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S1 Adjusted respiration rate

We defined a new function following Natali et al. (2019), shown in Fig S1. The Q10 value was changed from the
previous value of 200.5 to 2.9. Additionally, the minimum temperature threshold was set to -20 °C instead of the
previously used -4 °C.

Figure S1: The old and new function controlling respiration rate during cold conditions.

S2 Site simulations

S2.1 Snowpack dynamics

Prior to the evaluation of the large-scale performance of the new, Dynamic snow scheme, we conducted a single-site
comparison to examine the validity of the results. These detailed snow pack observations from Zackenberg helped to
determine whether the Dynamic scheme can simulate internal snow pack dynamics, snow depth and snow density.
We established the ability of the new snow scheme to simulate snow conditions by comparing a simulated snow
pack with snow depth and density observations from Zackenberg (2013-2014 snow season). Figure S2 presents the
observed and simulated snow pack by the Dynamic and Static schemes. This figure shows that the Dynamic scheme
simulates higher snow depth due to lower density values in the mid and top layers of the snow pack. Density values
are compared qualitatively, since it is difficult to accurately align the observational and modelled layer densities.
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Thermal properties in snow layers are derived from density, and this entity is especially important in the Dynamic
snow scheme. The comparison to observations shows that the modelled density compares well to observations.
There are lower densities early in the snow season and fresh snow has a low density, while density increases in
late spring during the melt season. The Static scheme with constant snow density simulated a somewhat higher
than observed snow depth. The difference in snow depth between the Static and Dynamic simulations is small - as
indicated in Fig. S2, bottom panel.

Figure S2: Snow pack dynamics at the Zackenberg GeoBasis station. Density values for the layers are extrapolated - from
three and five layers for the observational and modelled data, respectively. The colours of the snow pack indicate snow
density.

Overall, the new scheme reproduces the snow dynamics over the cold season better than the Static scheme. Please
note that the model’s climate forcing is a crucial controlling factor when simulating snow conditions. For this study,
we used a global climate forcing dataset, which may explain some of the observed model-observation differences.
Taken together, these results suggest that the Dynamic scheme is skilled in simulating the snow pack’s internal
structure and dynamics. Since the Static scheme has a constant snow density throughout the snow season, the
Dynamic scheme is expected to better capture the seasonal behaviour of snow and soil conditions. The Zackenberg
site comparison indicated that the Dynamic scheme successfully integrated these key processes affecting the density
over the snow season. The mismatch between snow observations and simulations is influenced by the use of a global
model forcing dataset instead of site-specific temperature, precipitation or snowfall series.
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S2.2 Site simulation details

Years of observational data used for the site simulations on Abisko, Bayelva, Kytalyk, Samoylov and Zackenberg
sites (PAGE21 sites) can be seen in Table S1. The computed RMSE between observed and modelled near surface
soil temperature and air-soil temperature difference is shown in Table S2.

Table S1: Snow depth and near surface soil temperature data used for the site simulations, and climatic zones of the sites.
(Sect.3.1)

Abisko Bayelva Kytalyk Samoylov Zackenberg

snow depth 1986-2020 1998-2009 2011-2013 1996-2013 1996-2011
soil T 2012-2015 1998-2017 2004-2011 2012-2014 1995-2017
climatic zone sub-arctic high arctic low arctic low-arctic high arctic

Table S2: RMSE for soil temperature and ∆ T for the applied snow schemes, and temperature regimes at the Russian sites
(Sect. 3.2).

RMSE (°C)
-15 °C < Tair < -5 °C -25 °C< Tair < -15 Tair < -25 °C

Soil T (°C)
Static 6.36 12.61 18.14

Dynamic 0.65 1.26 2.96

∆T (°C)
Static 6.98 12.29 19.28

Dynamic 1.1 0.96 3.95
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S3 Pan-Arctic simulations

S3.1 Seasonal cycle of variables

Seasonal cycles of snow depth, upper soil column water content, NEE and NPP series for the Dynamic and Static
simulations. Differences are calculated by subtracting the Static from Dynamic simulation outputs.

