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Abstract.

Tropospheric O3 damages leaves and directly inhibits photosynthesis, posing a threat to terrestrial carbon sinks. Previous

investigations have mostly relied on sparse in-situ data or simulations using land surface models. This work is the first to use

satellite data to quantify the effect of O3 exposure on gross primary productivity (GPP). O3-induced GPP reductions were

estimated to vary between 0.36-9.55% across European forests along a North-South transect between 2003-2015, in line with5

prior estimates. No significant temporal trend could be determined over most of Europe, while Random Forest analysis (RFA)

shows that soil moisture is a significant variable governing GPP reductions over the Mediterranean. Comparisons between this

work and GPP reductions simulated by the Yale Interactive Biosphere (YIBs) model suggest that satellite-based estimates over

the Mediterranean region may be biased by +12%, potentially because of differences in modelling stomatal sensitivity to soil

moisture and prior O3 exposure. This work has demonstrated for the first time that satellite-based datasets can be leveraged to10

assess the impact of O3 on the terrestrial carbon sink, which are comparable with in-situ or model-based analyses.

1 Introduction

Terrestrial ecosystems serve an important role in regulating atmospheric carbon dioxide (CO2) concentrations, because they

absorb and sequester CO2 via photosynthesis (Gross Primary Productivity, GPP). Because of this, vegetation uptake of CO215

is regarded as a major sink of anthropogenic carbon emissions, having removed about 30% of cumulative global emissions
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between 1850-2018 (Friedlingstein et al., 2019). In particular, the size of the carbon uptake by vegetation in Europe has been

estimated to be 3.9-5.8 PgC yr−1 by Beer et al. (2007), while Wißkirchen et al. (2013) estimated it to be 2.5 PgC yr−1.

The conservation and enhancement of terrestrial ecosystems over the next century forms an essential component in mitigation

strategies to avoid dangerous climate change (Rogelj et al., 2018); two-thirds of signatories to the Paris Climate Agreement20

have indicated that they will use the terrestrial sink to meet their cumulative emission reduction targets (Grassi et al., 2017).

However, existing models of mitigation pathways do not take into account indirect feedbacks in the carbon sink caused by

pollution-induced vegetation damage (Rogelj et al., 2018).

A significant factor affecting terrestrial ecosystem GPP in recent decades is the effect of tropospheric ozone (O3) on vege-

tation. In the troposphere O3 is produced through complex chemical reactions involving anthropogenic emissions of precursor25

species (Myhre et al., 2013), such as nitrogen oxides (NOx), volatile organic compounds (VOCs), and methane (CH4).

As a powerful oxidant, O3 damages leaf cells and inhibits photosynthesis when absorbed by plants through the stomata,

accelerating leaf senescence (Wittig et al., 2009; Ainsworth et al., 2012). Additionally, stomata damaged by O3 exposure are

less capable of opening and closing in response to heat stress, causing dehydration and further injury (i.e. stomatal sluggishness,

see: Wilkinson and Davies, 2009; Hoshika et al., 2015). As a result, prolonged O3 exposure will cause a decline in GPP and30

so reduce the total carbon sequestered.

The magnitude of damage caused by O3 exposure to forests is dependent on genotype and micro-climate (Matyssek et al.,

2010), which complicates efforts to quantify O3-induced GPP reductions and their consequent impact on the terrestrial carbon

sink.

Prior investigations have either analysed long-term observations of carbon and O3 fluxes from eddy covariance towers (e.g.35

Fares et al., 2013; Yue et al., 2016; Verryckt et al., 2017), or simulations run using land surface models (e.g. Sitch et al., 2007;

Yue and Unger, 2014; Oliver et al., 2018). While most studies agree that O3 exposure results in significant reductions in GPP,

the estimated magnitude varies with measurement location or assumptions used in the models. For instance, Oliver et al. (2018)

concluded that O3-induced GPP reductions over Europe ranged between 2%-8% for boreal regions and between 10%-20% for

temperate regions. However, Verryckt et al. (2017) found that no statistically significant effect could be determined for a single40

Belgian pine forest.

