Response to Reviewer's comments

We thank the reviewers for their comments, which will definitely improve our manuscript. Both reviewers acknowledged the importance of the observations presented here, particularly those from the under-sampled western Weddell Sea adjacent to Larsen C Ice Shelf, and both are supportive of this work being published provided we address their concerns and suggestions. Below, we respond to each of their comments in turn and outline the changes we will make to the manuscript in response. The reviewer comments are in black text and our responses are in blue.

Reviewer 2 also added a number of comments directly to the pdf of the manuscript; we have responded to each of these on the pdf. Within these comments, the reviewer made numerous suggestions related to word choice, style, etc. We will make the suggested changes where they improve the clarity or precision of our argument, but in the case where they are purely stylistic, we have generally chosen not to make the edits.

Reviewer 1: Sebastian Moreau

Review of the paper entitled "Summertime productivity and carbon export potential in the Weddell Sea, with a focus on the waters adjacent to Larsen C Ice Shelf" by Flynn et al.

General comments:

I commend the authors on a very interesting paper describing a very large dataset on primary production, carbon export and nutrient dynamics obtained throughout the Weddell Gyre. Of particular interest, the authors estimate the relative contributions of new and regenerated productions by studying the uptake of nitrate and other nitrogen forms. In addition, the authors present very interesting and rare nitrite oxidation data, used to estimate nitrification. They put their results in context of concurrent measurements of water masses, macronutrients concentrations and ratios and phytoplankton community composition.

In addition, their results also provide further insights into the actual debate on the role of cryosphere-ocean interactions in the Southern Ocean. A question will be a very important topic under ongoing climate change in the coming decades.

As pointed by the authors, the Weddell Gyre is a significant region of the World's Oceans, wherestrong open waters primary production leads to a large CO2 sink. Therefore, this paper is a significant contribution to the study of the biogeochemical cycles of nutrients and carbon in the Weddell Gyre and, more generally, in the Southern Ocean. In addition, the paper is very-well written and a pleasure to read. Congratulations to the authors.

I give below numerous minor comments to improve the manuscript. In addition, a few points deserve more effort from the authors.

For instance, I believe that some equations provided in the Materials and Methods (i.e. for nutrients drawdown and sea ice fraction) are not well written. It seems that the authors' calculations are correct since the figures that present nutrients drawdown are reasonable and in line with other results presented throughout the paper. But I suppose that the authors' calculations were not translated properly into equations. Please see my detailed comments below.

Please see our response below, following the Reviewer's detailed comment.

In addition, I think that the authors need to mention throughout the text that the biological carbon pump

will be efficient at the Antarctic coast if associated with the formation of bottom waters as it will then be exported to the Ocean's abysses. Biological carbon export onto a continental shelf along Antarctica is otherwise more likely to become part of the benthic food web.

Please see our response below, following the Reviewer's detailed comment.

In addition, the resolution of all figures needs to be improved as the figures are sometimes difficult to read and are very pixelized.

Response: High resolution figures will be submitted along with the updated version of the manuscript.

Therefore, I suggest publication in *Biogeosciences* if the authors can improve these few points. I hope these comments will help the authors to strengthen this very interesting manuscript, as it will bring a significant contribution to the understanding of the biogeochemistry of polar oceans. I wish you good luck with the review process.

Specific comments:

Abstract

Line 31: "with the highest potential export fluxes". The authors only measured potential exportfluxes, not direct export fluxes.

Response: Agreed; we will update the sentence with the suggested addition.

Introduction

Line 70: for a better understanding, please replace "Weddell Sea surface waters" by "Surface waters of the open Weddell Sea"

Response: Agreed; we will update the sentence with the suggested addition.

Line 78: a recent publication by Dinniman et al. (2020) could be referred to in this sentence, as they show that the under ice-shelves meltwater-laden pump drives iron with sedimentary origin upward towards the surface of Antarctic polynyas.

Dinniman, M. S., St-Laurent, P., Arrigo, K. R., Hofmann, E. E., & van Dijken, G. L. (2020). Analysis of iron sources in Antarctic continental shelf waters. Journal of Geophysical Research: Oceans, 125, e2019JC015736. https://doi.org/10.1029/2019JC015736

Response: Agreed; the text will be updated to include the reference suggested by the reviewer.

Line 80: "supporting high rates of carbon export". I think that this quote needs to be put in context. My understanding is the biological carbon pump will be efficient at the Antarctic coast as long as it is associated with the formation of AABW as it will then be exported to the Ocean's abysses. Biological carbon export onto a continental shelf along Antarctica is otherwise more likely to become part of the benthic food web.

Response: We agree with the Reviewer's point as it pertains to carbon storage. Carbon export will happen regardless of whether the sinking material is ultimately recycled at the seafloor or incorporated into AABW. Nonetheless, we will clarify that for the large phytoplankton blooms of the CCSZ to equate to a strong biological pump requires that the sinking flux (or more correctly, the DIC resulting from the decomposition thereof) be incorporated into bottom waters.

Line 81: "due to deeper mixed layer depths (MLD) that lead to light limitation of phytoplankton" this statement is not always supported. For example, a recent paper by Kauko et al. (2021) suggest that the open waters off the eastern Weddell Sea are not light limited as the depth of the euphotic zone is always deeper

than the mixed layer depth. Therefore, I suggest that the authors nuance their statement.

<u>Response:</u> Both Reviewers note that a shallow mixed layer is perhaps not as important as previously thought for phytoplankton growth in the SO. We will therefore nuance the idea of light limitation presented in lines 81-82 to incorporate discussion of sea ice concentration and euphotic zone depth rather than MLD alone.

<u>Line 82-83</u>: "*Here, surface nutrients are never fully consumed and carbon export rates are low*". I have 2 comments regarding this statement. First of all, the upwelling of deep waters contributes to replenishing the open waters of the Weddell Sea with nutrients, which is also apossible reason why nutrients are never fully consumed there. In addition, it has been shown in several studies that primary production at the surface does not scale with carbon export at depth in the Southern Ocean, and more generally in the World's oceans. Thus, stating that carbon export is low because surface nutrients are not fully consumed is somewhat misleading. Two example papers on the topic are:

Maiti, K., Charette, M. A., Buesseler, K. O., and Kahru, M. (2013), An inverse relationship between production and export efficiency in the Southern Ocean, *Geophys. Res. Lett.*, 40, 1557–1561, doi:10.1002/grl.50219.

