

1 Temporal dynamics of surface ocean carbonate chemistry in response

² to natural and simulated upwelling events during the 2017 coastal El

3 Niño near Callao, Peru

Shao-Min Chen^{1, 2}, Ulf Riebesell¹, Kai G. Schulz³, Elisabeth von der Esch¹, Eric P. Achterberg¹, and
 Lennart T. Bach⁴

- 6 ¹GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- ⁷ ²Department of Earth and Environmental Sciences, Dalhousie University, Halifax, Canada
- 8 ³Centre for Coastal Biogeochemistry, School of Environment, Science and Engineering, Southern Cross University, Lismore,
- 9 Australia
- 10 ⁴Institute for Marine and Antarctic Studies, University of Tasmania, Tasmania, Australia
- 11
- 12 Correspondence to: Shao-Min Chen (shaomin.chen@dal.ca)

13 Abstract. Oxygen minimum zones (OMZs) are characterized by enhanced carbon dioxide (CO₂) levels and low pH and are being further acidified by uptake of anthropogenic atmospheric CO₂. With ongoing intensification and expansion of OMZs 14 due to global warming, carbonate chemistry conditions may become more variable and extreme, particularly in the Eastern 15 Boundary Upwelling Systems. In austral summer (Feb-Apr) 2017, a large-scale mesocosm experiment was conducted in the 16 17 coastal upwelling area off Callao (Peru) to investigate the impacts of on-going ocean deoxygenation on biogeochemical 18 processes, coinciding with a rare coastal El Niño event. Here we report on the temporal dynamics of carbonate chemistry in 19 the mesocosms and surrounding Pacific waters over a continuous period of 50 days with high temporal resolution observations (every 2nd day). The mesocosm experiment simulated an upwelling event in the mesocosms by addition of nitrogen (N)-20 deficient and CO₂-enriched OMZ water. Surface water in the mesocosms was acidified by the OMZ water addition, with pH_T 21 lowered by 0.1-0.2 and pCO₂ elevated to above 900 μ atm. Thereafter, surface pCO₂ quickly dropped to near or below the 22 atmospheric level (405.22 µatm in 2017, NOAA/GML) mainly due to enhanced phytoplankton production with rapid CO2 23 24 consumption. Further observations revealed that the dominance of dinoflagellate Akashiwo sanguinea and contamination of 25 bird excrements played important roles in the dynamics of carbonate chemistry in the mesocosms. Compared to the simulated 26 upwelling, natural upwelling events in the surrounding Pacific waters occurred more frequently with sea-to-air CO₂ fluxes of 4.2-14.0 mmol C m⁻² d⁻¹. The positive CO₂ fluxes indicated our site was a local CO₂ source during our study, which may have 27 28 been impacted by the coastal El Niño. However, our observations of DIC drawdown in the mesocosms suggests that CO₂ 29 fluxes to the atmosphere can be largely dampened by biological processes. Overall, our study characterized carbonate 30 chemistry in near-shore Pacific waters that are rarely sampled in such temporal resolution and hence provided unique insights 31 into the CO2 dynamics during a rare coastal El Niño event.

32 1 Introduction

33 One of the most extensive oxygen minimum zones (OMZs) in the global ocean can be found off central/northern Peru (4 - 16° 34 S, Chavez and Messié, 2009). High biological productivity is stimulated by permanent upwelling of cold, nutrient-rich water to the surface supporting a remarkable fish production off Peru (Chavez et al., 2008; Montecino and Lange, 2009; Albert et 35 al., 2010). The high primary production also leads to enhanced remineralization of sinking organic matter in subsurface waters 36 37 which depletes dissolved oxygen (O2) and creates an intense and shallow OMZ (Chavez et al., 2008). The depletion of O2 in 38 OMZs plays an important role in the global nitrogen (N) cycle, accounting for 20 - 40% N loss in the ocean (Lam et al., 2009; 39 Paulmier and Ruiz-Pino, 2009). Denitrification and anammox processes that occur in O2 depleted waters remove N from the ocean and produce an N deficit and hence phosphorus (P) excess with respect to the Redfield ratio (C:N:P = 106:16:1) in the 40 41 water column (Redfield, 1963; Deutsch et al., 2001; Deutsch et al., 2007; Hamersley et al., 2007; Galán et al., 2009; Lam et 42 al., 2009). Upwelling of this N-deficient water has been found to control the surface-water nutrient stoichiometry and thus influence phytoplankton growth and community compositions (Franz et al., 2012; Hauss et al., 2012). 43

Apart from being N-deficient, the OMZ waters are also characterized by enhanced carbon dioxide (CO₂) concentrations and 44 45 low pH from respiratory processes and are further acidified by uptake of anthropogenic atmospheric CO₂ (Feely et al., 2008; Friederich et al., 2008; Paulmier et al., 2008; Paulmier et al., 2011). Accordingly, surface water carbonate chemistry is 46 47 influenced by upwelling of CO2-enriched OMZ water (Van Geen et al., 2000; Capone and Hutchins, 2013). The upwelled CO₂-enriched OMZ water can give rise to surface CO₂ levels >1,000 µatm, pH values as low as 7.6, and under-saturation for 48 the calcium carbonate mineral aragonite (Feely et al., 2008; Hauri et al., 2009). As a result, there is a significant flux of CO₂ 49 50 from the ocean to the atmosphere off Peru, which is further facilitated by surface ocean warming, making the Peruvian upwelling region a year-round CO₂ source to the atmosphere (Friederich et al., 2008). In contrast, rapid utilization of upwelled 51

52 CO₂ and nutrients by phytoplankton can occasionally deplete surface CO₂ below atmospheric equilibrium and dampen the CO₂ 53 outgassing (Van Geen et al., 2000; Friederich et al., 2008; Loucaides et al., 2012). The enhanced primary production in turn 54 contributes to increasing export of organic matter, enhanced bacterial respiration, O₂ consumption and CO₂ production at 55 depth. Such a positive feedback may determine the intensity of the underlying OMZ and promote carbon (C) preservation in 56 marine sediments (Dale et al., 2015).

In response to reduced O₂ solubility and enhanced stratification induced by global warming, OMZs have been intensifying and 57 58 expanding over the past decades (Stramma et al., 2008; Fuenzalida et al., 2009; Stramma et al., 2010). Based on regional 59 observations and model projections, a decline in dissolved O2 concentrations has been reported for most regions of the global ocean (Matear et al., 2000; Matear and Hirst, 2003; Whitney et al., 2007; Stramma et al., 2008; Keeling et al., 2009; Bopp et 60 al., 2013; Schmidtko et al., 2017; Oschlies et al., 2018). The vertical expansion of OMZs represents shoaling of CO2-enriched 61 62 seawater, which has become further enriched by oceanic uptake of anthropogenic CO₂ (Doney et al., 2012; Gilly et al., 2013; Schulz et al., 2019). Since biogeochemical processes in OMZs are directly linked to the C cycle and control surface nutrient 63 stoichiometry, with on-going ocean warming and acidification, the deoxygenation may have cascading effects on plankton 64 productivity and composition, C uptake, and food web functioning (Keeling et al., 2009; Gruber, 2011; Doney et al., 2012; 65 66 Gilly et al., 2013; Levin and Breitburg, 2015). Therefore, it is important to monitor the changes in CO₂ when investigating the effects of deoxygenation on marine ecosystems. 67

68 To investigate the potential impacts of upwelling on pelagic biogeochemistry and natural plankton communities in the Peruvian OMZ, a large-scale in situ mesocosm study was carried out in the coastal upwelling area off Peru. An upwelling event was 69 70 simulated in the mesocosms by addition of OMZ waters collected from two different locations where the OMZ was considered 71 to contain different nutrient concentrations and N:P ratios. The ecological and biogeochemical responses in the mesocosms 72 were monitored and compared with those influenced by natural upwelling events in the ambient coastal water surrounding the 73 mesocosms. As part of this collaborative research project, questions specific to the present paper were: (1) How does surface water carbonate chemistry respond to an upwelling event?; and (2) How does upwelled OMZ water with different chemical 74 signatures modulate surface water carbonate chemistry? The current study will mainly focus on the temporal changes in surface 75 76 water carbonate chemistry within the individual mesocosms, including observations made in the ambient Pacific water and a 77 local estimate of air-sea CO₂ exchange, together with the influence by a rare coastal El Nino event (Garreaud, 2018). This provides first insights into how inorganic C cycling links to chemical signatures of OMZ waters in a natural plankton 78 79 community and its implications for ongoing environmental changes.

80 2 Material and methods

81 2.1 Study site

82 The experiment was conducted in the framework of the Collaborative Research Center 754 "Climate-Biogeochemistry

83 Interactions in the Tropical Ocean" (<u>www.sfb754.de/en</u>) and in collaboration with the Instituto del Mar del Peru (IMARPE)

84 in Callao, Peru (Fig. 1a). The coastal area off Callao lies within the Humboldt Current System and is influenced by wind-

85 induced coastal upwelling (Bakun and Weeks, 2008).

86 2.2 Mesocosm setup

87 Eight "Kiel Off-Shore Mesocosms for Future Ocean Simulations" (KOSMOS) units (M1-M8), extending 19 m below the sea

88 surface, were deployed by the research vessel Buque Armada Peruana (BAP) Morales and moored at 12.06° S, 77.23° W in

- 89 the coastal upwelling area off Callao, Peru (Fig. 1a) on February 23rd, 2017 (late austral summer). The technical design of
- 90 these sea-going mesocosms is described by Riebesell et al. (2013). For a more detailed description of the mesocosm
- 91 deployment and maintenance in this study, please refer to Bach et al. (2020a).
- 92 The mesocosm bags were filled with surrounding seawater through the upper and lower openings. Both openings were covered
- 93 by screens with a mesh size of 3 mm to avoid enclosing larger organisms such as fish. The mesocosm bags were left open
- 94 below the water surface for two days, allowing free exchange with surrounding coastal water. On February 25th, mesocosm
- 95 bags were closed with the screens removed, tops pulled above the sea surface and bottoms sealed with 2-m long conical
- 96 sediment traps (Fig. 1b). The experiment started with the closure of the mesocosms (day 0) and lasted for 50 days. Each
- 97 mesocosm bag enclosed a seawater volume of ~54 m³. After the bags were closed, daily or every-2nd-day sampling was
- 98 performed to monitor the initial conditions of the enclosed water before simulating an upwelling event on day 11 and 12 (see
- 99 Sect. 2.4 for details).

105 2.3 Simulated upwelling and salt addition

To simulate an upwelling event in the mesocosms, OMZ-influenced waters were collected from the nearby coastal area and 106 107 added to the mesocosms. Two OMZ water masses were collected at Station 1 (12° 01.70' S, 77° 13.41' W) at a depth of ~30 m and at Station 3 (12° 02.41' S, 77° 22.50' W) at a depth of ~70 m respectively using a deep-water collection system as 108 described by Taucher et al. (2017). These two water masses were sampled for chemical and biological variables as the 109 mesocosms (see Sect. 2.4). The OMZ water collected from Station 3 had a dissolved inorganic nitrogen (DIN) concentration 110 of 4.3 µmol L-1 (denoted as "Low DIN" in this paper) and was added to M2, M3, M6 and M7. The OMZ water from Station 1 111 112 had a DIN of 0.3 µmol L⁻¹ (denoted as "Very low DIN" in this paper) and was added to M1, M4, M5 and M8. Before OMZ 113 water addition, approximately 9 m³ of seawater were removed from 11-12 m of each mesocosm on March 5th (day 8). During the night of March 8th (day 11), ~10 m3 of OMZ water were added to 14-17 m of each mesocosm. On March 9th (day 12), ~10 114 115 m^3 of seawater were removed from 8-9 m followed by an addition of ~12 m^3 OMZ water to 0-9 m of each mesocosm.

