Isotopic differences of soil-plant-atmosphere continuum composition and control factors of different vegetation zones

3 in north slope of Qilian Mountains

4 Yuwei Liu^{a,b}, Guofeng Zhu^{a,b,*}, Zhuanxia Zhang^{a,b}, Zhigang Sun^{a,b}, Leilei Yong^{a,b},

5 Liyuan Sang^{a,b}, Lei Wang^{a,b}, Kailiang Zhao^{a,b}

6 a School of Geography and Environment Science, Northwest Normal University, Lanzhou 730070,

7 Gansu, China

8 b Shiyang River Ecological Environment Observation Station, Northwest Normal University, Lanzhou

9 730070, Gansu, China

10 *Correspondence to*: Guofeng Zhu (gfzhu@lzb. ac.cn)

11	Abstract: Understanding the differences and control, factors of stable water isotopes in the	删除[刘雨薇]: ling
11	Abstract: Understanding the universities and controly factors of stable water isotopes in the	
12	soil-plant-atmosphere continuum (SPAC) of different vegetation zones is of great significance to reveal	删除[刘雨薇]: guiding
13	hydrological processes and regional water cycle mechanisms. From April 2018 to October 2019, we	删除[刘雨薇]: for
14	collected 1281 samples to investigated the stable water isotopes changes in the SPAC of three different	删除[刘雨薇]: ing
15	vegetation zones (alpine meadows, forests, and arid foothills) in the Shiyang River Basin. The results	删除[刘雨薇]: in the Shiyang River Basin. In this study, we
16	show that: (1) Precipitation plays a major control role in the <u>SPAC</u> . From alpine meadows to arid	删除[刘雨薇]: of stable water isotopes
17	foothills, the temperature effect of precipitation isotopes increases as altitude decreases (2) From the	删除[刘雨薇]: water cycle of precipitation-soil-plants
18	alpine meadow to the arid foothills, soil water isotopes are gradually enriched (3) Alpine meadow	删除[刘雨薇]: with the
19	plants are mainly supplied by precipitation in the rainy season, and forest plants mainly utilize soil	删除[刘雨薇]: of
20	water in the dry season and precipitation in the rainy season. The soil water in the arid foothills is	删除[刘雨薇]: altitude
21	primarily recharged by groundwater, and the evaporation of plant isotopes is strong. (4) Temperature	删除[刘雨薇]: The
22	and altitude are potential factors that control the isotopic composition of SPAC. This research will help	删除[刘雨薇]: is
23	understand the SPAC system's water cycle at different altitudes and climates in high mountains.	删除[刘雨薇]: from the alpine meadow to the arid foothills.
24	Keywords: Shiyang River Basin; Stable water isotope; Precipitation; Soil water; Plant water	删除[刘雨薇]: e
25	1 Introduction	删除[刘雨薇]: '
26	The relative abundance changes of <u>hydrogen</u> , and <u>oxygen</u> , isotopes in water can indicate the water	删除[刘雨薇]: oxygen
27	cycle and the water use mechanism in plants, so isotope technology has become an increasingly	删除[刘雨薇]: hydrogen

28	important method to study the water cycle (Gao et al., 2009; Song et al., 2002; Coplen, 2013; Shou et 删除[刘雨薇]: for
29	al., 2013). The stable water isotopic composition is considered to be the "fingerprint" of water, which 删除[刘雨薇]: ing
30	records a large amount of environmental information that comprehensively reflects the geochemical 删除[刘雨薇]: e
31	process of each system, and links the composition characteristics of each link (Darling et al., 2003; 删除[刘雨薇]: of water
32	Raco et al., 2013; Nlend et al., 2020). As an effective tool, stable isotope technology is widely applied 删除[刘雨薇]: "
33	in studying the relationship between environmental factors and the water cycle (Araguás-Araguás et al.,
34	1998; Christopher et al., 2009), water transportation, and distribution mechanisms (Gao et al., 2011),
35	and ways of tracing water use by plants (Detjen et al., 2015). The understanding of the relationship
36	between the influence of plant characteristics, water use efficiency and water sources (Ehleringer, 1991;
37	Sun et al., 2005; Li et al., 2019) provides a new observation method for revealing the mechanism of
38	the water cycle, in the hydrological ecosystem (Nie et al., 2014; Yu et al., 2007; Wang et al., 2019) 删除[刘雨薇]: mechanism of the
39	Although the isotopic ratio in soil water varies with depth, it remains stable when transferred from 删除[刘雨薇]: e
40	plant roots to stems, leaves or young unbolted branches (Porporato, 2001; Meissne et al., 2014).
41	Precipitation infiltration and runoff generation process (Bam and Ireso, 2018; Hou et al., 2008),
42	groundwater recharge and regeneration capacity (Smith et al., 1992; Cortes and Farvolden, 1989) can
43	be determined combined the isotopic composition changes of surface water, soil water and groundwater, 删除[刘雨薇]: Combined the isotopic composition changes of
44	Regional meteorological and hydrological conditions and the contribution of various environmental surface water, soil water and groundwater, precipitation
45	factors can be evaluated (Hua et al., 2019) by comparing different waterline equations and analyzing 2018; Hou et al., 2008), groundwater recharge and
46	changes in various water bodies. Furthermore, it has laid a foundation for studying the deep mechanism regeneration capacity (Smith et al., 1992; Cortes and
47	of the water cycle (Gao et al., 2009). As an important component of the global water cycle, plants
48	control 50-90% of transpiration (Jasechko et al., 2013; Coenders-Gerrits et al., 2014; Schlesinger and
49	Jasechko, 2014). The plant's roots do not have isotope fractionation when absorbing water (White et al., 删除[刘雨薇]: roots of plants have no isotope
50	1985; Song et al., 2013), so the water isotopic composition of plant roots and stems reflects the isotope 删除[刘雨薇]: e
51	composition of water available for plants (Dawson et al., 1991).
52	The research of the water cycle based on SPAC plays a vital role in the study of water and the 删除[刘雨薇]: in arid areas
53	sources of plant water use in arid areas (Price et al., 2012; Shou et al., 2013). Hydrogen and oxygen
54	isotopes have been used to study the water cycle at the interface of "soil-root", "soil-plant", and
55	"soil-atmosphere", but only a few parameters play an important role in the complex interactions
56	between the various surfaces (Durand et al., 2007; Li et al., 2006; West et al., 2010). Previous studies
57	have shown that local factors, especially temperature, mainly control stable isotope precipitation