The effect of O3 on the terrestrial carbon sink over the next century and the resulting effect on climate mitigation strate-

gies has been the focus of much speculation. While emission control policies have been successful in reducing O3 precursor

concentrations in Europe over the last decade (EEA, 2020), this does not necessarily result in lower O3 concentrations, as O3

formation also depends on chemical regimes (Beekmann and Vautard, 2010). Thus, while O3 concentrations since the year45

2000 have decreased to an extent following these emission reductions (Proietti et al., 2020), it is unlikely that these moderate

reductions in anthropogenic precursor emissions will adequately decrease future vegetation exposure to O3 (Fuhrer et al., 2016;

Sicard et al., 2017).

The effect of O3 exposure on vegetation is species- and context-specific, and significant uncertainties remain. Long-term

monitoring of vegetation responses to different O3 concentrations and climate conditions are necessary to better constrain50

these estimates (Paoletti et al., 2019; Ainsworth et al., 2020).
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Both measurement and simulation studies currently rely on limited datasets of vegetation response to O3 exposure. In Europe,

forest O3 exposure and its effect on defoliation and leaf injury are measured at several permanent monitoring sites as part of

the MOnitoring ozone injury for seTTing new critical LEvelS (MOTTLES; Paoletti et al., 2019) network. However, these sites

exist only in central and Mediterranean Europe, and have only been in operation since 2016. Similarly, eddy covariance towers,55

such as those that make up the global FLUXNET dataset (Pastorello et al., 2020) can also be employed to investigate the effect

of O3 exposure on GPP, but these also have sparse spatial sampling. While land surface models can be used to provide more

expansive estimates of O3-induced GPP reductions, these are calibrated using data from fumigation or field studies which may

not be fully representative of regional ambient conditions.

In recent years satellite observations of atmospheric and terrestrial properties have become increasingly useful to our under-60

standing of the global climate system, offering reliable coverage of remote regions not typically covered by in-situ stations.

Because of the daily overpass time and high spatial resolution of many satellite instruments, reliable long-term satellite datasets

now exist for essential climate variables (ECVs) relative to this field, such as tropospheric O3 (e.g. Ziemke et al., 2019), land

cover (e.g. Bontemps et al., 2013), and soil hydrology (e.g. Dorigo et al., 2017).

Such datasets have previously been assimilated into land surface models to improve their predictions (e.g. Orth et al., 2017).65

Some prior investigations into O3-induced vegetation damage have also made use of satellite data. For instance, Fishman et al.

(2010) used satellite-derived tropospheric O3 column data as part of a regression model to estimate the annual soybean crop

yield lost over the Midwest of the USA caused by O3 exposure. Similarly, Proietti et al. (2016) combined GPP data from

the Moderate resolution Imaging Spectroradiometer (MODIS; Zhao et al., 2005) with in-situ O3 measurements in order to

estimate the O3-induced GPP reduction over specific European sites.70

However, these investigations have still relied on sparse in-situ measurements to provide necessary information, such as O3

concentration and soil moisture. This work aims to provide the first estimates of European O3-induced GPP reductions where

satellite-based datasets are used to inform near-surface O3 concentration and meteorology governing GPP. Such estimates

would be useful to provide independent verification to land surface models that previously would have been limited by large-

scale measurement coverage.75

2 Datasets and Methods

2.1 Study area and time period

For this work, O3-induced GPP reduction estimates are calculated for European forests (latitude: 36◦-60◦N, longitude: 10◦W-

35◦E). Only forested regions (deciduous or coniferous) were analysed in order to simplify calculations. GPP reduction es-

timates were calculated for 2003-2015, which was the overlapping time period available for all satellite datasets discussed80

herein. Additionally, only warmer months (April-September) were analysed for each year, as this time period is thought to

encompass all possible growing season durations across Europe (Mills et al., 2017).
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2.2 Datasets

Excluding soil moisture and meteorology, the datasets used in this work were regridded from their native resolutions to the

spatial grid used by the ERA5 reanalysis dataset (see Section 2.2.2), using a conservative regridding algorithm provided by the85

xESMF software library developed by Zhuang et al. (2020).