116 To maintain a low-O₂ bottom layer in the mesocosms and avoid convective mixing induced by heat exchange with the surrounding Pacific, 69 L of a concentrated sodium chloride (NaCl) brine solution were added to the bottom of each mesocosm 117 118 (10-17 m) on day 13, which increased the bottom salinity by ~0.7 units. Since then, turbulent mixing induced by sampling 119 activities continuously interrupted the artificial halocline. Hence, on day 33, 46 L of the NaCl brine solution were added again 120 to the bottom of each mesocosm (12.5-17 m), which increased the bottom salinity by ~0.5 units. At the end of the experiment 121 after the last sampling (day 50), 52 kg of NaCl brine was added again to each mesocosm to calculate the enclosed seawater 122 volume from a measured salinity change by ~0.2 units (see Czerny et al., 2013 and Schulz et al., 2013 for details). The average 123 final volume for each mesocosm bag was calculated at ~54 m³. With known sampling volumes and deep-water addition 124 volumes during the experiment, the enclosed volumes of each mesocosm on each sampling day could be calculated. The NaCl solution for the halocline establishments had been prepared in Germany by dissolving 300 kg of food industry grade NaCl 125 (free of anti-caking agents) in 1000 L deionized water (Milli-Q, Millipore) and purified with ion exchange resin (LewawitTM 126 MonoPlus TP260®, Lanxess, Germany) to minimize potential contaminations with trace metals (Czerny et al., 2013). The 127 NaCl solution for the volume determination was produced on site using locally purchased table salt. For a more detailed 128 129 description of OMZ water and salt additions, please refer to Bach et al. (2020a).

130 **2.4 Sampling procedures and CTD operations**

131 Sampling was carried out in the morning (7 a.m.-11 a.m. local time) daily or every 2nd day throughout the entire experimental

132 period. Depth-integrated samples were taken from the surface (0-10 m for day 3-28) and bottom layer (10-17 m for day 3-28)

133 of the mesocosms and the surrounding coastal water (named "Pacific") using a 5-L integrating water sampler (IWS, HYDRO-

134 BIOS, Kiel). Due to the deepening of the oxycline as observed from the CTD profiles, the sampling depth for the surface was

adjusted to 0-12.5 m while that for the bottom was changed to 12.5-17 m from day 29 until the end of the experiment (day 50).

For gas-sensitive variables such as pH and dissolved inorganic carbon (DIC), 1.5 L of seawater from each integrated depth in 136 137 each mesocosm were taken directly from the fully-filled 5-L integrating water sampler. Clean polypropylene sampling bottles 138 (rinsed with deionized water in the laboratory; Milli-Q, Millipore) were pre-rinsed with sample water immediately prior to 139 sampling. Bottles were filled from bottom to top using pre-rinsed Tygon tubing with overflow of at least one sampling bottle 140 volume (1.5 L) to minimize the impact of CO₂ air-water gas exchange. Nutrient samples were collected into 250 ml 141 polypropylene bottles using pre-rinsed Tygon tubing (see Bach et al., 2020a for details). Sample containers were stored in cool 142 boxes for ~3 hours, protected from sunlight and heat before being transported to the shore. Once in the lab, sample water was 143 sterile-filtered by gentle pressure using syringe filters (0.2 µm pore size), Tygon tubing and a peristaltic pump to remove 144 particles that may cause changes to seawater carbonate chemistry (Bockmon and Dickson, 2014). For DIC measurements, the water was filtered from the bottom of the 1.5-L sample bottle into 100-ml glass-stoppered bottles (DURAN) with an overflow 145 146 of at least 100 ml to minimize contact with air. Once the glass bottle was filled with sufficient overflow, it was immediately 147 sealed without headspace using a round glass stopper. This procedure was repeated to collect a second bottle (100 ml) of filtered water for pH measurements. The leftover seawater was directly filtered into a 500 ml polypropylene bottle for total 148 149 alkalinity (TA) measurements (non-gas-sensitive). Filtered DIC and pH samples were stored at 4 °C in the dark and TA samples 150 were at room temperature in the dark until further analysis. Samples were analysed for DIC and pH on the same day of 151 sampling, while TA was determined overnight (see Sect. 2.5 for analytical procedures).

152 CTD casts were performed with a multiparameter logging probe (CTD60M, Sea and Sun Technology) in the mesocosms and

153 Pacific on every sampling day. From the CTD casts, profiles of salinity, temperature, pH, dissolved O₂, chlorophyll a (chl a)

and photosynthetically active radiation were obtained (see Schulz and Riebesell, 2013 and Bach et al., 2020a for details).

155 2.5 Carbonate chemistry and nutrient measurements

Total alkalinity was determined at room temperature (22-32°C) by a two-stage open-cell potentiometric titration using a 156 Metrohm 862 Compact Titrosampler, Aquatrode Plus (Pt1000) and a 907 Titrando unit in the IMARPE laboratory following 157 Dickson et al. (2003). The acid titrant was prepared by preparing a 0.05 mol kg⁻¹ hydrochloric acid (HCl) solution with an 158 159 ionic strength of ca. 0.7 mol kg⁻¹ (adjusted by NaCl). Approximately 50-grams of sample water from each sample was weighed 160 into the titration cell with the exact weight recorded (precision: 0.0001 g). After the two-stage titration, the titration data between a pH of ~3.5 and 3 was fitted to a modified non-linear Gran approach described in Dickson et al. (2007) using 161 162 MATLAB (The MathWorks). The results were calibrated against certified reference materials (CRMs) batch 142 (Dickson, 163 2010) measured on each measurement day. In this paper, measured TA values refer to the measured values that have been calibrated against the CRM. 164

165 Seawater pH_T (total scale) was determined spectrophotometrically by measuring the absorbance ratios after adding the 166 indicator dye m-cresol purple (mCP) as described in Carter, et al. (2013). Before measurements, samples were acclimated to 25.0°C in a thermostatted bath. The absorbance of samples with mCP was determined on a Varian-Cary 100 double-beam 167 168 spectrophotometer (Varian), scanning between 780 and 380 nm at 1-nm resolution. During the spectrophotometric measurement, the temperature of the sample was maintained at 25.0°C by a water-bath connected to the thermostatted 10-cm 169 170 cuvette. The pH_T values were calculated from the baseline-corrected absorbance ratios and corrected for in situ salinity (obtained from CTD casts) and pH change caused by dye addition (using the absorbance at the isosbestic point, i.e. 479 nm) 171 as described in Dickson et al. (2007). To minimize potential CO2 air-water gas exchange, a syringe pump (Tecan Cavro XLP) 172 173 was used for sample/dye mixing and cuvette injection (see Schulz et al. 2017 for details). For the dye correction, a batch of 174 sterile filtered seawater of known salinity was prepared. The pH_T was determined once for an addition of 7 ul of dye and once 175 of 25 ul at five pH levels (raised to 7.95 with NaOH and lowered to 7.74, 7.58, 7.49 and 7.36 with HCl stepwise). The pH change resulting from the dye correction addition was calculated from the change in measured absorbance ratio for each pair 176 of dye additions (see Clayton and Byrne, 1993 and Dickson et al., 2007 for details). The dye-corrected pH_T values measured 177 at 25.0°C and atmospheric pressure were then re-calculated for in situ temperature and pressure as determined by CTD casts 178 179 (averaged over 0-10/12.5 m for surface and 10/12.5-17 m for bottom). For carbonate chemistry speciation calculations (see Sect. 2.6), the dye-corrected pH_T values were used as one of the input parameters. 180

181 Dissolved inorganic carbon was measured by infrared absorption using a LI-COR LI-7000 on an AIRICA system 182 (MARIANDA, Kiel, see Taucher et al., 2017 and Gafar and Schulz, 2018 for details). The results were calibrated against 183 CRMs batch 142 (Dickson, 2010). Unfortunately, due to a malfunctioning of the AIRICA system, we obtained measured DIC 184 data only up to March 7th (day 10). Therefore, measured TA and pH_T were used for calculations of carbonate system 185 parameters at *in situ* temperature and salinity but we used DIC measurements from day 3-10 for consistency checks of 186 calculated carbonate chemistry parameters. In this paper, measured DIC values refer to the measured values that have been 187 calibrated against the CRM.

188 Inorganic nutrients were analyzed colorimetrically (NO₃⁻, NO₂⁻, PO₄³⁻ and Si(OH)₄) and fluorimetrically (NH₄⁺) using a

189 continuous flow analyzer (QuAAtro AutoAnalyzer with integrated photometers, SEAL Analytical) connected to a fluorescence

190 detector (FP-2020, JASCO). All colorimetric methods were conducted according to Murphy and Riley (1962), Mullin and

191 Riley (1955a, b) and Morris and Riley (1963) and corrected following the refractive index method developed by Coverly et al.

192 (2012). For details of the quality control procedures, see Bach et al. (2020a).

193 2.6 Carbonate chemistry speciation calculations and propagated uncertainties

Calculations of carbonate chemistry parameters (in situ pH_T, DIC, pCO₂, and calcium carbonate saturation state for calcite and 194 aragonite) were performed with the Excel version of CO2SYS (Version 2.1, Pierrot et al., 2006) using K1 and K2 dissociation 195 constants from Mehrbach et al., (1973) which were refitted by Lueker et al. (2000). The dissociation constant for KHSO4 from 196 197 Dickson (1990) and for total boron from Uppström (1974) were applied in the calculations (see Orr et al., 2015 for details). 198 The observed pH_T and TA as well as inorganic nutrient concentration (phosphate and silicic acid) were used as input CO_2 system parameters. In situ salinity and temperature were obtained by CTD casts and averaged over surface (0-10 m or 0-12.5 199 200 m) and bottom (10-17 m or 12.5-17 m) waters for each sampling day. In situ pressure was approximated for surface (5 dbar) 201 and bottom (13.5 or 14.75 dbar) waters. For details of calculation procedures and choices of constants, see Lewis et al. (1998) 202 and Orr et al. (2015). To evaluate the performance of pH_T and TA measurements, quality control procedures were performed. First, standard 203

204 deviations of pH_T measurements were graphed over time. Measured TA values of a control sample (CRM batch 142, Dickson, 205 2010) were plotted over time, compared to the warning and control limits calculated from their mean and standard deviation 206 (for details please see Dickson et al., 2007) as well as the certified value of the CRM. To compute a range control chart for the evaluation of measurement repeatability, the absolute difference between duplicate measurements of CRMs on each sampling 207 208 day was calculated and plotted over time, compared to the warning and control limits calculated from their mean and standard deviation (for details see Dickson et al., 2007). 209

We used the R package seacarb with a Gaussian approach and an input variable pair (pH_T, TA) to calculate uncertainties for 210 211 calculated CO₂ system parameters (Orr et al. 2018; Gattuso et al. 2020). The contribution of input uncertainties in nutrient 212 concentrations and in situ salinity and temperature to the uncertainties in the CO2SYS-based calculations are often small (< 0.1%; Orr et al. 2018) so they were not considered in our propagation. The input uncertainties of pH_T and TA were estimated 213 214 based on our measurements (Table 1). Standard uncertainties include random and systematic errors. For TA, systematic errors 215 were removed by calibrating the measured results using CRMs (see Sect. 2.5). Hence, the random error of TA, estimated by the averaged standard deviation of all the CRM measurements (4.4 µmol kg⁻¹; n = 62), was used as the standard uncertainty. 216 217 For pH_T, an uncertainty of 0.01 was used as the standard uncertainty. Due to the unavailability of CRMs that correct for systematic error in pH measurements, the standard deviations of repeated measurements (0.0012; n = 377) only accounted for 218 219 the random components of standard uncertainties (Orr et al. 2018). Therefore, we used 0.01 in our uncertainty propagation as 220 an approximation of the total standard uncertainty for pH_T, which has been used in previous assessments (Orr et al. 2018).