58	changes in mid-latitudes (Dai et al., 2020). Through the research on the composition of hydrogen and	
59	oxygen isotopes in different water bodies, we can further understand the mechanism of water use by	
60	vegetation (Yang et al., 2015) and provide a scientific basis for vegetation restoration in arid and	
61	semi-arid areas. In the existing research, how to extend the results of the small-scale SPAC water cycle	
62	research to the large-scale area has become a hot and difficult spot. In inland arid areas, due to the lack	删除[刘雨薇]: spot
63	of water resources, the exchange of energy and water with the outside world is small, and the water	│ 删除[刘雨薇]: y
64	cycle is mainly the vertical circulation of groundwater-soil-atmospheric water. Therefore, studying the	
65	changes in SPAC isotopic composition in arid regions is significant for ecological restoration.	
66	The Shiyang River Basin has the greatest ecological pressure and the most severe water shortage	设置格式[刘雨薇]: 孤行控制
67	in China. The purpose of this study is to: (1) analyze the SPAC water cycle process in different	I
68	vegetation zones and (2) identify the potential factors that control the SPAC water cycle. This research	删除[刘雨薇]: area
69	is helpful to clarify the water resource utilization mechanism and the local water cycle mechanism of	删除[刘雨薇]: e
70	different vegetation areas in high mountainous areas and provide the theoretical basis for the reasonable	
71	use of water resources in arid areas,	删除[刘雨薇]: provides a specific theoretical basis and
72	2 Materials and methods	guiding suggestions for the practical and reasonable use of
73	2 Materials and methods 2.1 Study area	guiding suggestions for the practical and reasonable use of water resources in arid areas.
73	2.1 Study area The Shiyang River Basin is located at the northern foot of the Qilian Mountains, east of the Hexi	
73 74 75	2.1 Study area	
73 74	2.1 Study area The Shiyang River Basin is located at the northern foot of the Qilian Mountains, east of the Hexi	
73 74 75	2.1 Study area The Shiyang River Basin is located at the northern foot of the Qilian Mountains, east of the Hexi Region, Gansu Province (Zhu et al., 2018) (Fig. 1). The Shiyang River originates from the snow-capped mountains on the north side of the Lenglongling in the eastern section of the Qilian	water resources in arid areas.
73 74 75 76	2.1 Study area The Shiyang River Basin is located at the northern foot of the Qilian Mountains, east of the Hexi Region, Gansu Province (Zhu et al., 2018) (Fig. 1). The Shiyang River originates from the snow-capped mountains on the north side of the Lenglongling in the eastern section of the Qilian Mountains. The river's total length is about 250 km, with a basin area of 4.16×104 km ² , and the annual	water resources in arid areas. 删除[刘雨薇]: '
73 74 75 76 77 78	2.1 Study area The Shiyang River Basin is located at the northern foot of the Qilian Mountains, east of the Hexi Region, Gansu Province (Zhu et al., 2018) (Fig. 1). The Shiyang River originates from the snow-capped mountains on the north side of the Lenglongling in the eastern section of the Qilian	water resources in arid areas.
73 74 75 76 77	2.1 Study area The Shiyang River Basin is located at the northern foot of the Qilian Mountains, east of the Hexi Region, Gansu Province (Zhu et al., 2018) (Fig. 1). The Shiyang River originates from the snow-capped mountains on the north side of the Lenglongling in the eastern section of the Qilian Mountains. The river's total length is about 250 km, with a basin area of 4.16×104 km ² , and the annual	water resources in arid areas. 删除[刘雨薇]: '
73 74 75 76 77 78	2.1 Study area The Shiyang River Basin is located at the northern foot of the Qilian Mountains, east of the Hexi Region, Gansu Province (Zhu et al., 2018) (Fig. 1). The Shiyang River originates from the snow-capped mountains on the north side of the Lenglongling in the eastern section of the Qilian Mountains. The river's total length is about 250 km, with a basin area of 4.16×104 km ² , and the annual average runoff is about 1.58×10 ⁸ km ³ . Rivers are supplied, by precipitation from mountain, and alpine ice and snow melt water. The runoff area is about 1.10×10 ⁴ km ² , and the drought index is 1 to 4 (Zhou	water resources in arid areas. 删除[刘雨薇]: ' 删除[刘雨薇]:
73 74 75 76 77 78 79	2.1 Study area The Shiyang River Basin is located at the northern foot of the Qilian Mountains, east of the Hexi Region, Gansu Province (Zhu et al., 2018) (Fig. 1). The Shiyang River originates from the snow-capped mountains on the north side of the Lenglongling in the eastern section of the Qilian Mountains. The river's total length is about 250 km, with a basin area of 4.16×104 km ² , and the annual average runoff is about 1.58×10 ⁸ km ³ . Rivers are supplied by precipitation from mountain, and alpine ice and snow melt water. The runoff area is about 1.10×10 ⁴ km ² , and the drought index is 1 to 4 (Zhou et al., 2020). The soil is classified as grey_brown desert soil, aeolian sandy soil, saline soil, and	water resources in arid areas. 删除[刘雨薇]: , 删除[刘雨薇]: s
73 74 75 76 77 78 79 80 81	2.1 Study area The Shiyang River Basin is located at the northern foot of the Qilian Mountains, east of the Hexi Region, Gansu Province (Zhu et al., 2018) (Fig. 1). The Shiyang River originates from the snow-capped mountains on the north side of the Lenglongling in the eastern section of the Qilian Mountains. The river's total length is about 250 km, with a basin area of 4.16×104 km ² , and the annual average runoff is about 1.58×10 ⁸ km ³ . Rivers are supplied, by precipitation from mountain, and alpine ice and snow melt water. The runoff area is about 1.10×10 ⁴ km ² , and the drought index is 1 to 4 (Zhou	water resources in arid areas. 删除[刘雨薇]: , 删除[刘雨薇]: s 删除[刘雨薇]: s 删除[刘雨薇]: come from
73 74 75 76 77 78 79 80	2.1 Study area The Shiyang River Basin is located at the northern foot of the Qilian Mountains, east of the Hexi Region, Gansu Province (Zhu et al., 2018) (Fig. 1). The Shiyang River originates from the snow-capped mountains on the north side of the Lenglongling in the eastern section of the Qilian Mountains. The river's total length is about 250 km, with a basin area of 4.16×104 km ² , and the annual average runoff is about 1.58×10 ⁸ km ³ . Rivers are supplied by precipitation from mountain, and alpine ice and snow melt water. The runoff area is about 1.10×10 ⁴ km ² , and the drought index is 1 to 4 (Zhou et al., 2020). The soil is classified as grey_brown desert soil, aeolian sandy soil, saline soil, and	water resources in arid areas. 删除[刘雨薇]: , 删除[刘雨薇]: s 删除[刘雨薇]: s 删除[刘雨薇]: come from 删除[刘雨薇]: meteoric
73 74 75 76 77 78 79 80 81	2.1 Study area The Shiyang River Basin is located at the northern foot of the Qilian Mountains, east of the Hexi Region, Gansu Province (Zhu et al., 2018) (Fig. 1). The Shiyang River originates from the snow-capped mountains on the north side of the Lenglongling in the eastern section of the Qilian Mountains. The river's total length is about 250 km, with a basin area of 4.16×104 km ² , and the annual average runoff is about 1.58×10 ⁸ km ³ . Rivers are supplied by precipitation from mountain, and alpine ice and snow melt water. The runoff area is about 1.10×10 ⁴ km ² , and the drought index is 1 to 4 (Zhou et al., 2020). The soil is classified as grey_brown desert soil, aeolian sandy soil, saline soil, and meadow soil. The Shiyang River Basin has a continental temperate arid climate with strong sunlight.	water resources in arid areas. 删除[刘雨薇]: , 删除[刘雨薇]: s 删除[刘雨薇]: s 删除[刘雨薇]: come from 删除[刘雨薇]: meteoric 删除[刘雨薇]: precipitation

84	precipitation is 222 mm, and the annual average evaporation is 700-2000 mm. The vegetation coverage
85	precipitation is 222 min, and the annual average evaporation is 700-2000 min. The vegetation coverage
	in the upper and middle alpine regions is better than that of the lower reaches, with trees, shrubs, and
86	grass-covered (Wan et al., 2019). The downstream vegetation coverage is poor under the strong 删除[刘雨薇]:
87	influence of long-term human production, mainly desert vegetation.
88	
	Fig 1 about here
89 90	2.2 Sample collection
70	From April 2018 to October 2019, samples were collected at Lenglong (alpine meadow), Hulin
91	(forest), and Xiying (arid foothills) in the Shiyang River Basin (Table 1). We collected 1281 samples in
92	
02	the Shiyang River Basin, including 472 precipitation samples, 570 soil samples, 119 plant samples, and
93	120 groundwater samples.
94	
	Table 1 about here
95	The precipitation samples were collected with a rain bucket. The rain measuring cylinder consists 删除[刘雨薇]: are
96	of a funnel and a storage part. After each precipitation event, we immediately transferred the liquid
97	precipitation to a 100 ml high-density sample bottle., The sample bottle was sealed with a sealing film 删除[刘雨薇]: the collected liquid precipitation is
98	and stored at low temperature. Simultaneously, the polyethylene bottle sample <u>was</u> labeled with the immediately transferred to a 100 ml high-density sample bottle.
99	date and type of precipitation (rain, snow, hail, and rain). 删除[刘雨薇]: is
100	The soil samples were collected at intervals of 10 cm at a depth of 100 cm with a soil drill. Part of 删除[刘雨薇]: is
101	the soil sample was put into a 50 ml glass bottle. The bottle's mouth was sealed with parafilm and 删除[刘雨薇]: are
102	transported to the observation station for cryopreservation within 10 hours after sampling. The 删除[刘雨薇]: ere
103	remaining soil sample was placed in a 50 ml aluminum box and used the drying method to measure the 删除[刘雨薇]:,
104	soil water content (swc).
105	The vegetation samples were collected with a sampling shear. First, we peel off the bark and put 删除[刘雨薇]: are
106	the stem into a 50 ml glass bottle. After that, we sealed the bottle mouth and kept it frozen before the 删除[刘雨薇]: e
107	experimental analysis.
108	The groundwater <u>samples were</u> collected with polyethylene bottles, and the samples were brought 删除[刘雨薇]: was
109	back to the refrigerator at the test station for cryogenic preservation within 10 hours.

110	2.3 Sample	e treatment
-----	------------	-------------

111	All water samples were tested using a liquid water analyzer (DLT-100, Los Gatos Research Center,	删除[刘雨薇]:	are
112	USA) at the Northwest Normal University laboratory. Each sample and isotopic standard werer	删除[刘雨薇]:	in
113	analyzed by six consecutive injections. To eliminate the memory effect of the analyzer, we discarded	删除[刘雨薇]:	e
114	the values of the first two injections and used the average of the last four injections as the final result	删除[刘雨薇]:	as
115	value. Isotopic measurements are given with the symbol " δ " and are expressed as a difference of	删除[刘雨薇]:	

thousandths relative to Vienna Standard Mean Ocean Water: 116

$\underline{\delta (\%)} = [(\delta/\delta_{v-smow})-1)] \times 1000$

(1-1)

117	Where, δ is the ratio of ¹⁸ O/ ¹⁶ O or ^D / ¹ H in the collected sample, δ_{v-smow} is the ratio of ¹⁸ O/ ¹⁶ O or	删除[刘雨薇]:
118	^D / ¹ H in the Vienna standard sample.	
119	Due to the existence of methanol and ethanol in plant water samples, it is necessary to calibrate	$[(\delta/\delta_{v\text{-smow}})\text{-}1)]\times 1000$
120	the <u>raw</u> data of plant samples. <u>To determine methanol (NB) and ethanol (BB) pollution degree, we used</u>	设置格式[刘雨薇]: 左
121	different concentrations of pure methanol and ethanol mixed deionized water, combined with Los	删除[刘雨薇]: original
122	Gatos' LWIA-spectral pollutant identification instrument V1.0 spectral analysis software, and then we	删除[刘雨薇]:
123	established δD and $\delta^{18}O$ spectral pollutant correction method (Meng et al., 2012; Liu et al., 2015). For	删除[刘雨薇]: Using dif
124	the broadband metric value NB metric of the methanol calibration result, its logarithm has a significant	methanol and ethanol mix
125	quadratic curve relationship with $\Delta\delta D$ and $\Delta\delta^{18}O$, and the formulas are respectively:	Los Gatos' LWIA-spectra V1.0 spectral analysis sof
	$\Delta \delta D = 0.018 (\ln NB)^3 + 0.092 (\ln NB)^2 + 0.388 \ln NB + 0.785 (R^2 = 0.991, p < 0.0001) $ (2-1)	δ^{18} O spectral pollutant co
	$\Delta \delta^{18} O=0.017 (\ln NB)^3 - 0.017 (\ln NB)^2 + 0.545 \ln NB + 1.358 (R^2=0.998, p<0.0001) $ (2-2)	(NB) and ethanol (BB) po
126	For ethanol calibration results, the broadband metric value BB metric has a quadratic curve and a	
127	linear relationship with $\Delta\delta D$ and $\Delta\delta^{18}O$, and the formulas are respectively:	
	$\Delta\delta D$ =-85.67 BB +93.664 (R ² =0.747, p=0.026) (BB<1.2) (2-3)	
	$\Delta \delta^{18}$ O=-21.421 BB ² +39.9356 (R ² =0.769, p<0.012) (2-4)	
128	2.4 Data analysis	
129	Since the isotopic data are generally normally distributed according to the Kolmogorov-Smirnov	
130	(KS) test, we used Pearson correlation to describe the various correlations between different water	

types (precipitation, soil water, plant water, and groundwater) and the control factors in different 131

