
Response to RC1 comments 

We thank the reviewer for their comments, and will respond to them herein.  

The paper presents an analysis of the impact of ozone versus meteorological drivers and soil 

moisture on European forest’s GPP. It claims to be the first study to evaluate this impact at the 

continental scale using satellite observations. I deem this claim to be not being supported by the 

presented approach. There is indeed use of some satellite data in the form of the LAI and forest 

cover data (and you can argue that the CAMS O3 data partly rely on the assimilation of remote 

sensing data). 

Please allow us to elaborate on why we believe that the claim is appropriate. All parameters in this 

work relevant to stomatal conductance and ozone exposure have either been entirely sourced from 

satellite datasets (e.g. phenology, forest cover) or from reanalysis datasets which heavily rely on 

assimilated satellite observations (e.g. O3, meteorology). To our knowledge, no prior work has entirely 

relied on satellite data in this way.  

In the case of the reanalysis datasets, validation studies against ground-based observations for ERA5 

(Hersbach et al, 2020) and CAMS (Inness et al, 2019; Huijnen et al, 2020) indicate that they offer 

superior accuracy compared to models which do not assimilate satellite data. As such, the regional-

scale analyses discussed in this work would have been impossible to perform using other observation-

based datasets. This discussion will be added to the final draft of the paper.  

But the crucial component of this study, GPP does not rely at all on the use of any source of satellite 

observations. The impact of O3 on GPP is calculated in the presented study as a model product using 

some empirical constants, stomatal conductance and the accumulated O3 concentrations. As such 

the presented analysis can mostly be interpreted as a validation step of the followed approach 

integrating the spatio-temporal information of many different datasets of relevant parameters. 

As with terrestrial FLUXNET measurements, satellite-based observations of GPP are of vegetation that 

have already been exposed to ambient O3 concentrations, so quantifying the GPP lost due to O3 

exposure is not possible without first estimating the what the vegetation GPP would be in the absence 

of any O3. Additionally, satellite GPP datasets are not direct observations, but are instead inferred 

from other measurements using models as well (e.g. MODIS MOD17; Running and Zhao, 2015). 

Therefore, analyses of such datasets would also need to determine and distinguish biases introduced 

by these models from genuine changes due to O3. 

Our method circumvents these issues by focusing only on the relative change in GPP expected based 

on variables known to affect the vegetative O3 flux, and using a stomatal conductance model that has 

already been well validated in the literature. We will add this justification to the final paper draft.    

The main shortcoming of this paper is that there is not specific evaluation step; optimally one would 

have applied remote sensing based vegetation indices/GPP estimates. One already missed 

opportunity for some first evaluation step of the followed approach would have been evaluation of 

the inferred stomatal conductances, e.g., comparing the Jarvis based latent heat flux with FLUXNET 

observations. 

We agree that an explicit evaluation step is missing from the current manuscript, and will now discuss 

herein such a comparison with FLUXNET observations we performed in response to these comments, 

which will be added to the final paper draft.  



We identified 11 FLUXNET sites (see Table 1) which were suitable for comparison with our data (i.e. 

situated in forests and recorded observations between 2003 – 2015, according to the FLUXNET2015 

dataset; Pastorello et al, 2015). These sites are shown in Table 1 and Figure 1. 

For this exercise, we compared our satellite-based stomatal conductances with the monthly averaged 

values estimated from FLUXNET latent heat measurements by Ducker et al (2018) as part of the 

SynFlux dataset. The FLUXNET relative humidity and precipitation measurements were used to 

perform the same filtering of the satellite-based stomatal conductance data as in Ducker et al (2018); 

only stomatal conductances reported during daylight hours, when the relative humidity was < 80%, 

and for days with < 5 mm precipitation were used to compute the monthly averages.  

The satellite-based stomatal conductances estimated using the Jarvis model are modelled per leaf unit 

area, so they must be scaled with an appropriate leaf area index (LAI) in order to compare these 

against the SynFlux values. To do this, we used the Global Monthly Mean Leaf Area Index Climatology 

derived from the GIMMS LAI3g product (Mao and Yan, 2019).  

Several statistics were calculated for each FLUXNET site to assess the accuracy of the satellite-based 

stomatal conductances against the SynFlux dataset. In addition to the monthly mean bias and 

coefficient of determination (R2), the satellite-SynFlux bias was quantified using the Modified 

Normalised Mean Bias (MNMB) and Fractional Gross Error (FGE): 
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Here, oi and si are the mean values for a given month i calculated from the satellite-based and SynFlux 

stomatal conductance, respectively, and N is the sample size. The MNMB and FGE statistics scale all 

biases in a symmetric range between -2 – 2, and 0 – 2, respectively. Both statistics also maintain a 

linear estimation of the bias, and so are less sensitive to extreme outliers compared to raw means or 

root mean squares. 