221 Table 1: Standard uncertainties of pH_T and TA estimated based on our measurements are denoted by u(pHT) and u(TA). Based 222 on u(pH_T) and u(TA), propagated uncertainties were estimated for each data point in R and averaged for each reported variable 223 (µ), with Standard deviation (σ), minimum (min) and maximum (max) values presented. The relative percentage (%) of 224 propagated standard uncertainties were calculated by dividing the propagated uncertainty by the corresponding data point and d.

225	averaged for eac	h reported	variable (µ),	, with σ,	, min and	l max values	presente
-----	------------------	------------	---------------	-----------	-----------	--------------	----------

u(pH _T)	u(TA)		ΔpCO_2		ΔDIC		$\Delta\Omega_{ m Ar}$		$\Delta\Omega_{Ca}$	
μmol kg ⁻¹			µatm	%	µmol kg-1	%		%		%
0.01	4.4	μ	35.94	3.8	6.63	0.3	0.08	5.1	0.13	5.1
		σ	12.60	0.3	0.80	0.0	0.03	0.3	0.05	0.3
		min	15.07	3.2	5.88	0.3	0.04	4.4	0.07	4.4
		max	62.84	4.8	8.72	0.4	0.16	5.8	0.24	5.8

The air-sea flux of CO2 (FCO2, mmol C m-2 d-1) in the Pacific was determined based on 226

$$FCO_2 = k K_0 \Delta p CO_2 \tag{1}$$

- where k is the gas transfer velocity parameterized as a function of wind speed, K_0 is the solubility of CO_2 in seawater dependent on *in situ* salinity and temperature (Weiss, 1974), and ΔpCO_2 is the difference between pCO_2 in the surface water and in the
- atmosphere (Wanninkhof 2014). Wind data were averaged over 2 sampling days for the sampling location from a satellite-
- 231 derived gridded dataset (GLDAS Model, near surface wind speed, 0.25 x0.25 degrees, 3 hour temporal resolution, 12.375° to
- 232 11.875°S, 77.375° to 76.875°W), obtained from NASA Giovanni (Rodell et al., 2004; Beaudoing and Rodell, 2020). In situ
- 233 salinity and temperature were obtained from the CTD casts (see Sect. 2.4). Calculated pCO₂ based on (pH_T, TA) and an
- 234 estimated atmospheric pCO₂ of 405.22 μatm (referenced to year 2017, NOAA/GML) were used in the air-sea flux estimation.

235 3 Results

236 3.1 Responses of surface layer nutrient concentrations

237 The OMZ-influenced water masses were collected from two locations and added to the mesocosms to simulate an upwelling

238 event (see Sect. 2.3). The two water masses were named "Low DIN" and "Very low DIN" respectively based on their DIN

239 concentrations (Table 2). Both water masses shared similar silicic acid (Si) and phosphate (PO₄³⁻) concentrations but differed

240 in DIN concentration. The "Low DIN" water had a DIN concentration of 4.3 µmol L-1, 14 times as high as that of the "Very

241 low DIN" water (0.3 μ mol L⁻¹; Table 2).

Table 2: Inorganic nutrient concentrations of the two collected deep-water masses. Please note that DIN is the sum of nitrate, nitrite and ammonium. P is phosphate. Si is silicic acid. Color codes denote the two water masses and are applied to the mesocosms treated with respective water masses in the following figures and tables.

Water mass	Si (µmol L ⁻¹)	DIN (µmol L-1)	PO4 ³⁻ (µmol L ⁻¹)	N: P ratio (mol: mol)
Low DIN	19.6	4.3	2.5	1.7
Very low DIN	17.4	0.3	2.6	0.1

On day 10 before OMZ water addition, the average surface DIN concentration of the two treatment groups were similar (3.4 245 µmol L⁻¹), but lower than that in the Pacific (9.8 µmol L⁻¹; Table 3). Surface layer DIN concentration in the mesocosms ranged 246 between 2.0 and 6.0 µmol L⁻¹ before OMZ water addition (Fig. 2a). The addition of OMZ water elevated surface DIN in the 247 "Low DIN" mesocosms to 3.6-6.4 µmol L⁻¹ but lowered that in the "Very low DIN" to 0.9-2.0 µmol L⁻¹. The average surface 248 249 DIN concentration in the "Very low DIN" decreased to 1.6 µmol L⁻¹ while the "Low DIN" slightly increased to 4.7 µmol L⁻¹ 250 (Table 3), followed by a sharp depletion on day 16 except for M3. M3 received the highest input of DIN (6.4 µmol L⁻¹) and was not depleted until day 24. Despite several small peaks in M3, M4, M5 and M6 (\leq 1.6 µmol L⁻¹), surface DIN concentration 251 in the mesocosms were at around limits of detection (LODs: $NH_4^+ = 0.063 \mu mol L^{-1}$, $NO_2^- = 0.054 \mu mol L^{-1}$, $NO_3^- = 0.123 \mu mol L^{-1}$, N252 253 µmol L⁻¹) most of the time after depletion. A slight rise could be observed from day 44 towards the last sampling day (day 48). In the Pacific, surface layer DIN concentration was mostly greater than 5 µmol L⁻¹ (except on day 16 and 18) and became 254 considerably higher during the second half of the experiment (> 10 μ mol L⁻¹ for day 26-44; Fig. 2a). 255

Table 3: DIN concentration (μ mol L⁻¹) in the surface layer of each mesocosm (M1-M8) and the average DIN concentration (μ mol L⁻ 1) for each treatment ("Low DIN" and "Very Low DIN", n = 4) before (t10) and after deep water addition (t13). The DIN concentration in the surface Pacific water is also shown. Color codes and symbols denote the respective mesocosm in the following figures.

	M1	M2	M3	M4	M5	M6	M7	M8	Low DIN	Very Low DIN	Pacific
t10	3.7	2.2	5.0	3.3	3.9	3.4	3.2	2.6	3.4 ± 1.2	3.4 ± 0.5	9.8
t13	1.8	3.6	6.4	2.0	1.6	4.7	4.0	0.9	4.7 ± 1.3	1.6 ± 0.5	9.2
					-	-		———			-•-

Surface layer PO_4^{3-} concentrations in the mesocosms initially ranged between 1.1 and 1.5 µmol L⁻¹ and were elevated by OMZ 260 water addition to around 1.9 μ mol L⁻¹ (Fig. 2b). Thereafter, PO₄³⁻ exhibited a slow but steady decline until the end of the study 261 with a slightly higher decrease in "Low DIN" mesocosms (blue symbols; Fig. 2b). Throughout the study, PO_4^{3-} in the 262 mesocosms was never lower than 1.1 μ mol L⁻¹. Surface layer PO₄³⁻ in the Pacific was generally higher, fluctuating between 263 264 1.4 and 2.9 μ mol L⁻¹. In the mesocosms, enhanced chl *a* concentrations were observed at depths shallower than 5 m and below 15 m before OMZ water addition (Fig. 2c). Following OMZ water addition, a chl a maximum occurred at ~10 m and persisted 265 266 until day 40, except for M3 and M4 with a 1-week delayed increase in the former and a lack of bloom in the latter (Fig. 2c). After day 40, chl a concentrations in all mesocosms (except for M4) increased to 12-38 µg L⁻¹ with a bloom occurring in 0-10 267 268 m (Fig. 2c) Throughout the study, a chl a maximum was continuously observed above 10 m in the Pacific (Fig. 2c).

Figure 2 Temporal dynamics of depth-integrated surface DIN concentration (a), PO4³ concentration(b) and vertical distribution of chl *a* concentration determined by CTD casts (c). The black solid lines on top of the coloured contours represent the average values over the entire water column, with the corresponding additional y-axes on the right. The vertical white lines represent the day when OMZ water was added to the mesocosms. Color codes and symbols denote the respective mesocosm. Abbreviation: OWA, OMZ water addition. SA, salt addition. Dataset is available at https://doi.pangaea.de/10.1594/PANGAEA.923395 (Bach et al., 2020b).

275 3.2 Temporal dynamics of carbonate chemistry

 $276 \quad \text{Before OMZ water addition, surface layer pH_T in the mesocosms ranged between 7.80-7.94 with a slight decline by ~0.1 over a structure of the structu$

- time (Fig. 3a). The initial surface layer TA ranged between 2,310 and 2,330 μ mol kg⁻¹ (Fig. 3b; day 3-12). Surface layer pCO₂
- 278 and DIC ranged from 541 to 749 µatm and 2,119 to 2,180 µmol kg⁻¹, respectively (Fig. 3c, d).

- 279 The two collected OMZ-water masses shared similar carbonate chemistry properties despite the differences in DIN
- 280 concentrations. In both water masses, pH_T was ~7.48, DIC was ~2,305-2,310 μmol kg⁻¹, TA was ~2,337 μmol kg⁻¹, and pCO₂
- 281 was between 1,700 and 1,780 µatm (Table 4).
- 282 Table 4: The *in situ* pH_T, TA, DIC, pCO₂, Ω_{Ar} and Ω_{Ca} of the two collected OMZ-water masses.

Water mass	$pH_{\rm T}$	TA (µmol kg ⁻¹)	DIC (µmol kg ⁻¹)	pCO ₂ (µatm)	Ω_{Ar}	Ω_{Ca}
Low DIN	7.49	2336.5	2305.4	1707.5	0.90	1.38
Very low DIN	7.47	2338.2	2312.1	1775.3	0.87	1.34

Surface DIC and pCO2 were elevated from ~2,150 µmol kg⁻¹ and ~600 µatm to ~2,200 µmol kg⁻¹ and ~900 µatm (except M7) 283 284 by OMZ water addition, respectively, without distinct differences between the two treatments (Mann-Whitney U-Test, p > 285 0.05; Fig. 3c). Following OMZ water addition, surface pCO2 in the mesocosms decreased quickly and reached minima at 340-500 µatm (except M3 and M4) on day 24 and 26. These minima corresponded with DIC minima at 2,040-2,110 µmol kg⁻¹ and 286 287 pH_T maxima at 7.9-8.1 (except M3 and M4; Fig. 3c, d). After reaching the minima, surface layer pCO₂ exhibited a steady 288 increase to 410- 680 µatm from day 24 to day 38 and later declined in M3, M5, and M7 while the rest remained relatively stable until day 42 (Fig. 3c). Interestingly, and unlike the other mesocosms, after OMZ water addition, pCO2 in M3 steadily 289 declined from 928 to 342 µatm until the end of the experiment while that in M4 remained constantly higher than the other 290 291 mesocosms (> 700 µatm), with a slightly decreasing trend to 645 µatm towards the end of the study (Fig. 3c). 292 In the Pacific, much lower surface pH_T and higher surface pCO_2 and DIC were observed compared to the mesocosms, with an average of 7.7 (7.6-7.8), 1,078 µatm (775 - 1358 µatm) and 2,221 µmol kg⁻¹ (2173 - 2269 µmol kg⁻¹; minimum to maximum 293 294 range in parenthesis; Fig. 3c, d), respectively. TA in the Pacific was initially similar to that in the mesocosms, fluctuating

 $295 \qquad \text{between 2,310 and 2,330 } \mu\text{mol } kg^{\text{-1}}\text{, and later decreased to } \sim 2,310 \ \mu\text{mol } kg^{\text{-1}}\text{ for the rest of the study.}$

296 Surface waters in the mesocosms and the Pacific were always saturated with respect to calcite and aragonite throughout the

297 entire experimental period, with lower values observed in the Pacific (Fig. 4a, c). Bottom waters in the mesocosms and Pacific

298 were always saturated with respect to calcite during the experiment (Fig. 4b) while bottom waters in the Pacific were

undersaturated with respect to aragonite before day 13 (0.88-0.99) and had Ω_{Ar} values slightly above 1.0 for the rest of the study period (Fig. 4d).