δ (‰)=

(1-1)

Using different concentrations of pure ethanol mixed deionized water, combined with /IA-spectral pollutant identification instrument analysis software, the establishment of δD and pollutant correction method, determine methanol nol (BB) pollution degree

- 132 vegetation zones. The significance level for all statistical tests was set to the 95% confidence interval.
- 133 All statistical analyses completed using the SPSS software.
- 134 **3. Results**
- 135 **3.1 Changes in meteorological parameters over time**

136 Figure 2 shows the changes in daily precipitation, relative humidity, temperature, and swc from 137 April 2018 to October 2019. Meteorological data are obtained from the meteorological station in the 138 Shiyang River Basin. During the summer monsoon (April to September), the accumulated precipitation 139 accounts for 90.4% of the total precipitation, and the daily average precipitation is 3.98 mm. During the 140 winter monsoon (October to March), the accumulated precipitation accounts for 9.60% of the total 141 precipitation, with an average daily precipitation of 0.13 mm. During the summer monsoon, the relative 142 humidity of the Shiyang River Basin is 43.78%, while during the winter monsoon it is 35.78%. During 143 the observation period, the temperature is -16.2° and 32° , and the average temperature of summer 144 monsoon and winter monsoon are 20.20°C and -0.69°C, respectively. The average SWC value of 145 0-100cm soil layer vary from 2.58% to 89.96 %, and the low SWC value usually appeares in summer, 146 which is related to the strong soil evaporation. 147

Fig 2 about here

148 **3.2** The relationship between <u>stable</u> water stable isotopes in different vegetation zones

According to the definition of the global meteoric water line (GMWL) (Craig, 1961), the linear
 relationship of δ¹⁸O and δD in local precipitation, soil water, plant water, and groundwater is defined as
 LMWL, SWL, PWL, and GWL, respectively.

152 As shown in Fig. 3, there are some differences in the local metoric waterline equations of different 153 vegetation zones. The slope of LMWL of alpine meadows (7.88), forests (7.82), and arid foothills (7.72) 154 is all smaller than that of GMWL (8.00), this is because the study area is located in northwestern 155 China's arid area, where the climate is dry, and the isotopes have undergone strong fractionation. The 156 slope of the SWL in the alpine meadow is the largest (6.07), and the slope of the SWL in the forest 157 (5.10) is greater than the slope of the SWL in the arid foothills (3.94), the intercept has the same 158 characteristics, indicating that the arid foothills' soil evaporation is the largest. According to the Natural 159 Resources Survey Report of the Shiyang River Basin in 2020, the vegetation coverage rate of the alpine 160 meadow is 25.95%, and that of the arid foothills is 8.48%. The vegetation coverage rate of the alpine

删除[刘雨薇]: $\Delta\delta D$ =0.018 (lnNB)³+0.092 (lnNB)²+0.388 lnNB+0.785 (R²=0.991, p<0.0001) (2-1) $\Delta\delta^{18}O$ =0.017 (lnNB)³-0.017 (lnNB)²+0.545 lnNB+1.358 (R²=0.998, p<0.0001) (2-2) For ethanol calibration results, the broadband metric value BB metric has a quadratic curve and a linear relationship with $\Delta\delta D$ and $\Delta\delta^{18}O$, and the formulas are respectively: $\Delta\delta D$ =-85.67 BB+93.664 (R²=0.747, p=0.026) (BB<1.2) (2-3) $\Delta\delta^{18}O$ =-21.421 BB²+39.9356= (R²=0.769, p<0.012) (2-4)

2.4 Data analysis

Since the isotopic data are generally normally distributed according to the Kolmogorov-Smirnov (KS) test, we use Pearson correlation to describe the various correlations between different water types (precipitation, soil water, plant water, and groundwater) and the control factors in different vegetation zones. The significance level for all statistical tests was set to the 95% confidence interval. All statistical analyses were performed using SPSS software.

删除[刘雨薇]: daily
删除[刘雨薇]: was
删除[刘雨薇]: in
删除[刘雨薇]: was
删除[刘雨薇]: between
删除[刘雨薇]: between
删除[刘雨薇]: ies
删除[刘雨薇]: is
删除[刘雨薇]: s
删除[刘雨薇]: atmospheric
删除[刘雨薇]: '

161		
161	meadow is higher than that of the arid foothills, and it has better water retention ability and less	删除[刘雨薇]: with
162	evaporation of soil water (Wan et al., 2019; Wei et al., 2019). The slope of the PWL in the arid foothills	
163	is the largest (2.45), and the slope of the PWL in the alpine meadow (1.90) is greater than that of the	
164	forest (1.69).	
165	According to the weighted average value of stable oxygen isotopes of various water bodies (Table	
166	2), alpine meadows' soil water δ^{18} O is -9.16‰, which is the most depleted and the closest to the	
167	precipitation $\delta^{18}O$ (-9.44‰). The average $\delta^{18}O$ of groundwater is -8.84‰, which is between $\delta^{18}O$ of	
168	plant (-1.68‰) and δ^{18} O of precipitation (-9.44‰), indicating that precipitation is the primary source of	
169	alpine meadows replenishment. The average δ^{18} O of groundwater (-8.56‰) is between soil water δ^{18} O	
170	(-7.01‰) and precipitation δ^{18} O (-8.63‰), but it is close to precipitation δ^{18} O, indicating that forest	删除[刘雨薇]: The precipitation δ ¹⁸ O of the forest (-7.50‰)
171	groundwater is replenished by soil water and precipitation. The mean $\delta^{18}O$ of soil water (-8.23‰) in	is the most depleted, and the average δ^{18} O of groundwater
172	the arid foothills are between precipitation $\delta^{18}O$ (-7.50‰) and groundwater $\delta^{18}O$ (-8.88‰) but closer to	(-8.56‰) is between soil water δ^{18} O (-7.01‰) and precipitation δ^{18} O (-8.63‰),
173	groundwater δ^{18} O, indicating that the soil water in the arid foothills is mainly supplied by groundwater.	
174	Fig 3 about here	
175		
	Table 2 about here	
176	Table 2 about here 3.3 Relationship between soil water and plant water isotope in different vegetation zones	
176 177		
	3.3 Relationship between soil water and plant water isotope in different vegetation zones	
177	3.3 Relationship between soil water and plant water isotope in different vegetation zones By analyzing the isotopic composition of soil and plant xylem, it is possible to preliminarily	
177 178	3.3 Relationship between soil water and plant water isotope in different vegetation zones By analyzing the isotopic composition of soil and plant xylem, it is possible to preliminarily determine whether there is an overlap between soil moisture and plant moisture at different depths	删除[刘雨薇]: it is
177 178 179	3.3 Relationship between soil water and plant water isotope in different vegetation zones By analyzing the isotopic composition of soil and plant xylem, it is possible to preliminarily determine whether there is an overlap between soil moisture and plant moisture at different depths (Javaux et al., 2016; Dawson et al., 1993; Rothfuss et al., 2017; Tetzlaff et al., 2017; McCole et al.,	删除[刘雨薇]: it is
177 178 179 180	 3.3 Relationship between soil water and plant water isotope in different vegetation zones By analyzing the isotopic composition of soil and plant xylem, it is possible to preliminarily determine whether there is an overlap between soil moisture and plant moisture at different depths (Javaux et al., 2016; Dawson et al., 1993; Rothfuss et al., 2017; Tetzlaff et al., 2017; McCole et al., 2007; Zhou et al., 2015; Schwendenmann et al., 2015). Soil water may evaporate before being 	删除[刘雨薇]: it is
177 178 179 180 181	3.3 Relationship between soil water and plant water isotope in different vegetation zones By analyzing the isotopic composition of soil and plant xylem, it is possible to preliminarily determine whether there is an overlap between soil moisture and plant moisture at different depths (Javaux et al., 2016; Dawson et al., 1993; Rothfuss et al., 2017; Tetzlaff et al., 2017; McCole et al., 2007; Zhou et al., 2015; Schwendenmann et al., 2015). Soil water may evaporate before being absorbed by plants, which leads to the increase of δD and $\delta^{18}O$ values of soil water (Chen et al., 2014).	删除[刘雨薇]: it is
 177 178 179 180 181 182 	3.3 Relationship between soil water and plant water isotope in different vegetation zones By analyzing the isotopic composition of soil and plant xylem, it is possible to preliminarily determine whether there is an overlap between soil moisture and plant moisture at different depths (Javaux et al., 2016; Dawson et al., 1993; Rothfuss et al., 2017; Tetzlaff et al., 2017; McCole et al., 2007; Zhou et al., 2015; Schwendenmann et al., 2015). Soil water may evaporate before being absorbed by plants, which leads to the increase of δD and $\delta^{18}O$ values of soil water (Chen et al., 2014). Therefore, it can be well explained that the surface soil water isotope in Fig. 4 is more enriched than	删除[刘雨薇]: it is
 177 178 179 180 181 182 183 	3.3 Relationship between soil water and plant water isotope in different vegetation zones By analyzing the isotopic composition of soil and plant xylem, it is possible to preliminarily determine whether there is an overlap between soil moisture and plant moisture at different depths (Javaux et al., 2016; Dawson et al., 1993; Rothfuss et al., 2017; Tetzlaff et al., 2017; McCole et al., 2007; Zhou et al., 2015; Schwendenmann et al., 2015). Soil water may evaporate before being absorbed by plants, which leads to the increase of δD and $\delta^{18}O$ values of soil water (Chen et al., 2014). Therefore, it can be well explained that the surface soil water isotope in Fig. 4 is more enriched than the deep soil water isotope.	删除[刘雨薇]: it is
 177 178 179 180 181 182 183 184 	3.3 Relationship between soil water and plant water isotope in different vegetation zones By analyzing the isotopic composition of soil and plant xylem, it is possible to preliminarily determine whether there is an overlap between soil moisture and plant moisture at different depths (Javaux et al., 2016; Dawson et al., 1993; Rothfuss et al., 2017; Tetzlaff et al., 2017; McCole et al., 2007; Zhou et al., 2015; Schwendenmann et al., 2015). Soil water may evaporate before being absorbed by plants, which leads to the increase of δD and $\delta^{18}O$ values of soil water (Chen et al., 2014). Therefore, it can be well explained that the surface soil water isotope in Fig. 4 is more enriched than the deep soil water isotope. According to the study area's precipitation, the current experiment is divided into the dry season	删除[刘雨薇]: it is

