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Abstract. Emissions from biomass burning (BB) are a key source of atmospheric tracer gases that affect the atmospheric carbon

cycle. We estimated four types
::::::::
developed

::::
four

:::
sets

:
of global BB emissions

:::::::
estimates

:::::::
(named

::::::::
GlcGlob,

::::::::
GlcGeoc,

:::::::::
McdGlob,

:::
and

:::::::::
McdGeoc)

:
using a bottom-up approach and by combining the remote sensing products related to fire distribution with

two aboveground biomass (AGB) and two land cover classification (LCC) distributions. The sensitivity of the estimates of

BB emissions to the AGB and LCC data was evaluated using the carbon monoxide (CO) emissions associated with each BB5

estimate. We found a substantial spatial difference in CO emissions for both
:::::
Using

:
the AGB andLCC data, which resulted

in
::
/or

:::::
LCC

::::
data

:::
led

::
to

:::::::::::
substantially

:::::::
different

::::::
spatial

::::::::
estimates

::
of

::::
CO

:::::::::
emissions,

::::
with

:
a large (factor of approximately three)

spread of estimates for the mean annual CO emissions
:
;
::::::::
526± 53,

::::::::
219± 35,

::::::::
624± 57,

::::
and

:::::::
293± 44

:::
Tg

:::
CO

:::::
yr−1,

:::
for

::::::::
GlcGlob,

::::::::
GlcGeoc,

::::::::
McdGlob,

:::
and

:::::::::
McdGeoc,

:::::::::::
respectively,

:::
and

:::::::
415± 47

:::
Tg

:::
CO

::::
yr−1

:::
for

::::
their

::::::::
ensemble

:::::::
average

::::::::
(EsmAve). We simulated

atmospheric CO variability
:
at
:::::::::::::

approximately
::::
2.5◦

::::
grid

:
using an atmospheric tracer transport model and the BB emissions10

estimates and compared it with ground-based and satellite observations. At ground-based observation sites during fire seasons,

statistical comparisons indicated that the impact of differences in the BB emissions estimates on atmospheric CO variability

:::::::::
intermittent

:::
fire

::::::
events was poorly defined in our simulations

:::
due

::
to

:::
the

:::::
coarse

:::::::::
resolution,

:::::
which

::::::::
obscured

::::::::
temporal

:::
and

::::::
spatial

::::::::
variability

::
in
::::

the
::::::::
simulated

::::::::::
atmospheric

::::
CO

::::::::::::
concentration. However, when compared at the regional and global scales, the

distribution of atmospheric CO concentrations in the simulations show substantial differences among the estimates of BB15

emissions. These results indicate that the estimates of BB emissions are highly sensitive to the AGB and LCC data.

1 Introduction

The majority of biomass burning (BB) is related to human activities, with only a small fraction caused by natural processes

such as lightning (Seiler and Crutzen, 1980; Balch et al., 2017). Various agriculture
::::::::::
agricultural and economic processes in-

volve BB; e.g., clearing of forest and brush land for agricultural use, or controlling fuel accumulation in forests (Andreae,20

1991). Such intensive activities have significant implications for changes in regional land cover from fire-resistant to fire-prone

systems (Turetsky et al., 2015). Even in savanna where fire-adapted trees are dominant, frequent fires and/or an abrupt in-
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crease in fire intensity can result in ecosystem degradation with a subsequent reduction in woody biomass (Saito et al., 2014).

Furthermore, BB is a significant source of trace gases and aerosol particles in the atmosphere (e.g., Bougiatioti et al., 2014;

Pan et al., 2020). Water vapor and carbon dioxide (CO2) are the primary products of the burning of organic materials. In ad-25

dition, in incomplete combustion, various other compounds such as carbon monoxide (CO), methane (CH4), nitrogen oxides,

and ammonia are emitted from the fires (Andreae, 1991). Recent studies have shown that climate change associated with rising

anthropogenic emissions of greenhouse gases might lead to an increase in fire frequency over some regions (e.g., boreal re-

gions), and emissions of greenhouse gases from terrestrial biosphere due to enhancement of BB (Dutta et al., 2016; Hart et al.,

2019).30

The quantification of BB emissions is crucial to our understanding of the role of BB with respect to the global carbon cycle

and its interaction with climate change. At present, several global BB emission inventories are available thanks to advances

in satellite observation technology. The satellite remote sensing products for fires, such as fire radiative power, active fires,

and burned area, have been used to develop inventories of BB emissions (e.g., Wiedinmyer et al., 2011; Kaiser et al., 2012;

van der Werf et al., 2017). These inventories provide BB emissions covering a variety of temporal and spatial resolutions .35

:::
and

::::
have

:::::::::
facilitated

::::::::::::
improvements

::
in

::::
our

::::::::::::
understanding

::
of

::::::::::
greenhouse

:::
gas

:::::::::
emissions

::::
from

::::
BB.

::::::::
Research

::::::
efforts,

:::::::::
including

::
the

::::::::::
continuous

:::::::::::
improvement

::
of

::::
land

:::::::
surface

::::::::::
information,

:::
are

:::::::::
important

::
to

:::
the

:::::
study

::
of

:::
the

::::::
global

::::::
carbon

:::::
cycle,

::
as

::::
they

:::::
have

::::::
reduced

:::::::::
estimation

:::::::::::
uncertainties.

:
However, estimates of annual greenhouse gas and aerosol particle emissions based on these

inventories
:::
still

:
show significant differences of 1.5× and 3.8× for CO2 and organic carbon, respectively, as well as variations

in the spatiotemporal patterns of the emissions (Shi et al., 2015; Pan et al., 2020). These divergences mean that our ability40

to represent BB processes at the global scale remains limited, and a basic research question regarding which of the available

estimates better represents BB emissions over regional and global scales remains to be answered. Consequently, there is further

need for information related to the development of better estimates of BB emissions.

Our analysis of BB emissions inventories used a bottom-up approach and incorporated land surface information regard-

ing vegetated biomass density and land cover classifications (LCC), information on fire events, and several parameters re-45

lated to burning efficiency. Although the technique used for land use mapping have
::
has

:
improved over recent decades (e.g.,

Popescu et al., 2011; Rodriguez-Galiano et al., 2012), differences of between 10% and 20% remain in estimates of regional

carbon stocks based on different land surface maps (Mitchard et al., 2013), which can cause divergence in estimates of BB

emissions. In this study, we aim to evaluate the sensitivity of estimates of BB emissions to land surface information and com-

pare our findings with the newly proposed BB emissions estimates. A detailed description of our BB emissions estimates, as50

well as a broad summary of the comparison of our estimates with four published reference BB datasets covering CO2 emis-

sions, can be found in Shiraishi et al. (2021). This study takes an additional step towards evaluation of BB estimates in terms

of atmospheric CO variability, which can be used as a tracer to investigate the transport of BB emissions (e.g., Chen et al.,

2009; Mu et al., 2011), using independent reference data from ground-based and satellite observations of atmospheric CO

concentrations.55
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2 Methods

2.1 Biomass burning estimates

This study expresses CO emissions from BB (E; g CO month−1) at a grid (i) at a resolution of 500 m , and
::::
with the LCC (j)

in each month (k), using the burned area method (e.g., Michel et al., 2005; Mieville et al., 2010):

Ei,k = BAi,k ·Fi,k ·EFj , (1)60

Fi,k = BEj ·
n∑

l=m+1

(
AGBi(1−BEj)

l−1) (2)

where BA,F,EF,BE,andAGB are the burned area (m2), the flammable fuel (kg m−2), the emission factor (g CO kg−1), the

burning efficiency (which ranges from 0 to 1), and the above-ground biomass (kg m−2), respectively. The
:::::
values

:::
of

:::
EF

::::
and

:::
BE

:::
are

:::::::
defined

::
by

:::::
LCC

::::::
(Tables

:::
A1

::::
and

::::
A2).

:::
The

:
parameters m and n are the cumulative number of fire occurrences during

the previous (k− 1) and current month k, respectively. Equation (2) represents decreases in F due to
:::::
owing

:::
to

::::::::
reductions

:::
of65

:::::
AGB

::
by

:
frequent fires in a year. The biomass density; i.e., flammable fuel, decreases with increasing fire occurrence l. Note

that the largest values of E and F occur during the first fire event in a year, as shown in Eqs (1) and (2), then E and F decline

as more fire events occur. AGB is reset to its original magnitude; i.e., before the fires, at the beginning of each year.