Figure S3: Seasonal dynamics of snow depth, soil temperature (25 cm depth) and fractional water content, (b) seasonal
NEE and NPP.
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S3.2 Simulated physical variables

These figures show the spatial pattern of simulated variables averaged over 1990-2015. Summer season values are
averaged over June, July and August and winter season values are averaged over December, January and February.

Figure S4: Simulated snow depth using the Static and Dynamic snow schemes and their difference.

Figure S5: Simulated maximum annual active layer depth (ALD) using the Static and Dynamic snow schemes and their
difference.
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Figure S6: Simulated near surface soil temperature (25 cm depth) using the Static and Dynamic snow schemes and their
difference for winter and summer.
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S3.3 Simulated biogeochemical variables

Figure S7: Simulated heterotrophic respiration normalised by soil carbon content, using the Static and Dynamic snow
schemes and their difference for winter and summer.
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Figure S8: Simulated NPP using the Static and Dynamic snow schemes and their difference for winter and summer.
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Figure S9: Simulated NEE using the Static and Dynamic snow schemes and their difference for winter and summer.

S3.4 Nitrogen cycling

Besides the carbon-related fluxes, we also assessed the impact of snow on nitrogen cycling. Figure S10 shows the
nitrogen mineralisation (Fig. S10 (a)) and leaching (Fig. S10 (b)) normalised by soil carbon content. Nitrogen
mineralisation only changed markedly during the summer season within the permafrost region. Leaching is higher
for the Dynamic scheme in Eastern-Canada and Northern-Russia. Nitrogen use efficiency (NUE) on panel (c) was
calculated as the ratio between NPP and nitrogen uptake. The Dynamic scheme simulates a lower NUE than the
Static scheme, which indicates a higher N uptake per unit productivity.
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Figure S10: Nitrogen mineralisation, N leaching and NUE difference calculated by by subtracting the Static from Dynamic
simulation outputs.

Table S3: Pan-arctic mean values for the studied variables for the Static and Dynamic simulations, and their respective
differences.

variable unit Static Dynamic Dynamic-Static note of changes

snowdepth m 0.22 0.3 0.06 general increase
ALD m 0.98 1.05 0.07 increase in ALD
soilTwinter °C -22.6 -12.5 10.16 increased in T
soilTsummer °C 6.3 4.3 -2.0 decrease in T
GPPwinter g m−2 0.14 0.2 0.04 increase in gross production
GPPsummer g m−2 221.1 211.6 -9.4 decrease in gross production
NPPwinter g m−2 -3.0 -5.2 -2.1 decrease in productivity
NPPsummer g m−2 156.2 146.3 -9.8 decrease in productivity
Rhwinter g m−2 2.5 7.7 5.3 increase in Rh

Rhsummer g m−2 116.8 93.1 -24.7 decrease in Rh

NEEwinter g m−2 5.5 13.0 7.4 increased carbon emission
NEEsummer g m−2 -38.3 -53.2 -14.9 increased carbon uptake
soilC kg C m−2 11.1 10.2 -0.97 decrease in soil C
vegC kg C m−2 1.9 1.9 0.06 marginal difference
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Figure S11: Mean fractional water content of the upper soil column in April, May, June and July, using the Static, Dynamic
schemes and their difference.
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S3.5 Vegetation dynamics

Sites where PFT dominance changed between the Static and Dynamic simulations is shown in Fig. ??. These
transition sites are scattered across the Arctic, but there are some clear hotspots in Eastern-Russia, the Scandinavian
coastline and Northern-America.

Figure S12: (a) Direction of dominant vegetation group changes between the Static and Dynamic schemes. The size of
arrows show the number of sites transitioning. (b) Spatial distribution of sites where PFT dominance changed between the
simulations.
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