2.2.1 O3

Satellite observations of tropospheric O3 are often either vertical profiles retrieved from nadir observations of ultraviolet (UV)

radiation (e.g. Miles et al., 2015), or integrated tropospheric columns derived by first estimating and then removing the

stratospheric component. The stratospheric component can be derived either through differencing total O3 columns retrieved90

in cloudy and cloud-free pixels (Heue et al., 2016), partitioning of the O3 profile after estimating the tropopause height (e.g.

Miles et al., 2015), or from co-located measurements by limb-observing instruments (e.g. Ziemke et al., 2006).

However, inferring near-surface O3 concentrations from these satellite datasets for this work is nontrivial. O3 profiles re-

trieved from UV measurements have peak sensitivity in the lower troposphere (i.e. below 6 km altitude), and so are not very

representative of near-surface O3 concentrations (Cuesta et al., 2018). Due to their small instantaneous field of view and low95

Earth orbit, a single satellite instrument is also only capable of providing at best daily observations, while cloudy scenes during

overpasses often means that monthly averaging is required to provide a complete spatial dataset.

To remedy both issues, this work uses data from the Copernicus Atmospheric Monitoring Service (CAMS) reanalysis dataset

(Inness et al., 2019) operated by the European Centre for Medium-Range Weather Forecasts (ECMWF). The CAMS expands

upon the Integrated Forecast System (IFS) used to generate the ERA5 reanalysis (see Section 2.2.2), by assimilating obser-100

vations of O3 from a number of instruments. For instance, total columns from nadir-viewing instruments such as the Ozone

Monitoring Instrument (OMI; Levelt et al., 2006) and the Global Ozone Monitoring Experiment-2 (GOME-2; Munro et al.,

2006) provided by the ESA OZONE-CCI dataset (Garane et al., 2018) are assimilated, while stratospheric vertical profiles

are also assimilated from limb-viewing instruments such as the Michelson Interferometer for Passive Atmospheric Sounding

(MIPAS; Fischer et al., 2008) and the Microwave Limb Sounder (MLS; Waters et al., 2006).105

Additionally, the CAMS reanalysis also assimilates satellite column observations of several O3 precursor species: tropo-

spheric nitrogen dioxide (NO2), carbon monoxide (CO), and aerosol optical depth (AOD). As well as providing additional

information on tropospheric chemistry, these datasets are also more sensitive to the lower troposphere, and so act to improve

the accuracy of the assimilated near-surface O3 concentrations. The CAMS reanalysis is provided as a 3-hourly dataset with a

0.75◦× 0.75◦ spatial resolution.110

The CAMS reanalysis O3 concentrations over Europe have been validated against surface O3 measurements made by in-

situ stations from the AirBase and European Monitoring and Evaluation Programme (EMEP) monitoring networks (Bennouna

et al., 2020). Most stations reported good agreement with the CAMS reanalysis during summer months (r > 0.7). However,

over Southern Europe the CAMS reanalysis was found to consistently overestimate surface O3 concentrations by ∼ 15%.

Figure 1 shows the mean surface O3 concentration reported by CAMS for the entire study period.115
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Figure 1. Mean surface O3 concentration reported over Europe by the CAMS reanalysis (Inness et al., 2019) between April - September,

2003 - 2015.

2.2.2 Meteorology and soil moisture

Computation of the stomatal conductance (see Section 2.3) requires knowledge of the surface air temperature (T , ◦C), vapour

pressure deficit (V PD, kPa), soil water content (SWC, m3m−3), and the photosynthetic photon flux density (also known as

photosynthetically active radiation, or PAR, µmolm−2s−1). These variables were all sourced from the ECMWF ERA5 global

reanalysis dataset (Hersbach et al., 2020), because of its high spatiotemporal resolution and consistency. ERA5 is produced120

through 4D-Var assimilation of both in-situ and satellite data to produce a consistent long-term climate dataset. ERA5 is

available as an hourly dataset, with a spatial resolution of 0.25◦× 0.25◦.

For this work, the ERA5 2-metre-above-surface temperature was used for T , while the V PD was calculated from this and

the 2-metre-above-surface dew point temperature. The PAR was calculated from the ERA5 downward solar surface radiation.

ERA5 provides the SWC for four layers of a soil column spanning a depth of 0.0-2.89 m. Comparisons with in-situ mea-125

surements suggest very good accuracy (Li et al., 2020), but these measurements do not cover depths below 1.0 m. Therefore,

only the top three layers were used for this work (i.e. 0.0-1.0 m).