Le Moigne, F. A. C., S. A. Henson, E. Cavan, C. Georges, K. Pabortsava, E. P. Achterberg, E. Ceballos-Romero, M. Zubkov, and R. J. Sanders (2016), What causes the inverse relationshipbetween primary production and export efficiency in the Southern Ocean?, Geophys. Res. Lett., 43, 4457–4466, doi:10.1002/2016GL068480.

<u>Response:</u> We agree with the reviewer's comments and will edit the sentence to avoid misleading the reader. The sentence will be amended as follows: *"Here, <u>the co-limitation of productivity by light and iron often</u> <u>results in low rates of biological carbon export.</u>"</u>*

Line 91: "the biological carbon pump"

Response: We will update the sentence with the suggested addition.

Line 94: "biological carbon pump"

Response: We will update the sentence with the suggested addition.

Line 97: "biological carbon pump"

Response: We will update the sentence with the suggested addition.

Line 113: I would also add that grazing can also play a strong role in controlling the amplitude and terminating these phytoplankton blooms.

<u>Response</u>: Agreed. We will mention that grazing, in addition to bottom-up controls, plays a role in controlling the amplitude and duration of the blooms: "*The size and duration of these blooms is ultimately* <u>controlled by</u> macro- (e.g., nitrate and silicate) and micronutrient (e.g., iron) availability (Martin et al. 1991; Boyd 2004; Boyd and Ellwood 2010; Llort et al. 2015), <u>as well as by zooplankton grazing (Smetack et al. 2004 and references therein; Arteaga et al. 2020).</u>"

Line 118-120: this is valid when *Phaeocystis antarctica* do not form large colonies, which are prone to rapid export and less subjected to grazing. See for instance: *DiTullio, G., Grebmeier, J., Arrigo, K. et al. Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. Nature* **404**, 595–598 (2000). <u>https://doi.org/10.1038/35007061</u>

Response: We note that P. antarctica in their colonial form are rapid exporters of carbon; indeed, this notion

is discussed at length in the *Discussion* section of the manuscript (e.g., line 891-893, line 915-919, line 924-925, line 929-931). We will thus remove lines 118-120 from the *Introduction* as the information provided is not relevant to our findings.

Methods

Figure 1: can the authors increase the resolution of the Figure 1?Line 170: please correct "Filchner-Ronne Ice Shelf (FRIS)"

Response: The figure caption will be updated, and the resolution of the figure improved.

Line 172: please indicate what date does the sea ice concentration map correspond to. <u>Response:</u> The date associated with the sea ice concentration data will be included in the figure caption.

Line 180: "*Chlorophyll a fluorescence*" <u>Response:</u> We will update the sentence with the suggested addition.

Section 2.2.2. Estimating nutrient depletion

I think that there are problems with the equations presented between lines 231 and 254. If Iwork out equations 1, 2a and 2b, I obtain the following:

X depletion(corrected) = X depletion – X depletion(melt water) = [X]measured – [X]source – ([X]source – [X]melt water) = [X]measured – 2 * [X]source + [X]melt water

Therefore, I believe that the nutrient drawdown would be overestimated if following this equation. Perhaps the authors have not translated their calculations correctly into equations? I think that this is the case as the nutrients' drawdown presented below in the paper (Figure 4) are reasonable and in line with the depletion one can visually calculate from Figure 3.

Similarly, I wonder if the equation for the sea ice fraction (fsea-ice) is also correct as some quick examples gives me negative sea ice fractions. For instance, for a measured salinity of 34 (for example), a winter water salinity of 34.4 and a sea ice salinity of 5, I obtain fsea-ice = (34-34.4)/(34-5) = -0.014.

Can the authors please verify these equations?

<u>Response:</u> We thank the Reviewer for picking up on these errors. While the calculations were not correctly presented in the manuscript (and have since been updated), the correct equations were applied to the data.

The correct calculations will be included in the methods section of the revised manuscript:

X depletion = X depletion _{(melt water}	e_{r} – [X] _{measured}	(1))
--	-----------------------------------	-----	---

 $X \text{ depletion}_{(\text{melt water})} = [X]_{\text{sea-ice}} (f_{\text{sea-ice}}) + [X]_{\text{source}} (1 - f_{\text{sea-ice}})$ (2)

$$f_{sea-ice} = \frac{salinity_{measured} - salinity_{source}}{salinity_{sea-ice} - salinity_{source}}$$
(3)

Results

Line 379: add a space "WW, WDW" Response: We will update the sentence as suggested.

Figure 2: The first paragraph of the Results section and the Figure 2 are very informative but the inserts of Figure 2, which describe the water masses down to 1500 m depth, should be enlarged and be given as additional sub-panels as most of the information on water masses is drawn from below 150 m depth. In addition, the resolution of Figure 2 is very poor and should be improved.

<u>Response:</u> Reviewers 1 and 2 had the same comment regarding Figure 2; we will thus alter the figure based on their recommendations. Shown below is the updated version of Figure 2 that includes the inserts as their own sub-panels:

Figure R1 (Figure 2 in the main manuscript): Depth profiles of (a) potential density (σ_{θ}), (b) potential temperature, (c) absolute salinity, and (d) photosynthetically active radiation (PAR) between 0-150 m, and (e) σ_{θ} , (f) potential temperature, and (g) absolute salinity between 0-1500 m at all stations. The panels (e-g) show the various water masses present at each station, identified from their temperature and salinity ranges (WSBW – Weddell Sea Bottom Water, WSDW – Weddell Sea Deep Water, WDW – Warm Deep Water, MWDW – Modified Warm Deep Water, ISW – Ice Shelf Water, HSSW – High Salinity Shelf Water, WW – Winter Water, ASW – Antarctic Surface Water). The station positions are indicated by the different colours: red – Antarctic Peninsula, green – Larsen C Ice Shelf, blue –Weddell Gyre, light purple – early summer Fimbul Ice Shelf, and dark purple – late summer Fimbul Ice Shelf.