188	(-6.40‰) are close, the groundwater and soil water's surface and deep layers intersect, indicating that 删除[刘雨薇]:,
189	plant water is mainly supplied by precipitation in the rainy season, while the groundwater is supplied
190	by soil water. In the dry season, due to the low temperature (average temperature 0.30°C), there is a lot
191	of ice and snow in alpine meadows, and plants do not directly use soil water. As the increase of
192	temperature (average temperature 8.72°C), precipitation and surface runoff increases, and water
193	infiltrate, groundwater from soil. Forest plant water intersects with deep soil during the dry season and 删除[刘雨薇]: into
194	intersects with the soil surface during the rainy season, indicating that forest plants mainly use deep soil
195	water during the dry season and shallow soil water during the rainy season. In the rainy season, the
196	surface layer of soil water intersects with plant water, the groundwater and soil water's surface and 删除[刘雨薇]: '
197	deep layers intersect, showing that the plant water preferentially uses the surface layer water of the soil
198	in the arid foothills. In the dry season, plant water oxygen is the most enriched, and the isotopic values
199	of groundwater and soil water are close, indicating that the soil water is mainly recharged by the
200	groundwater. According to the Natural Resources Survey Report of the Shiyang River Basin, the buried 删除[刘雨薇]: n
201	groundwater level in the arid foothills is 2.5-15 m, and the groundwater table is relatively shallow, 删除[刘雨薇]: r
202	making the soil water in the arid foothills mainly recharged by groundwater in the dry season.
203	删除[刘雨薇]: r Fig 4 about here
204	4. Discussion
205	4.1 Variation of soil water isotope and SWC between different vegetation zones
206	In Fig. 5, along the three vegetation zones of alpine meadow-forest-arid foothills, soil water
207	isotope is gradually enriched. The coefficient of variation of the arid foothills is the largest (-0.15),
208	while that of the forest is the smallest (-0.25), indicating that from forest to arid foothills, the closer to
209	arid regions, the greater the coefficient of variation and that the greater the instability of soil water
210	isotope, The soil water isotopes of different vegetation zones showed the same characteristics as the 删除[刘雨薇]: stable
211	soil depth changed, that is, they were all depleted in May and August and enriched in October. 删除[刘雨薇]: soil water

212	The swc of alpine meadows (average θ of 42.21%) is higher than that of forests (average θ of	删除[刘雨薇]: %
213	26.98% and arid foothills (average θ of 17.05%), and the swc of alpine meadows increases with the	删除[刘雨薇]: %
214	increase of soil depth (from 43.78% to 49.27%), while that of forests the swc decreases with the soil	删除[刘雨薇]: %
215	depth (from 26.10% to 25.41%). Compared with forests, plants in alpine meadows have shallower root	删除[刘雨薇]: %
216	systems and smaller canopies, so transpiration and water consumption are lower, and swc is higher	删除[刘雨薇]: %
217	(Csilla et al., 2014; Li et al., 2009; Western et al., 1998). On the one hand, with the improvement of	删除[刘雨薇]: %
218	vegetation restoration, the ability of alpine meadows to retain soil water has enhanced, and the soil	
219	water evaporation has reduced. On the other hand, Lenglong, a representative of alpine meadows, has	删除[刘雨薇]: %
220	an average annual precipitation of 595.10 mm, and a low temperature (average annual temperature of	删除[刘雨薇]: the ability to retain soil water in the alpine meadows has increased, and the amount of soil water
221	-0.20°C), makes the soil water evaporation intensity weak. The swc of the alpine meadows (86.95%)	evaporation has reduced.
222	and forests (53.45%) is the largest in August, while the arid foothills' swc (11.13%) is the smallest in	删除[刘雨薇]: %
223	August, this is because the northern slope of the Qilian Mountains is a windward slope. In August, a lot	删除[刘雨薇]: %
224	of precipitation falls on the high-altitude alpine meadows and forests, the arid foothills have little	删除[刘雨薇]: '
225	precipitation and low swc.	删除[刘雨薇]: %
226		
	Fig 5 about here	
227	Fig 5 about here 4.2 Control factors of SPAC in different vegetation zones	
227	4.2 Control factors of SPAC in different vegetation zones4.2.1 The influence of temperature on SPAC	
227 228	4.2 Control factors of SPAC in different vegetation zones	
227 228 229 230	4.2 Control factors of SPAC in different vegetation zones4.2.1 The influence of temperature on SPAC	删除[刘雨薇]: accumulates
227 228 229	 4.2 Control factors of SPAC in different vegetation zones 4.2.1 The influence of temperature on SPAC As shown in Fig. 6, with the changes in the water cycle of precipitation-soil water-plant water, the 	删除[刘雨薇]: accumulates
227 228 229 230	4.2 Control factors of SPAC in different vegetation zones 4.2.1 The influence of temperature on SPAC As shown in Fig. 6, with the changes in the water cycle of precipitation-soil water-plant water, the δ^{18} O of forests gradually enriched, while the soil water δ^{18} O of arid foothills and alpine meadows are the most depleted in summer. In other seasons, δ^{18} O is gradually enriched along with precipitation-soil	删除[刘雨薇]: accumulates
 227 228 229 230 231 	4.2 Control factors of SPAC in different vegetation zones 4.2.1 The influence of temperature on SPAC As shown in Fig. 6, with the changes in the water cycle of precipitation-soil water-plant water, the δ^{18} O of forests gradually <u>enriched</u> , while the soil water δ^{18} O of arid foothills and alpine meadows are	删除[刘雨薇]: accumulates
 227 228 229 230 231 232 233 	4.2 Control factors of SPAC in different vegetation zones 4.2.1 The influence of temperature on SPAC As shown in Fig. 6, with the changes in the water cycle of precipitation-soil water-plant water, the δ^{18} O of forests gradually enriched, while the soil water δ^{18} O of arid foothills and alpine meadows are the most depleted in summer. In other seasons, δ^{18} O is gradually enriched along with precipitation-soil	删除[刘雨薇]: accumulates
 227 228 229 230 231 232 	4.2 Control factors of SPAC in different vegetation zones 4.2.1 The influence of temperature on SPAC As shown in Fig. 6, with the changes in the water cycle of precipitation-soil water-plant water, the δ^{18} O of forests gradually enriched, while the soil water δ^{18} O of arid foothills and alpine meadows are the most depleted in summer. In other seasons, δ^{18} O is gradually enriched along with precipitation-soil water-plant water. In summer, there is much precipitation and large swc in alpine meadows, but due to	删除[刘雨薇]: accumulates 删除[刘雨薇]: In summer, there is much precipitation and
 227 228 229 230 231 232 233 	4.2 Control factors of SPAC in different vegetation zones 4.2.1 The influence of temperature on SPAC As shown in Fig. 6, with the changes in the water cycle of precipitation-soil water-plant water, the δ^{18} O of forests gradually enriched, while the soil water δ^{18} O of arid foothills and alpine meadows are the most depleted in summer. In other seasons, δ^{18} O is gradually enriched along with precipitation-soil water-plant water. In summer, there is much precipitation and large swe in alpine meadows, but due to the low temperature (average temperature in summer is 9.80°C), the soil water δ^{18} O of alpine meadows is relatively depleted, In the arid foothills, in summer, especially in August, although the temperature is	删除[刘雨薇]: In summer, there is much precipitation and large swc in alpine meadows, but due to low temperature
 227 228 229 230 231 232 233 234 	4.2 Control factors of SPAC in different vegetation zones 4.2.1 The influence of temperature on SPAC As shown in Fig. 6, with the changes in the water cycle of precipitation-soil water-plant water, the δ^{18} O of forests gradually enriched, while the soil water δ^{18} O of arid foothills and alpine meadows are the most depleted in summer. In other seasons, δ^{18} O is gradually enriched along with precipitation-soil water-plant water. In summer, there is much precipitation and large swc in alpine meadows, but due to the low temperature (average temperature in summer is 9.80°C), the soil water δ^{18} O of alpine meadows	删除[刘雨薇]: In summer, there is much precipitation and
 227 228 229 230 231 232 233 234 235 236 	4.2 Control factors of SPAC in different vegetation zones 4.2.1 The influence of temperature on SPAC As shown in Fig. 6, with the changes in the water cycle of precipitation-soil water-plant water, the δ^{18} O of forests gradually enriched, while the soil water δ^{18} O of arid foothills and alpine meadows are the most depleted in summer. In other seasons, δ^{18} O is gradually enriched along with precipitation-soil water-plant water. In summer, there is much precipitation and large swe in alpine meadows, but due to the low temperature (average temperature in summer is 9.80°C), the soil water δ^{18} O of alpine meadows is relatively depleted, In the arid foothills, in summer, especially in August, although the temperature is	删除[刘雨薇]: In summer, there is much precipitation and large swc in alpine meadows, but due to low temperature (average temperature in summer is 9.80°C), the soil water δ ¹⁸ O
 227 228 229 230 231 232 233 234 235 	4.2 Control factors of SPAC in different vegetation zones 4.2.1 The influence of temperature on SPAC As shown in Fig. 6, with the changes in the water cycle of precipitation-soil water-plant water, the δ^{18} O of forests gradually <u>enriched</u> , while the soil water δ^{18} O of arid foothills and alpine meadows are the most depleted in summer. In other seasons, δ^{18} O is gradually enriched along with precipitation-soil water-plant water. In summer, there is much precipitation and large swc in alpine meadows, but due to the low temperature (average temperature in summer is 9.80°C), the soil water δ^{18} O of alpine meadows is relatively depleted. In the arid foothills, in summer, especially in August, although the temperature is relatively high (the average temperature is 23.92°C), the swc is low, evaporation is weak, and δ^{18} O are	删除[刘雨薇]: In summer, there is much precipitation and large swc in alpine meadows, but due to low temperature (average temperature in summer is 9.80°C), the soil water δ ¹⁸ O