Information about the soil water content at field capacity (FC) and wilting point (WP ) for these layers was not available, so

these variables were instead sourced from the European Soil Data Centre (ESDAC) 3D Soil Hydraulic Database (v1.0; Tóth

et al., 2017), which was binned to the ERA5 vertical grid.130

2.2.3 Land cover

Calculation of stomatal conductance also requires parameters which vary with vegetation type and climate zone. The param-

eters used in this work are taken from Mills et al. (2017) (see Table 1). Here, forests are classified as either deciduous or

5
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Figure 2. Forest type map for 2010 generated from aggregated ESA-CCI land cover (ESA-CCI, 2017) and EEA biogeographical region data

(EEA, 2016).

coniferous, and parameters are defined for three biogeographical categories: Boreal (defined here as any mountainous area),

Mediterranean, and Continental. These regions are defined according to the European Environment Agency (EEA) biogeo-135

graphical regions dataset (EEA, 2016).

Forested regions were identified using annual land cover maps provided by the European Space Agency Climate Change

Initiative dataset (ESA-CCI, v 2.0.7; ESA-CCI, 2017), which is a high resolution (300 m) dataset derived from hyperspectral

satellite observations. This dataset was aggregated to the ERA5 0.25◦× 0.25◦ grid using majority resampling. It should be

noted that regions with fragmented forest cover were classified as grassland or cropland, and so were not analysed in this work.140

The EEA and ESA-CCI datasets were combined to generate a regional forest type map which was used to determine which

parameters to use in the computation of the stomatal conductance. As an example, Figure 2 shows a forest type map for 2010.

2.2.4 Phenology

The timings of the start and end of the growing season were calculated from satellite observations of leaf area index (LAI)

from the Global Inventory Modeling and Mapping Studies (GIMMS) LAI3g product (v4, Zhu et al., 2013). This dataset has145

a 15-day temporal resolution and a 0.083◦ spatial resolution. Estimation of the day of the start and end of the growing season

for a given year was performed using the “Four Growing Season Types” (4GST) method discussed in Peano et al. (2019).

2.3 Calculation of O3 stomatal conductance

The hourly stomatal conductance to O3 (gsto, mmol O3m−2s−1) was calculated from the ERA5 data discussed in Section 2.2.2

using the Jarvis multiplicative model (Jarvis et al., 1976), which is also used in the DO3SE O3 dry deposition model (Büker150

et al., 2015) to estimate the risk of O3-induced vegetation damage for European species. In this model, gsto is calculated using
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a species-specific function, wherein the maximum possible stomatal conductance, gmax, is reduced through multiplication by

limiting functions, which are scaled between 0-1 based on variables affecting photosynthesis:

gsto = gmax · fphen · flight ·max(fmin,fT · fV PD · fSWC) (1)

where the f terms represent the modification to gmax due to phenology (fphen), PAR (flight), surface air temperature (fT ),155

VPD (fV PD), and SWC (fSWC). The fmin term represents the minimum gsto that occurs during daylight hours, expressed as

a fraction of gmax.

For this work it was asssumed that fphen was 1 throughout the growing season, and otherwise 0. The functions flight, fT ,

and fV PD were calculated using the following formulae, taken from Mills et al. (2017):

flight = 1− exp(−lighta ·PAR) (2)160

fT = max


fmin,

(
T −Tmin

Topt−Tmin

)
·
(

Tmax−T
Tmax−Topt

)Tmax−Topt
Topt−Tmin


 (3)

fV PD = min
[
1,max

{
fmin, .

(1− fmin) · (V PDmin−V PD)
V PDmin−V PDmax

+ fmin

}]
(4)

Values for the parameters fmin, lighta, Topt, Tmin, Tmax, V PDmin, and V PDmax are species-specific and were taken

from Mills et al. (2017) (see Table 1). fSWC was calculated using the improved function described in Anav et al. (2018):

fSWC = min
[
1,max

{
fmin,

SWC −WP

FC −WP

}]
(5)165

Plants are known to adsorb water from soil depths with the highest water availability (Anav et al., 2018). Therefore, the

mean SWC over the top three ERA5 soil layers at a given time was used to compute fSWC , along with the mean FC and

WP for these layers.