Line 399: "depth profiles (0-150 m)"

Response: We will correct the figure caption accordingly.

<u>Figure 3</u>: perhaps this is because of the low resolution (which needs to be improved) but I findit difficult for the reader to distinguish between the sampling sites (for NH4+ and NO3- for example). Perhaps the symbols are too large? In addition, the error bars are barely visible.

<u>Response</u>: Reviewers 1 and 2 had the same comment regarding Figure 3; we will thus alter the figures that show data from all stations by i) assigning each station its own colour and ii) representing each region (i.e., Antarctic Peninsula, LCIS, FIS, Weddell Gyre) with a different symbol shape. An example of the updated colour palette is shown below:

Figure R2 (Figure 3 in the main manuscript): Depth profiles (0-500 m) of (a) NH_4^+ , (b) urea-N, (c) NO_2^- , (d) NO_3^- , (e) $Si(OH)_4$ and (f) PO_4^{3-} concentrations. For all panels, the error bars represent ± 1 SD of replicate samples (n = 2-3). Where applicable, the error has been propagated according to standard statistical practices. Note the x-axes on panels (e-f) do not start at 0 μM .

<u>Figure 4</u>: I find a little confusing that Figure 3d shows ratios of N depletion to Si depletion (so N:Si) when the figure legend (lines 455-459) and the main text (lines 467-470) discuss Si:N depletion ratios. Perhaps the author could invert the x and y-axes of Figure 4d to avoid any confusion.

<u>Response:</u> Figure 4 will be updated based on Reviewer 1's suggestion as follows (note particularly the inversion of the axes in panel d):

Flynn et al. Summertime productivity and carbon export potential in the Weddell Sea, with a focus on the waters adjacent to Larsen C Ice Shelf

Figure R3 (Figure 4 in the main manuscript): Depth profiles (0-150 m) of $(a) NO_3^-$ depletion, $(b) Si(OH)_4$ depletion and $(c) PO_4^{3^-}$ depletion at each station. Also shown are scatterplots of $(d) NO_3^-$ depletion versus $Si(OH)_4$ depletion at each depth over the euphotic zone at all stations (grey symbols) and the theoretical euphotic zone-averaged $Si(OH)_4$ versus total N depletion (coloured symbols; see text for details) and (e) $PO_4^{3^-}$ depletion versus NO_3^- depletion at each depth over the euphotic zone at all stations (grey symbols) and the theoretical euphotic zone-averaged $PO_4^{3^-}$ versus total N depletion (coloured symbols; see text for details) and (e) $PO_4^{3^-}$ depletion versus NO_3^- depletion at each depth over the euphotic zone at all stations (grey symbols) and the theoretical euphotic zone-averaged $PO_4^{3^-}$ versus total N depletion (coloured symbols). The dashed line in panel (d) represents the 1:1 Si:N depletion ratio, expected for iron-replete diatoms (Ragueneau et al. 2000; Hutchins and Bruland 1998; Takeda 1998; Mosseri et al. 2008), while the dotted lines represent the 1:2 Si:N ratio, indicative of enhanced activity of non-siliceous phytoplankton, and the 2:1 Si:N ratio, expected for iron-limited diatoms (Arrigo et al. 1999; Franck et al. 2000; Brzezinski et al. 2003; Green and Sambrotto 2006; Mosseri et al. 2008; Weber and Deutsch 2010; Martiny et al. 2013). The dashed line in panel (e) represents the 16:1 N:P depletion ratio (the Redfield ratio), while the dotted lines represent the 20:1 N:P ratio, expected for P. antarctica, and 14:1 N:P ratio, expected for iron-replete diatoms (Hutchins and Bruland 1998; Takeda 1998; Ragueneau et al. 2000; Mosseri et al. 2008).

<u>Line 476-479</u>: There is a surprising result here with the FIS station showing some of the highest Si:N depletion ratios as well as some of the highest N:P depletion ratios. Looking at Table 1, it looks like this surprising result is mostly influenced by one station (Fimbul F2), where barely any nutrient depletion is observed (only NO3- showing a slight depletion 0.1 uM). So this earlyspring result seem to have a strong influence over the Fimbul average and might be taken cautiously. Perhaps the authors could mention this.

<u>Response</u>: Thank you for the note. We will include a sentence in the results section that highlights the low $Si(OH)_4$ and PO_4^{3-} depletions measured at FIS in early summer, particularly at station F2, and will mention how this potentially skews the $Si(OH)_4$:NO₃⁻ and NO₃⁻:PO₄³⁻ depletion ratios.

<u>Figure 5 and Table 2</u>: Why not present the POC values as well? And so make it a 9-panels figure? The same comment applies to Table 2, why not add a column for POC values? Even though POC values can retrieved from PON values and C:N ratios, it would be easy to just have POC values presented in Figure 5 and reported in Table 2.

<u>Response:</u> We had originally opted not to included POC concentrations in Figure 5 and Table 2 for the sake of concision but are happy to include the data as per the updated version of Figure 5 below:

Figure R4 (Figure 5 in the main manuscript): Bar plots of (a, d, g) POC concentrations, (b, e, h) PON concentrations and (c, f, i) biomass C:N ratios measured at the 55% (a-c), 10% (d-f) and 1% light levels (g-i). The dotted black line in panels (c), (f), and (i) indicates the Redfield C:N ratio of 6.63. The error bars represent ± 1 SD of replicate samples (n = 2-6). Where applicable, the error has been propagated according to standard statistical practices.

Discussion

<u>Line 637-641</u>: Is it not that biomass plays a major role on light penetration? SST and stratification seem to be better indicator of NPP and ρ NO3. So overall, I am not entirely convinced that light plays the strongest role on NPP. In my mind, for such waters of coastal Antarctica or the sea ice zone, NPP is mainly influenced by a combination of factors where seaice melt drives first an increase in dissolved and particulate iron concentration near the surface, together with an enhanced stratification (also helped by ocean-atmosphere heat exchanges) that keeps phytoplankton close to the surface for growth. This is close to what the authors also argue lines 660-661, so line 637 leaves with a strange impression.