To determine the sensitivity of the BB emissions estimates to the land surface information used, we calculated E based on

four scenarios that combined two types of LCC and two types of AGB data. The LCC maps derived from the Global Land Cover70

2000 project (GLC2000) (Bartholomé and Belward, 2005) and the Moderate Resolution Imaging Spectroradiometer (MODIS)

Land Cover Type (MCD12Q1) Version 6 (Sulla-Menashe et al., 2019) data products were used to classify the land cover

types in each grid. The GLC2000 provides a global LCC map with 22 land cover types (Table A1) based on daily data from the

VEGETATION sensor onboard the Satellite Probatoire de l’Observation de la Terre (SPOT-4) satellite. It covers 14 months from

1 November 1999 to 31 December 2000 with a 1-km spatial resolution. We also used the MCD12Q1 International Geosphere-75

Biosphere Programme (IGBP) legend as another LCC map. This product provides a global LCC map with 17 land cover types

(Table A2) with a spatial resolution of 500 m and yearly temporal resolution after 2001. The AGB maps were obtained from

two datasets: the GEOCARBON global forest biomass map (Avitabile et al., 2016) and the Globbiomass AGB map (Santoro,

2018). The GEOCARBON map is a combined AGB map based on two pan-tropical datasets published by Saatchi et al. (2011)

and Baccini et al. (2012) with reference field data and biomass maps, and provides the global AGB map at a 1-km spatial80

resolution. The Globbiomass map is an AGB product based on satellite observations from the radar backscattered intensity

recorded by the Phase Array-type band Synthetic Aperture Radar (PALSAR) instrument, which is onboard the Advanced Land

Observing Satellite (ALOS), and the Advanced Synthetic Aperture Radar (ASAR) instrument operating at C-band, which is

onboard the Environmental Satellite (Envisat) and uses LiDAR-based metrics and surface reflectances. This AGB product is

produced by the European Space Agency (ESA) with a 25-m spatial resolution. These LCC and AGB maps were used in Eqs85

(1) and (2) by aggregating or disaggregating them to a spatial resolution of 500 m.
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The BA was obtained from the MODIS Thermal Anomalies and Fire Daily (MOD14A1) Version 6 dataset (Giglio et al.,

2016). MOD14A1 provides daily fire mask compositions at a 1-km resolution, and we used the low-, nominal-, and high-confidences

:::::::::::::
high-confidence fire classes (FireMask = 7, 8, and 9, respectively) to detect BA. If a 1-km resolution grid point showed a fire

flag on a particular day, then the 4 surrounding sub-grids with
:::
This

:::::
study

::::::::::::
disaggregated

:::
the

:::::::::
MOD14A1

:::::::
product

::::
into a 500 m90

resolution, located within the original MOD14A1 grid, were assumed to have burned; that is,
:::
and

::::::::
assigned BAi,k = 250,000

m2
::
for

::::
any

::::
grid

:::::::
showing

::
a
:::
fire

::::
flag. Fire occurrences over a grid i in a month k were not involved in BA in this study, but

they vary E with changes of F in Eq. (2). The fire occurrences were determined by counting the number of discontinuities of

fires in a month. This means that, if the FireMask shows flags for fires (FireMask = 7,8,9) continuously over a month, the fire

occurrence was set to l = 1.95

The EF
::
EF

:
for CO was derived from the study of van der Werf et al. (2017). They compiled an EF

::
EF

:
dataset for six

biomes based on the studies of Andreae and Merlet (2001) and Akagi et al. (2011). For this study, we reallocated the EF
:::
EF

to the 22 land cover types used in GLC2000 (Table A1) and the 17 LCC types used in MCD12Q1 (Table A2). In this process,

we classified the globe into 14 regions (after Giglio et al. (2006) and van der Werf et al. (2017); Fig. A1), then the EF from

the 6 biomes was adapted to the corresponding LCC types based on the location of the objective grid in a region. The BE100

was derived from the study by Mieville et al. (2010). As their LCC conformed to GLC2000 (Table A1), the BE values were

assigned to 17 LCC types on the MCD12Q1 map (Table A2).

We hereafter refer to BB emissions estimates based on GLC2000 using Globbiomass and GEOCARBON as GlcGlob and

GlcGeoc, respectively, and those based on MCD12Q1 using Globbiomass and GEOCARBON as McdGlob and McdGeoc,

respectively (Table 1).
::::::
Further,

::
to
::::::
obtain

:
a
:::::
single

::::::::
estimate

::::
from

::::
these

::::
four

:::::::::
estimates,

::
an

::::::::
ensemble

::::::
average

:::::::::
(EsmAve)

::
of

:::
the

::::
four105

:::
BB

::::::::
emissions

::::::::
estimates

::
is

:::::
used.

::::
This

:::::
value

:::::::::::
approximates

:::
the

:::::
center

:::
of

:::
the

:::::::::
probability

::::::::::
distribution

::
of

:::
BB

:::::::::
emissions

::::::::
estimates

::::::
derived

::::
from

::::
two

:::::
AGB

:::
and

::::
two

:::::
LCC

:::::::
datasets.

:
We used E data that were aggregated onto a grid with a resolution of about

0.837 degree in the following analysis.

2.2 Atmospheric tracer transport model

We used the Non-hydrostatic ICosahedral Atmospheric Model (NICAM)-based Transport Model (NICAM-TM; Niwa et al.,110

2011) to simulate atmospheric CO concentrations in this study. NICAM has a unique characteristic in its dynamical core; i.e.,

a non-hydrostatic system in the flux form that guarantees the conservation of tracer mass (Satoh, 2002). NICAM implements

this non-hydrostatic scheme using an icosahedral grid configuration.

NICAM-TM includes a module for the reaction processes among hydroxyl radical (OH) and CO, and the oxidation of CH4

with OH, which yields CO, to simulate atmospheric CO variability (Niwa et al., 2020). We used atmospheric OH field data115

from the TransCom-CH4 project (Patra et al., 2011). The atmospheric CH4 concentration in the simulation was fixed at 1800

ppb.
:
,
:::::
which

::
is

:::
the

:::::::::
maximum

:::::
value

::
of

:::::
whole

:::::::::::
atmospheric

::::
CH4::::::::::::

concentration
::::::
derived

:::::
from

:::
the

::::::::::
Greenhouse

:::::
gases

:::::::::
Observing

:::::::
SATellite

:::::::::::
observations

::::::::::::::::::
(Yokota et al., 2009)

::
for

::::
2009

::::
and

:::::
2015.

:
In this study, we used a globally uniform grid system with a

horizontal resolution of about 220 km and 40 vertical layers. Horizontal winds in NICAM-TM are nudged using the Japanese
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55-year Reanalysis (Kobayashi et al., 2015) to simulate substantial atmospheric transport. We used the NICAM-TM version120

described by Niwa et al. (2017) for the transport of CO.

Fossil fuel, biogenic, and biomass burning CO-emission-inventories were used as the CO emission sources at the Earth’s

surface. The fossil fuel CO emissions were derived from the Emissions Database for Global Atmospheric Research (EDGAR

v4.3.2; Janssens-Maenhout et al., 2019) with an annual resolution. Biogenic CO emissions from vegetation were derived from

a process-based model, the Vegetation Integrative SImulator for Trace gases (VISIT; Ito, 2019). The biogenic CO emissions in125

VISIT are simulated as a part of processes associated with biogenic volatile organic compound emissions and have a monthly

resolution. For CO emissions from BB, the abovementioned four scenarios
::
are based on the various combinations of the LCC

and AGB maps.

2.3 Observational data

Ground-based observations of atmospheric CO concentrations were downloaded from the World Data Centre for Greenhouse130

Gases (WDCGG) for 2009–2015. We used daily datafrom three
::::
From

:::
the

:::
28

::::::::
WDCGG

:::::::
stations

::::
with

::::::
hourly

:::::::::
observation

:::::
data,

::
we

:::::::
selected

:::::
those

:::::::
showing

::::::
abrupt

::::::::
increases

::
in

::::::::::
atmospheric

:::
CO

:::::::::::::
concentrations

:::::
during

:::
dry

::::::::
seasons.

:::::::::::
Consequently,

::::
two ground-

based sites: Bukit Kototabang, Indonesia (BKT, 0.20◦S, 100.32◦E; Zellweger et al., 2019) ,
:::
and

:
East Trout Lake, Canada

(ETL, 54.35◦N, 104.99◦W; Kim, 2016) , and
::::
were

:::::::
selected

::
to

:::::::
evaluate

:::
the

::::::::
estimates

:::
of

:::
BB

::::::::
emissions

:::::
from

::::
local

::::
fire

::::::
events.

Minamitorishima, Japan (MNM, 24.29◦N, 153.98◦E; Watanabe et al., 2000) to evaluate our BB products
:::
was

::::
also

::::
used

:::
as135

:::::::
spatially

::::::::::::
representative

::::::::::
background

::::::::::
information. The MNM site is situated on a remote coral island in the western North

Pacific where the influence of local fire events is usually not significant,
:::::::
because

::::
there

::
is

:::
no

::::
other

::::::
island

::
for

::::
over

::::::
1,000

:::
km

::
in

:::
any

::::::::
direction, whereas the data from the BKT and ETL sites may be influenced by wildfires. The data from the BKT and ETL

sites were used to evaluate the estimates of BB emissions from local fire events, and those from MNM were used as spatially

representative background information.140

We also used the column-averaged dry-air concentration of CO (XCO;
::::
ppb) recorded by the Measurements of Pollution

in Troposphere (MOPITT) (Deeter et al., 2003) instrument on NASA’s Earth Observing System Terra platform. We analyzed

the
:::
The

:
monthly mean XCO distribution products (L3V95.6.3; Deeter et al., 2014) retrieved from both thermal infrared

:::
was

::::::::
calculated

:::
by

:::::::
dividing

:::
the

:::::::
retrieved

::::
CO

::::
total

::::::
column

::::
data

::::
(mol

::::::
cm−2)

:::
by

:::
the

:::
dry

::
air

:::::::
column

::::
data

::::
(mol

::::::
cm−2)

::
in

:::
the

::::::::
MOPITT

::::
Level

::
3
:::::::
products

::::::::::::::::::::::::::::::::::::
(MOP03JM-L3V95.6.3; Deeter et al., 2014)

:::
for

::::::::::
multispectral

:::::::
thermal

:::::::
infrared

:::::
(TIR) and near-infrared observations145

:::::
(NIR)

::::::::
retrievals

:::::::::
(TIR/NIR) for the period 2013–2015.

:::
The

:::::
XCO

::::
was

::::::::
calculated

:::::::::
separately

:::
for

::::::
daytime

::::
and

::::::::
nighttime

::::::::
MOPPIT

:::::::::::
observations,

:::
and

:::
the

:::::::
average

::
of

::::
these

::::
data

:::::
were

::::
used

::
in

:::
this

:::::
study.