238	
239	and the water vapor will change adiabatic cooling (Rozanski, 1992). When the temperature is between
	0°C and 8°C, the influence of local water vapor circulation is greater. When the temperature is below
240	8°C, the below-cloud evaporation is very strong (Zhu et al., 2021). Therefore, we divided the
241	temperature into three gradients (below 0°C, between 0°C and 8°C and above 8°C) for analysis. From
242	the alpine meadow to arid foothills, the correlations between temperature and soil δ^{18} O are 0.41, 0.30,
243	and 0.19, respectively, and the correlations with plant $\delta^{18}O$ are 0.24, 0.27, and 0.25, respectively, and
244	the temperature effect is not significant compared with precipitation. As shown in Table 3, from the
245	alpine meadow to the arid foothills, the temperature effect of the precipitation isotope increased, and
246	there is a significant positive correlation with temperature and all of which have passed the significance
247	test. With the increase of temperature, the linear relationship between temperature and precipitation
248	isotope in each vegetation zone became weaker, When the temperature is lower than 0°C, the
249	correlation between precipitation $\delta^{18}O$ and the temperature in the arid foothills fails to pass the
250	significance test. The relationship between δ^{18} O and temperature in alpine meadows, forests, and arid
251	foothills are $\delta^{18}O=0.62T-10.84$, $\delta^{18}O=1.58T-12.14$, and $\delta^{18}O=1.29T-11.78$, respectively. When the
252	temperature is between 0°C and 8°C, the temperature effect of precipitation weakens with the
253 254	temperature increases, which may be related to the weakening of the local water cycle and the
254 255	enrichment of precipitation isotopes. The relationship between $\delta^{18}O$ and temperature in alpine
	meadows, forests, and arid foothills are $\delta^{18}O=0.51T-11.41$, $\delta^{18}O=2.46T-22.84$, and $\delta^{18}O=2.27T-22.78$,
256	respectively. When the temperature is above 8°C, there is no correlation between the precipitation $\delta^{18}O$
257	and the temperature, but the precipitation $\delta^{18}O$ is the most enriched, which may be related to the $\delta^{18}O$
258	enrichment caused by the below-cloud evaporation. The relationship between $\delta^{18}O$ and temperature in

删除[刘雨薇]: As shown in Table 3, from the alpine meadow to the arid foothills, the temperature effect of the precipitation isotope is enhanced, and there is a significant positive correlation with temperature, and all have passed the significance test. With the increase of temperature, the temperature effect and the linear relationship of precipitation isotope in each vegetation area weakened.

删除[刘雨薇]: the correlation between precipitation δ^{18} O and the temperature in the arid foothills fails the significance test

删除[刘雨薇]: When the temperature is between 0°C and 8°C, as the temperature increases, the temperature effect of precipitation weakens

259	alping mandaura forests and arid facthills are \$180-0.48T 10.82 \$180-0.12T 7.76 and	
260	alpine meadows, forests, and arid foothills are $\delta^{18}O=0.48T-10.82$, $\delta^{18}O=0.13T-7.76$, and	
2(1	$\delta^{18}O=0.27T-10.13$, respectively.	
261	Fig 6 about here	
262	Table 3 about here	
263	Table 5 about here	
264	4.2.2 The influence of altitude on SPAC	
264	In Fig.7, the altitude effect of precipitation $\delta^{18}O$ is the strongest, and the relationship between	
265	plant water δ^{18} O and altitude is weakest, showing that in SPAC, precipitation isotope is most affected	
266	plant water o 'O and annude is weakest, showing that in SFAC, precipitation isotope is most affected	
	by altitude, and plant water isotope is least affected by altitude. From the arid foothills to alpine	
267	meadows, the elevation increases, from 2097m to 3647m, and the change rate of δ^{18} O and δ D was	删除[刘雨薇]: rises
268	-0.11‰ (100m) ⁻¹ and -0.41‰ (100m) ⁻¹ . As the water vapor quality <u>increases</u> , along the hillside, the	删除[刘雨薇]: ere
269	-0.11 ² / ₆ (100m) and -0.41 ² / ₆ (100m). As the water vapor quanty <u>increases</u> along the infisite, the	删除[刘雨薇]: rises
270	temperature continues to decrease, and the isotopic values of precipitation continue to consume. In the	删除[刘雨薇]: decline
270	rainy season, the squares of the correlation coefficients between precipitation $\delta^{18}O$ and altitude,	
271	precipitation δD and altitude are 0.79 and 0.98, the change rate of $\delta^{18}O$ and δD are -0.12‰ (100m) ⁻¹	
272	precipitation of and antitude are 0.79 and 0.96, the change rate of 0 of and of are -0.12/00 (100m)	删除[刘雨薇]: the squares of the correlation coefficients between δ^{18} O and δD of precipitation and altitude are 0.79 and
272	and -1.05‰ (100m) ⁻¹ , respectively. In the dry season, the correlation coefficient squares between	0.98
273	precipitation δ^{18} O and altitude, precipitation δ D and altitude, are 0.88 and 0.90, respectively, and the	删除[刘雨薇]: of δ^{18} O and δ D with altitude
274	rate of δ^{18} O and δ D change is -0.18‰ (100m) ⁻¹ and -0.79‰ (100m) ⁻¹ , respectively. We can see that the	
275	Tate of o of and ob change is -0.18/00 (100m) and -0.79/00 (100m), respectively. we can see that the	
276	altitude effect of precipitation δ^{18} O is stronger in the dry season (R ² =0.88) than in the rainy season	
276	$(R^2=0.79)$. The results showed that as the temperature increase, the temperature effect of precipitation	
277	δ^{18} O masks the altitude effect, which leads to the weakening of the altitude effect of precipitation δ^{18} O.	
278	o"O masks the attitude effect, which leads to the weakening of the attitude effect of precipitation o"O.	
27 0	The relationship between soil water δ^{18} O and altitude is stronger in the dry season (R ² =0.26) than in the	
279	rain season (R ² =0.28). The relationship between plant water δ^{18} O and altitude is stronger in the dry	
280	season ($R^2=0.11$) than in the rainy season ($R^2=0.10$), this is consistent with the changes in the altitude	
	season (K =0.11) uian in uie ranny season (K =0.10), uns is consistent with the changes in the altitude	

281 effect of precipitation isotope, 删除[刘雨薇]: which is related to precipitation playing a 282 major controlling role in SPAC Fig 7 about here 283 4.2.3 The influence of relative humidity and precipitation on SPAC 284 To find out the potential factors that control the isotope composition of SPAC in different 285 vegetation zones, we also analyzed the influence of relative humidity and precipitation on δ^{18} O of 286 SPAC. It can be seen from Fig. 8 and Table 4 that the greatest impact of relative humidity on the 287 isotope composition of SPAC appears in the arid foothills in the dry season, with a correlation 288 coefficient of 0.38. Although in the dry season, the square of the correlation coefficient between forest 289 precipitation isotope and relative humidity is 0.78, there is an inverse humidity relationship between 290 the two, which may be related to the lack of precipitation samples in the dry season. The largest impact 删除[刘雨薇]: In the dry season, the square of the 291 correlation coefficient between forest precipitation isotope and of precipitation on the isotopic composition of SPAC occurs in the arid foothills in the rainy season, relative humidity Although it is 0.78, there is an inverse 292 humidity relationship between the two, which may be related and the square of the correlation coefficient is 0.14. It can also be seen from Fig. 8 that the influence of to the lack of precipitation samples in the dry season. 293 relative humidity and precipitation on precipitation isotope is greater than that on plant water isotope 294 and soil water isotope. The influence of relative humidity and precipitation on the isotopic composition 295 of SPAC in alpine meadows is greater than that in arid foothills and greater than that in forests, The 删除[刘雨薇]: It can also be seen from Figure 8 that the 296 influence of relative humidity and precipitation have a greater influence of relative humidity and precipitation on the isotopic composition of SPAC in alpine influence on precipitation isotope than that of plant water 297 isotope and soil water isotope. meadows is greater than that of arid foothills and greater than that of forests. In general, the SPAC 298 isotopic composition of alpine meadows, forests, and arid foothills has a weak precipitation effect, and 299 the correlation with relative humidity is also weak. 300 By comparing the correlation of temperature, altitude, relative humidity and precipitation with 301 SPAC isotope composition in different vegetation zones, we can see that the correlation between 302

temperature and altitude and SPAC isotope composition is stronger than relative humidity and