<u>Response:</u> We agree that variability in NPP is not well explained by euphotic zone depth alone ($R^2 = 0.1$; p-value = 0.40). We will update lines 637-641 of the manuscript to indicate that NPP is better explained by biomass concentration (which affects light penetration in addition to total carbon production) and temperature. However, ρNO_3^- *is* significantly correlated with the euphotic zone depth at the non-LCIS stations ($R^2 = 0.65$; p-value = 0.009), possibly because of the high energy (i.e., light) requirement of NO_3^- reduction (Dortch 1990). Additionally, ρNO_3^- appears less strongly controlled by temperature ($R^2 = 0.32$; p-value = 0.011) and biomass (i.e., PON concentration; $R^2 = 0.29$; p-value = 0.017).

<u>Line 643-650</u>: I have a similar interpretation of the relationship between ρ NH4 and the depthof the euphotic zone. I believe that this is an indirect relationship linked to the biomass of phytoplankton present in the water column and which has a strong influence on both the penetration of light and the remineralization of organic matter that leads to the production of regenerated N. The authors state that they conclude "*that* ρ NH4 *and* ρ *urea were predominantly constrained by the availability of regenerated N rather than by light*". I think that they could mention the potential role of biomass in attenuating the penetration of light to explain these relationships with the depth of the euphotic zone.

<u>Response</u>: We agree that the production of NH_4^+ and urea within the euphotic zone is linked to biomass (as pointed out in lines 653-659 of the original manuscript). In the amended version, we will discuss the role of biomass in i) attenuating light and ii) as a source of organic matter for the production of DON and NH_4^+ .

Line 672: Oxygen is also typically saturated as a result of phytoplankton and ice algae production.

<u>Response</u>: In the amended version of the manuscript, we will state that oxygen in sea-ice is typically saturated due to phytoplankton and sea-ice algae productivity (indeed, this strengthens our argument), in addition to rapid equilibration with the atmosphere.

<u>Line 673</u>: In fact, sea ice formation leads to an increase in the O2 concentration of the underlyingwater (through brine rejection and decreased solubility mainly). See the following paper: <u>https://online.ucpress.edu/elementa/article/doi/10.12952/journal.elementa.000080/112740/</u> <u>Assessing-the-O2-budget-under-sea-ice-An</u>

So I suggest to rephrase the following sentence: "Sea-ice formation should not, therefore, drive a notable change in the oxygen content of ASW."

<u>Response:</u> Agreed. We will update the sentence to read as follows: "Sea-ice formation should not, therefore, drive a <u>decrease</u> in the oxygen content of ASW."

<u>Line 687-89</u>: I very much agree with the authors interpretation here. In addition, it might beworth to add that higher SST promote phytoplankton productivity.

<u>Response:</u> We intentionally did not state that higher SST promotes productivity as the specific uptake rates do not increase with increasing SST (Figure R5); however, we will include a section in the Supplemental Information where we discuss that there is no relationship between SST and phytoplankton growth, referencing the figure below:

Figure R5. Specific rates of carbon (pink), nitrate (black), ammonium (blue), and urea (grey) uptake versus temperature at all depths at each station.

Line 692: "and potential organic carbon export".

Response: We will update the sentence with the suggested addition.

Line 699:701: there are some problems with the references here.

Response: The issue with the references (i.e., inadvertent replication) will be corrected.

Line 703: does the grey box in Figure 11d indicate the average MLD plus or minus the standarderror?

<u>Response:</u> The grey box does indicate the MLD average \pm standard deviation. The figure caption will be updated to make this clear: "*Figure 11. Maps of (a) SST, (b) sea surface salinity, and (c) surface oxygen concentrations, and (d) depth profiles of oxygen concentrations in the region of LCIS at the time of sampling. SST and salinity data were acquired from the underway (~7 m inflow) ferrybox, while the oxygen concentrations were measured via the oxygen sensor on the CTD profiler, calibrated against discrete seawater samples measured for dissolved oxygen by Winkler titration (Carpenter 1965; Grasshoff et al. 1983; Hutchinson et al. 2020)). The symbols in panel (d) are coloured by potential density (\sigma_{\theta}), with the circles indicates the average mixed layer depth (MLD) \pm SD across the stations at LCIS (n=10). The bathymetry data in panels (a-c) were taken from ETOPO1 (NOAA National Geophysical Data Center 2009)."*

Line 731: a word seems to be missing from this sentence: "due to our <u>results(?)</u> not accountingfor regenerated N uptake."

Response: We will update the sentence with the suggested addition.

Line 770: "biological carbon pump"

Response: We will update the sentence with the suggested addition.

Line 852: "the absolute carbon export flux potential"

Response: We will update the sentence with the suggested addition.

<u>Line 898-901</u>: "*carbon export <u>potential</u>*". Here, while this hypothesis may be true, the authorsmight also want to acknowledge that Biological carbon export is usually stronger later in the season in the Southern Ocean.

<u>Response:</u> From previous research conducted in the Weddell Sea and elsewhere in the Southern Ocean, the idea that biological carbon export is stronger later in the season does not appear to always be true. For example, Goeyens et al. (1995) found that as the summer season progresses, the CCSZ and MIZ of the Weddell Sea switch from being characterized by predominantly nitrate-fueled phytoplankton growth (i.e., high export) to regeneration dominated (i.e., low export). This switch occurs as a result of increased microbial loop activity in surface waters, along with decreased iron (and in some cases silicate) availability. In the revised version of the manuscript, we will reference additional studies that have shown such a seasonal trend (e.g., Lourey et al. 2003; Philibert et al. 2015; Smart et al. 2020) and will also acknowledge that this is not always the case.

Line 927: "It is projected that these conditions will yield blooms of heavily-silicified diatom species (Deppeler and Davidson 2017) that are known to sink rapidly out of the mixed layer or, if consumed, their frustules are expected to survive the gut passages of copepods, resulting in increased carbon export (Assmy et al. 2013)."

