 

We argue to keep models as simple as possible for both analytical and computational 361 

tractability. 362 

Even with a maximally generic and simplified expression, fitting such non-linear time series 363 

models to field data still represents quite a challenge, especially while adequately accounting for 364 

and propagating uncertainty.  Modelers and theoreticians should appreciate the complexity of the 365 

task at hand. Fortunately, our analysis has identified a potentially robust route to limiting model 366 

complexity: screen systematically for the importance of various correlations in explaining 367 

variations in fluxes. Accordingly, we recommend that research focus first upon spatial colocation 368 

of MB and C, which is readily measured, and then to thoughtfully and carefully expand models 369 

with additional terms as needed. 370 
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