204	precipitation. Temperature and altitude are potential factors that control the isotope composition of					
304	SPAC. However, in the dry season, there is a phenomenon that the temperature effect conceals the					
305	altitude effect.					
306						
207	Fig 8 about here					
307	Table 4 about here					
308	5. Conclusion					
309	This paper uses the hydrogen and oxygen isotope method to study the differences and control					
310	factors of SPAC in different vegetation zones. Temperature and altitude are the main control factors for					
311	the isotopic composition of SPAC, From alpine meadows to forests to arid foothills, as the decreases	删除[刘雨薇]: Temperature and altitude are the main				
312	of altitude, the temperature effect of precipitation isotope increases, and the influence of temperature	controlling factors for the isotope composition of SPAC				
313	also increases. When the temperature is lower than 0° C, the temperature effect of the vegetation zone is					
314	the strongest. In the dry season, there is a phenomenon that the temperature effect masks the altitude					
315	effect. With the increase of the soil depth, the soil water isotopes are gradually depleted. The soil water					
316	content of alpine meadows is the largest and increases with the soil depth, while the soil water content					
317	in forest decreases with the soil depth, and the soil water content of the arid foothills is the least in					
318	August. In the rainy season, plants mainly use precipitation, while forest plants mainly use soil water in					
319	the dry season. Alpine meadow plants do not directly use soil water because of the abundant					
320	precipitation and melt water in the growing season. The groundwater table exposed in the arid foothills					
321	can provide water for plants in the dry season. Forests and grasslands affect intercepting rainfall, they	删除[刘雨薇]: while in the dry season, forest plants mainly				
322	delay or hinder the formation of surface runoff and convert part of the surface runoff into soil flow and	use soil water, while alpine meadow plants do not directly use				
323	groundwater, which can provide part of water resources for plants. To better understand the water cycle	soil water because of the abundant precipitation and melt water in the growing season. Exposure to the groundwater				
324	of SPAC at different temperatures and altitudes in high mountain areas, long-term observations of	table in the arid foothills can provide water for plants in the dry season. Because f				
325	different plants are needed to provide a theoretical basis for the rational and practical use of water					
326	resources in arid mountainous areas.					
327	Data Availability					

The data that support the findings of this study are openly available in Zhu (2021), "Stable water isotope monitoring network of different water bodies in Shiyang River Basin, a typical arid river in China (Supplemental Edition 20210808)", Mendeley Data, V1, doi:

- 331 10.17632/d5kzm92nn3.1.
- 332 Author contributation
- 333 Guofeng Zhu and Yuwei Liu conceived the idea of the study; Zhuanxia Zhang analyzed the data;
- 334 Zhigang Sun and Leilei Yong were responsible for field sampling; Liyuan Sang participated in the
- 335 experiment; Kailiang Zhao participated in the drawing; Yuwei Liu wrote the paper; Liyuan Sang and
- 336 Lei Wang checked and edited language. All authors discussed the results and revised the manuscript.

337 Competing interests

- 338 The authors declare no competing interests
- 339 Acknowledgments
- 340 This research was financially supported by the National Natural Science Foundation of China
- 341 (41661005, 41867030, 41971036). The authors much thank the colleagues in the Northwest Normal
- 342 University for their help in fieldwork, laboratory analysis, data processing.

343 References

- Araguás-Araguás, L, Froehlich, K., and Rozanski, K.: Stable isotope composition of precipitation over
 southeast asia. Journal of Geophysical Research Atmospheres, 103 (D22), 28721-28742, doi:
 10.1029/98JD02582,1998.
- Bam, E., and Ireson, A. M.: Quantifying the wetland water balance: a new isotope-based approach that
 includes precipitation and infiltration. Journal of Hydrology, 570, doi:
 10.1016/j.jhydrol.2018.12.032, 2018.
- Chen, X. L., Chen, Y. N., and Chen, Y. N P.: Water use relationship of desert riparian forest in lower
 reaches of Heihe River. Chinese Journal of Eco-Agriculture, 22 (08):972-979,
 doi:10.1007/s11430-013-4680-8, 2014.
- Christopher, T., Solomon, J, J., and Cole.: The influence of environmental water on the hydrogen stable
 isotope ratio in aquatic consumers. Oecologia, 161 (2), p.313-324, doi:
 10.1007/s00442-009-1370-5, 2009.
- Coenders-Gerrits, A. M, J., van der Ent, R.J., Bogaard, T. A., Wang-Erlandsson, L., Hrachowitz, M.,
 Savenije, and H. H. G.: Uncertainties in transpiration estimates. Nature. 506, E1–E2, doi:
 10.1038/nature12925, 2014.
- Coplen, T.: Stable isotope hydrology: deuterium and oxygen 18 in the water cycle. Eos Transactions
 American Geophysical Union, 63 (45), 861-862, doi: 10.1029/EO063i045p00861, 2013.

- 361 Cortes, A., and Farvolden, R. N.: Isotope studied of precipitation and groundwater in the sierra de las
- 362 cruces, Mexico. Journal of Hydrology, 107 (1-4), 147-153, doi:
 363 10.1016/0022-1694(89)90055-3,1989.
- 364 Craig, H.: Isotopic variations in meteoric water. Science, 133, 1702–1703, doi:
 365 10.1126/science.133.3465.1702,1961.
- Csilla, F., Györgyi, G., Zsófia, B., and Eszter, T.: Impact of expected climate change on soil water
 regime under different vegetation conditions. Biologia, doi: 10.2478/s11756-014-0463-8, 2014.
- Dai, J. J., Zhang, X. P., Luo, Z. D., Wang, R., Liu, Z. L., He, X. G., and Guan, H. D.: Variation of the
 stable isotopes of water in the soil-plant-atmosphere continuum of a Cinnamomum camphora
 woodland in the East Asian monsoon region. Journal of Hydrology, 589, 125199. doi:
- 371 10.1016/J.JHYDROL.2020.1251, 2020.
- Darling, W. G., Bath, A. H., and Talbot, J. C.: The O and H stable isotope composition of freshwaters
 in the british isles. 2, surface waters and groundwater. Hydrology and Earth System Sciences, doi:
 10.5194/hess-7-183-2003, 2003.
- Dawson, T. E., and Ehleringer, J. R.: Streamside trees that do not use stream water. Nature, 350 (6316),
 335-337, doi: 10.1038/350335a0, 1991.
- Dawson, T. E.: Water sources of plants as determined from xylem-water isotopic composition:
 perspectives on plant competition, distribution, and water relations stable isotopes and plant
 carbon water relations. Stable Isotopes and Plant Carbon-water Relations, 465-496, 1993.
- 380 Detjen, M., Sterling, E., and Gómez, A.: Stable isotopes in barnacles as a tool to understand green sea
 381 turtle (chelonia mydas) regional movement patterns. Biogeosciences, 2015.
- 382 Durand, J. L., Bariac, T., M Ghesquière, Biron, P., Richard, P., and Humphreys, M.: Ranking of the 383 depth of water extraction by individual grass plants, using natural ¹⁸O isotope 384 abundance. Environmental and Experimental Botany, 60 (1),137-144, doi: 385 10.1016/j.envexpbot.2006.09.004, 2007.
- Ehleringer, L.: Stable isotope composition of stem and leaf water: applications to the study of plant
 water use. Functional Ecology, 5 (2), 270-277, doi:10.2307/2389264,1991.
- 388 Gao, J., Tian, L, D., Liu, Y, Q., and Gong, T. L.: Oxygen isotope variation in the water cycle of the
- 389 yamzho lake basin in southern tibetan plateau. Chinese Science Bulletin, (16), 2758-2765, 2009.
- 390 Gao, J., Yao, T., Tian, L.D., Risi, C., and Hoffmann, G.: Precipitation water stable isotopes in the south

391 tibetan plateau: observations and modeling. Journal of Climate, 24 (13), 3161-3178, doi:

392 10.1175/2010JCLI3736.1, 2011.

- Hou, S. B., Song, X. F., Jie, Y. J., Liu, X., and Zhang, G. Y.: Stable isotopes characters in the process of
 precipitation and infiltration in taihang mountainous region. Resources Science, 2008.
- Hua, M. Q., Zhang, X. P., Yao, T. C., and He, X. G.: Dual effects of precipitation and evaporation on
- lake water stable isotope composition in the monsoon region. Hydrological Processes, 33,
 2192–2205, doi: 10.1002/hyp.13462, 2019.
- Jasechko, S., Sharp, Z. D., Gibson, J. J., Birkes, S. J., Yi, Y., and Fawcett, P. J.: Terrestrial water fluxes
 dominated by transpiration. Nature, 496 (7445), 347–351, doi: 10.1038/nature11983, 2013.
- 400 Javaux, M., Rothfuss, Y., Vanderborght, J., Vereecken, H., and Brüggemann, N.: Isotopic composition

401 of plant water sources. Nature, 536 (7617), E1–E3, doi: 10.1038/nature18946, 2016.

- Li, C. C., Huang, M. S., Liu, J., Ji, S. P., and Zhao, R. Q.: Isotope-based water-use efficiency of major
 greening plants in a sponge city in northern China. PloS one, 14 (7), doi:
- 404 10.1371/journal.pone.0220083, 2019.
- Li, L. F., Yan, J. P., Liu, D. M., Chen, F., and Ding, J. M.: Changes in soil water content under different
 vegetation conditions in arid-semi-arid areas and analysis of vegetation construction methods.
- 407 Bulletin of Soil and Water Conservation, 29 (001), 18-22, 2009.
- 408 Li, S. G., Maki, T., Atsuko, S., and Michiaki, S.: Seasonal variation in oxygen isotope composition of
- 409 waters for a montane larch forest in Mongolia. Trees (1), doi: 10.1007/s00468-005-0019-1, 2006.
- 410 Liu, W., Wang, P., Li, J., Liu, W., and Li, H.: Plasticity of source-water acquisition in epiphytic,
- 411 transitional and terrestrial growth phases of Ficus tinctoria. Ecohydrology, 7 (6), 1524–1533, doi:
 412 10.1002/eco.1475.2015.
- McCole, A. A., and Stern, L. A.: Seasonal water use patterns of Juniperus ashei on the Edwards Plateau,
 Texas, based on stable isotopes in water. Journal of Hydrology, 342, 238–248, doi:
 10.1016/j.jhydrol.2007.05.024, 2007.
- 416 Meissner, K., Schwendenmann, H., and Dyckmans.: Soil water uptake by trees using water stable 417 isotopes (δD and $\delta^{18}O$)- a method test regarding soil moisture, texture and carbonate. Plant 418 Soil, 376, 327-335, doi: 10.1007/s11104-013-1970-z, 2014.
- 419 Meng, X. Q., Wen, X. F., Zhang, X. Y., Han, J. Y., Sun, X. M., and Li, X. B.: Influence of organics on
- 420 the determination of δ^{18} O and δ D of plant leaves and stalk water by infrared spectroscopy, Chin J