Table 1 and Figure 1 show the results of this comparison. As shown in Figure 1, the 11 available 

FLUXNET sites occupy a longitudinal band between 6° – 14° E, so it was not possible to validate 

stomatal conductances for forests outside of central Europe and Italy. Similarly, none of the sites were 

located in Mediterranean deciduous forests, so no validation was possible for this vegetation type. 

It is clear that with the exception of DK-Sor (the only deciduous forest site), there are significant 

differences between the SynFlux and satellite-based stomatal conductance values for all FLUXNET 

sites. The stomatal conductance biases shown in Table 1 may be a result of the ERA5 data used in the 

Jarvis model.  

To investigate this further the air temperature, VPD, shortwave radiation flux, and soil water content 

observed at each FLUXNET site during the same time period were compared with the corresponding 

value reported by ERA5. Table 2 shows the MNMB, FGE, and R2 calculated from the monthly mean 

values. While temperature, VPD, and shortwave flux show good agreement with the in-situ data over 

all sites, the ERA5 soil water content correlates very poorly with the FLUXNET measurements.  



Though soil water content is not used to explicitly calculate the SynFlux stomatal conductance, it is 

nevertheless a vital parameter regulating stomatal conductance (Anav et al, 2018). It is likely that this 

disagreement is the reason for the observed stomatal conductance biases, so any future work will 

need to test other satellite-based root-zone soil moisture products (e.g. H-SAF, 2020) to determine if 

they are more suitable than ERA5 for estimating stomatal conductance.  

Pp 1, lines 16-18: A bit confusing the first number in these lines (i.e., 30%) refers to the net uptake 

of CO2 by vegetation (NEE, not GPP), and the carbon fluxes that are quoted after that are in fact 

GPP. 

We agree that the first sentence is potentially confusing, and will remove the citation for NEE in the 

final draft of this paper. 

Pp 3, line 55 “Similarly, eddy covariance towers, such as those that make up the global FLUXNET 

dataset (Pastorello et al., 2020) can also be employed to investigate the effect of O3 exposure on 

GPP”. Here you could add the reference(s) to the work by Ducker et al., Biogeosciences, 15, 5395–

5413, 2018, https://doi.org/10.5194/bg-15-5395-2018 

The SynFlux O3 deposition dataset was previously referred to in the FLUXNET comparison exercise 

discussed above, and will be added to the final draft.  

Line 64: "soil hydrology" which soil hydrological variable? This is not specific. 

This was meant to reference the satellite datasets for soil moisture, namely the volumetric soil water 

content provided by ESA-CCI. We will change this line in the final draft.  

Pp 3, line 73: “near-surface O3 concentration and meteorology governing GPP”, using this statement 

expresses that you deem that GPP is controlled by meteorological drivers and O3 (concentrations). 

But what are the parameters all known to effect GPP; I missing here in the introduction a mentioning 

of other parameters that might be important and that might not be easily inferred from remote 

sensing data, e.g. N deposition. 

The reviewer is correct to point out that meteorology and O3 are not the only parameters known to 

affect GPP, and we will certainly add a discussion on these parameters in the final draft. However, in 

many existing vegetation models (e.g. Lombardozzi et al, 2015) the reduction in photosynthetic rate 

(and so GPP) due to O3 exposure is solely dependent on the cumulative O3 uptake, which in turn is a 

function of O3 concentration and stomatal conductance. Therefore, focusing on only O3 and 

meteorological parameters was justified for this work. We will add this point to the final paper draft. 

Pp 4, line 84, “Excluding soil moisture and meteorology”, I don’t get this statement; You refer to 
the method of regridding. Do you mean here that for all other parameters than soil moisture and 
meteorology you have applied this regridding procedure. But then mentioning here the term soil 
moisture, it would be good to already indicate in the introduction how this parameter can play a 
(crucial) role in inferring the O3 impact on GPP. 

The sentence was meant to state that all datasets were regridded to the ERA5 spatial grid (i.e. the 
source of the meteorological and soil moisture data). We will make this clearer and add information 
to the final draft introduction section about the influence of soil moisture on stomatal conductance 
and the subsequent impact on the vegetation O3 flux. 