Figure 3 shows the mean hourly gsto calculated for July 2010 as an example of this computation. During the summer

months, both coniferous and deciduous forest gsto appears to be strongly modulated by spatial variations in temperature and170

soil moisture.
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Table 1. The species-specific parameters from Mills et al. (2017) used in Equations 1-5 to compute the stomatal conductance to O3 (gsto).

The Tmax value for Boreal trees is set to 200◦C in order to simulate the weak temperature response of trees growing in Northern European

conditions.

Region
Units

Boreal Continental Mediterranean

Forest type Deciduous Coniferous Deciduous Coniferous Deciduous Evergreen

gmax mmol O3m−2s−1 240 125 155 130 265 195

fmin fraction 0.1 0.1 0.13 0.16 0.13 0.02

lighta - 0.0042 0.006 0.006 0.01 0.006 0.012

Tmin
◦C 5 0 5 0 1 0

Topt
◦C 20 20 16 14 22 23

Tmax
◦C 200 200 33 35 35 39

V PDmin kPa 0.5 0.8 1.0 0.5 1.1 2.2

V PDmax kPa 2.7 2.8 3.1 3.0 3.1 4.0

Figure 3. Mean hourly stomatal conductance to O3 (gsto) calculated using ERA5 data and parameters listed in Table 1 for July 2010. Left:

The mean f terms calculated using Equations 2-5, Right: gsto calculated using Equation 1.

2.4 Estimation of GPP reduction due to O3

The GPP reduction due to O3 exposure is estimated from gsto and CAMS O3 concentrations using the method established

previously in Anav et al. (2011) and Proietti et al. (2016). The instantaneous GPP reduction due to O3 exposure (IO3 ) can be

expressed as a dimensionless fraction of the GPP without O3 damage using the following relation:175

IO3 = α · gsto ·AOT40 (6)
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Figure 4. Box and whisker plot of the monthly mean estimated O3-induced GPP reduction over each European climatic region defined in

(Christensen and Christensen, 2007). The box indicates the value of the median and interquartile range (IQR) between the 25th (Q1) and

75th (Q2) percentiles, while the whiskers show the range from Q1-1.5*IQR to Q3+1.5*IQR. Outliers are indicated with dots.

where AOT40 is the hourly Accumulated O3 exposure Over a Threshold of 40 ppb (ppb h), and α is an empirically derived

O3 response coefficient (mm−1ppb−1). If gsto is converted to the units mm hr−1 (See Mills et al. (2017)), then IO3 becomes

dimensionless. For coniferous forests αwas set to 0.7×10−6 (Reich, 1987), while for deciduous forests anα value of 2.6×10−6

was used (Ollinger et al., 1997).180

3 Results

3.1 O3-induced GPP reductions over Europe

The maximum, minimum, and mean monthly O3-reduction calculated using Equation 6 for the entire analysis period is shown

in Figure 5, while Figure 4 shows the temporal range of the spatial mean for each European climatic region defined in Chris-

tensen and Christensen (2007).185

Figure 5 shows that across Europe the mean GPP reduction ranged from 0.1%-25%. From Figures 5 and 4 it is also clear

that estimated GPP reductions exhibit high temporal variability; over Italy the estimated GPP reductions exceed 50% for some

months, while over Northeastern Europe the estimated reduction is almost 0% for other months.

O3 concentrations and gsto over the Mediterranean are higher than in Northern Europe, which results in the negative latitudi-

nal gradient between Southern and Northern European GPP reductions. Coniferous forests exhibit much lower GPP reductions190

than deciduous forests over all regions, as they are more resistant to O3 exposure.
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Figure 5. The minimum, maximum, and mean monthly O3-induced GPP reduction (IO3 ) between April-September, 2003-2015, calculated

from satellite data for European forests using Equation 6.

Figure 6. The annual trends in the empirically estimated O3-induced GPP reductions between 2003-2015. Statistically significant (p < 0.05)

trends are indicated with green dots.

3.2 Trend analysis

Temporal variability in the estimated GPP reductions was analysed by computing the trend in the annual mean reductions for

each grid cell using linear regression. The calculated trends are shown in Figure 6.