301

Figure 3 Temporal dynamics of measured depth-integrated surface pH_T (a) and TA (b), and calculated pCO_2 (c) and DIC (d). The error ribbons present measurement and propagated standard uncertainties of the calculations, respectively. Color codes and methods depend the propagated standard uncertainties of the calculations, respectively.

304 symbols denote the respective mesocosm. Abbreviation: OWA, OMZ water addition. SA, salt addition.

305

Figure 4 Temporal dynamics of depth-integrated surface calcite saturation state (a), bottom calcite saturation state (b), surface aragonite saturation state (c), and bottom aragonite saturation state (d) in the mesocosms and the surrounding Pacific. The error ribbons present the propagated standard uncertainties of the calculations. When $\Omega > 1$ (above red dashed line), seawater is supersaturated for calcium carbonate. When $\Omega < 1$ (below red dashed line), seawater is under-saturated for calcium carbonate. Color codes and symbols denote the respective mesocosm. Abbreviation: OWA, OMZ water addition. SA, salt addition.

311 3.3 Air-sea CO₂ fluxes in the Pacific

Positive FCO₂ values indicate CO₂ outgassing from the surface waters to the atmosphere, while negative values indicate a CO₂ flux from the atmosphere to the ocean. The air-sea CO₂ flux in the Pacific was constantly positive throughout our study, fluctuating from 4.2 to 14.0 mmol C m⁻² d⁻¹ over time (Fig. 5a). The minima of FCO₂ occurred on day 26 and 30, while the maximum occurred on day 32 when near surface wind was the highest (2.89 m s⁻¹; Fig. 5b), corresponding to the minima and maxima of surface pCO₂. Co-occurring with a decrease in surface temperature to below 19°C after day 36 (Fig 5c), FCO₂ slightly declined from ~10 to ~6 mmol C m⁻² d⁻¹ (Fig. 5a). FCO₂ was positively correlated with near surface wind speed (R² = 0.4). No correlation was found between FCO₂ and temperature (R² = 0).

319

Figure 5 Temporal dynamics of surface air-sea CO₂ flux (a), near surface wind speed (b) and surface temperature (c) in the Pacific. (c) in the Pacific FCO₂ > 0 (above red dashed line) indicates CO₂ outgassing from the sea surface to the atmosphere. $FCO_2 < 0$ (below red dashed line) indicates a CO₂ flux from the atmosphere to the sea.

323 4 Discussion

324 **4.1 Quality control and propagated uncertainties**

325 To compare the sensitivity of different calculated variables to uncertainties in the input variables, the propagated uncertainties

326 were averaged for each calculated variables, reported in numerical values and percentages relative to the calculated values of

327 each variable (Table 1). Among the 4 reported variables, Ω_{Ca} and Ω_{Ar} were the most sensitive to uncertainties in pH_T and TA

328 with an average uncertainty of 5.1%. This adds ambiguity to whether the bottom water (10-17 m for day 3-28; 12.5-17 m for

329 day 29-50) in the Pacific was undersaturated with respect to aragonite when Ω_{Ar} was oscillating near 1 (Fig. 4d). The

330 propagated uncertainty in pCO₂ was slightly lower (3.8%) while DIC was the least sensitive (0.3%).

331 We examined the internal consistency between DIC measurements and calculations. DIC was measured from day 3 until the

332 malfunction of the instrument on day 10. In total, 53 sets of measured DIC and calculated DIC (from measured pH_T and TA)

values were obtained from day 3 to day 10 and compared to test their consistency (Fig. 6a). The calculated DIC values were

generally in agreement with the measured values ($R^2 = 0.985$, p < 0.005), showing that the calculations made an overall good 334 335 prediction for the measured DIC values. The average of the residuals (calculated DIC- measured DIC) was -8.27 \pm 6.9 μ mol 336 kg⁻¹, indicating an underestimation of calculated DIC. This result is consistent with a previous observation of underestimated calculated DIC (pH_T, TA) compared with measured DIC when applying the same set of constants (-6.6 \pm 7.9 µmol kg⁻¹; 337 338 Raimondi et al., 2019). The reasons for such underestimation have not been addressed in previous studies and remain unclear. No significant relationships with input variables pH_T and TA ($R^2 = 0.12$ for both) and temperature ($R^2 = 0.30$) were found in 339 340 the DIC residuals (salinity remained the same from day 3 to day 10). The lack of correlation with pH_T and TA indicated that the underestimation in calculated DIC was not a result from changes in pH_T and TA. Although dissociation constants are 341 known to be salinity- and temperature-dependent, the lack of correlation between DIC residuals and temperature may be 342 attributed to the relatively narrow ranges of temperature in the mesocosms (17.9-20.9°C from day 3-10). The offsets were 343 typically larger at lower temperatures (e.g., samples from the Arctic, Chen et al. 2015). 344 To assess the quality of carbonate chemistry measurements in this study, the stability and performance of measurements were 345 evaluated. The standard deviation of triplicate pH_T measurements varied up to 0.003 with an average of 0.0012 throughout the 346 347 whole experiment (Fig. 6b). The average standard deviation was in agreement with reported analytical precisions of pH (0.003, Orr et al. 2018; 0.002, Raimondi et al., 2019; Ma et al., 2019). 348 349 For TA, triplicate measurements of CRM distributed to before and after the sample measurements were carried out on each 350 measuring day to monitor the stability of the measurement process and the performance of the system. Based on the offsets, a 351 correction factor was applied to the measured values of samples on each sampling day to calibrate for instrument drift. As shown in Fig. 6c, 90.5% of the measured TA values of CRM fell between warning limits (UWL and LWL) with one data point 352 falling outside the control limits (UCL and LCL), overall suggesting a relatively stable measurement system. The average 353 354 measured TA was 2209.9 µmol kg⁻¹, which was 17.69 µmol kg⁻¹ lower than the certified concentration of the CRM (2227.59 µmol kg⁻¹), indicating a relatively poor accuracy (compared to the suggested bias of less than 2 µmol kg⁻¹; Dickson et al., 2003; 355 356 Dickson et al., 2007). The poor accuracy could be attributed to the fact that the concentration of the acid titrant was not checked after being prepared, as suggested in the protocol (Dickson et al., 2003). A range control chart was computed based on duplicate 357 358 measurements of CRM made prior to the sample measurements on each sampling day to evaluate the consistency of the offset between measured and certified TA values over the course of the study (Fig. 6d; Dickson et al., 2007). The absolute difference 359 360 (range) between the repeated CRM mesaurements was on average 1.4 µmol kg⁻¹. All the range values fell below the UWL (3.50 µmol kg⁻¹; Fig. 6d), suggesting a relatively good precision of the measurement system. 361

15

362

Figure 6 Comparison of calculated values of DIC (pH_T, TA) and measured values (a). The black line is the regression line, with the 363 364 corresponding equation and R² shown in the top-left corner. The blue dashed line shows the regression line forced through the 365 origin. Standard deviations of all the triplicate pHT measurements on each sampling day over the study period. Orange dashed line 366 shows the average (n = 377) of the standard deviations (b). TA values of CRM measurements on each sampling day over the study 367 period. Orange dashed line shows the average (n = 62) of the measured values and green dashed line indicates the certified value of 368 the CRM (c). The absolute difference in TA values between duplicate CRM measurements (range) on each sampling day over the 369 study period. Orange dashed line shows the average (n = 21) of the ranges (d). Abbreviation: UCL, upper control limit. UWL, upper 370 warning limit. LWL, lower warning limit. LCL, lower control limit.

371 4.2 CO₂ responses to the simulated upwelling event

At the beginning of the experiment, surface pCO_2 levels in the mesocosms were >500 µatm (Fig. 3c). This suggests that we initially enclosed an upwelled water mass that was enriched with respiratory CO₂. The addition of OMZ water with high concentrations of CO₂ to the mesocosms reduced the surface pH_T by 0.1-0.2 and increased the surface pCO_2 to >900 µatm (except for M7, which was 819.4 µatm on day 13). The simulated upwelling substantially reduced the variability in CO₂ between mesocosms because OMZ water addition replaced ~20 m³ of seawater in each mesocosm (out of ~54 m³). The

377 enhanced pCO₂ level is comparable with our observations in the ambient Pacific water (>775 µatm; Fig. 3c). These values also

agree with reported observations for our study area in 2013 (>1,200 µatm in the upper 100 m and > 800 µatm at the surface;
Bates, 2018).

In the days after OMZ water addition, surface pCO₂ in the mesocosms dropped near or below the atmospheric level (405.22 380 μatm, NOAA/GML) with a decline in DIC by ~100 μmol kg⁻¹ (except M3 and M4; Fig. 3c, d). The declining pCO₂ could be 381 partially attributed by CO₂ outgassing due to a high CO₂ gradient from the sea surface to the air. Due to a rare coastal El Nino 382 383 event (Garreaud, 2018), the CO₂ loss process may have been enhanced by a rapid surface warming (19.8-21.0 °C from day 14 to 36; Fig. 5) which reduced surface CO2 solubility (Zeebe and Wolf-Gladrow, 2001). However, air-sea gas exchange could 384 385 not explain surface CO₂ under-saturation in relation to the atmosphere, as observed in response to OMZ water addition in some 386 mesocosms (Van Geen et al., 2000; Friederich et al., 2008; Fig. 3c). Biological production has typically one to four times greater impacts on CO2 drawdown than air-sea gas exchange in the equatorial Pacific where surface waters are exposed to 387 388 local wind stress (Feely et al., 2002). This interpretation is supported by the continuously high DIC in M4 where photosynthetic biomass build-up was substantially lower (Fig. 3d). Hence, the depletion of nutrients (Fig. 2a, b) and increase in chl a 389 390 concentration (Fig 2c; Bach et al., 2020a) strongly suggest that the loss of DIC (except M4) was primarily driven by biological uptake and phytoplankton growth. Nevertheless, it is difficult to dissect how much CO2 was outgassed and how much was 391 taken up photosynthetically as we did not measure air-sea gas exchange in the mesocosms (please note that equations from 392 393 Wanninkhof, (2014) are not applicable for mesocosms).