:

2.4
:::::::::

Application
:::
of

::::::::
MOPITT

:::::::::
averaging

:::::::
kernels

::
to

::::::::::
simulations

::
To

::::::::
compare

:::
our

:::::::::
simulation

::::::
results

:::::
with

::::::::
MOPITT

::::::
XCO,

::::::::
MOPITT

::::::::
averaging

:::::::
kernels

::::
and

:
a
:::::

priori
:::::::::::

information
::::
used

::
in
::::

the

:::::::
MOPITT

::::::::
retrievals

:::::
were

::::::::::
incorporated

::
as

:::::::
follows

:::
into

:::
the

::::::::
simulated

::::
CO

::::
total

::::::
column

::
cs::::

with
:::::
units

::
of

::::
mol

:::::
cm−2

::::::::::::
(Deeter, 2002)150
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:
:

cs
:
=
:
ca
:
+
:
a
:
(xs
::

−
:
xa
::

),
:

(3)

:::::
where

:::
ca,

::
a,

:::
xs,

::::
and

::
xa:::

are
::
a
:::::
priori

:::
CO

::::
total

:::::::
column

::::
data,

:::
the

::::
CO

::::
total

::::::
column

:::::::::
averaging

::::::
kernel,

:::
and

:::::::::
simulated

:::
and

::
a
:::::
priori

:::
CO

:::::::
profiles,

::::::::::
respectively.

::::
The

:::
CO

::::::
profiles

::
x

:::
are

::::::::
described

:::::
using

::
the

::::::::
common

::::::::
logarithm

::
of

:::
CO

:::::::
volume

::::::
mixing

:::::
ratios

::
v,

:::::::
log10v,

:
at
:::::::::
particular

:::::
levels

::
in

:::
the

::::::
profile.

:::::
Both

:
a
::::
and

::
x

:::
are

::::::
vectors,

::::
and

:
c
::
is

::
a

:::::
scalar.

::::
The

:
a
:::::
priori

::::
CO

::::
total

::::::
column

:::
ca ::

is
::::::::
calculated

:::
by155

:::::::::
multiplying

:::
the

::::
total

:::::::
column

:::::::
operator

:
t
::::
and

:::
xa:

:

ca =
:::

tT
::

xa
::

, (4)

:::::
where

:::
the

::::::::::
superscript

::
T

:::::::
denotes

:::
the

::::::::
transpose

::::::::
operator.

::::
The

::::
total

:::::::
column

::::::::
operator

:
t
:::::::

defines
:::
the

:::::
layer

:::::
width

::::::::
between

:::
the

::::::::
particular

:::::::
pressure

:::::
levels

::
p,

:

t= k
:::

∆p
:::

, (5)160

:::::
where

::
k

::
is

:::
the

:::::::::
conversion

::::::
factor

:::::::
between

::
v
::::
and

:::
the

:::::::
column

::::::
amount

::::::::::::::::
(k = 2.120× 1013

::::
mol

:::::
cm−2

::::::
hPa−1

:::::::
ppb−1).

:::::::
Surface

:::::::
pressure

::::
psfc :::

and
::::
nine

:::::
fixed

:::::::
pressure

:::::
levels

::
of

::::
900,

::::
800,

::::
700,

:::::
600,

::::
500,

::::
400,

::::
300,

::::
200,

:::
and

::::
100

:::
hPa

:::
are

::::
used

:::
as

:::
the

::::::::
MOPITT

:::::::
retrieval

:::::
levels.

::::
For

::::
psfc :::::

higher
::::
than

:::
the

:::::::
bottom

::::
layer

::
of

::::
900

::::
hPa,

:
a
:::::::
10-level

:::::::
vertical

:::::::
layering

::
is

::::
used

::
in

::::
Eqs

:::::::
(3)–(5),

:::::::
whereas

::
the

:::::::
number

::
of

::::::
layers

::::::::
decreases

::
as

::::
psfc::::::::

decreases
::::::
below

:::
900

::::
hPa.

::::
The

::::
total

:::::::
column

::::::::
averaging

::::::
kernel

:
is
::::::::::

determined
::
as

:::::::
follows

::::
using

::
t
:::
and

:::
the

::::::::
averaging

::::::
kernel

::::::
matrix

::
A:

:
165

a
:
=
:
tT
::

A
:
. (6)

:::
We

::::
used

::
the

::::::
values

::
of

:::
xa,

::::
psfc,

::::
and

::
A

::::::
derived

::::
from

:::
the

::::::::
MOPITT

::::
level

::
3

:::::::
product,

::::
while

:::
xs::

is
::
the

:::::::::
simulated

:::
CO

::::::::::::
concentrations

::::
using

:::::::::::
NICAM-TM

::::
with

::::
the

:::
BB

::::::::
emissions

:::::::::
estimates.

:::
As

::
all

::::::::::
parameters

::
in

:::
the

::::::::
MOPITT

:::::::
products

::::
are

:::::::
provided

::::
with

::
a
::::::
spatial

::::::::
resolution

::
of

:::
1◦

::::
grid,

:::
the

:::::::::
simulated

:::::::
monthly

:::
CO

:::::::::::::
concentrations

::::
with

::
a

::::
2.5◦

:::::
spatial

:::::::::
resolution

:::::
were

::::::::::
interpolated

::
to

:::
1◦

:::::
grids.

::::
Then

::
cs::::::

values
::
for

:::::::
daytime

::::
and

::::::::
nighttime

::::
were

:::::::::
calculated

::::
using

:::
the

::::::::::::
corresponding

::::::::
MOPITT

::::::::::
parameters,

:::
and

::::::::
converted

::
to

:::::
XCO170

::::
using

:::
the

::::::::::::
corresponding

::::::::
MOPITT

::::
dry

::
air

:::::::
column

:::::
data.

:::
The

:::::::
average

::::::
values

::
of

:::::::
daytime

::::
and

::::::::
nighttime

:::::
XCO

::::
were

::::
used

:::
as

:::
the

::::::::
simulated

:::::
XCO.

2.5
::::::::

Reference
::::::::::
inventories

::
To

:::::::
quantify

:::::::::::
uncertainties

::
in

:::
the

::::::
spatial

::::::::::
distributions

::
of

:::
BB

:::::::::
emissions,

:::
we

:::::::::
compared

:::
our

:::
BB

::::::::
emissions

::::::::
estimates

::
to

::::
two

::::::
widely

::::
used

::::::::::
inventories:

::
the

::::::
Global

::::
Fire

:::::::::
Emissions

::::::::
Database

:::::::::::::::::::::::::::::::
(GFED4.1s; van der Werf et al., 2017)

:::
and

:::
the

::::::
Global

::::
Fire

:::::::::::
Assimilation175

::::::
System

::::::::::::::::::::::::::::
(GFASv1.2; Giuseppe et al., 2018)

:
.
:::::::::
GFED4.1s

::::::::
estimates

::::::::
3-hourly

:::
BB

::::::::
emissions

:::
at

:::::
0.25◦

::::
grid

::::
using

::::
the

::::::
burned

::::
area

:::::::
method,

:::
but

:::
the

::::::::
emissions

:::::
from

::::
small

::::
fires

:::
are

::::
also

::::::::
combined

:::::
using

::::::::::
information

::::
about

:::::::
thermal

::::::::
anomalies

::::
and

::::::
surface

:::::::::
reflectance

::::::
derived

::::
from

:::::::
MODIS

::::::::
products.

::::
Fuel

::::::::::
components

::
in

:::::::::
GFED4.1s

::
are

:::::
based

:::
on

:
a
::::::::
terrestrial

::::::::
biosphere

::::::
model,

:::::
called

:::
the

:::::::::::::::::::::
Carnegie–Ames–Stanford

::::::::
Approach

:::::::::::::::::::::::
(CASA; Potter et al., 1993).

:::::::::
GFASv1.2

::::::::
estimates

:::::
daily

::::
BB

::::::::
emissions

:::
at

::::
0.1◦

::::
grid

:::::
based

:::
on

:::
fire

::::::::
radiative

::::::
power

::::
from

:::::::
MODIS

::::::::
products.

::::
This

:::::::
estimate

:::::::
models

:::
fire

:::::::::
persistence

:::
by

::::::::::
considering

:::::::
weather

:::::::::
conditions

:::::
using

:::
the

:::
fire

:::::::
weather

:::::
index180

::::::::
modeling

:::::::::::::::::::::
(Van Wagner et al., 1987).

:
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2.6 Modified index of agreement and standardized anomaly

We used the modified index of agreement (MIA) (Willmott et al., 1985) to compare the observed and simulated atmospheric

CO concentrations, as follows:

MIA = 1.0−
∑N

i=1 |xi − yi|∑N
i=1(|yi −x|+ |xi −x|)

(7)185

where x and y are the observed and simulated CO concentrations (ppm) and x is the sample mean of x. The MIA calculates

normalized value from 0.0 to 1.0 with higher values indicating better agreement between the observations and the model

simulations. Correlation coefficient indicates higher value for agreement of phase variations in the variability, whereas the

MIA does for both agreements of phase and amplitude gain variations in the variability.

The observational time series from the BKT and ETL sites were used to classify the ‘no fire’ or ‘fire’ months based on the190

standardized anomaly z:

zi = (xi −x)/σx (8)

where x is the observed daily CO concentration (ppb) and σx is the corresponding sample standard deviation. In this study, fire

months were empirically identified as having observed CO concentrations corresponding to zi ≥ 1.5.