While most regions do not exhibit a statistically significant trend, over Scandinavia and Eastern Europe there are statistically195

significant (p < 0.05) trends of approximately +0.5% yr−1, while over Greece and the Balkans the GPP reductions appear to

decline by approximately -0.5% yr−1.

Over Italy, the GPP reductions appear to be increasing by up to +1.0% yr−1 over most regions excluding Calabria (lat:

39.00◦, lon: 16.45◦), over which the GPP reductions appear to be decreasing by a similar rate. However, these trends are

statistically insignificant for almost all grid cells in this region.200
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Figure 7. The most important variable affecting O3-induced GPP reductions estimated in Figure 5, determined using Random Forest anal-

ysis (RFA); T: Temperature, SWC: Soil water content, PAR: Photosynthetically active radiation, VPD: Vapour pressure deficit, [O3]: O3

concentration.

3.3 Random Forest analysis

Determining the cause of the spatiotemporal variability in the GPP reductions calculated using Equation 6 is non-trivial, as

trends in both O3 concentration and the climatic variables which contribute to gsto (VPD, temperature, SWC, and PAR) must

all be considered.

Following Proietti et al. (2016), the estimated GPP reductions were regressed against the O3 concentration and the ERA5205

climatic variables using Random Forest analysis (RFA; Breiman, 2001). This is a machine learning technique, in which an

ensemble of decision trees are grown in a randomly selected subspaces of a given dataset. RFA has previously been found to

be robust and capable of accounting for correlation and interaction effects among variables, and so has previously been used to

disentangle the effects of O3 and climatic factors on vegetation (Proietti et al., 2016; Sicard and Dalstein-Richier, 2015). The

normalised Gini importance from the fit was then used to identify the most important variable.210

Figure 7 shows the most important variable driving the estimated GPP reduction for each grid cell. For most of the Mediter-

ranean region, soil water content appears to be the most significant variable limiting GPP reductions, while O3 concentration

appears to be the most significant variable for most of central Europe. PAR also appears to be the most significant variable over

Northeastern Europe, while temperature and VPD appear to be the most significant variable over high terrain such as the Alps

and Carpathian mountains.215
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3.4 Comparison with Yale Interactive Biosphere (YIBs) model simulations

Validation of these estimates was performed through direct comparison with O3-induced GPP reductions between 2003-2011

simulated by the Yale Interactive Biosphere model (YIBs; Yue and Unger, 2015). These estimates were previously simulated

as part of the Yue and Unger (2018) study investigating the effect of fire emissions on global GPP, though this particular dataset

does not include fire-induced emissions.220

In this dataset GPP over European forests was simulated with and without O3 exposure, while O3-induced GPP reductions

were calculated using low and high vegetation sensitivity scenarios defined in Sitch et al. (2007). O3-induced GPP reductions

can therefore be expressed as a percentage of the O3-free GPP. For this comparison, the satellite-based estimates were regridded

to the 1◦× 1◦ spatial grid used by YIBs, and only grid cells where both YIBs and the satellite data agreed were forested were

compared.225

Figure 8 shows that the satellite-based estimates agree better with the low O3 sensitivity simulations, as shown by the lower

overall magnitude of the bias. However, the satellite-based GPP reductions are ∼ 12% (absolute value) greater than YIBs over

the Mediterranean.

This bias is spatially and temporally consistent over the entire analysis period, suggesting a fundamental difference between

the assumptions used in either method. This difference could be caused by differences in the definition of soil water stress to230

vegetation, which is likely better accounted for in a process-based model like YIBs, instead of the simpler Jarvis multiplicative

algorithm used in this work.

4 Discussion and Conclusions

Maintenance and restoration of terrestrial ecosystems are vital to climate change mitigation, but current strategies do not take

into account the indirect effects of pollution on vegetation. Exposure to anthropogenic O3 is a particular concern, as it is known235

to damage vegetation and so directly inhibit photosynthesis. This effect in turn may jeopardise attempts to mitigate dangerous

climate change by further degrading terrestrial carbon sinks.