394 Before OMZ water addition, dissolved inorganic N:P ratios in the mesocosms ranged from 1.6 to 3.5 (data not shown), 395 indicating N is the limiting nutrient in the water column (Bach et al., 2020a). Not surprisingly, the uptake of DIC was higher in the "Low DIN" mesocosms which received more input of DIN from OMZ water addition, with on average 41.0 µmol kg⁻¹ 396 higher drawdown compared to the "Very Low DIN" from day 13 to day 24 (excluding M3 and M4; Mann-Whitney U-Test, p 397 = 0.05; Table S1). This observation agrees with the general expectations that addition of limiting nutrients to water column 398 399 should enhance biological biomass build-up. Such differences in DIC uptake, however, were not reflected in the build-up of 400 particulate organic carbon (POC) in the mesocosms (excluding M3 and M4; Mann-Whitney U-Test, p > 0.1). As mentioned above, the differences in OMZ-water DIN between the two treatments were minor and hence, their potential to trigger treatment 401 402 difference were small. Due to the developing N-limitation after the biomass build-up there much of the consumed DIC could 403 have been channelled to dissolved organic carbon (DOC) pool. Indeed, we observed a pronounced increase in DOC following OMZ water addition (except for M4; Igarza et al., in prep, 2021). The increase in DOC may be attributed to extracellular 404 405 release by phytoplankton due to nutrient limitation, or cellular lysis of phytoplankton cells by bacteria (Myklestad 2000; Igarza 406 et al., in prep, 2021).

After day 24, variability in carbonate chemistry between individual mesocosms increased, with a general trend of recovering 407 408 from CO2-undersaturated conditions during the peak of the bloom (except for M3 and M4; Fig. 3c). One factor that may have controlled the differences in CO2 increase are the mesocosm-specific phytoplankton succession patterns. A shift from a diatom-409 410 dominated community to a dominance of dinoflagellates (in particular Akashiwo sanguinea) occurred when DIN was 411 exhausted, which was absent in M3 and M4 (Bach et al., 2020a). The different succession patterns in the plankton community 412 are the most likely explanation why M3 and M4 behaved differently from the others in terms of surface layer productivity, and hence carbonate chemistry. Although the rate of DIN depletion in M3 and M4 were similar to the others, the reduction in pCO₂ 413 in M3 experienced a 1-week delay which is consistent with the delayed build-up of chl a biomass (Fig. 2c, 3c). On the other 414 415 hand, the pCO₂ level in M4 remained constantly elevated throughout the experiment, as of a lack of a phytoplankton bloom 416 (Fig. 2c, 3c). M4 was the only mesocosm where a A. sanguinea remained undetectable, whereas a delayed and reduced 417 contribution by A. sanguinea was observed in M3. This strongly suggests that A. sanguinea was a key factor driving the trend of carbonate chemistry in the mesocosms. 418

419 Near the end of the experiment, a slight decline in pCO₂ became apparent in the mesocosms which co-occurred with a second phytoplankton bloom observed in the uppermost layer of the water column (Fig. 2c, 3c). This bloom was likely fuelled by 420 421 surface eutrophication due to defecating sea birds. During the last part of our experiment, Inca terns (Larosterna inca) were frequently observed to rest on the roofs and the edges of the mesocosms (Bach et al., 2020a). Bird excrements, dropped into 422 423 the mesocosms, are known to be enriched in inorganic nutrients, especially ammonium (Bedard et al., 1980). The excrements 424 may also be high in dissolved organic nitrogen (DON), evidenced by a substantial increase in DON concentrations in the 425 mesocosm surface from day 38 onward (Igarza et al., in prep, 2021). The triggered surface eutrophication and phytoplankton blooms were noticeable from an accumulation of chl a biomass above the mixed layer in the mesocosms near the end of the 426 427 study (Fig. 2c). As a result, another drawdown of DIC could be observed in the mesocosms except for M4, M6 and M8. While 428 the build-up of chl a was comparable with that triggered by OMZ water addition, the drawdown in DIC was less pronounced, potentially counteracted by the release of CO₂ by enhanced respiration and remineralization following the previous bloom. 429 430 Also, the second bloom occurred in the top 2 meter in the mesocosms (Fig. 2c) where gas exchange can quickly replete the

431 DIC drawdown during photosynthesis and biomass build up.

432 4.3 Temporal changes of carbonate chemistry in the coastal Pacific near Callao

According to estimations by Takahashi et al. (2009) of global air-sea CO₂ fluxes, our study site in the equatorial Pacific (14°N-433 434 14°S) is a major source of CO₂ to the atmosphere. Our near-coastal location showed high pCO₂ levels over the study period (with an average of 1,078 µatm), with a sea-to-air CO₂ flux of 4.2-14.0 mmol C m⁻² d⁻¹ (Fig. 5). Compared to the criterion of 435 high CO₂ fluxes (5 mmol C m⁻² d⁻¹ or more) as proposed by Paulmier et al. (2008), our study site was a strong CO₂ source to 436 437 the atmosphere most of the time. These results of air-sea CO₂ fluxes were slightly higher than observations by Friederich et al. (2008) along the coast of Peru in February, 2004-2006 (0.85-4.54 mol C m⁻² yr⁻¹; spatially averaged for 5-15°S along the coast 438 439 of Peru). This is not surprising because Friederich et al. averaged the air-sea CO2 fluxes for 0-200 km from shore where much 440 lower pCO₂ were observed offshore (< 600 µatm), compared to our nearshore study site. The decline in pCO₂ with increasing 441 distance from shore was driven by biological uptake and outgassing to the atmosphere (Friederich et al., 2008; Loucaides et 442 al., 2012). However, when compared to the magnitude of DIC drawdown triggered by upwelling events in the mesocosms, the 443 flux of CO₂ to the atmosphere was insignificant. Assuming a 10 m mixed layer in the Pacific with a DIC concentration of 444 2,200 µmol kg⁻¹, the DIC content below 1 m² surface area would be ~22 mol m⁻². With an upper bound outgassing of 14.2 445 mmol C m⁻² d⁻¹ over 10 days (day 13-24), the loss of CO₂ would only be 0.142 mol m⁻². On the other hand, the average DIC drawdown of 118.2 µmol kg⁻¹ in the "Very Low DIN" and 160.3 µmol kg⁻¹ in the "Low DIN" mesocosms (M3 and M4 446 447 excluded) during this period accounts for 1.18 mol m⁻² and 1.60 mol m⁻², respectively, over the same water column. This shows 448 that biological processes, drawing down CO₂, is stronger than loss by air-sea gas exchange.

449 During our study, we experienced a coastal El Niño event, which has been the strongest on record (compared to those recorded 450 in 1891 and 1925) and induced rapid sea surface warming of ~1.5°C and enhanced stratification (Garreaud, 2018). Previous investigations showed that the impact of reduced upwelling on CO2 fluxes is pronounced for upwelling areas (Feely et al., 451 452 1999; Feely et al., 2002). A decline in upwelling of CO₂-enriched OMZ water results in a decrease in sea-to-air CO₂ fluxes. 453 For example, during the 1991-94 El Niño year, a total reduction in CO₂ fluxes to the atmosphere was reported for the equatorial 454 Pacific. They were only 30-80% of that of a non-El-Niño year (Feely et al., 1999; Feely et al., 2002). This is likely to be the case for our study location. Most studies investigated air-sea CO₂ fluxes at larger time and regional scales (Feely et al., 1999; 455 456 Friederich et al., 2008; Takahashi et al., 2009). Therefore, it is difficult to conclude the magnitude of the coastal El Niño 457 influence on the local CO₂ fluxes in our study by comparing our results with previous observations. Nevertheless, our 458 observations can serve as a first evidence of carbonate chemistry dynamics in the coastal Peruvian upwelling system during a coastal El Niño event. Observations of sea surface carbonate chemistry with a high temporal resolution (every-2nd-day) in near-459

460 shore waters are scarce, as rarely covered by typical research expeditions in the open ocean (Takahashi et al., 2009; Franco et 461 al., 2014), especially during such an extremely rare coastal El Niño event. Comparisons of our data with previous or future 462 observations may enhance our understanding of how inorganic carbon cycling interact with extreme climate events in 463 upwelling systems.

CO₂-enriched OMZ water has been occasionally reported to be under-saturated with respect to aragonite (Feely et al., 2008; 464 465 Fassbender et al., 2011). In our study, calcite under-saturation did not occur in the mesocosms or in the Pacific (Fig. 4). Aragonite under-saturation, however, was observed below the surface (10-17 m for day 3-28; 12.5-17 m for day 29-50) of the 466 Pacific at the start of the experiment (Fig. 4d), when pCO_2 was the highest ($pCO_2 > 1100 \mu atm$; Fig. 3c). Aragonite under-467 468 saturation was also observed in the two deep water masses collected at deeper depths (30 m and 70 m) in the Pacific (Table 4). Throughout the study period, the aragonite saturation state fluctuated close to around 1 below the surface (Fig. 4d). 469 Considering the water column we sampled in the Pacific still belonged to the upper surface ocean, we could expect deeper and 470 more CO2-enriched water in the underlying OMZ to be most likely under-saturated with respect to calcite and aragonite. Hence, 471 472 our observations of aragonite under-saturation in the Pacific suggest a potential risk of dissolution for marine calcifiers in response to the on-going intensification and expansion of acidified OMZ water (Comeau et al., 2009; Lischka et al., 2011; 473 474 Maas et al., 2012).

475 5 Conclusion

Our observations in the mesocosms revealed that, following the addition of two OMZ water masses with different nutrient 476 477 signatures, there was a higher drawdown of DIC in response to slightly more DIN input from the OMZ water addition but no difference in the build-up of POC and chl a (Fig. 2a, 2c, 3d). The timing of the first phytoplankton bloom was consistent with 478 479 a shift from a diatom-dominated community to A. sanguinea dominance in most mesocosms, indicating that A. sanguinea was 480 a key factor driving the changes in carbonate chemistry under N-limited conditions. A second phytoplankton bloom was 481 triggered by defecations of Inca terns, which eased the N limitation in the mesocosms (Fig. 2c). These findings provide improved insights into the links between upwelling-induced N limitation, phytoplankton community shifts and carbonate 482 483 chemistry dynamics in the Peruvian upwelling system. 484 The surrounding Pacific waters at the study site were characterized by constantly high pCO₂ levels (with an average of 1,078.1 485 µatm). Most CO₂ flux estimates have been conducted in the open ocean and few studies surveyed coastal regions (Takahashi et al., 2009; Franco et al., 2014). Our study site was a strong CO₂ source to the atmosphere most of the time (4.2-14.2 mmol 486

C m⁻² d⁻¹), despite a rare coastal El Niño event. However, evidence from our mesocosm experiment suggests biological 487 488 responses that draw down DIC can quickly turn a CO₂ source into a sink in the upwelling system. The influence of the co-489 occurring coastal El Niño event on the local CO2 fluxes remains unclear. Nevertheless, future carbonate chemistry fluctuations 490 are expected to be enhanced by expanding and intensifying ocean deoxygenation, as well as reducing buffer factors (Schulz et 491 al., 2019). Hence, it is essential to improve our understanding of the mechanisms driving the inorganic carbon cycling in 492 upwelling systems. As a unique dataset that characterized near-shore carbonate chemistry with a high temporal resolution 493 during a rare coastal El Niño event, our study gives important insights into the carbonate chemistry responses to extreme 494 climate events in the Peruvian upwelling system.