3 Results195

3.1
:::::::::::

Comparisons
::
of

::::::::::
emissions

::::::::
estimates

AGB is a source of flammable fuels for BB in our estimate. A comparison of the two AGB datasets used (i.e., GEOCAR-

BON and Globbiomass)
::
for

:::::
2009 and the cumulative probabilities within the range of biomass availability of 0<AGB≤ 20

::::::::::::
0<AGB≤ 40

:
kg m−2 are shown in Fig. 1. The distribution of AGB differs between the two products (Fig. 1a), but there

is a relationship between them with a correlation of r = 0.93. AGB is most often less than 5 kg m−2 in both AGB products.200

AGB availability of ≤ 1, 5, and 10 kg m−2 accounts for 43%, 76%, and 94%, respectively, all grids for Globbiomass, and

51%, 83%, and 96%, respectively, for GEOCARBON (Fig. 1b). Figure 1b clearly indicates that the probability distribution of

AGB availability for Globbiomass reflects larger values relative to that of GEOCARBON
::
in

:::
the

:::::
range

::
of

:::::
AGB

::
≤

::
10

:::
kg

::::
m−2.

Overall, Globbiomass indicates approximately 1.35× more AGB than GEOCARBON. ;
::::::::
however,

::
in

:::
the

:::::
range

::
of

:::::
AGB

::
≥

:::
25

::
kg

:::::
m−2,

:::
the

:::::
AGB

:::
for

:::::::::::::
GEOCARBON

::
is

::::::
greater

::::
than

:::
that

:::
for

::::::::::::
Globbiomass.

::::
This

::
is
:::::
partly

:::::::::
associated

::::
with

::
a
::::::::
tendency

:::
for

:::
the205

::::
AGB

::::::::
estimates

::
in

:::::::::::::
GEOCARBON

::
to
:::
be

::::::
higher

::::
than

::::
those

::
in
::::::::

previous
::::::
studies

::
of

:::::
dense

:::::
forest

::::::
areas,

::::::
mainly

::::::
tropical

:::::::::
evergreen

::::::::
broadleaf

:::::
forest

:::::::::::::::::::
(Avitabile et al., 2016)

::::
(Figs.

:::
S1

:::
and

::::
S2).

:

The emission factor (EF) and burning efficiency (BE), which are related to the nature of the flammable materials that

comprise the AGB and control the BB emissions (Eqs. 1 and 2), are defined by the LCC. To quantify the differences between

the two LCC maps used
::::
(Fig.

::::
S2), we calculated global area totals for three vegetation classes: forest, shrub/savanna/grass, and210

crop, as defined in the GLC2000 and MCD12Q1 LCCs (Table 2). The LCC data from 2009 were used for MCD12Q1 in this
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comparison. The forest area in GLC2000 was 55.8× 106 km2, 199% more than that in MCD12Q1 (28.0× 106 km2); the area

of shrub/savanna/grass in GLC200 is 56.4× 106 km2, 43% less than MCD12Q1 (98.6× 106 km2); that of crop in GLC2000

was 28.2× 106 km2, 181% more than MCD12Q1 (15.6× 106 km2). At the global scale, it is noteworthy that there are large

differences in the area totals of the vegetation classes between the two products; e.g., GLC2000 possesses larger forest areas,215

whereas MCD12Q1 has more shrub/savanna/grass. Giri et al. (2005) found that the spatial distribution of vegetation in eight

LCC classes shows agreement of 59.5% between the GLC2000 and MCD12Q1 products, and the discrepancies between them

occur in southern Siberia, the Sahel region, southeastern Brazil, Southern Australia, and on the Tibetan plateau.

We
:::::
These

::::::::::
differences

::
in

:::::
AGB

:::
and

:::::
LCC

:::::::::::
distributions

:::
can

:::
be

::::::::
expected

::
to

:::::
result

::
in
::::::::

differing
:::
BB

::::
CO

:::::::::
emissions

::::::::
estimates

:::::
among

:::
the

::::
four

::::::::::
AGB/LCC

::::::::
scenarios.

:::
We

::::
first

:
calculated average annual BB CO emissions (g CO m−2 yr−1) for 2009–2015220

using the GlcGlob, GlcGeoc, McdGlob, and McdGeoc estimates
::
for

::::
each

:::::::
estimate

:
(Fig. 2a). The averaged BB emission map

highlights the large spatial variations in CO emissions . Large BB emissions are found
:::
four

::::::::
estimates

::::
and

::::
their

:::::::::
ensemble

::::::
average

:::::
show

::::::
similar

:::::
spatial

::::::
pattern

::
of

:::
BB

:::::::::
emissions,

::
at

::::
least

::
at

:::
the

::::
globe

:::::
scale:

:::::
large

::::::::
emissions in tropical regions over northern

and southern tropical Africa, tropical Asia, and Oceania, as well as the southern Amazon, boreal Eurasia, and northern and

southeastern regions of North America.
:::::::
However,

:::
the

::::::::::
magnitudes

::
of

:::
the

:::::::::
emissions

:::::
differ

::::::
among

:::
the

:::::::::
estimates. The standard225

deviation among the four BB emissions estimates increases as BB emissions increase, particularly in northern and southern

tropical Africa(Fig. 2b). .
:

Global monthly BB CO emissions exhibit seasonal variability with peaks during the boreal summer for all estimates (Fig.

3a). In addition, the GlcGlob and McdGlob estimates show second peaks during the austral summer, whereas the GlcGeoc and

McdGeoc estimates show no well-defined peaks. This suggests that the seasonal variability among the BB estimates will change230

depending on the AGB map, and that the emission totals vary with both the AGB and LCC maps. The annual emission totals

vary significantly depending on which BB estimates are used. The mean annual BB emissions with their standard deviation

are 526± 53, 219± 35, 624± 57, and 293± 44 Tg CO yr−1, for GlcGlob, GlcGeoc, McdGlob, and McdGeoc, respectively.

:::
The

:::::::
EsmAve

::::::::
displays

::::::::
moderate

:::::::
seasonal

:::::::::
variability

::
in

::::::
global

:::::::
monthly

:::
BB

::::
CO

::::::::
emissions

::::
and

:::
the

:::::
mean

::::::
annual

::::::::
emissions

:::
of

:::::::
415± 47

:::
Tg

::::
CO

:::::
yr−1. Using data from over 370 publications, Andreae (2019) obtained CO emissions in the range 390–235

1,210 Tg CO yr−1 from open vegetation fires and 181–196 Tg CO yr−1 from indoor biofuel use. Our study does not take

separate account of emissions from biofuel use, which could result in a slight underestimation of total emissions from BB.

The annual CO emissions from BB reported in Andreae (2019) span a wide range, and our emissions estimates based on

GlcGloband McdGlob,
:::::::::
McdGlob,

:::
and

::::::::
EsmAve fall within this range. However, our estimates based on GlcGeoc and McdGeoc

fall substantially below this range.
::
On

:::
the

:::::
other

:::::
hand,

:::::::::
GFED4.1s

::::
and

:::::::::
GFASv1.2

:::::
shows

:::
the

:::::
mean

::::::
annual

::::
BB

::::::::
emissions

::::
less240

:::
than

::::
350

:::
Tg

:::
CO

:::::
yr−1

:::::
(Table

:::
4)

:::
for

::::::::::
2009–2015,

:::
the

:::::::::
differences

::::::::::
percentages

:::::
from

::::
them

:::
are

::::::
larger

:::
for

::::::::
McdGlob

:::::::
(+88%)

::::
than

:::::::
GlcGeoc

:::::::
(-37%).

To evaluate the sensitivity of BB emissions estimates to land surface information at the regional scale, we next compared

seasonal variability in BB CO emissions from the four estimates
:::
and

::::
their

::::::::
ensemble

:::::::
average

:
over southern tropical Africa

(see red rectangle in Fig. 2b) (Fig. 3b). This region is situated in a complicated transition zone containing forest, -savanna,245

and -bare ground, and with few local studies, and this has led to poor quality land surface information and a high degree
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of variability among the datasets (Bouvet et al., 2018). All estimates reveal fire emissions from May to October. The annual

emissions estimates based on the four AGB/LCC scenarios range over a factor of 4 from 36 to 146 Tg CO yr−1 among the

estimates. In southern tropical Africa, McdGlob has the highest AGB of 2,704 g m−2 for shrub/savanna/grass with higher

BE (Table 3), and this rich supply of flammable fuel leads to the highest CO emissions. For the McdGlob estimate, the AGB250

of 3.1% for shrub/savanna/grass is burned annually and is converted into emissions. By contrast, GlcGeoc has the lowest

AGB for shrub/savanna/grass (28 g m−2) and this results in the lowest CO emissions. The
::::
This

:::::
large

:::::::::
difference

::
in

:::::
AGB

::
for

:::::::::::::::::
shrub/savanna/grass

:::::::
between

::::::::
McdGlob

::::
and

::::::::
GlcGeoc,

::::
that

::
is

:::::::
between

::::::::::
Globbimass

::::
and

:::::::::::::
GEOCARBON,

::::
over

:::
the

::::::::
southern

::::::
tropical

::::::
Africa

::
is

:::
not

:::::::::
surprising.

::::::::::
Globbimass

:
is
:::
an

::::
AGB

:::::::
product

:::::
based

:::::
partly

:::
on

:::
the

:::::::
retrieval

::
of

:::::::
biomass

::::
from

:::::::
airborne

:::::::
L-band

::::
SAR

::::
data,

::::::
which

::::::
interact

::::
with

:::
the

::::::
Earth’s

:::::::
surface;

:::
the

::::
data

:::
are

:::::::
sensitive

::
to

:::::
forest

::::::::::
vegetation’s

:::::::
primary

::::
and

::::::::
secondary

::::::::
branches255

:::
and

:::::
stems

::::::::::::::::::::::::::::::::::
(Lucas et al., 2010; Carreiras et al., 2012).