- 421 Eco-agri, 20, 1359-1365, 2012.
- Nie, Y. P., Chen, H. S., Wang, K, L., and Ding, Y. L.: Rooting characteristics of two widely distributed
 woody plant species growing in different karst habitats of southwest China. Plant Ecol, 215
 (10),1099-1109, doi: 10.1007/s11258-014-0369-0, 2014.
- Nlend, B., Celle-Jeanton, H., Risi, C., Pohl, B., and Ketchemen-Tandia, B.: Identification of processes
 that control the stable isotope composition of rainwater in the humid tropical west-central
 Africa. Journal of Hydrology, 584, 124650, doi:10.1016/j.jhydrol.2020.124650, 2020.
- 428 Porporato, L.: Plants in water-controlled ecosystems: active role in hydrologic processes and response 429 Advances in Water Resources, 24 (7), 725-744. to water stress. doi: 430 10.1016/S0309-1708(01)00005-7, 2001.
- Price, R. M., Skrzypek, G., Grierson, P. F., Swart, P. K , and Fourqurean, J. W.: The use of stable
 isotopes of oxygen and hydrogen to identify water sources in two hypersaline estuaries with
 different hydrologic regimes. Marine and Freshwater Research, 63 (11), 952-966. doi:
 10.1071/MF12042, 2012.
- Raco, B., Dotsika, E., Feroni, A. C., Battaglini, R., and Poutoukis, D.: Stable isotope composition of
 italian bottled waters. Journal of Geochemical Exploration, 124, doi:
 10.1016/j.gexplo.2012.10.003, 2013.
- Rothfuss, Y., and Javaux, M.: Reviews and syntheses: Isotopic approaches to quantify root water
 uptake: A review and comparison of methods. Biogeosciences, 14, 2199,
 doi:10.5194/bg-14-2199-2017, 2017.
- Rozanski, K., Araguas-Araguas, L., and Gonfifiantini, R.: Relation between long-term trends of
 oxygen-18 isotope composition of precipitation and climate. Science 258 (5084), 981–985, doi:
 10.1126/science.258.5084.981, 1992.
- 444 Schlesinger, W. H., and Jasechko, S.: Transpiration in the global water cycle. Agric Forest Meteorol,
- 445 180–190, 115–117, doi: 10.1016/j.agrformet.2014.01.011, 2014.
- Schwendenmann, L., Pendall, E., Sanchez-Bragado, R., Kunert, N., Hölscher, D.: Tree water uptake in
 a tropical plantation varying in tree diversity: Interspecific differences, seasonal shifts and
- 448 complementarity. Ecohydrology, 8 (1), 1–12, doi: 10.1002/eco.1479, 2015.
- 449 Shou, W. K., Hu, F. L., Alamusa., and Liu, Z. M.: Methods for studying water cycle and water sources
- 450 in arid regions based on spac system. Chinese Journal of Ecology, 32 (8), 2194-2202, 2013.

- 451 Smith, G. I., Friedman, I., Gleason, J. D., and Warden, A.: Stable isotope composition of waters in
- 452 southeastern California: 2. groundwaters and their relation to modern precipitation. Journal of
 453 Geophysical Research Atmospheres, 97, doi: 10.1029/92JD00183,1992.
- 454 Song, X. F., Xia, J., Yu, J. J., and Liu, C. M.: Application of environmental isotope techniques to study
- the hydrological cycle mechanism of typical watersheds in North China. Advances in
 Geographical Sciences, 21 (6), 527-537, 2002.
- 457 Song, X., Barbour, M. M., Farquhar, G. D., Vann, D. R., and Helliker, B. R.: Transpiration rate relates
- to within and across species variations in effective path length in a leaf water model of oxygen
 isotope enrichment. Plant, Cell and Environment, 36 (7), 2013.
- 460 Sun, S. F., Huang, J. H., Lin, G. H., Zhao, W., and Han, X. G.: Application of stable isotope technique
- 461 in the study of plant water use. Acta Ecologica Sinica, 25 (9), 2362-2371. Tech. Pap, No. 96 (48
 462 pp.), doi: 10.1360/982004-755, 2005.
- 463 Tetzlaff, D., Sprenger, M., and Soulsby, C.: Soil water stable isotopes reveal evaporation dynamics at
- the soil-plant-atmosphere interface of the critical zone. Hydrol. Earth Syst. Sci, 21, 3839–3858,
 2017.
- 466 Wan, Q. Z., Zhu, G. F., Guo, H. W., Zhang, Y., Pan, H. X., and Yong, L. L.: Influence of vegetation
- 467 coverage and climate environment on soil organic carbon in the Qilian mountains. Scientific
 468 Reports, 9(1), 17623. doi: 10.1038/s41598-019-53837-4, 2019.
- 469 Wang, S.Y., Wang, Q. L., Wu, J, K., He, X. B., and Wang, L. H.: Characteristics of stable isotopes in
- 470 precipitation and moisture sources in the headwaters of the Yangtze River. Environmental
 471 Sciences, 40 (6), 2615-2623, doi: 10.13227/j.hjkx.201811140, 2019.
- West, A. G., Patrickson, S. J., and Ehleringer, J. R. : Water extraction times for plant and soil materials
 used in stable isotope analysis. Rapid Communications in Mass Spectrometry, 20 (8), 1317-1321.
- 474 doi: 10.1002/rcm.2456, 2010.
- 475 Western, A. W., and Grayson, R. B.: The tarrawarra data set: soil moisture patterns, soil characteristics,
- 476 and hydrological flux measurements. Water Resources Research, 34 (10), 2765-2768. doi:
 477 10.1029/98WR01833, 1998.
- 478 White, J., Cook, E., Lawrence, J. R., and Broecker, W. S.: The D/H ratios of sap in trees: implications
- 479 for water sources and tree ring D/H ratios. Geochim. Cosmochim. Acta, 49 (1), 237–246, doi:
 480 10.1016/0016-7037(85)90207-8,1985.

- 481 Yang, B., Wen, X., and Sun, X.: Seasonal variations in depth of water uptake for a subtropical
- 482 coniferous plantation subjected to drought in an east asian monsoon region. Agricultural and
 483 Forest Meteorology, 201, 218-228, doi: 10.1016/j.agrformet.2014.11.020, 2015.
- 484 Yu, J. J., Song, X. F., Liu, X. C., Yang, C., Tang, C. Y., and Li, F. D.: A study of groundwater cycle in
- 485 yongding river basin by using δD , $\delta^{18}O$ and hydrochemical data. Journal of Natural Resources, 486 (03), 415-423, 2007.
- Zhou, H., Zhao, W. Z., Zheng, X. J., and Li, S. J.: Root distribution of Nitraria sibirica with seasonally
 varying water sources in a desert habitat. J. Plant Res, 128, 613–622, 2015.
- 489 Zhou, J. J., Zhao, Y. R., Huang, P., and Liu. C. F.: Impacts of ecological restoration projects on the
- 490 ecosystem carbon storage of inland river basin in arid area, China. Ecological Indicators, doi:
- 491 10.1016/j.ecolind.2020.106803, 2020.
- 492 Zhu, G. F., Guo, H.W., Qin, D. H., Pan, H. X., and Ma, X. G.: Contribution of recycled moisture to
- 493 precipitation in the monsoon marginal zone: estimate based on stable isotope data. Journal of
- 494 Hydrology, 569, doi: 10.1016/j.jhydrol.2018.12.014, 2018.
- 495 Zhu, G. F., Zhang, Z. X., Guo H. W., Zhang, Y., Yong, L. L., Wan, Q. Z., Sun, Z. G., and Ma, H.Y.:
- 496 Below-Cloud Evaporation of Precipitation Isotope over Mountain-oasis-desert in Arid Area. Journ
- 497 al of Hydrometeorology, 22 (10): 2533-2545, doi: 10.1175/JHM-D-20-0170.1, 2021.

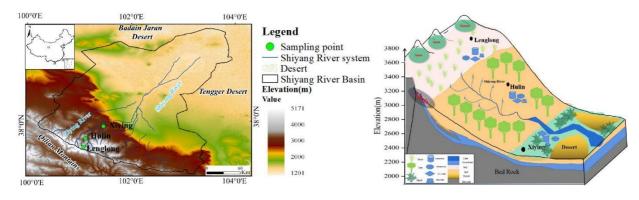


Fig. 1 Study area and observation system

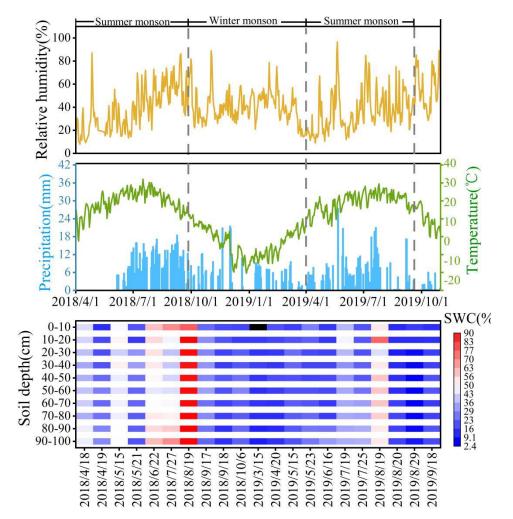


Fig. 2 Diurnal variation of relative humidity, precipitation, temperature, and swc (%) from April 2018

to October 2019

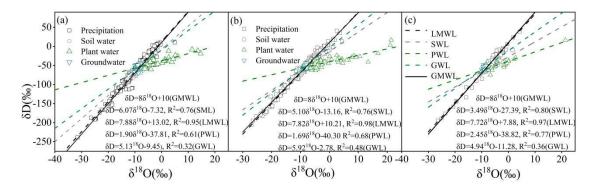


Fig.3 Relationship of stable isotopes in different water bodies in alpine meadow (a), forest (b) and arid

foothills (c)