495 Data availability

496 All data will be made available on the permanent repository www.pangaea.de after publication.

19

497 Author contribution

498 UR, KGS, and LTB designed the experiment. All authors contributed to the sampling. S-MC measured, calculated, and 499 analyzed carbonate chemistry. LTB and KGS supervised the carbonate chemistry analysis. KGS carried out the CTD casts and 400 data analyses. EvdE and EPA measured and analyzed nutrients. S-MC wrote the manuscript with input from all the co-authors.

501 Competing interests

502 The authors declare that they have no conflict of interests.

503 Acknowledgements

This project was supported by the Collaborative Research Centre SFB 754 Climate-Biogeochemistry Interactions in the 504 505 Tropical Ocean financed by the German Research Foundation (DFG). Additional funding was provided by the EU project 506 AQUACOSM and the Leibniz Award 2012 granted to U.R. We thank all participants of KOSMOS Peru 2017 experiment for mesocosm maintenance and sample collection and analysis. Special thanks go to the staff of IMARPE, the captains and crews 507 508 of Bap Morales, IMARPE VI and B.I.C. Humboldt, and Marina de Guerra del Perú, in particular the submarine section of the 509 Navy of Callao, and the Dirección General de Capitanías y Guardacostas for their support and assistance planning and carrying 510 out the experiment. We are thankful to Club Náutico Del Centro Naval for hosting our laboratories, office space, and support. 511 This work is a contribution in the framework of the Cooperation agreement between the IMARPE and GEOMAR through the German Ministry for Education and Research (BMBF) project ASLAEL 12-016 and the national project Integrated Study of 512 513 the Upwelling System off Peru developed by the Direction of Oceanography and Climate Change of IMARPE, PPR 137 514 CONCYTEC. Analyses and visualizations used in this paper were produced with the Giovanni online data system, developed 515 and maintained by the NASA GES DISC.

516 References

- 517 Albert, A., Echevin, V., Lévy, M. and Aumont, O.: Impact of nearshore wind stress curl on coastal circulation and primary
- productivity in the Peru upwelling system, J. Geophys. Res. Oceans, 115(C12), https://doi.org/10.1029/2010JC006569, 2010.
- 519 Bach, L.T., Boxhammer, T., Larsen, A., Hildebrandt, N., Schulz, K.G. and Riebesell, U.: Influence of plankton community
- 520 structure on the sinking velocity of marine aggregates, Global Biogeochem. Cycles, 30(8), 1145-1165, 2016.
- 521 Bach, L. T., Paul, A. J., Boxhammer, T., von der Esch, E., Graco, M., Schulz, K. G., Achterberg, E., Aguayo, P., Arístegui, J.,
- 522 Ayón, P., Baños, I., Bernales, A., Boegeholz, A. S., Chavez, F., Chavez, G., Chen, S.-M., Doering, K., Filella, A., Fischer, M.,
- 523 Grasse, P., Haunost, M., Hennke, J., Hernández-Hernández, N., Hopwood, M., Igarza, M., Kalter, V., Kittu, L., Kohnert, P.,
- 524 Ledesma, J., Lieberum, C., Lischka, S., Löscher, C., Ludwig, A., Mendoza, U., Meyer, J., Meyer, J., Minutolo, F., Ortiz Cortes,
- 525 J., Piiparinen, J., Sforna, C., Spilling, K., Sanchez, S., Spisla, C., Sswat, M., Zavala Moreira, M., and Riebesell, U.: Factors
- 526 controlling plankton community production, export flux, and particulate matter stoichiometry in the coastal upwelling system
- 527 off Peru, Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, 2020a.
- 528 Bach, L. T., Paul, A., Boxhammer, T., von der Esch, E., Graco, M., Schulz, K. G., Achterberg, E. P., Aguayo, P., Arístegui,
- 529 J., Ayón, P., Banos, I., Bernales, A., Boegeholz, A. S., Chavez, F. P., Chen, S.-M., Doering, K., Filella, A., Fischer, M. A.,
- 530 Grasse, P., Haunost, M., Hennke, J., Hernandez-Hernandez, N., Hopwood, M., Igarza, M., Kalter, V., Kittu, L., Kohnert, P.,
- 531 Ledesma, J., Lieberum, C., Lischka, S., Löscher, C., Ludwig, A., Mendoza, U., Meyer, J., Meyer, J., Minutolo, F., Ortiz Cortes,
- 532 J., Piiparinen, J., Sforna, C., Spilling, K., Sanchez, S., Spisla, C., Sswat, M., Zavala Moreira, M., and Riebesell, U.: KOSMOS
- 2017 Peru mesocosm study: overview data, PANGAEA, https://doi.org/10.1594/PANGAEA.923395, 2020b.

- Bakun, A. and Weeks, S.J.: The marine ecosystem off Peru: What are the secrets of its fishery productivity and what might its
- 535 future hold?, Prog. Oceanogr., 79(2-4), 290-299, <u>https://doi.org/10.1016/j.pocean.2008.10.027</u>, 2008.
- 536 Bates, N.R.: Seawater carbonate chemistry distributions across the Eastern South Pacific Ocean sampled as part of the
- 537 GEOTRACES project and changes in marine carbonate chemistry over the past 20 years, Front Mar. Sci., 5(398), 1-18,
- 538 <u>https://doi.org/10.3389/fmars.2018.00398</u>, 2018.
- 539 Beaudoing, H. and M. Rodell, NASA/GSFC/HSL: GLDAS Noah Land Surface Model L4 3 hourly 0.25 x 0.25 degree V2.1,
- Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: [2021-04 08], 10.5067/E7TYRXPJKWOQ, 2020
- 542 Bedard, J., Therriault, J.C. and Berube, J.: Assessment of the importance of nutrient recycling by seabirds in the St. Lawrence
- 543 Estuary, Can. J. Fish. Aquat. Sci. 37(4), 583-588, <u>https://doi.org/10.1139/f80-074</u>, 1980.
- 544 Bockmon, E.E. and Dickson, A.G.: A seawater filtration method suitable for total dissolved inorganic carbon and pH analyses,
- 545 Limnol. Oceanogr. Methods, 12(4), 191-195, <u>https://doi.org/10.4319/lom.2014.12.191</u>, 2014.
- 546 Bopp, L., Resplandy, L., Orr, J.C., Doney, S.C., Dunne, J.P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Seferian, R. and
- 547 Tjiputra, J.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10,
- 548 6225-6245, https://doi.org/10.5194/bg-10-6225-2013, 2013.
- 549 Capone, D.G. and Hutchins, D.A.: Microbial biogeochemistry of coastal upwelling regimes in a changing ocean, Nat. Geosci.,
- 550 6(9), 711, <u>https://doi.org/10.1038/ngeo1916</u>, 2013.
- 551 Carter, B.R., Radich, J.A., Doyle, H.L. and Dickson, A.G.: An automated system for spectrophotometric seawater pH
- 552 measurements, Limnol. Oceanogr. Methods, 11(1), 16-27, https://doi.org/10.4319/lom.2013.11.16, 2013.
- 553 Chavez, F.P. and Messié, M.: A comparison of eastern boundary upwelling ecosystems, Prog. Oceanogr., 83(1-4), 80-96,
- 554 https://doi.org/10.1016/j.pocean.2009.07.032, 2009.
- 555 Chavez, F.P., Bertrand, A., Guevara-Carrasco, R., Soler, P. and Csirke, J.: The northern Humboldt Current System: Brief
- 556 history, present status and а view towards the future, Prog. Oceanogr., 79, 95-105, 557 https://doi.org/10.1016/j.pocean.2008.10.012, 2008.
- 558 Chen, B., Cai, W.J. and Chen, L.: The marine carbonate system of the Arctic Ocean: assessment of internal consistency and
- 559 sampling considerations, summer 2010, Mar. Chem., 176, 174-188, <u>https://doi.org/10.1016/j.marchem.2015.09.007</u>, 2015.
- 560 Clayton, T.D. and Byrne, R.H.: Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale
- 561 calibration of m-cresol purple and at-sea results, Deep Sea Res. Part I Oceanogr. Res. Pap., 40(10), 2115-2129,
 562 <u>https://doi.org/10.1016/0967-0637(93)90048-8</u>, 1993.
- 563 Comeau, S., Gorsky, G., Jeffree, R., Teyssié, J.L. and Gattuso, J.P.: Impact of ocean acidification on a key Arctic pelagic
- 564 mollusc (Limacina helicina). Biogeosciences, 6(9), <u>https://doi.org/10.5194/bg-6-1877-2009</u>, 2009.
- 565 Cooperative Global Atmospheric Data Integration Project: Multi-laboratory compilation of atmospheric carbon dioxide data
- for the period 1957-2018; obspack_co2_1_GLOBALVIEWplus_v5.0_2019-08-12; NOAA Earth System Research
 Laboratory, Global Monitoring Division. <u>http://dx.doi.org/10.25925/20190812</u>, 2019.
- 568 Correa, D., Tam, J., Pasapera, J., Saavedra, M. and Ingunza, A.: Modeling marine circulation and hypothetical discharges in
- 569 Callao Bay, Peru, Inf. Inst. Mar Peru, 35(3), 181-192, 2008.
- 570 Coverly, S., Kérouel, R. and Aminot, A.: A re-examination of matrix effects in the segmented-flow analysis of nutrients in sea
- 571 and estuarine water, Anal. Chim. Acta, 712, 94-100, 2012.
- 572 Cyronak, T., Schulz, K.G. and Jokiel, P.L.: The Omega myth: what really drives lower calcification rates in an acidifying
- 573 ocean, ICES J. Mar. Sci., 73(3), 558-562, https://doi.org/10.1093/icesjms/fsv075, 2016.
- 574 Czerny, J., Schulz, K.G., Krug, S.A., Ludwig, A. and Riebesell, U.: The determination of enclosed water volume in large
- 575 flexible-wall mesocosms "KOSMOS", Biogeosciences, 10(3), 1937-1941, <u>https://doi.org/10.5194/bg-10-1937-2013</u>, 2013.