::::::::
Although

:::
the

::::::
L-band

:::::
SAR

::::
data

:::
are

::::::::
influenced

:::
by

:::::::
moisture

:::
on

:::::::::
vegetation

:::
and

::::
soil,

:::
and

::::::
exhibit

::::::::
saturation

::
in
:::::
dense

::::::
forest,

:::::::::
successful

:::::::
biomass

::::::::
estimation

::
is
:::::::::
promising

::::
over

:::::
shrub

:::
and

:::::::
savanna

::::
lands

::::::
where

::::::
surface

:::::::
moisture

::
is
::::::::
relatively

::::
low.

:::::::::::::
GEOCARBON

::
is,

:::
on

:::
the

:::::
other

:::::
hand,

::::::::
primarily

:
a
::::::
global

:::::
forest

::::
AGB

:::::
map,

:::::
which

::
is
:::::::
derived

::::
from

:::
two

::::::::::
pan-tropical

:::::
AGB

:::::
maps

::::
with

:::::::::
calibration

::::
using

::::::::
reference

::::
field

:::::::::::
measurement

::::::::
datasets.

:::
The

::::::
uneven

::::::::::
distribution

::
of

:::::
AGB

:::::::
reference

:::::::
datasets

::::::
toward

:::::
forest

:::::::::
vegetation

:::::
types

::::
leads

::
to
:::::
lower

:::::
AGB

::::::::
estimates

::::
than

::::
other

::::::::
previous

::::::
studies

::
of

::::::
Central

::::::::
America260

:::
and

::::::
mostly

:::
dry

:::::::::
vegetation

::::
areas

::
in
::::::
Africa

:::::::::::::::::::
(Avitabile et al., 2016).

::::
The high discrepancy of CO emissions for this area is

:::::
hence

resulted from the difference of
:
in
:
AGBs for forest and shrub/savanna/grass among the four scenarios.

::
In

:::::
order

::
to

:::::::::
investigate

:::
the

::::
BB

::::::::
emissions

::::::::
estimates

:::::::
further,

:::::
mean

::::::
annual

:::
BB

::::
CO

::::::::
emissions

::::
over

::
7
:::::
years

::
in

:::
the

:::
14

::::::
global

::::::
regions

::::
(Fig.

::::
A1)

:::
are

:::::
listed

::
in

:::::
Table

::
4,

:::::
along

::::
with

::::
those

:::
of

:::::::::
GFED4.1s

:::
and

:::::::::
GFASv1.2.

::::::
There

:::
was

:::
not

:::::
much

:::::::::
difference

::
in

:::::
mean

:::::
annual

::::
BB

:::
CO

::::::::
emissions

::::::::
between

:::::::::
GFED4.1s

:::
and

:::::::::
GFASv1.2

:::
for

::::::
almost

:::
all

:::
the

::::::
regions

::::
and

:::
for

:::
the

:::::
global

:::::
total,

::::::::
although

:::
the265

:::::::
Southern

::::::::::
Hemisphere

::::::
Africa

:::::::
(SHAF)

::::
and

:::::
Boreal

:::::
Asia

:::::::
(BOAS)

::::::
showed

:::::
some

::::::::::
differences.

:::::
Mean

::::::
annual

:::::::::
emissions

::
of

:::
the

::::
four

:::
BB

::::::::
estimates

:::
and

::::::::
EsmAve

::::
over

:::
the

::::::
BOAS

:::::
region

::::::::::
(29.4–58.8

:::
Tg

:::
CO

:::::
yr−1)

:::
fall

::::::::
between

:::::
those

::
of

:::::::::
GFED4.1s

::::
and

:::::::::
GFASv1.2

::::
(29.2

::::
and

::::
67.2

::
Tg

::::
CO

:::::
yr−1),

:::::::
whereas

:::
the

:::::::::
variations

::::::
among

:::
the

::::
four

:::
BB

::::::::
estimates

::::
over

:::
the

:::::
SHAF

::::::
region

::::::::::
(38.9–164.5

::::
Tg)

:::
are

::::::::::
substantially

:::::
larger

::::
than

::::
the

:::::
range

:::::::
between

:::::::::
GFED4.1s

::::
and

:::::::::
GFASv1.2

::::
(90.6

::::
and

::::
61.1

:::
Tg

:::
CO

::::::
yr−1).

:::::
Large

:::::::::
variations

::::::
among

::
the

::::
four

::::
BB

::::::::
emissions

::::::::
estimates

:::
are

::::
also

::::::
found

::
in

::::::::
Northern

::::::::::
Hemisphere

::::::
Africa

:::::::
(NHAF)

::::::
(range

:::::::
between

::::
16.6

::::
and

:::::
127.1

:::
Tg270

:::
CO

:::::
yr−1).

::::
The

::::
large

:::::::::
variations

:::
can

::
be

:::::::::
attributed

::
to

:::
the

:::
low

:::::::::
confidence

:::
of

:::
land

:::::::
surface

::::::::::
information

::::
over

:::
the

::::::
NHAF

:::
and

::::::
SHAF

::::::
regions,

:::
as

:::::::::
mentioned

::
in

::::
Fig.

:::
3b.

:::
The

:::::
mean

::::::
annual

:::
BB

::::
CO

::::::::
emissions

:::
of

:::
the

::::
four

:::
BB

::::::::
estimates

::::
were

:::::::::::
consistently

:::::
lower

::::
than

::::
those

::
of

:::::::::
GFED4.1s

::::
and

:::::::::
GFASv1.2

::
in

::::::::
Equatorial

::::
Asia

:::::::
(EQAS)

::::
and

::
in

::::::
Boreal

:::::
North

:::::::
America

::::::::
(BONA),

:::
and

::::::
higher

::
in

:::::::::
Temperate

:::::
North

:::::::
America

:::::::
(TENA)

:::
and

::
in
::::::::
Southern

::::::::::
Hemisphere

:::::
South

::::::::
America

:::::::
(SHSA).

::
It

::
is

:::
not

::::::::::::
straightforward

::
to
::::::::::
consistently

::::::::
interpret

::::
these

:::::::
different

:::::::
patterns

::
in

:::
BB

:::::::::
emissions

::::
over

:::
the

::::::
regions

:::::::
relative

::
to

:::::::::
GFED4.1s

:::
and

:::::::::
GFASv1.2,

::
at
:::::
least

::
for

::::::::::
GFED4.1s,

:::::::
because275

:::
this

:::::
study

::::::::
estimated

:::
BB

:::
CO

:::::::::
emissions

:::::
using

:
a
::::::
similar

::::::
burned

::::
area

:::::::
method

:::
and

:::::::
MODIS

:::
fire

:::::::
product

::
to

:::::::::
GFED4.1s.

::
A

::::::::
potential

:::::
reason

:::
for

:::
the

:::::::::
differences

:::::
might

::
be

::::::::::
differences

::
in

::
the

:::::
AGB

:::::::
datasets

::::
used

::
in

::
the

:::::::::
estimates.

::::
This

:::::
study

:::
uses

:::
the

:::::
AGB

::::::
datasets

:::::
from

::::::::::
Globbimass

:::
and

:::::::::::::
GEOCARBON,

:::::
while

:::::::::
GFED4.1s

::::
uses

:::
the

::::::
CASA

:::::
model

:::
for

:::::::::
simulation.

::::::::
Although

:::
the

:::::
AGB

::::
used

::
in

:::::::::
GFED4.1s

:
is
:::::::
adjusted

::
to
::::::
match

:::::::::::::
GEOCARBON

::
at

::
the

::::::
biome

:::::
level,

:::::
carbon

:::::::::
allocation

:::
and

::::::::
variation

::
in

::
the

:::::::::
vegetation

::::::
carbon

::::
pool

:::::::::
(including

::
the

::::::
impact

:::
of

::::::::::
fire-induced

::::::::
mortality

:::
and

::::::::
turnover)

:::
are

::::
also

::::::::::
represented

::
in

:::
the

::::::
CASA

::::::
model,

:::::
partly

:::::
using

:::
the

::::::::::::::
satellite-derived280

:::::::::::
instantaneous

:::
tree

::::::::
mortality

::::::::::
information

::::::::::::::::::::::
(van der Werf et al., 2017).

:::::
These

:::::::
detailed

::::::::
processes

:::::
using

:::
the

:::::::::
vegetation

::::::
carbon

::::
pool
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::
are

::::
not

::::
used

::
in

:::
our

:::::::::
estimates.

:::::
These

:::::::
different

:::::::::::::
representations

::
of

:::::
AGB

:::::
could

:::::
result

::
in

:::
the

:::::::
differing

:::::::
regional

:::
BB

::::
CO

:::::::::
emissions.

:::
The

:::::::
different

:::::::::::::
spatiotemporal

:::::::::
resolutions

::
of

:::
the

::::::::
estimates

:
is
:::::::
another

:::::::
potential

::::::
cause.

:::
This

:::::
study

::::::::
estimated

:::::::
monthly

:::
BB

:::::::::
emissions

:
at
::::
500

::
m

::::::
spatial

:::::::::
resolution,

:::::::
whereas

:::::::::
GFED4.1s

:::
and

:::::::::
GFASv1.2

:::::::::
estimated

:
3
::::::
hourly

::::::::
emissions

::
at
::::
0.25

::::
grid

:::::::::
resolution

:::
and

:::::
daily

::::
ones

::
at

:::
0.1

::::
grid

:::::::::
resolution,

:::::::::::
respectively.

::
A

::::::
coarse

::::::::::::
spatiotemporal

:::::::::
resolution

:::::::
reduces

:::
the

:::::::::
variability

::
of

::::
land

:::::
cover

:::::
types

::::
and285

::::::::
flammable

::::
fuel

:::::::::::
consumption,

:::::::
leading

::
to

:::::::
differing

::::::::
amounts

::
of

:::
BB

::::::::
emissions

:::::::::::::::::::
(Wees and Werf, 2019)

:
.