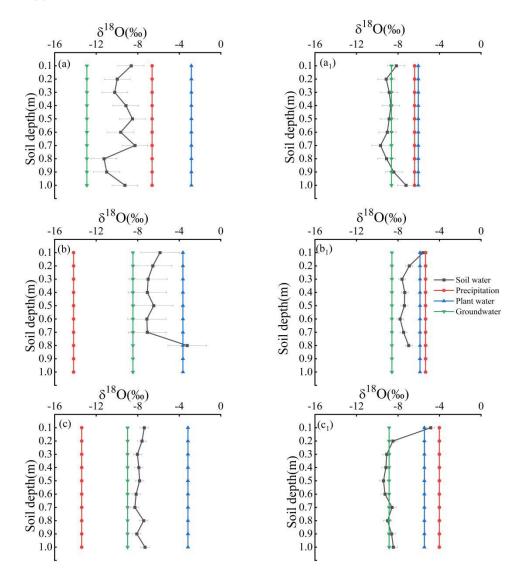


Fig. 4 (a)-(c) represents the variation of δ^{18} O of soil, plant, precipitation and groundwater with soil depth in the alpine meadow, forests and arid foothills in the dry season, and (a₁)-(d₁) represents the variation of δ^{18} O of soil, plant, precipitation and groundwater in the alpine meadow, forests and arid foothills in the rainy season

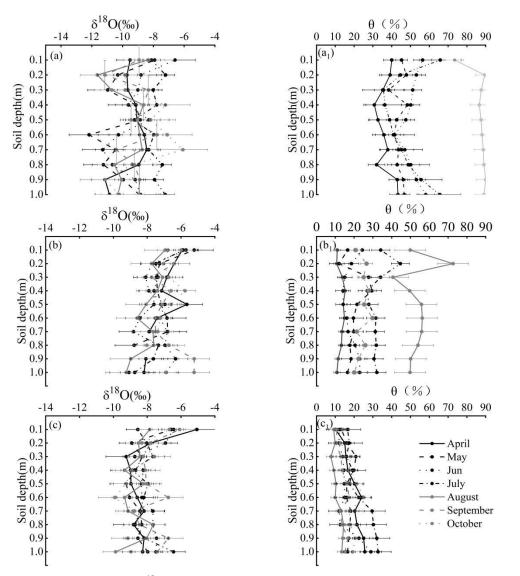


Fig.5 The variation of δ^{18} O and soil water content (θ , %) with soil depth. (a)-(c) represent alpine meadow, forests and arid foothills, respectively

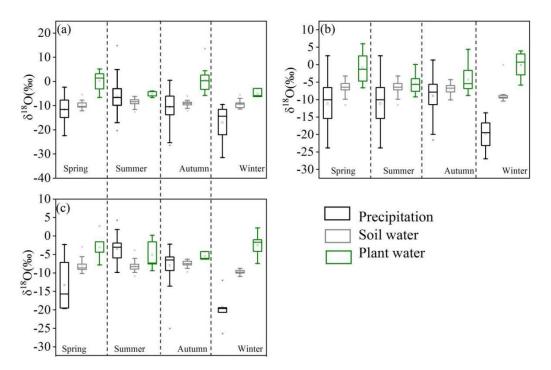


Fig. 6 Seasonal variations of different water isotopes in alpine meadow (a), forests (b) and arid foothills (c)

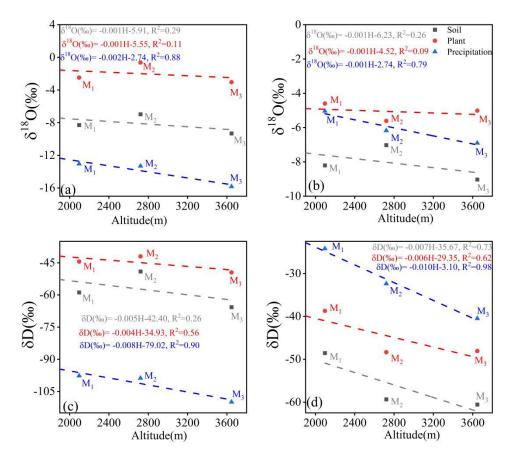


Fig. 7 Relationship between different isotope and altitude in the dry season (a, c) and in the rain season (b, d), M_1 stands for alpine meadows, M_2 stands for forests, and M_3 stands for arid foothills

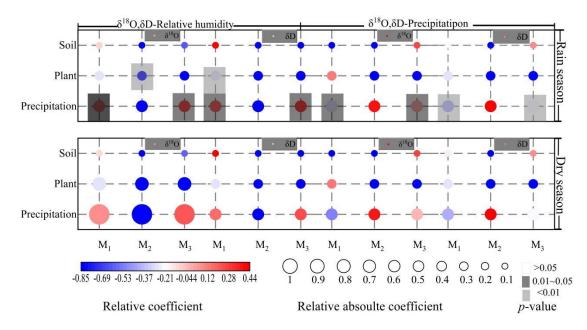


Fig. 8 Relationship between different isotope and relative humidity and precipitation, M₁ stands for alpine meadows, M₂ stands for forests, and M₃ stands for arid foothills

Table 1 Basic information	table of sampling	points
---------------------------	-------------------	--------

		Geo	ographical Paramete	Meteorological Parameters			
Sampling Station		Longitude (E)	Longitude (E) Latitude (N)		Average annual temperature (°C)	Average annual precipitation (mm)	
M1	Lenglong	101°50'	37°33'	3647	-0.20	595.10	
M2	Hulin	101°53'	37°41'	2721	3.24	469.44	
M3	Xiying	102°18'	38°29'	2097	7.99	194.67	

	δ ¹⁸ O(‰)				δD(‰)				
Vegetation zone types	Water types	Min	Max	Average	Coefficient of Variation	Min	Max	Average	Coefficient of Variation
	Precipitation	-31.49	14.79	-9.44	-0.70	-238.62	63.43	-59.43	-0.84
Alpine	Soil water	-12.62	-5.46	-9.16	-0.16	-83.86	-26.13	-62.92	-0.16
meadow	Plant water	-6.68	5.12	-1.68	-2.18	-60.22	-12.14	-41.14	-0.28
	Groundwater	-10.07	-7.71	-8.84	-0.07	-68.55	43.72	-54.85	-0.10
	Precipitation	-26.96	4.38	-8.63	-0.74	-205.40	41.35	-60.24	-0.87
Forest	Soil water	-11.96	-0.07	-7.01	-0.25	-78.43	-18.48	-48.68	-0.21
Forest	Plant water	-9.24	5.98	-5.44	-1.31	-63.29	-23.77	-45.12	-0.24
	Groundwater	-10.25	-7.43	-8.56	-0.09	-68.80	-43.75	-53.46	-0.12
	Precipitation	-26.47	4.24	-7.50	-0.87	-194.34	38.62	-48.62	-1.04
Arid foothills	Soil water	-10.98	-2.96	-8.23	-0.15	-74.22	-8.79	-59.17	-0.12
Arid Ioothills	Plant water	-9.41	2.67	-3.61	-0.88	-74.90	-29.39	-48.79	-0.23
	Groundwater	-10.34	-7.43	-8.88	-0.07	-71.67	-44.26	-55.12	-0.09

Table 2 Comparison of stable isotope of water in different vegetation zones

Table 3 Correlation between precipitation isotopes and different temperatures in different vegetation zones

Vegetation zone	Correlation below	Correlation between	Correlation above	Correlation during the study	
C	0°C	0°C-8°C	8°C	C 7	
type	$(\delta^{18}O/\delta D)$	$(\delta^{18}O / \delta D)$	$(\delta^{18}O/\delta D)$	period	
Alpine meadow	0.51*/0.59*	0.30*/0.24*	0.15/0.12	0.59*/0.61*	
Forest	0.95*/0.94*	0.66*/0.69*	0.14/0.10	0.69*/0.65*	
Arid foothills	0.47/0.51	0.79*/0.71*	0.31/0.14	0.83*/0.81*	

Note: ** indicates a significant correlation (two-tailed) at a confidence level of 0.01, * indicates a significant correlation (two-tailed) at a confidence level of 0.05

设置格式[刘雨薇]: 左

Table 4 Correlation between different isotopes 3¹⁸O and relative humidity and precipitation in different

vegetation zones

K	Isotope – types		Rain season			Dry season	
Meteorological parameters		Alpine meadow	Forest	Arid foothills	Alpine meadow	Forest	Arid foothill
		y= -0.001x-8.89,	y= -0.03x-5.21,	y= -0.002x-8.01,	y= -0.01x-8.39,	y= 0.01x-7.21,	y= -0.04x-6.38.
	Soil	R ² =0.001	R ² =0.13	R ² =0.002	R ² =0.03	R ² =0.07	R ² =0.38
Relative	Plant	y= -0.11x+6.11,	y= 0.08x-10.53,	y= 0.05x-7.68,	y= -0.09x+3.78,	y= -0.02x-0.28,	
Humidity		R ² =0.11	R ² =0.13	R ² =0.04	R ² =0.10	R ² =0.004	-
	Precipitation	y= -0.22x+9.45,	y= 0.02x-9.50,	y= 0.13x+3.57,	y= 0.02x-16.47,	y= 0.16x+4.33,	y=0.08x-20.23,
		R ² =0.28	R ² =0.002	R ² =0.29	R ² =0.002	R ² =0.72	R ² =0.02
		y= 0.04x-9.55,	y= 0.02x-7.36,		y= -0.13x-8.94,		y= 0.06x-8.73,
	Soil	R ² =0.15	R ² =0.01	-	R ² =0.18	-	R ² =0.06
	tion Plant	y -0.07x-1.09,	y= -0.06x-5.01,	y= 0.18x-6.00,	y= 0.07x-2.75,	y= -0.41x-0.32,	
precipitation		R ² =0.002	R ² =0.01	R ² =0.05	R ² =0.03	R ² =0.06	-
	B	y= -0.30x-5.21,	y= -0.17x-6.17,	y= -0.28x-2.84,	y= -0.14x-14.24,	y= 0.17x-9.41	y=0.14x-16.49,
	Precipitation	R ² =0.09	R ² =0.05	R ² =0.14	R ² =0.002	R ² =0.11	R ² =0.02