I disagree with this interpretation from both Deppeler and Davidson (2017) and the authorsfor several reasons. First, the heavily silicified diatoms species that are referred to here are rarely coastal species and more typical of the open Southern Ocean such as the ACC (see Smetacek et al., 2004). In addition, these species are mostly silica exporters and not carbon exporters contrarily to the less silicified diatoms species (Assmy et al., 2013 and Smetacek et al., 2004).

Smetacek, V., P. Assmy and J. Henjes (2004). "The role of grazing in structuring Southern Ocean pelagic ecosystems and biogeochemical cycles." Antarctic Science 16(4): 541-558.

<u>Response</u>: Deppeler and Davidson (2017) is probably not the most appropriate reference for us to use here so we will remove it. We take the Reviewer's point about carbon versus silica export, noting that there is still a lack of consensus on this issue. For instance, Assmy et al. (2013) found that under iron replete conditions, heavily-silicified diatoms were both silicate and carbon exporters: "*Our results suggest that large-scale iron fertilization of the silicate-rich Southern Ocean will not change silicon sequestration but will add carbon to the sinking silica flux.*" (p. 1). At the same time, it has been shown that heavily-silicified diatoms with robust frustules may be grazer-protected, potentially leading to the sinking of empty shells (i.e., devoid of carbon) (Smetacek et al. 2000; Assmy et al. 2013). In the event that these diatom species come to dominate at LCIS, the shift from *P. antarctica* to these diatoms would further decrease the carbon export potential at LCIS, supporting our hypothesis that a shift from a *P. antarctica*- to diatom-dominated community will lead to decreased carbon export. We will nuance this discussion to include the complexities summarized above, and incorporate the references suggested by the reviewer.

In addition, I believe that this section omits to mention the benthic food web. If the falling phytoplankton cells reach the sediments of the continental shelves, they are likely to becomepart of the benthic food web and not contribute to biological carbon export along with the formation of bottom waters. I think that authors should mention this possibility.

<u>Response</u>: We thank the Reviewer for bringing to our attention the potential role of the benthic food web in the carbon cycle, which is likely to be important in the vicinity of the Larsen C and Fimbul Ice Shelves where the bottom depth is typically <500 m. We will update this section of the manuscript to include discussion of the role of the benthic food web and its impact(s) on biological carbon export, particularly in regions where no water mass formation occurs. In brief, organic matter that is exported from the euphotic zone near the Antarctic ice shelves either undergoes remineralization, with the resultant CO₂, when associated with deep water mass formation, being stored in these water masses for centuries. Alternately, the organic matter reaches the sediments where a small fraction will be buried and thus removed from the ocean-atmosphere system, while the bulk of the organic material is utilized by the benthic community and ultimately converted into CO₂. Nutrients and CO₂ that are recycled by the benthos can be resupplied to the surface during upwelling, providing an opportunity for the remineralized CO₂ to escape back to the atmosphere, thus driving no net carbon removal.

In our discussion, we will rely on the following references:

Isla, E., Rossi, S., Palanques, A., Gili, J.-M., Gerdes, D. and Arntz, W. (2006). "Biochemical composition of marine sediments from the eastern Weddell Sea (Antarctica): High nutritive value in a high benthicbiomass environment". Journal of Marine Systems 60: 255-267.

Isla, E., Gerdes, D., Rossi, S., Fiorillo, I., Sañé, E., Gili, J.-M., and Arntz, W. (2011). "Biochemical characteristics of surface sediments on the eastern Weddell Sea continental shelf, Antarctica: is there any evidence of seasonal patterns?". Polar Biology 34: 1125-1133.

Pineda-Metz, S.E.A., Isla, E., and Gerdes, D. (2019). "Benthic communities in the Filchner Region (Weddell Sea, Antarctica)". Marine Ecology Progress Series 628: 37-54.

Line 941: "potential carbon export"

Response: We will update the sentence with the suggested addition.

Reviewer 2: Anonymous

Comment on bg-2021-122

Anonymous Referee #2

Referee comment on "Summertime productivity and carbon export potential in the Weddell Sea, with a focus on the waters adjacent to Larsen C Ice Shelf" by Raquel Flynnet al., Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-122-RC2, 2021

In this manuscript the authors present data on nitrogen (NO3, NH4' urea) and carbon uptake and nitrification at different locations in the Southern Ocean, namely, the Antarctic peninsula, Larsen C ice shelf, Weddell Gyre and Fimbul ice shelf. The manuscript presents a large set of valuable data in poorly studied and contrasted systems from the shelves intoopen waters of the Weddell Gyre. The manuscript is well written and the study is well worth publishing in Biogeosciences. However, given the large dataset and scope of the study (compare productivity, macronutrients and regenerated N uptake and assemblage composition and environmental variables), I believe and the results presented here woulddeserve a more thorough and robust analysis (including correlation or multi-correlation statistics) for the discussion points:

<u>Response:</u> In an attempt to include a more thorough and robust analysis of our data, we conducted nonmetric Multidimensional Scaling (nMDS) and Canonical Correspondence Analyses (CCA). The detailed explanation of these methods and their results provided below will be included in the Supplemental Information. We will refer the reader to this material when appropriate. However, we feel that it would not be beneficial to include this content in the main manuscript given that the results are not particularly informative beyond the conclusions that we have already drawn.

nMDS is an indirect gradient analysis approach that produces an ordination based on a distance or dissimilarity matrix using Bray-Curtis distance. The nMDS was used to visualise the community composition differences between the sites and samples (data were square-root transformed, Bray-Curtis dissimilarity, 999 permutations using Canoco 5). Figure R6a below shows that the LCIS and FIS sites were similar and were different from the AP and WG sites. AP3 was an outlier, likely due mainly to the very low species diversity and phytoplankton abundance at that station.