3.2
:::::::::::

Comparisons
::
of

:::::::::
modeled

:::::::::::
atmospheric

:::
CO

:::::
fields

As an alternative approach, we compared each BB estimate in the atmospheric CO field
::::::
modeled

::::
CO

:::::
fields

:::::
using

::::
each

::::
BB

:::::::
emission

:::::::
estimate. Variability in atmospheric CO concentrations was simulated using NICAM-TM with surface flux informa-

tion including the four BB emissions estimates. Observed and simulated daily time series at the three ground-based observation290

sites, BKT, ETL, and MNM are shown in Fig. 4. The observations at the BKT site in Indonesia are
:::
and

:::
the

::::
ETL

:::
site

::
in

:::::::
Canada

:::
may

:::
be

:
subject to recurrent fire eventsleading to .

:::
In

::::::::
particular,

:
daily average CO concentrations that exceeded 1000 ppb in

::::::::
exceeding

:::::
1,000

:::
ppb

:::::
were

:::::::::
frequently

:::::::
observed

::
at

:::
the

::::
BKT

::::
site

::
for

:
2014 and 2015. For fire months, the

::::
2015,

:::::::
leading

::
to

:
a mean

and standard deviation of the observations reach 660.2± 707.5 ppb , whereas those for the no fire months are
::
for

:::
fire

:::::::
months

:::
and

:
153.3± 53.2 ppb

:::
for

::
no

::::
fire

::::::
months

:
(Table 5). Regardless

:::
The

:::::
mean

::::::::::::
concentrations

:::
for

:::
no

:::
fire

::::
and

:::
fire

:::::::
months

::::::
(130.6295

:::
and

:::::
163.7

::::
ppb,

:::::::::::
respectively)

::::
were

:::
not

::::::::::
significantly

::::::::
different

::
at

:::
the

::::
ETL

::::
site.

:::
The

:::::::::
variability

::
in

::::::::
observed

::::
daily

::::::::::
atmospheric

::::
CO

::::::::::::
concentrations

:::
for

::::
both

::
no

:::
fire

::::
and

:::
fire

:::::::
months

:::
was

::::::::::
moderately

:::::::
captured

:::
by

::::::::::
simulations

::
at

::::
both

::::
sites,

:::::::::
regardless of which BB

emissions estimate is used, the simulated variability is often closer
:::
was

::::
used.

:::::::
Indeed,

::::
there

::
is

:::
no

::::
clear

:::::::::
difference

::
in

:::::::::
correlation

::::::::
coefficient

::::
and

::::
MIA

::::::
among

:::
the

::::::::::
simulations

:::::
using

:::
the

:::
four

::::
BB

::::::::
emissions

::::::::
estimates

:::
for

::
no

:::
fire

:::::::
months.

::::::::
However,

:::
the

:::::::::
simulated

::::::::
variability

::::::
during

:::
fire

::::::
events

:::
for

:::
fire

::::::
months

::
is
::::::::
generally

:::::::::
weakened

::::::
relative

:
to the observationsfor atmospheric concentrations300

below 200 ppb, which reflects a reduced impact from local fire events, and represents the majority of ,
::::

and
:
the observations

(Fig. 5). Deviation
::::::
impact

::
of

:::::::
different

:::
BB

:::::::::
emissions

::::::::
estimates

::
on

:::
CO

::::::::::::
concentrations

:::::::
appears

::
in

:::
the

::::::::
amplitude

:::
of

::
the

:::::::::
simulated

:::::::::
variability.

:::
The

:::::::::
variability

:::::::::
simulated

:::::
using

::::::::
McdGlob

::::::
shows

::::::
highest

:::::::::::::
concentrations,

::::
and

:::
that

:::
for

::::::::
GlcGeoc

::::::
shows

:::
the

::::::
lowest

::::
ones.

::::
For

:::
fire

:::::::
months,

::::::::
deviation

:
of the simulated variability from the observations increases with increases in the observed

atmospheric concentration above 200 ppb, and this is associated with intermittent fire events. The deviation is especially
::
is ap-305

parent for simulations based on BB estimates that used the GEOCARBON AGB map, with lower correlation coefficients and

MIA than those that used Globbiomass (Table 5). Figures 4 and 5 reveal a difficulty in reproducing the higher CO concentrations

generated by sudden BB emissions from intermittent fire events in the simulations, resulting in large absolute errors of 383.4

to 459.5 ppb for fire months.
::
at

:::
the

::::
BKT

::::
site,

:::
and

::::::
lower

::::
MIA

::
at

:::
the

::::
ETL

::::
site.

At the ETL site in Canada, fire months were observed every year except 2009, and atmospheric CO concentrations greater310

than 1000 ppb were recorded in 2015
::::
These

::::::::
temporal

::::::::::::
characteristics

::
of

::::
daily

:::::::::
variability

::
in

::::::::
simulated

::::::::::
atmospheric

:::
CO

::::::::::::
concentrations

:::
can,

::::::::
however,

::
be

::::::
largely

:::::::::
dominated

:::
by

::::::::::
atmospheric

:::::::
transport

:::::::::
processes

::::::::
simulated

:::::
using

:::::::::::
NICAM-TM,

:::
not

::
by

:::
the

:::
BB

:::::::::
emissions

::::::::
estimates,

:::::::
because

:::
the

::::
BB

:::::::::
emissions

::::::::
estimates

:::::
have

:
a
::::::::

monthly
:::::::::
resolution.

:::
To

::::::
reduce

::::
this

::::::::::::
inconsistency

::
in
::::

the
::::::::
temporal

:::::::::
resolutions

::
of

:::
the

:::::::::::
observations

:::
and

:::
the

::::
BB

::::::::
emissions

:::::::::
estimates,

:::
the

::::::::
observed

:::
and

::::::::
simulated

:::::
daily

::::
time

:::::
series

:::::
were

::::::::
averaged

::
to

:::::::
monthly

::::
ones

:
(Fig. 4). Almost all of these fire events are represented in the simulations, but the greater deviation from the315
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observations is also apparent at the ETL site for
::
5).

:::
For

:::
no

:::
fire

:::::::
months,

:::::::
although

::::::::
simulated

:::::::::::
atmospheric

::::::::::::
concentrations

:::
for

:::
the

:::
four

:::
BB

:::::::::
emissions

::::::::
estimates

::::
show

:::::
large

::::::::
variations

::
at

::::
both

:::
the

::::
BKT

:::
and

::::
ETL

:::::
sites,

::::
they

::::::
display

:::::::::
monotonic

:::::
trends

:::::
along

:::::::
identity

::::
lines

::
to

:::
the

:::::::::::
observations.

:::
For fire months, especially for fire events with atmospheric CO concentrations above 400 ppb (Fig. 5).

Although the median values of the simulated concentrations generated using McdGlob are relatively closer to the observations

than those based on the other BB estimates under fire events, overestimation when the atmospheric CO concentration was320

lower than 300 ppb resulted in a worse MIA value (Table 5).
::::::::
simulated

:::::::::
variability

:::::::
displays

::::::::
opposing

:::::
trends

::
at
:::
the

::::
two

:::::
sites:

::::::::::::::
underestimations

::
of

:::::::::::
atmospheric

::::::::::::
concentrations

::
at

:::
the

:::::
BKT

::::
site

:::
and

::::::::::::::
overestimations

::
at

:::
the

::::
ETL

::::
site

:::
for

:::
all

:::
BB

:::::::::
emissions

::::::::
estimates.

:::::
These

:::::::::::
comparisons

::::::
reveal

:
a
::::::::

difficulty
:::::

faced
:::

by
:::
the

::::::::::
simulations

::
in
:::::::::::

reproducing
:::
the

::::::::::::
ground-based

::::::::::
observations

:::
of

:::::
higher

:::
CO

:::::::::::::
concentrations

::::::::
generated

::
by

::::::
sudden

::::
BB

::::::::
emissions

::::
from

::::::::::
intermittent

:::
fire

::::::
events.

:

At the MNM site in Japan, with no local fire events, there was no clear difference among the BB emissions estimates in terms325

of the correlation coefficient, mean absolute error, and MIA .
::::
(Fig.

:
4
::::
and

::::
Table

:::
5).

:
Differences in the mean CO concentration

among the simulations at the MNM site (11.5
::::
11.2 ppb) were smaller than those at BKT (18.8

:::
18.3

:
ppb) and ETL (22.9

::::
22.0

ppb) for the no fire months. However, the difference at the MNM site implies that differences in BB emissions estimates can

even contribute to variability in the background atmospheric CO concentration, even though CO has a relatively short lifespan

in the atmosphere of weeks to months.330

To extend the comparison over the regional scale, the global distributions of XCO (ppb) were averaged for 2013–2015, for

the MOPITT observations and the simulations using the four BB emissions estimates
:::
and

::::
their

::::::::
ensemble

:::::::
average

:
(Fig. 6).

All of the results in Fig. 6 show strong spatial variations in XCO. Higher concentrations of XCO are found over the Tropical

::::::
tropical

:
regions, southeastern North America, boreal Eurasia, and southeast Asia in the MOPITT observations. These regions

are consistent with the areas with large BB emissions, as shown in Fig. 2. Lower XCO concentrations are found over the oceans335

in the southern hemisphere in the MOPITT observations. These global distributions of XCO are represented in the simulations

from all of the BB emissions estimates, but the mean XCO concentrations at the regional scale differ in the simulations among

the BB emissions estimates.

Figure 7 shows monthly variations in mean XCO (ppb)
:::::
mean

:::::
XCO and the root mean square error (RMSE, ppb) between

the observed and simulated XCO fields over six selected areas: southeastern North America (SEN
::::
West

:::::
Coast

:::
of

:::
the

::::::
United340

:::::
States

::
of

::::::::
America

::::::
(WCA), Eastern Siberia (ESB), the Amazon (AMZ), South Asia (SAS), Central Africa (CAF), and the

Sumatra and Borneo Islands (SBI), which are shown in the red rectangle in Fig. 6a. Over the SEN
::::
WCA

:
and ESB areas,

the monthly mean observed XCO shows little seasonality, with standard deviations of 10.0 and 9.5
::::
11.5

:::
and

:::::
10.4 ppb (Fig.