Pp 4, lines 113-115; Reading the statements about to what extent the CAMS O3 can be applied for 
assessing its impact on GPP, just giving the overall statistics expressed by this r value of 0.7 (r2 < 0.5, 
is actually not such a high-correlation) triggers the question if this applies for summer 



mean/monthly/diurnal mean/max, or full timeseries? This is of large relevance since what matters 
most for this impact assessment is how well CAMS captures the high O3 (extremes) during the days 
when stomatal uptake is maximum. In addition, you state: "However, over Southern Europe the 
CAMS reanalysis was found to consistently overestimate surface O3 concentrations by ∼15%.". 
Other terms in Eq. 6 (e.g., the alpha-term) can have considerable uncertainty. This uncertainty 
should be propagated in the GPP reduction estimate, especially considering that your model only 
requires "a fraction of the computational cost otherwise required by land surface models" (Lines 
317-318). 

The r > 0.7 for most stations reported by Bennouna et al (2020) was calculated for averaged monthly 

data between April-September. It should be noted that since the original submission of this paper, 

Wagner et al (2021) published a more detailed comparison of CAMS and in-situ O3. They found that 

while CAMS reproduces tropospheric O3 within 10% of independent observations, a seasonal mean 

variability in biases exist over Northern midlatitudes, peaking at 15% in October.  

Over Northern Europe, and to a lesser extent Southern Europe, it was found that the CAMS 

overestimation of surface O3 was greater during nighttime than daytime hours (roughly twice as large 

than daytime biases). They propose that this indicates that nocturnal O3 destruction processes in the 

boundary layer (e.g. NOx titration) are not being correctly included in the global model, which is known 

to have difficulties resolving subgrid processes. We will add this reference and explanation in the final 

paper draft. 

Regarding error analyses, the above FLUXNET comparisons show that the stomatal conductances 
estimated in this work are subject to significant potential inaccuracies in the ERA5 soil water content. 
These would need to be rectified in future work before a reliable uncertainty analysis can be 
performed; we will add in the discussion section how such estimates could be quantified. 

Pp 4, lines 126: this motivation of only using the soil moisture of the top layers excluding the 
information on soil moisture > 1m indicates that you assume that the forests stomatal conductance 
is mainly controlled by the soil moisture in the top 1m. This might actually depend a lot on the 
effective rooting depth. I bring this up having seen soil moisture observations in the top soil profiles 
that seemed to provide a nice source of information to indeed infer the impact of soil water on 
stomatal conductance but where, then evaluating the observed latent heat fluxes, did not reflect at 
all observed strong decreases in those soil moisture measurements. 

The decision to only use ERA5 soil water content from depths < 1 m was because the in-situ data used 
by Li et al (2020) to validate this dataset did not extend beyond this depth (see L126). It is also clear 
from the FLUXNET comparison exercise that the ERA5 soil moisture dataset may not be adequate for 
this work, and may need replacing with another soil moisture dataset like H-SAF (2020). However, 
according to Yang et al (2016), the effective rooting depth of vegetation over much of Europe is < 1 m, 
so we contend that using soil water content data from lower depths may not be necessary for this 
work. We will add these points to the final draft.  

Pp 9: lines 175-180; At the end of the methods having seen the overview of all the datasets being 
used, it makes me wonder about any evaluation strategy that you have developed to at least assess 
that some of the critical parameters in your inversion of the O3 impact make sense; e.g., did you 
conduct any evaluation of the Jarvis stomatal conductance based on comparison of the simulated 
and observed LE? This is a parameter that could have been rather easily evaluated using the 
FLUXNET datasets.   

We have addressed this problem by comparing the Jarvis stomatal conductance with those estimated 
from FLUXNET LE measurements in the SynFlux (Ducker et al, 2018), as discussed above. 



And why using the AOT40 where in the previous paragraphs you have referred to the use of Jarvis 
in the DoseO3 model to evaluate the stomatal dose of O3? This has to be all better motivated and 
including the potential implications. 

We use the same model to infer GPP reduction as in Proietti et al (2016) and Anav et al (2011). The 
choice of using AOT40 was made in order for the units in Equation 6 to cancel out in order to achieve 
a dimensionless scale factor that can be interpreted as the proportion of GPP lost due to O3 exposure. 
The product 𝑔𝑠𝑡𝑜 × AOT40 in this equation is analogous to the stomatal O3 dose. We will add this 
discussion to the final paper draft. 

Figs. 4 and 5: These figures are derived from monthly O3-induced GPP estimates. It would be 
interesting to show the actual monthly data over the growing season (i.e. a time series), this would 
provide more insight in the dynamics. The boxplot in Fig. 4 is in fact a bit misleading, as this is 
typically used to show represent errors/uncertainties, but a proper error propagation is lacking 

We will add a regional time series plot in the final draft of this paper. As we discussed in above, a 
proper error propagation of the estimated GPP reductions cannot be performed until the issue with 
the soil water content data is resolved. 