Prior attempts to quantify this effect have relied on sparse in-situ measurements or land surface models. Satellite observations

offer long-term synoptic coverage of atmospheric composition, meteorology, and vegetation properties. This work is the first

attempt to estimate the effect of O3 on the European carbon sink using primarily satellite data.240

In this work O3-induced GPP reductions were estimated using the linear empirical method previously defined in Anav et al.

(2011) and Proietti et al. (2016). Stomatal conductance (gsto) was estimated for European forests using ERA5 reanalysis data,

and then combined with CAMS reanalysis O3 concentrations and literature response functions to estimate the relative reduction

in photosynthesis.

As shown in Figure 5, there is a clear latitudinal gradient in the mean estimated GPP reductions over Europe, caused by245

differences in parameters defined for coniferous and deciduous vegetation. The mean estimated GPP reductions vary between

0.36% over the British Isles to 9.55% over the Mediterranean. However, the GPP reductions approach almost 50% over Italy

for certain months during high O3 concentration events.
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(a) Low O3 sensitivity

(b) High O3 sensitivity

Figure 8. Annual mean monthly bias (April-September) between O3-induced European forest GPP reductions estimated using satellite data

and the YIBs model (Yue and Unger, 2018). YIBs simulations are based on low (a) and high (b) vegetation sensitivity to O3 as defined in

Sitch et al. (2007). The satellite-based estimates were regridded to the 1◦× 1◦ YIBs spatial resolution for this comparison.
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Prior investigations into European O3-induced GPP reductions reported comparable results to this work. Anav et al. (2011)

used the ORCHIDEE land surface model to estimate a 22% total reduction in European GPP during 2002, nearing 45% over250

some locations. While this is much larger than the estimates derived in this work, it must be noted that these estimates also

include crops and grassland, which are much more sensitive to O3 exposure than trees (Reich, 1987). More recently, Oliver et al.

(2018) estimated GPP reductions of 2-8% for European boreal regions and 10-20% for temperate regions between 1901-2050,

using the JULES land surface model. Again, these estimates are positively biased by their inclusion of crop and grassland.

The O3-induced GPP reductions estimated in this work are also similar to those estimated by Proietti et al. (2016) for255

European forest sites between 2000-2010 using the same empirical method. In that study, the mean annual O3-induced GPP

reductions were found to vary between 0-12% along a similar latitudinal gradient, but could reach up to 30% over Switzerland

and Slovakia. O3 concentrations in the Proietti et al. (2016) study were directly sourced from in-situ measurements, while

the parameters used in Equation 1 were taken from the precursor to the ERA5 reanalysis dataset, ERA-Interim (Dee et al.,

2011). As O3 concentrations predicted by CAMS agree well with in-situ measurements (Bennouna et al., 2020), it is therefore260

expected that these estimates would agree.

Figure 6 shows that small yet statistically significant trends in the annual estimated GPP reductions exist over Scandinavia

(+0.05 % yr−1), the Balkans (-0.5 % yr−1), and Eastern Europe (+0.5% yr−1). Over Italy there is a stronger but statistically

insignificant positive trend of ∼1.0 % yr−1 over most regions except the far South, where the trend becomes ∼-1.0 % yr−1.

The trends in GPP reduction estimated in this work are dependent on both European O3 concentrations and the climatic265

variables governing stomatal conductance. By modelling both changes in ground-level O3 concentration and dry deposition,

Proietti et al. (2020) estimated statistically significant decreases in annual O3 concentration (-2%) and AOT40 (-26.5%) across

Europe between 2000-2014, indicating the large-scale success of European pollutant control strategies. However, the same

time period also saw significant increases in Phytotoxic O3 Dose (POD) across European forests, particularly after 2010. This

suggests that damage to vegetation may have actually increased, primarily due to climate change increasing the growing season270

length (Anav et al., 2019). Additionally, positive changes in temperature and PAR would also increase gsto, and therefore

increase the stomatal flux of O3, even as the average concentration decreases.