7a and b; Table 6). During the approximately three months of the year with higher XCO concentrations, the mean observed

XCO concentrations over both areas increases by approximately 17
:::::
11–17% relative to the other months. The XCO values345

simulated using GlcGlob and McdGlob
:
or

::::::::
EsmAve largely reproduce the observed seasonality, but those from GlcGeoc and

McdGeoc show less seasonality, resulting in a higher RMSE and lower MIA. Underestimations of both peak concentrations

and seasonal variability in simulations with GlcGeoc and McdGeoc are also apparent over the AMZ and SAS areas, with

moderate seasonality and standard deviations of 21.1 and 23.5 ppb, respectively, and also over the CAF and SBI areas, with

large seasonality and standard deviations of 27.4 and 30.2
:::
28.7

::::
and

::::
29.5 ppb, respectively. The XCO values simulated using350
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GlcGlob and McdGlob, on the other hand, successfully recreate the observed variability, such as the
::::
show

:::::::::::
overestimates

:::
of

:::
BB

::::::::
emissions

::::::
during

::
the

::::
fire

:::::::
seasons,

::
in

::::::::
particular,

::::
over

:::
the

::::
ESB

::::
and

::::
CAF

:::::
areas,

:::::::
whereas

:::
the abrupt increase in XCO (197.5

:::::
195.4

ppb) in October 2015 over the SBI area , with monthly mean values of 194.1 and 182.0 ppb, respectively. However, McdGlob

overestimates BB emissions during the fire seasons over the CAF relative to the observations
::
is

::::
well

:::::::::
represented

:::
by

:::
the

:::::::
monthly

::::
mean

:::::
value

::
of

:::::
185.9

::::
ppb.

:::
The

:::::
values

:::::::::
simulated

:::::
using

:::::::
GlcGlob,

:::::::::
McdGeoc,

::::
and

:::::::
EsmAve

:::
are

:::::::
between

:::::
those

::::
from

::::::::
McdGlob

::::
and355

::::::::
GlcGeoc,

:::
and

::::
they

::::::::::
moderately

:::::::
recreate

:::
the

::::::::
observed

:::::::::
variability,

::::::
except

::::
over

:::
the

::::
SAS

:::::
area.

::::
The

::::::::
simulated

:::::
XCO

::::::
values

::::
over

::
the

:::::
SAS

::::
area,

:::::
where

:::::::::::
contributions

:::::
from

::::
fossil

:::::
fuels

::
to

:::
CO

::::::::
emissions

::::::
prevail

::::
over

:::
BB

:::::::::
emissions

::::::::::::::::::::
(Yarragunta et al., 2021),

:::::
were

::::::::::::
approximately

::
20

::::
ppb

::::::
higher

::::
than

:::
the

:::::::::::
observations

::::
over

:::
the

::::::
whole

::::::
period,

:::::::::
regardless

::
of

::::::
which

:::
BB

:::::::::
emissions

:::::::
estimate

::::
was

::::
used.

::::
This

::::::::
suggests

:::
that

::::::::::::
representation

:::
of

:::
CO

:::::::::
emissions

:::::::
remains

:::::::::
insufficient

:::::
over

:::
the

::::
SAS

::::
area,

::::
not

::::
only

:::
for

:::
BB

:::::::::
emissions

:::
but

:::
also

:::::
other

::::::::
emission

:::::::
sources. Values of MIA show that the mean value over the six areas was highest

:::
five

:::::
areas

:::::::::
(excluding360

::::
SAS)

::::
was

:::::
better

:
in the simulations based on GlcGlob, with a value of 0.64

:::
0.66

:
(0.58 to 0.71), whereas those made

::::::
derived

using GlcGeoc, McdGlob, and McdGeoc, were 0.49 (0.39 to 0.59), 0.60 (0.54 to 0.71
:::::
0.72),

::::
0.61

:::::
(0.56

::
to

::::
0.68), and 0.53 (0.41

to 0.65
:::
0.63

:::::
(0.55

::
to
:::::

0.75), respectively.
:::::::::::
Additionally,

:::::::
EsmAve

::::::::
exhibited

:::
the

:::::::
highest

:::::
value

::
of

::::
0.68

:::::
(0.59

:::
to

:::::
0.74),

::::::::
although

:::::::::
differences

::
in

:::
the

:::::
mean

:::::
values

::
of

:::::
MIA

::::
from

:::
the

::::::::::
simulations

:::::
using

::::
other

:::
BB

:::::::::
emissions

::::::::
estimates

::::
were

:::
not

:::::
large.

:

4 Discussion365

BB emissions are an important contributor to atmospheric greenhouse gases and aerosols, yet uncertainty with respect to re-

gional and interannual variability remains due to our limited understanding of the underlying mechanisms and lack of data

related to this variability. Accurate and detailed information regarding AGB and LCC is essential to estimates of BB emissions

from wildfires using the bottom-up approach. Improvements in satellite sensors, ground surface observations, digital image

processing techniques, and retrieval algorithms have contributed towards reducing the uncertainties associated with AGB and370

LCC mapping (e.g., Goetz et al., 2009; Clerici et al., 2017). Nevertheless, datasets prepared using different data sources, clas-

sification schemes, and methodologies generate discrepancies in the AGB and LCC distributions among the products (Fig. 1;

Table 2) as has been discussed previously (e.g., Giri et al., 2005).

This study tested combinations of two sources of AGB data, Globbiomass and GEOCARBON, and two sources of LCC

data, GLC2000 and MCD12Q1, and used the same burned area satellite data to estimate BB CO emissions. Although the EF375

and BE parameters remained the same in our estimates, our analysis showed large discrepancies in annual mean CO emissions,

with a factor of approximately 3 (219 – 624 Tg CO yr−1) separating the four BB emissions estimates. Using AGB data

from Globbiomass and GEOCARBON, we showed that the magnitude of AGB from Globbiomass tends to be
::::::::::::
approximately

::::
35% larger than that from GEOCARBONin approximately 35%, leading to the resulting BB emissions estimates based on

Globbiomass being more than twice those made using GEOCARBON over the globe. Furthermore, our comparison of the380

LCC data showed that the global area totals for the forest class in GLC200 were approximately twice those for MCD12Q1,

while those for shrub/savanna/grass in GLC2000 were approximately half those in MCD12Q1. As burning efficiencies for

shrub/savanna/grass are greater than those for forests (Table A1 and A2), the BB emissions based on MCD12Q1, with its
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larger area totals for shrub/savanna/grass, tend to be higher than those based on GLC2000. These results indicate that the

estimates of BB emissions are highly sensitive to the AGB and LCC data, and thus the AGB and LCC data used could be the385

primary drivers of uncertainty in the estimates of BB emissions. In addition, because adequately accurate distributions of AGB

and LCC are still unavailable, an independent approach is needed to evaluate the estimate of BB emissions.

Variability in atmospheric CO concentrations simulated using an atmospheric tracer transport model and the BB emissions

and other emission inventories were compared with ground-based and satellite observations to act as the independent evalua-

tion of the BB emissions estimates. We did not take account of errors introduced by the observational processes or errors in390

the transport model and the other emission inventories, but we consider that our analysis is a useful way to study the relative

differences among the BB emissions estimates and approximate changes in the simulated atmospheric concentrations. Extend-

ing this analysis to ground-based observations of the impact of intermittent fire events at the local scale was more challenging

due to the coarse resolution of the available BB emissions estimates and the atmospheric tracer transport model, which weak-

ens temporal and spatial variability in the simulated atmospheric CO concentrations. Abrupt variability in atmospheric CO395

concentrations recorded in the ground-based observations for fire months were indeed represented with the variations that are

attenuated in the higher CO concentrations (Fig. 4). Relatively small differences among the BB emissions estimates from the

ground-based observation sites (Table 5) may be attributed to the loss of information related to the high-frequency variability

in the simulated atmospheric CO concentration. We need to recognize that a global transport model with a horizontal resolution

of about 220 km is insufficient to quantify local BB emissions accurately. The attenuation in the simulation can be moderately400

improved by including daily variability in the BB emissions, especially for surface observations with high levels of biomass

burning, using atmospheric transport simulations with a high spatial resolution (e.g., Mu et al., 2011).

At the global scale, comparison with the satellite observations suggested
::::::
satellite

:::::::::::
observations

:::::::
suggests

:
that the XCO vari-

ability simulated using the AGB data from Globbiomass , especially the GlcGlob estimate, which was compiled using the

:::
and

:::
the

:
LCC data from GLC2000, provided

:::
and

::::
that

::::
from

:::
the

:::::::::
ensemble

::::::
average

:::
of

:::
the

::::
four

::::::::
emissions

:::::::::
estimates,

:::::::
provides

:
a405

better representation of the temporal and spatial variability in the observed XCO during both the no fire and fire seasons ,

relative to those based on the AGB data from GEOCARBON
:::
fire

:::::::
seasons

::::
than

:::
that

:::::::::
achievable

:::::
using

::::
other

::::::::::::
combinations

::
of

:::
the

::::
AGB

::::
and

::::
LCC

::::
data

:
(Figs 6 and 7; Table 6). The GlcGlob estimate yields

:::
and

::::::::
EsmAve

::::::::
estimates

::::
yield

:
global BB emissions

of 526± 53
:::
and

::::::::
415± 47 Tg CO yr−1. These

:::
The

:
total CO emissions

:
of

::::::::
GlcGlob are slightly higher than those reported by

Hooghiemstra et al. (2011), who found total emissions of 400±88 and 482±68 Tg CO yr−1 for 2003 and 2004, respectively,410

using a data assimilation to surface observations. ,
:::::::
whereas

:::
the

::::::::
EsmAve

:::::::
exhibits

::::
total

:::
CO

::::::::
emissions

:::::
close

::
to

:::
the

::::::::
estimates

:::
by

::::::::::::::::::::::
Hooghiemstra et al. (2011)

::
for

:::::
2003.