- 576 Dale, A.W., Sommer, S., Lomnitz, U., Montes, I., Treude, T., Liebetrau, V., Gier, J., Hensen, C., Dengler, M., Stolpovsky, K.,
- 577 Bryant, L.D., and Wallmann, K.: Organic carbon production, mineralisation and preservation on the Peruvian margin,
- 578 Biogeosciences, 12, 1537-1559, <u>https://doi.org/10.5194/bg-12-1537-2015</u>, 2015.
- 579 Deutsch, C., Gruber, N., Key, R.M., Sarmiento, J.L. and Ganachaud, A.: Denitrification and N₂ fixation in the Pacific Ocean,
- 580 Global Biogeochem. Cycles, 15(2), 483-506, <u>https://doi.org/10.1029/2000GB001291</u>, 2001.
- 581 Deutsch, C., Sarmiento, J.L., Sigman, D.M., Gruber, N. and Dunne, J.P.: Spatial coupling of nitrogen inputs and losses in the
- 582 ocean, Nature, 445(7124), 163-167, <u>https://doi.org/10.1038/nature05392</u>, 2007.
- 583 Dickson, A.G.: Standards for ocean measurements, Oceanogr., 23(3), 34-47, https://doi:10.5670/oceanog.2010.22, 2010.
- 584 Dickson, A.G., Wesolowski, D.J., Palmer, D.A. and Mesmer, R.E.: Dissociation constant of bisulfate ion in aqueous sodium
- chloride solutions to 250. degree, C, J. Phys. Chem., 94(20), 7978-7985, <u>https://doi.org/10.1021/j100383a042</u>, 1990.
- 586 Dickson, A.G., Afghan, J.D. and Anderson, G.C.: Reference materials for oceanic CO₂ analysis: a method for the certification
- of total alkalinity, Mar. Chem., 80(2-3), 185-197, <u>https://doi.org/10.1016/S0304-4203(02)00133-0</u>, 2003.
- 588 Dickson, A.G., Sabine, C.L. and Christian, J.R.: Guide to best practices for ocean CO2 measurements, North Pacific Marine
- 589 Science Organization, 2007.
- 590 Dlugokencky, E. and Tans, P.: NOAA/GML (www.esrl.noaa.gov/gmd/ccgg/trends/)
- 591 Doney, S.C., Ruckelshaus, M., Duffy, J.E., Barry, J.P., Chan, F., English, C.A., Galindo, H.M., Grebmeier, J.M., Hollowed,
- A.B., Knowlton, N. and Polovina, J.: Climate change impacts on marine ecosystems, Ann. Rev. Mar. Sci., 4, 11-37,
 https://doi.org/10.1146/annurey-marine-041911-111611, 2012.
- 594 Douglas, N.K. and Byrne, R.H.: Achieving accurate spectrophotometric pH measurements using unpurified meta-cresol purple
- 595 Mar. Chem., 190, pp.66-72, 2017.
- 596 Echevin, V., Aumont, O., Ledesma, J. and Flores, G.: The seasonal cycle of surface chlorophyll in the Peruvian upwelling
- 597 system: A modelling study, Prog. Oceanogr., 79(2-4), 167-176, https://doi.org/10.1016/j.pocean.2008.10.026, 2008.
- 598 Fassbender A.J., Sabine C.L., Feely R.A., Langdon C., Mordy C.W.: Inorganic carbon dynamics during northern California
- coastal upwelling, Cont. Shelf Res., 31(11), 1180-1192, <u>https://doi.org/10.1016/j.csr.2011.04.006</u>, 2011.
- 600 Fassbender, A.J., Sabine, C.L. and Feifel, K.M.: Consideration of coastal carbonate chemistry in understanding biological
- 601 calcification, Geophys. Res. Lett., 43(9), 4467-4476, https://doi.org/10.1002/2016GL068860, 2016.
- 602 Feely, R.A., Wanninkhof, R., Takahashi, T. and Tans, P.: Influence of El Niño on the equatorial Pacific contribution to
- 603 atmospheric CO₂ accumulation, Nature, 398(6728), 597-601, <u>https://doi.org/10.1038/19273</u>, 1999.
- Feely, R.A., Sabine, C.L., Hernandez-Ayon, J.M., Ianson, D. and Hales, B.: Evidence for upwelling of corrosive" acidified"
 water onto the continental shelf, Science, 320(5882), 1490-1492, <u>https://doi.org/10.1126/science.1155676</u>, 2008.
- 606 Franco, A.C., Hernández-Ayón, J.M., Beier, E., Garçon, V., Maske, H., Paulmier, A., Färber-Lorda, J., Castro, R. and Sosa-
- 607 Ávalos, R.: Air-sea CO2 fluxes above the stratified oxygen minimum zone in the coastal region off Mexico. J. Geophys. Res.
- 608 Oceans, 119(5), 2923-2937, 2014.
- 609 Franz, J., Krahmann, G., Lavik, G., Grasse, P., Dittmar, T. and Riebesell, U.: Dynamics and stoichiometry of nutrients and
- phytoplankton in waters influenced by the oxygen minimum zone in the eastern tropical Pacific, Deep Sea Res. Part I
 Oceanogr. Res. Pap., 62, 20-31, https://doi.org/10.1016/j.dsr.2011.12.004, 2012.
- 612 Friederich, G.E., Ledesma, J., Ulloa, O. and Chavez, F.P.: Air-sea carbon dioxide fluxes in the coastal southeastern tropical
- 613 Pacific, Prog. Oceanogr., 79(2-4), 156-166, <u>https://doi.org/10.1016/j.pocean.2008.10.001</u>, 2008.
- 614 Fuenzalida, R., Schneider, W., Garcés-Vargas, J., Bravo, L. and Lange, C.: Vertical and horizontal extension of the oxygen
- 615 minimum zone in the eastern South Pacific Ocean, Deep Sea Res. Part II Top. Stud. Oceanogr., 56(16), 992-1003,
- 616 https://doi.org/10.1016/j.dsr2.2008.11.001, 2009.

- 617 Gafar, N.A. and Schulz, K.G.: A three-dimensional niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica:
- Reconciling observations with projections, Biogeosciences, 15(11), 3541-3560, <u>https://doi.org/10.5194/bg-15-3541-2018</u>,
 2018.
- 620 Galán, A., Molina, V., Thamdrup, B., Woebken, D., Lavik, G., Kuypers, M.M. and Ulloa, O.: Anammox bacteria and the
- 621 anaerobic oxidation of ammonium in the oxygen minimum zone off northern Chile, Deep Sea Res. Part II Top. Stud.
- 622 Oceanogr., 56(16), 1021-1031, <u>https://doi.org/10.1016/j.dsr2.2008.09.016</u>, 2009.
- Garreaud, R.D.: A plausible atmospheric trigger for the 2017 coastal El Niño. Int. J. Climatol., 38, e1296-e1302,
 https://doi.org/10.1002/joc.5426, 2018.
- 625 Gattuso, J.P., Epitalon, J.M., Lavigne, H., Orr, J., Gentili, B., Hagens, M., Hofmann, A., Mueller, J.D., Proye, A., Rae, J. and
- 626 Soetaert, K.: Package 'seacarb', http://CRAN.R-project.org/package=seacarb, Accessed 5 Jun 2020, 2020.
- 627 Gilly, W.F., Beman, J.M., Litvin, S.Y. and Robison, B.H.: Oceanographic and biological effects of shoaling of the oxygen
- 628 minimum zone, Ann. Rev. Mar. Sci., 5, 393-420, https://doi.org/10.1146/annurev-marine-120710-100849, 2013.
- 629 Gruber, N.: Warming up, turning sour, losing breath: ocean biogeochemistry under global change, Philos. Trans. A Math.
- 630 Phys. Eng. Sci., 369(1943), 1980-1996, https://doi.org/10.1098/rsta.2011.0003, 2011.
- 631 Hamersley, M.R., Lavik, G., Woebken, D., Rattray, J.E., Lam, P., Hopmans, E.C., Damsté, J.S.S., Krüger, S., Graco, M.,
- Gutiérrez, D. and Kuypers, M.M.: Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone, Limnol. Oceanogr.,
 52(3), 923-933, https://doi.org/10.4319/lo.2007.52.3.0923, 2007.
- Haugan, P.M. and Drange, H.: Effects of CO₂ on the ocean environment, Energy Convers. Manag., 37(6-8), 1019-1022,
- 635 <u>https://doi.org/10.1016/0196-8904(95)00292-8</u>, 1996.
- 636 Hauri, C., Gruber, N., Plattner, G.K., Alin, S., Feely, R.A., Hales, B. and Wheeler, P.A.: Ocean acidification in the California
- 637 current system, Oceanogr., 22(4), 60-71, 2009. www.jstor.org/stable/24861024. Accessed 22 June 2020.
- 638 Hauss, H., Franz, J.M. and Sommer, U.: Changes in N: P stoichiometry influence taxonomic composition and nutritional
- day quality of phytoplankton in the Peruvian upwelling, J. Sea Res., 73, 74-85, https://doi.org/10.1016/j.seares.2012.06.010, 2012.
- 640 Hofmann, G.E., Barry, J.P., Edmunds, P.J., Gates, R.D., Hutchins, D.A., Klinger, T. and Sewell, M.A.: The effect of ocean
- 641 acidification on calcifying organisms in marine ecosystems: an organism-to-ecosystem perspective, Annu. Rev. Ecol. Evol.
- 642 Syst., 41, 127-147, https://doi.org/10.1146/annurev.ecolsys.110308.120227, 2010.
- 643 Igarza, M., Sánchez, S., Bernales, A., Gutiérrez, D., Meyer, J., Riebesell, U., Graco, M., Bach, L., Dittmar, T., and Niggemann,
- 544 J.: Dissolved organic matter production during an artificially-induced red tide off central Peru. Biogeosciences, in preparation,
- 2021.
 Keeling, R.F., Körtzinger, A. and Gruber, N.: Ocean deoxygenation in a warming world, Ann. Rev. Mar. Sci., 2, 199-229,
- 647 <u>https://doi.org/10.1146/annurev.marine.010908.163855</u>, 2010.
- 648 Koeve, W. and Oschlies, A.: Potential impact of DOM accumulation of fCO2 and carbonate ion computations in ocean
- 649 acidification experiments, Biogeosciences (BG), 9, 3787-3798, <u>https://doi.org/10.5194/bg-9-3787-2012</u>, 2012.
- 650 Lam, P., Lavik, G., Jensen, M.M., van de Vossenberg, J., Schmid, M., Woebken, D., Gutiérrez, D., Amann, R., Jetten, M.S.
- and Kuypers, M.M.: Revising the nitrogen cycle in the Peruvian oxygen minimum zone, Proc. Natl. Acad. Sci., 106(12), 47524757, https://doi.org/10.1073/pnas.0812444106, 2009.
- 653 Lefèvre, N., Aiken, J., Rutllant, J., Daneri, G., Lavender, S. and Smyth, T.: Observations of pCO2 in the coastal upwelling off
- Chile: Spatial and temporal extrapolation using satellite data, J. Geophys. Res. Oceans, 107(C6), 8-1,
 https://doi.org/10.1029/2000JC000395, 2002.
- 656 Levin, L.A. and Breitburg, D.L.: Linking coasts and seas to address ocean deoxygenation, Nat. Clim. Chang., 5(5), 401-403,
- 657 https://doi.org/10.1038/nclimate2595, 2015.