The CCA summarizes the variation in species composition explained by environmental variables. Monte Carlo permutation tests (499 permutations) were performed to assess the significance of the canonical axes. The various environmental variables examined are plotted as arrows originating from the center of the graph. The origin represents the mean value of each separate variable, and the arrow represents an increase in the value of that particular variable. The distance between the symbols approximates the dissimilarity of their species composition as measured by their chi-square distance. Prior to the analysis, co-linearity among possible predictor variables was assessed using variance inflation factors (VIF), with VIFs > 5 deemed colinear (Zuur et al., 2009; Zuur et al., 2010). Therefore, salinity, density, oxygen and PO_4^{3-} were omitted from further analyses. The CCA uses the same species data as plotted in the nMDS, but shows the species distribution constrained by the environmental variables. Figure R6b shows that the AP and WG stations were characterized by higher-than-average temperature (and urea concentrations, although this relationship was less significant). Stations L6, L10 and F3 were characterized by lower-than-average temperature and PAR. Station F4 was characterized by higher-than-average PAR, NO₂⁻ and NO₃⁻, and lower-than-average temperature, NH_4^+ and Si(OH)₄. The LCIS stations to the left of the center were characterized by lowerthan-average NO_3^- , NO_2^- , PAR (likely the result of elevated biomass at these stations) and elevated concentrations of NH₄⁺ and Si(OH)₄.

These analyses show that the LCIS stations were statistically different from the AP and WG stations. The LCIS stations were generally characterized by elevated NH_4^+ concentrations, the result of increased heterotrophy and an upregulated microbial loop, and high Si(OH)₄ concentrations, likely the result of low Si(OH)₄ uptake by a phytoplankton community consisting of a low abundance of diatoms.

Figure R6: (a) *nMDS* analysis of the variability in phytoplankton community composition among stations and (b) CCA ordination of phytoplankton species constrained by environmental variables visualized as a biplot with sampling stations labeled.

- In most of the figures presenting profiles it is not possible to distinguish individual profiles. Further, in particular for the LCIS, the location of the different stations is not reported in these figures. This is relevant given that stations sampled were located in areas with very different topography, sea-ice cover, freshwater input, circulation, watermass characteristics, mixed layer depths not to mention plankton biomass and composition.

<u>Response</u>: As per the request of both Reviewers, we have updated the figures and have assigned individual colours to each of the stations (e.g., see Figures R1-3 above). This change should help the reader to differentiate between the stations. We would prefer not to include separate panels for the LCIS stations as this will make the figures very large and potentially unwieldy (e.g., Figure 3 would have 12 panels). That said, if the Editor feels that the LCIS data should be presented separately, we are happy to include such figures in the Supplemental Information section of the manuscript.

- Line 632-641: NPP is compared to Zeu. However, the large variability in Zeu in this study is not explained. Information on irradiance and sea-ice cover would be relevant here. Further, the actual light regime experienced by the plankton is related to the MLD and most probably phytoplankton standing stocks. These are not shown and analyzed in Fig. 10.

<u>Response</u>: We agree that NPP is not well explained by the euphotic zone depth alone ($R^2 = 0.1$; p-value = 0.40). We will update lines 637-641 to indicate that NPP is better explained by biomass concentration (which affects light penetration in addition to total carbon production; see Figure R7c below) and temperature (see Figure 10d in the main manuscript).

- Lines 643-661: no graph is presented on the relation between NH4 and urea uptake and substrate concentrations or NPP.

<u>Response</u>: We agree that presenting a figure showing the relationship between NH_4^+ and urea uptake and substrate concentration might be useful to the reader. We will thus include the below figure in the

Supplemental Information, along with some text detailing the relationship between regenerated nitrogen uptake and substrate concentration in the amended Main Text (Figures R7a and b).

Figure R7: Scatterplots of (a) euphotic zone integrated NH_4^+ uptake rates versus NH_4^+ concentrations, (b) euphotic zone integrated urea uptake rates versus urea concentration, (c) euphotic zone integrated uptake rates versus particulate organic nitrogen (PON) concentrations, and (d) NH_4^+ and urea concentrations versus PON concentrations at all stations where uptake rate experiments were conducted. The symbol colours in panel (c) indicate the different uptake rates (NPP – pink, NO_3^- – black, NH_4^+ – blue, urea – grey), with integrated nitrogen uptake (ρ N) rates corresponding to the primary y-axis and net primary production (NPP) corresponding to the secondary y-axis. In panel (d), NH_4^+ concentrations (black outlined symbols) correspond to the primary y-axis and urea concentrations (grey outlined symbols) correspond to the secondary y-axis.

- Line 652-657: No graph showing the relationship between particulate stocks (POC, PON) and regenerated N concentrations and uptake is shown.

<u>Response</u>: We agree that presenting a figure that shows the relationship between NH_4^+ and urea concentration and biomass might be useful to the reader. We will include Figure R7 in the Supplemental Information along with a section of text exploring the relationship between regenerated nitrogen concentrations and uptake rates and substrate concentration (Figures R7c and d).

- Lines 706-716: Several studies have shown that floristic composition (diatoms vs otherphytoplankton groups, and diatom assemblage composition) is probably more relevant. How do the uptake ratios change with proportion of diatoms and diatom assemblage composition? (see also comments in the annotated

manuscript lines 466-470).

<u>Response</u>: We agree that floristic composition (i.e., not the diatom community alone) will influence the Si:N and N:P depletion ratios. However, due to the dominance of diatoms over other species at the non-LCIS stations (i.e., AP, FIS and WG) and *P. antarctica* at LCIS (see Figure 9f in the main manuscript), the depletion ratios are also an indicator of iron availability. In other words, there are examples of stations characterized by near-identical proportions of diatoms but where the depletion ratios vary considerably (e.g., L10 versus F4) – here, something other than floristic composition must be invoked to explain our observations. We will, however, point out that floristic composition can also influence the depletion ratio, and will include Figure R8 as part of our discussion (see below).

- Lines 737-750: Why not compare the uptake rates of N species and uptake ratios with assemblage composition? (i.e. vs % diatoms, % non diatom biomass, and vs dominant diatom species types?).