RFA was used to determine the main factors driving the spatiotemporal variability shown in Figures 5 and 6. From Figure 7

it is clear that soil moisture is a significant variable governing the estimated GPP reductions over the Mediterranean. A similar

result was found by Anav et al. (2018), who determined that soil water availability significantly limited stomatal conductance275

and so O3 dry deposition in semi-arid regions. Elsewhere, the influence of O3 concentrations on the estimated GPP reductions

was found to be the most important over most of central and Northern Europe. However, over mountainous regions the effect

of temperature, PAR, or VPD were found to be the most significant. A possible explanation may be that these regions are

experiencing much faster warming than lower terrain (Pepin et al., 2015), and so the effect of these variables on growing

season and stomatal conductance would be much greater than the relatively declining O3 concentration.280

The GPP reduction estimates determined in this work were validated against O3-induced GPP reductions estimated between

2003-2011 using the YIBs land surface model by Yue and Unger (2018). The satellite-based GPP reduction estimates were

found to agree well with reductions predicted by the YIBs low vegetation O3 sensitivity scenario. However, the satellite-based
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reductions exhibited a consistent +12% bias against the YIBs estimates over the Mediterranean for all years, indicating that

there is a fundamental difference in either how gsto or O3 sensitivity is computed between YIBs and this work. One possible285

explanation is that YIBs uses the Ball-Berry model (Ball et al., 1987) to compute gsto instead of the Jarvis model used in this

work.

Another important factor to consider is that YIBs has a coupled photosynthesis-gsto scheme, such that vegetation damaged

by O3 have decreased gsto (Yue and Unger, 2015). This reflects the fact that damaged stomatal cells are inclined to remain

closed due to changes in cell turgor pressure and signalling pathways. As a result, there is an upper limit to the modelled O3-290

induced GPP reductions. By contrast, Equation 6 assumes a simple linear dependence between GPP and gsto, and so offers no

limitation of gsto with O3 damage. However, there is evidence to suggest that prolonged O3 exposure may cause photosynthesis

and gsto to decouple over time, thereby removing this limiting factor (Lombardozzi et al., 2013). Further comparisons against

field observations are necessary to determine to what extent this simplification affects the accuracy of the predicted GPP

reductions.295

The applicability of the satellite-based model used in this work may be limited by the fact that Equation 6 uses AOT40

as a measure of O3 exposure, and so assumes that vegetation damage can occur after any deposition of O3. However, in the

DO3SE model vegetation exposure to O3 is modelled using the Phytotoxic O3 Dose above a threshold Y (PODY) metric. This

formulation assumes that below a given threshold flux, vegetation can safely detoxify absorbed O3 without any injury (Mills

et al., 2011). Currently, a threshold value of 1 nmol m−2 s−1 is recommended for all trees by Mills et al. (2017). That said, it300

has also been suggested that no threshold O3 flux should be assumed when estimating vegetation damage, as the detoxification

processes are dynamic and so cannot be represented by a single constant (Musselman et al., 2006). Again, comparisons with

field measurements are needed to determine whether the model could be improved through the addition of a threshold exposure.

It should be noted that the spatiotemporal resolution and accuracy of satellite data will only improve as the next generation

of instruments come online. For instance, geostationary missions such as Sentinel-4 (Gulde et al., 2017) and the Tropospheric305

Emissions: Monitoring of Pollution (TEMPO; Zoogman et al., 2017) will provide hourly daytime measurements of both tropo-

spheric O3 and its precursors for the first time, potentially improving near-surface O3 concentrations derived from reanalyses

like CAMS. Additionally, satellite observations of solar-induced fluorescence (SIF) have recently offered a functional proxy

of photosynthesis, and so GPP (e.g. Magney et al., 2019). Future studies using the satellite-based approach discussed in this

work would therefore be improved by the inclusion of such datasets.310

Overall, this work has demonstrated for the first time that satellite-based datasets can be leveraged to produce estimates of

O3-induced GPP reductions, which are comparable with in-situ or model-based analyses. The spatial features and temporal

trends of the GPP reductions reported in this work support the conclusions of previous investigations, that O3 exposure remains

a significant risk to the European carbon sink, despite the success of emission reduction policies. The results of the RFA also

underline the importance of regional climate on modulating or even enhancing the impact of O3 on photosynthesis, particularly315

over the Mediterranean. The satellite-based approach described in this work could potentially be applied to investigate currently

poorly sampled regions such as the Amazon to better quantify the effect of O3 on the global terrestrial carbon sink, at a fraction

of the computational cost otherwise required by land surface models.
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