- Lischka, S., Büdenbender, J., Boxhammer, T. and Riebesell, U.: Impact of ocean acidification and elevated temperatures on 659 early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell
- 660 growth, Biogeosciences, 8, 919-932, <u>http://dx.doi.org/10.5194/bg-8-919-2011</u>, 2011.
- 661 Loucaides, S., Tyrrell, T., Achterberg, E.P., Torres, R., Nightingale, P.D., Kitidis, V., Serret, P., Woodward, M. and Robinson,
- 662 C.: Biological and physical forcing of carbonate chemistry in an upwelling filament off northwest Africa: Results from a
- Lagrangian study, Global Biogeochem. Cycles, 26(3), https://doi.org/10.1029/2011GB004216, 2012.
- 664 Lueker, T.J., Dickson, A.G. and Keeling, C.D.: Ocean pCO₂ calculated from dissolved inorganic carbon, alkalinity, and
- equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium, Mar. Chem.,
- 666 70(1-3), 105-119, <u>https://doi.org/10.1016/S0304-4203(00)00022-0</u>, 2000.
- 667 Ma, J., Shu, H., Yang, B., Byrne, R.H. and Yuan, D.: Spectrophotometric determination of pH and carbonate ion concentrations
- in seawater: Choices, constraints and consequences, Anal. Chim. Acta, 1081, 18-31, https://doi.org/10.1016/j.aca.2019.06.024,
- 669 2019.Maas, A.E., Wishner, K.F. and Seibel, B.A.: The metabolic response of pteropods to acidification reflects natural CO2-
- 670 exposure in oxygen minimum zones. Biogeosciences, 9(2), 747-757, <u>https://doi.org/10.5194/bg-9-747-2012</u>, 2012.
- 671 Matear, R.J. and Hirst, A.C.: Long-term changes in dissolved oxygen concentrations in the ocean caused by protracted global
- 672 warming, Global Biogeochem. Cycles, 17(4), <u>https://doi.org/10.1029/2002GB001997</u>, 2003.
- 673 Matear, R.J., Hirst, A.C. and McNeil, B.I.: Changes in dissolved oxygen in the Southern Ocean with climate change, Geochem.
- 674 Geophys. Geosyst., 1(11), <u>https://doi.org/10.1029/2000GC000086</u>, 2000.
- 675 McNeil, C.L. and Merlivat, L.: The warm oceanic surface layer: Implications for CO2 fluxes and surface gas measurements,
- 676 Geophys. Res. Lett., 23(24), 3575-3578, https://doi.org/10.1029/96GL03426, 1996.
- 677 Mehrbach, C., Culberson, C.H., Hawley, J.E. and Pytkowicx, R.M.: Measurement of the apparent dissociation constants of
- 678 carbonic acid in seawater at atmospheric pressure 1, Limnol. Oceanogr., 18(6), 897-907, 679 <u>https://doi.org/10.4319/lo.1973.18.6.0897</u>, 1973.
- 680 Messié, M. and Chavez, F.P.: Nutrient supply, surface currents, and plankton dynamics predict zooplankton hotspots in coastal
- 681 upwelling systems. Geophys. Res. Lett., 44(17), 8979-8986, https://doi.org/10.1002/2017GL074322, 2017.
- Mogollón, R. and Calil, P.H.: Modelling the mechanisms and drivers of the spatiotemporal variability of pCO2 and air-sea 682 683 CO_2 fluxes in the Northern Humboldt Current System, Ocean Modelling, 132, 61-72, 684 https://doi.org/10.1016/j.ocemod.2018.10.005, 2018.
- 685 Montecino, V. and Lange, C.B.: The Humboldt Current System: Ecosystem components and processes, fisheries, and sediment
- 686 studies, Prog. Oceanogr., 83(1-4), 65-79, https://doi.org/10.1016/j.pocean.2009.07.041, 2009.
- 687 Morris, A.W. and Riley, J.P: The determination of nitrate in sea water, Anal. Chim. Acta, 29, 272-279, 688 https://doi.org/10.1016/S0003-2670(00)88614-6, 1963.
- 689 Mullin, J. and Riley, J.P.: The colorimetric determination of silicate with special reference to sea and natural waters, Anal.
- 690 Chim. Acta, 12, 162-176, https://doi.org/10.1016/S0003-2670(00)87825-3, 1955.
- 691 Murphy, J.A.M.E.S. and Riley, J.P: A modified single solution method for the determination of phosphate in natural waters,
- 692 Anal. Chim. Acta, 27, 31-36, <u>https://doi.org/10.1016/S0003-2670(00)88444-5</u>, 1962.
- 693 Myklestad, S.M.: Dissolved organic carbon from phytoplankton, In Mar. Chem., 111-148, Springer, Berlin, Heidelberg, 2000.
- Orr, J.C., Epitalon, J.M. and Gattuso, J.P.: Comparison of ten packages that compute ocean carbonate chemistry, Biogeosci.
 Discuss., 12(5), 1483-1510, <u>https://doi.org/10.5194/bg-12-1483-2015</u>, 2015.
- 696 Orr, J.C., Epitalon, J.M., Dickson, A.G. and Gattuso, J.P.: Routine uncertainty propagation for the marine carbon dioxide
- 697 system, Mar. Chem., 207, 84-107, <u>https://doi.org/10.1016/j.marchem.2018.10.006</u>, 2018.
- 698 Oschlies, A., Brandt, P., Stramma, L. and Schmidtko, S.: Drivers and mechanisms of ocean deoxygenation, Nat. Geosci., 11,
- 699 467-473, https://doi.org/10.1038/s41561-018-0152-2, 2018.

- 700 Paulmier, A., Ruiz-Pino, D. and Garçon, V.: The oxygen minimum zone (OMZ) off Chile as intense source of CO₂ and N₂O,
- 701 Cont. Shelf Res., 28(20), 2746-2756, https://doi.org/10.1016/j.csr.2008.09.012, 2008.
- 702 Paulmier, A., Ruiz-Pino, D. and Garçon, V.: CO₂ maximum in the oxygen minimum zone (OMZ), Biogeosciences, 8, 239-
- 703 252, <u>https://doi.org/10.5194/bg-8-239-2011</u>, 2011.
- 704 Pierrot, D., Lewis, E. and Wallace, D.W.R.: MS Excel program developed for CO2 system calculations, ORNL/CDIAC-105a,
- Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge,Tennessee, 2006.
- 707 Raimondi, L., Matthews, J.B.R., Atamanchuk, D., Azetsu-Scott, K. and Wallace, D.W.: The internal consistency of the marine
- 708 carbon dioxide system for high latitude shipboard and in situ monitoring, Mar. Chem., 213, 49-70, 709 https://doi.org/10.1016/j.marchem.2019.03.001, 2019.
- 710 Redfield, A.C.: The influence of organisms on the composition of seawater, The Sea, 2, 26-77, 1963.
- 711 Riebesell, U., Czerny, J., Bröckel, K.V., Boxhammer, T., Büdenbender, J., Deckelnick, M., Fischer, M., Hoffmann, D., Krug,
- 712 S.A., Lentz, U. and Ludwig, A.: A mobile sea-going mesocosm system-new opportunities for ocean change research,
- 713 Biogeosciences, 10(3), 1835-1847, https://doi.org/10.5194/bg-10-1835-2013, 2013.
- 714 Rodell, M., P.R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M.
- 715 Bosilovich, J.K. Entin, J.P. Walker, D. Lohmann, and D. Toll: The Global Land Data Assimilation System, Bull. Amer.
- 716 Meteor. Soc., 85, 381-394, doi:10.1175/BAMS-85-3-381, 2004
- 717 RStudio Team (2015). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/.
- Schmidtko, S., Stramma, L. and Visbeck, M.: Decline in global oceanic oxygen content during the past five decades, Nature,
 542(7641), 335-339, 2017.
- 720 Schulz, K.G. and Riebesell, U.: Diurnal changes in seawater carbonate chemistry speciation at increasing atmospheric carbon
- 721 dioxide, Mar. Biol., 160(8), 1889-1899, https://doi.org/10.1007/s00227-012-1965-y, 2013.
- 722 Schulz, K.G., Bellerby, R.G.J., Brussaard, C.P.D., Büdenbender, J., Czerny, J., Engel, A., Fischer, M., Koch-Klavsen, S.,
- 723 Krug, S., Lischka, S. and Ludwig, A.: Temporal biomass dynamics of an Arctic plankton bloom in response to increasing
- revels of atmospheric carbon dioxide, Biogeosciences, 10, 161-180, https://doi.org/10.5194/bg-10-161-2013, 2013.
- 725 Schulz, K.G., Bach, L.T., Bellerby, R.G., Bermúdez, R., Büdenbender, J., Boxhammer, T., Czerny, J., Engel, A., Ludwig, A.,
- 726 Meyerhöfer, M. and Larsen, A.: Phytoplankton blooms at increasing levels of atmospheric carbon dioxide: experimental
- 727 evidence for negative effects on prymnesiophytes and positive on small picoeukaryotes, Front. Mar. Sci., 4, 64,
- 728 <u>https://doi.org/10.3389/fmars.2017.00064</u>, 2017.
- 729 Schulz, K.G., Hartley, S. and Eyre, B.: Upwelling amplifies ocean acidification on the East Australian Shelf: implications for
- 730 marine ecosystems, Front. Mar. Sci., 6, 636, https://doi.org/10.3389/fmars.2019.00636, 2019.
- 731 Stramma, L., Johnson, G.C., Sprintall, J. and Mohrholz, V.: Expanding oxygen-minimum zones in the tropical oceans, Science,
- 732 320(5876), 655-658, https://doi.org/10.1126/science.1153847, 2008.
- 733 Stramma, L., Schmidtko, S., Levin, L.A. and Johnson, G.C.: Ocean oxygen minima expansions and their biological impacts,
- 734 Deep Sea Res. Part I Oceanogr. Res. Pap., 57(4), 587-595, https://doi.org/10.1016/j.dsr.2010.01.005, 2010.
- 735 Takahashi, T., Sutherland, S.C., Wanninkhof, R., Sweeney, C., Feely, R.A., Chipman, D.W., Hales, B., Friederich, G., Chavez,
- 736 F., Sabine, C. and Watson, A.: Climatological mean and decadal change in surface ocean pCO₂, and net sea-air CO₂ flux over
- the global oceans, Deep Sea Res. Part II Top. Stud. Oceanogr., *56*(8-10), 554-577, <u>https://doi.org/10.1016/j.dsr2.2008.12.009</u>,
 2009.
- 739 Taucher, J., Bach, L.T., Boxhammer, T., Nauendorf, A., Achterberg, E.P., Algueró-Muñiz, M., Arístegui, J., Czerny, J.,
- 740 Esposito, M., Guan, W. and Haunost, M.: Influence of ocean acidification and deep water upwelling on oligotrophic plankton
- 741 communities in the subtropical North Atlantic: insights from an in situ mesocosm study, Front Mar. Sci., 4, 85,
- 742 <u>https://doi.org/10.3389/fmars.2017.00085</u>, 2017.

- 743 Trenberth, K.E.: The definition of el nino, Bull. Am. Meteorol. Soc., 78(12), 2771-2778, https://doi.org/10.1175/1520-
- 744 0477(1997)078<2771:TDOENO>2.0.CO;2, 1997.
- 745 Uppström, L.R.: The boron/chlorinity ratio of deep-sea water from the Pacific Ocean, Deep Sea Res. and Oceanogr. Abstr.,
- 746 21, 161-162, <u>https://doi.org/10.1016/0011-7471(74)90074-6</u>, 1974.
- 747 Van Geen, A., Takesue, R.K., Goddard, J., Takahashi, T., Barth, J.A. and Smith, R.L.: Carbon and nutrient dynamics during
- 748 coastal upwelling off Cape Blanco, Oregon, Deep Sea Res. Part II Top. Stud. Oceanogr., 47(5-6), 975-1002,
- 749 <u>https://doi.org/10.1016/S0967-0645(99)00133-2</u>, 2000.
- 750 Volk, T. and Hoffert, M.I.: Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric
- 751 CO2 changes. The carbon cycle and atmospheric CO₂: natural variations Archean to present, 32, 99-110, 752 <u>https://doi.org/10.1029/GM032p0099</u>, 1985.
- 753 Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean revisited, Limnol. Oceanogr. Methods,
- 754 12(6), 351-362, https://doi.org/10.4319/lom.2014.12.351, 2014.
- Weiss, R.: Carbon dioxide in water and seawater: the solubility of a non-ideal gas, Mar. Chem., 2(3), 203-215, 1974.
- 756 Whitney, F.A., Freeland, H.J. and Robert, M.: Persistently declining oxygen levels in the interior waters of the eastern subarctic
- 757 Pacific, Prog. Oceanogr., 75(2), 179-199, https://doi.org/10.1016/j.pocean.2007.08.007, 2007.
- 758 Zeebe, R.E. and Wolf-Gladrow, D.: CO₂ in seawater: equilibrium, kinetics, isotopes (No. 65), Gulf Professional Publishing,
- 759 2001.