<u>Response</u>: We thank the reviewer for the suggestion – we agree that including some discussion regarding how the depletion ratios and N uptake rates vary with changes in the phytoplankton assemblage would be a useful addition to our analysis. We will update lines 737-750 of the manuscript to include discussion of the influence of diatom vs. *P. antarctica* contributions to total phytoplankton biomass on the depletion ratios and dominant source of N taken up by the phytoplankton (see Figure R8 below), which we intend to include in the amended manuscript. Briefly, at the stations where diatoms dominated the phytoplankton biomass, the Si(OH)₄:NO₃⁻ depletion ratios were elevated and high nitrate uptake rates were measured relative to the LCIS stations where *P. antarctica* was dominant (Figures R8a and c). In contrast, at the stations where *P. antarctica* dominated the biomass, the NO₃⁻:PO₃³⁻ depletion ratios were elevated, and the highest regenerated nitrogen uptake rates were measured (Figures R8b and d).

Figure R8: Scatterplots of (a) $Si(OH)_4:NO_3^-$ depletion ratio versus the % contribution of diatoms to total biovolume, (b) $NO_3^-:PO_3^{3^-}$ depletion ratio versus the % contribution of P. antarctica to total biovolume, (c) % of nitrogen (N) consumed as NO_3^- versus the % contribution of diatoms to total biovolume, and (d) % of N consumed as regenerated N versus the % contribution of P. antarctica to total biovolume at each station.

- Lines 885-897: this part is based on the assumption that diatoms do not take up NH4. This is not accurate (see Mosseri et al., 2008 and Smetacek et al., 2012).

<u>Response</u>: We are not arguing that diatoms do not take up NH_4^+ but rather that the high concentrations of NH_4^+ present at LCIS during our sampling may prevent them, and other phytoplankton species, from consuming the available NO_3^- (i.e., NH_4^+ inhibition of NO_3^- uptake; Dortch 1990; Raey et al. 2001; Philibert et al. 2015; Glibert et al. 2016). Additionally, although diatoms can consume NH_4^+ , it is possible that they are outcompeted by small cells that tend to be NH_4^+ specialists (i.e., as per Goeyens et al. 1995). We will ensure that it is clear in the amended version of the manuscript that we are not suggesting diatoms do not take up NH_4^+ .

- Lines 921-935: this is all highly speculative and based on several assumptions (among others that *Phaeocystis antarctica* blooms lead to high C export). I would recommend to base this part on the actual observations of this study. This part of the discussion is also based on the influence of sea-ice cover, but no information on sea-ice cover is given in themanuscript. Water depth might be also relevant here. Further,

some stations at LCIS showvery low salinity. This has not been analysed and discussed at all (among others, are these low salinities due to sea-ice melt or glacial discharge?).

<u>Response:</u> We agree that we could better integrate our findings into the discussion of the potential implications of climate change for the floristic dynamics at LCIS. In the updated manuscript, we will use station L10 as an example of the effect that increased stratification due to sea-ice melt may have on the phytoplankton community and carbon export potential. At L10, there had recently been sea-ice melt (Figure R1a and 1c), which acted to rapidly increase water column stratification. Here, we observed a different phytoplankton community with increased diatom dominance compared to the other LCIS stations (Figure 9 in the main manuscript). The idea is that as SST rises and sea-ice melts, a shift from *P. antarctica*- to diatom-dominated phytoplankton blooms is expected because diatoms flourish under conditions of high light and rapid water column stratification (i.e., in areas of recent sea-ice melt) (e.g., Boyd and Doney 2002; Arrigo and van Dijken 2003; Petrou et al. 2016; Ferreira et al. 2020). This floristic shift hypothesis is supported by our observations at L10, whereby sea-ice melt induced rapid water column stratification, allowing for the dominance of diatoms over *P. antarctica*. This result contrasts what was observed at the other LCIS stations; here, *P. antarctica* dominated the biomass due to the low light conditions at the onset of the bloom, the result of deep mixed layers that initially characterize coastal polynyas.

Additional comments are given in the annotated manuscript.

Other comments:

Based on Fig. 1, it seems there are large differences in water depth between stations (i.e. some stations were taken in the continental shelf others in open waters). Information on water depth and how this affects water mass characteristics and MLDs would be helpful, in particular for Larsen C profiles.

<u>Response</u>: The bottom depth of the various stations at LCIS does not appear to influence the water mass characteristics in the surface mixed layer (Figure R9; NO_3^- depletion versus bottom depth $R^2 = 0.11$ and mixed layer depth versus bottom depth $R^2 = 0.01$); we would thus prefer not to discuss water depth in the manuscript given that it is already extremely data-rich and lengthy. The variability in productivity and carbon export appears to be influenced most strongly by variability in surface water stratification, which is driven by sea ice melt and/or upwelling.

Figure R9: (a) NO³ depletion and (b) mixed layer depth as a function of bottom depth at all LCIS stations.

Lines 81-82: the importance of shallow MLD for phytoplankton growth in the SO is also more and more contested see Hoppe et al., 2017, Deep-Sea Research II, 138: 63-73. doi:10.1016/j.dsr2.2015.10.005; Smetacek et al., 2012, Nature, 487: 313-319. doi:10.1038/nature11229 and Behrenfeld 2010, Ecology,

91(4), 977–989 for a more general discussion.

<u>Response</u>: Both Reviewers note that a shallow mixed layer may not be as important as previously thought for phytoplankton growth in the SO. We will therefore nuance the text about light limitation (previously lines 81-82) to incorporate discussion of sea ice concentration and euphotic zone depth rather than MLD alone. We will update the text and references to include the ideas presented in Hoppe et al. (2017) and Smetacek et al. (2012), including their hypotheses that the main limitations on NPP are nutrient availability (particularly iron) and grazing pressure.

Line 115: The blooming stage in all bloom forming *Phaeocystis* species (including *P. antarctica*) is the colonial form. These are not free living "small cells" but structures in the size range covered by diatoms.