 
FLUXNET site Vegetation type N 

Mean gsto 
(satellite, cm s-1) 

Mean gsto 
(SynFlux, cm s-1) 

Mean gsto bias 
(cm s-1) 

MNMB FGE R2 

1 CH-Dav Boreal coniferous 56 0.461 0.329 0.132 (40.1%) 0.206 0.576 0.007 

2 DE-Lkb Continental coniferous 25 0.621 0.384 0.238 (61.9%) 0.469 0.469 0.297 

3 DE-Obe Continental coniferous 42 0.373 0.381 -0.008 (-2.08%) -0.072 0.290 0.073 

4 DE-SfN Continental coniferous 13 0.650 0.296 0.354 (119%) 0.745 0.745 0.306 

5 DE-Tha Continental coniferous 36 0.373 0.256 0.117 (45.6%) 0.311 0.373 0.372 

6 DK-Sor Continental deciduous 31 0.508 0.500 0.008 (1.54%) -0.027 0.196 0.656 

7 IT-Cp2 Mediterranean coniferous 15 0.011 0.234 -0.223 (-95.5%) -1.814 1.814 0.000 

8 IT-Cpz Mediterranean coniferous 12 0.189 0.222 -0.032 (-14.5%) -0.350 0.634 0.108 

9 IT-Lav Boreal coniferous 64 0.572 0.369 0.203 (55.0%) 0.367 0.460 0.286 

10 IT-Ren Boreal coniferous 58 0.162 0.402 -0.240 (-59.7%) -0.904 0.921 0.022 

11 NL-Loo Continental coniferous 65 0.267 0.366 -0.099 (-27.1%) -0.359 0.396 0.394 

Table 1: The results of the comparison between FLUXNET SynFlux monthly mean stomatal conductances (gsto) and the satellite-based values, for FLUXNET 

forest sites (see Figure 1). The vegetation type is based on an assessment of the site metadata recorded in the FLUXNET2015 dataset (Pastorello et al, 

2020) and the EEA biogeographical region map (EEA, 2016). 

 

 

 

 

 

 

 

 



 FLUXNET 
site 

Temperature VPD Shortwave radiation flux Soil water content 

MNMB FGE R2 MNMB FGE R2 MNMB FGE R2 MNMB FGE R2 

1 CH-Dav -0.483 0.514 0.888 -0.293 0.295 0.825 0.035 0.069 0.772 0.431 0.431 0.027 

2 DE-Lkb 0.247 0.247 0.937 0.225 0.225 0.741 0.015 0.048 0.894 0.066 0.093 0.537 

3 DE-Obe 0.121 0.128 0.950 0.112 0.176 0.774 0.042 0.081 0.965 0.240 0.253 0.096 

4 DE-SfN -0.050 0.066 0.977 -0.194 0.210 0.929 -0.045 0.067 0.866 N/A N/A N/A 

5 DE-Tha 0.016 0.025 0.984 -0.073 0.113 0.752 -0.011 0.040 0.952 0.512 0.514 0.349 

6 DK-Sor 0.056 0.059 0.977 -0.019 0.057 0.849 0.039 0.051 0.862 0.194 0.200 0.163 

7 IT-Cp2 -0.057 0.057 0.978 -0.305 0.305 0.766 0.040 0.043 0.947 -1.584 1.584 0.103 

8 IT-Cpz -0.047 0.053 0.967 -0.196 0.207 0.586 0.012 0.040 0.934 0.360 0.360 0.087 

9 IT-Lav 0.185 0.185 0.972 0.247 0.247 0.798 -0.146 0.147 0.914 -0.229 0.246 0.263 

10 IT-Ren 0.263 0.263 0.966 0.418 0.418 0.689 -0.059 0.078 0.767 -0.642 0.660 0.015 

11 NL-Loo 0.013 0.016 0.995 -0.018 0.070 0.883 -0.024 0.052 0.854 0.990 0.990 0.260 

Table 2: The results of the comparison between the FLUXNET2015 monthly means of variables related to stomatal conductance, and the values taken from 

ERA5, for FLUXNET forest sites (see Figure 1). No soil water content data was available from DE-SfN. 

 



 

 

Figure 1: The results of the comparison between FLUXNET SynFlux monthly mean stomatal conductances (gsto) and the satellite-based values, for FLUXNET 

forest sites (see Table 1). The locations of the DE-Obe and IT-Cpz stations were shifted to improve readability. (top left) Mean monthly gsto reported by 

SynFlux between April – September, 2003 – 2015. Also shown are the MNMB (top right), FGE (bottom left), and R2 (bottom right) inferred from the satellite-

SynFlux comparisons. 
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