<u>Response:</u> We respectfully disagree. *P. antarctica* have been shown to shift between their single cell- and colonial forms in response to bottom-up and top-down pressures (Lubbers et al. 1990; Hamm et al. 1999; Schoemann et al. 2001; Smith et al. 2003; Rousseau et al. 2007; Bertrand et al. 2007; Feng et al. 2010; Bender et al. 2018). At the onset of a bloom, *P. antarctica* generally exist in their single cell form as they are still building up their biomass (Rousseau et al. 2007; Bender et al. 2018). As they grow, they shift towards their colonial form in order to escape predation and outcompete other phytoplankton groups for the available nutrients (particularly trace metals) (Lubbers et al. 1990; Hamm et al. 1999; Schoemann et al. 2001; Bertrand et al. 2007; Feng et al. 2010). To better support our argument, we will include the following additional references in the amended version of the manuscript:

Schoemann, V., Wollast, R., Chou, L., and Lancelot, C. (2001). "Effects of photosynthesis on the accumulation of Mn and Fe by *Phaeocystis* colonies". Limnology and Oceanography 46: 1065-1076

Smith Jr, W.O., Dennett, M.R, Mathot, S., and Caron, D.A. (2003). "The temporal dynamics of the flagellated and colonial stages of *Phaeocystis antarctica* in the Ross Sea". Deep Sea Research Part II 50: 605-617

Rousseau, V., Chrétienont-Dinet, M.-J., Jacobsen, A., Verity, P., and Whipple, S. (2007). "The life cycle of *Phaeocystis*: state of knowledge and presumptive role in ecology". Biogeochemistry 83: 29-47

Bender, S.J., et al. (2018). "Colony formation in *Phaeocystis antarctica*: connecting molecular mechanisms with iron biogeochemistry". EGU: Biogeosciences 15: 4923-4942

Line 123-124: More recent literature strongly indicates that diatoms in the SO also takeup among others ammonia (see: Mosseri, 2008 and Smetacek et al., 2012).

<u>Response:</u> As outlined above, we are not arguing that diatoms do not take up NH_{4^+} , and we will make this explicit in the updated version of the manuscript. Instead, we make the point that in the presence of high light, iron and Si(OH)₄ concentrations, diatoms will typically consume NO_3^- over NH_4^+ as i) NO_3^- is present in substantially higher concentrations than NH_4^+ and ii) the lower surface area-to-volume ratio of (larger) diatoms makes it harder for them to compete with smaller cells for a less abundant resource (i.e., NH_4^+).

The study conducted by Smetacek et al. (2012) to which the Reviewer refers shows that under iron-replete conditions, diatoms consume very high quantities of NO_3^- : "*Nitrate uptake until the bloom peak on day 24 accounted for 80% of PON production*" (p. 5). By contrast, the study conducted by Mosseri et al. (2008) on the Kerguelen Plateau found that diatoms actively grew on NH_4^+ (39-77% of total N uptake) produced by the intense heterotrophic activity that followed the phytoplankton bloom. In this case, the measured NH_4^+ concentrations in the mixed layer were always >0.5 µM and thus potentially inhibitory to diatom NO_3^- uptake (Dortch 1990; Raey et al. 2001; Philibert et al. 2015; Glibert et al. 2016) – in other words, diatoms

may have relied heavily on NH_4^+ in the Mosseri et al. (2008) study because i) the NH_4^+ flux was large (even if the standing stock was only modest) and ii) these already-dominant phytoplankton could not effectively consume NO_3^- because of the elevated NH_4^+ concentrations (i.e., NH_4^+ inhibition).

Regardless, we will update the manuscript to clarify that while diatoms can and do consume NH_{4^+} , they are likely outcompeted by *P. antarctica* and other smaller phytoplankton at LCIS for the available NH_{4^+} .

Figures 2, 3, 7: It is impossible to see the profiles properly due to the amount of information. Perhaps Larsen C data could be plotted in a different figure. See also comments in the manuscript for Fig. 2.

<u>Response:</u> As per the request of both Reviewers, we have updated the figures and have assigned individual colours to each of the stations (e.g., see Figures R1-3 above). This change should help the reader differentiate between the different stations. However, we would prefer not to include separate panels for the LCIS stations in all our figures as this will make them very large and potentially unwieldy (e.g., Figure 3 would have 12 panels). That said, if the Editor feels that the LCIS data should be presented separately, we are happy to include such figures in the Supplemental Information.

Figure 3 d-f: The x axis range could be reduced (in particular for Si data). This would allow to see differences in profiles for the locations.

<u>Response</u>: We will update the x-axis ranges for all panels in Figure 3 (as per Figure R2 above), following the Reviewer's suggestion.

Figure 11: It would be helpful (for comparison with the tables) to report the station names(L1...L10) in one of the panels. Further, it is not possible to distinguish the different symbols in the profiles in panel d.

<u>Response:</u> Figure 11 will be updated based on Reviewer 2's suggestion as follows:

Flynn et al. Summertime productivity and carbon export potential in the Weddell Sea, with a focus on the waters adjacent to Larsen C Ice Shelf

Figure R10 (Figure 11 in the main manuscript): Maps of (a) SST, (b) sea surface salinity, (c) surface oxygen concentrations, and (d) depth profiles of oxygen concentrations in the region of LCIS at the time of sampling. SST and salinity data were acquired from the underway (~7 m inflow) ferrybox, while the oxygen concentrations were measured via the oxygen sensor on the CTD profiler, calibrated against discrete seawater samples measured for dissolved oxygen by Winkler titration (Carpenter 1965; Grasshoff et al. 1983; Hutchinson et al. 2020). The symbols in panel (d) are coloured by potential density (σ_{θ}), with the circles indicating the non-upwelling stations and the triangles showing the upwelling stations. The grey shaded region in panel (d) indicates the range of mixed layer depths (MLD) derived for the LCIS stations at the time of sampling. The bathymetry data in panels (a-c) were taken from ETOPO1 (NOAA National Geophysical Data Center 2009).

Table 1 and 2: please specify in the header or legend that all ratios are molar ratios. Is itpossible to report % sea-ice cover as well as water depth in either of these tables?

<u>Response:</u> The headers of Table 1 and 2 will be updated to state that all ratios (except the f-ratio) are molar ratios. In addition, the water depth and % sea-ice cover at each station will be listed in Table 1.

Please also note the supplement to this comment: <u>https://bg.copernicus.org/preprints/bg-2021-122/bg-2021-122-RC2-supplement.pdf</u>

<u>Response:</u> Please see our response in the supplement (i.e., the amended pdf version of the manuscript), following on from the Reviewer's comments.