:
The corresponding mean emissions for 1997 and 2016 obtained from bottom-up estimates

by van der Werf et al. (2017) were 357
::::
2009

::::
and

::::
2015

:::::::
obtained

:::::
from

::::::::
GFED4.1s

::::
and

:::::::::
GFASv1.2

::::
were

:::
331

::::
and

:::
350

:
Tg CO yr−1,

which is approximately 32%
::::::::::
respectively,

:::::
which

:::
are

::::::::::::
approximately

::::
37%

::::
and

::::
34% lower than GlcGlob,

::::
and

::::::::::::
approximately

::::
20%

:::
and

::::
16%

:::::
lower

::::
than

:::::::
EsmAve.415

Note that our analysis is not a guarantee of the validity of the AGB and LCC data used, and we do not intend to argue which

of the AGB and LCC datasets are better than others. As CO EFs remain uncertain, due mainly to the difficulty in treatment

of emissions from residual smoldering combustion (Andreae, 2019), the estimated BB emissions can vary according to the EF
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used and depend on the selection of the fire class confidence in the fire mask data.
::::::
Further,

:::
this

:::::
study

:::::
used

:::
the

:::
EF

::::::::
classified

:::::
based

::
on

:::::
LCC

:::
and

:::
the

:::::::
location

::
of

:::
the

::::::::
objective

::::
grid

::
in

:
a
::::::

region
:::::::
(Tables

:::
A1

:::
and

::::
A2),

:::
but

:::
the

::::::::::
magnitudes

::
of

:::
EF

::::
can

::::
vary

::::
with420

::
the

:::::
plant

::::::
species

:::::
even

:::
for

:::
the

::::
same

:::::
LCC

::::
type.

::::
For

::::::::
example,

:::
the

:::
CO

::::
EFs

:::
for

::::
crop

:::::
straws

::::
vary

::::::::
between

::::
27.2

:::
and

::::
46.9

::
g
:::::
kg−1

:::
dry

:::::
matter

::::::
among

::::
rice,

::::::
wheat,

:::
and

::::::
barley

:::::
under

:::
dry

:::::::::
conditions

:::::
owing

::
to

:::::::
different

:::::::
lengths

::
of

::::::::::
combustion

::::
time

::::
with

::::::::::
smoldering,

:::
and

:::::
these

:::
EFs

:::::::
change

:::::
easily

::::
with

::::::::
moisture

:::::
levels

::
in

::::
crop

:::::::
residues

::::::::::::::::::
(Hayashi et al., 2014)

:
.
::::
Such

:::::::
detailed

:::::::::
variability

::
of

:::
EF

::::
can

::::
only

::
be

:::::::::
accounted

:::
for

:::
by

:::::::::
estimating

:::
BB

:::::::::
emissions

::
at

::
a

::::
finer

:::::::::
resolution

:::
and

:::
by

:::::
using

::
a

::::
finer

:::::::::
vegetation

:::::::::::
classification

:::::
map.

Additionally, one limitation of the current study of BB estimates is that it does not include a scheme to inherit the amount of425

AGB that remained unburned in the previous year. Although continuous variations in AGB over multiyear periods, and the

impact of these variations on BB emissions, can be simulated by coupling the system to a terrestrial biosphere model, this work

remains incomplete. Finally, to improve our currently limited ability to estimate BB emissions, we are calling for additional

independent approaches and data evaluation to help increase our understanding of their characteristics.

5 Conclusions430

This study used the burned area method in bottom-up approaches to estimate spatiotemporal variations in global BB CO

emissions based on AGB and LCC land surface information and burned area data. Regarding the land surface information,

we tested two AGB datasets (Globbiomass and GEOCARBON) to evaluate the sensitivity of BB emissions estimates to these

different datasets. Preliminary comparisons of the AGB and LCC datasets showed substantial differences among them. The

spatial distribution of AGB was highly correlated between Globbiomass and GEOCARBON, but the former contained AGB435

values that were larger than the latter by a factor of 1.35. The global area total for forest in GLC2000 was 199% more than

that in MCD12Q1, but was 43% less than for shrub/savanna/grass. By combining these AGB and LCC data with the burned

area data, four BB emissions estimates (i.e., GlcGlob, GlcGeoc, McdGlob, and McdGeoc) were derived using the burned area

method.

We began by comparing the seasonal variability of the BB emissions estimates over the regional and global scales. This440

comparison showed that BB emissions increase as the amount of AGB for shrub/savanna/grass increases over the corresponding

burned area. Our estimates of the mean annual BB emissions resulted in a large divergence among the estimates; i.e., 526±53,

219±35, 624±57, and 293±44 Tg CO yr−1 for GlcGlob, GlcGeoc, McdGlob, and McdGeoc, respectively,
::::
and

::::
their

::::::::
ensemble

::::::
average

:::::::
EsmAve

::::
was

::::::::
415± 47

:::
Tg

:::
CO

::::
yr−1. Using the BB emissions estimates, variability in atmospheric CO concentrations

was simulated using NICAM-TM with other emissions sources (i.e., fossil fuel and biogenic emissions) as inputs. We evaluated445

our results against independent ground-based (WDCGG network) and satellite (MOPITT) CO observations. Comparison with

data from the ground-based sites indicated that all BB emissions estimates represent local fire events, but underestimation of

BB emissions was particularly apparent for intense fires at the BKT site in Indonesia. Explicit differences in the simulated

CO concentrations among the BB emissions estimates were found in comparison with the satellite observations at the regional

scale. In our simulations, the XCO variability simulated using the GlcGlob estimates
::
or

:::
the

:::::::
EsmAve

:
was the most consistent450

with the satellite observations at the regional and global scales.
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This study has confirmed that BB emissions estimates are sensitive to the land surface information on which they are based.

Furthermore, although it is clear that there are significant differences among the various land surface information products

currently available, the quantitative evaluation of these differences remains difficult because of the limited coverage of surface

observations. One approach to addressing this limitation would be the commissioning of future satellite missions carrying455

higher-resolution onboard sensors.
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Figure 2. Spatial distributions of (a) the average annual CO emissions (g CO m−2 yr−1) and
::

for (
:
a)

:::::::
GlcGlob,

:
(b)

:::::::
GlcGeoc,

:::
(c)

::::::::
McdGlob,

::
(d)

::::::::
McdGeoc,

:::
and

::
(e)

:::::::
EsmAve

:::
and

::
(f)

:
their standard deviation based on four BB emissions estimates (i.e., GlcGlob, GlcGeoc, McdGlob, and

McdGeoc) over the period 2009–2015.
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Figure 3. Monthly CO emissions (Tg CO month−1) for GlcGlob
::::::
EsmAve (purple line), GlcGeoc

::::::
GlcGlob

:
(green line), McdGlob

:::::::
GlcGeoc

(blue line),
:::::::
McdGlob

::::::
(orange

::::
line),

:
and McdGeoc (orange

::
red

:
line) over (a) the globe and (b) the Southern Africa region within the red

rectangle shown in Fig. 2b.
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Figure 4. Daily atmospheric CO concentration variations (ppb) at the three ground-based observation stations, (a) Bukit Kototabang (BKT),

(b) East Trout Lake (ETL), and (c) Minamitorishima (MNM) for 2009–2015. The grey shading for the BKT and ETL sites indicates the fire
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Figure 5. Conditional quantile plots for
::::::::::
Comparisons

::
of observed and simulated

::::::
monthly atmospheric CO concentration (ppb)

:::
over

:::
the

:::::
period

:::::::::
2009–2015.

:::
The

:::::::::
conditional

::::::
quantile

::::
plots

:
for both no fire and fire months at (aand b) BKT and (c)

::::
ETL.

::::
The

:::::
scatter

::::
plots

:::
for

:::
fire

:::::
months

::
at
::::
BKT

:::
(b) and (d) ETLover the period 2009–2015.Solid lines and shading show median and 0.25th and 0.75th quantiles. Bars in

grey are histograms of the observed atmospheric CO concentrations.
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Figure 7. Monthly mean XCO variations (ppb; solid) and RMSE (ppb; dashed) between observed and simulated fields over the six areas: (a)
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Table 1. BB emissions estimates and the LCC and AGB data used.

Product LCC map AGB map

GlcGlob GLC2000 Globbiomasss

GlcGeoc GLC2000 GEOCARBON

McdGlob MCD12Q1 Globbiomass

McdGeoc MCD12Q1 GEOCARBON
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Table 2. Global area totals (106 km2) for forest, shrub/savanna/grass, and crop land1in GLC2000 and MCD12Q1.

Type GLC2000 MCD12Q1

Forest 55.8 28.0

Shrub/Savanna/Grass 56.4 98.6

Crop 28.2 15.6

615

1Forest: Tree Cover, broadleaved, evergreen, Tree Cover, broadleaved, deciduous, closed and open, Tree Cover, needle-leaved, evergreen and deciduous,

Tree Cover, mixed leaf type, and Mosaic: Tree Cover, Other natural vegetation for GLC2000; Evergreen Needleleaf Forest, Evergreen Broadleaf Forest,

Deciduous Needleleaf Forest, Deciduous Broadleaf Forests, and Mixed Forests for MCD12Q1. Shrub/Savanna/Grass: Shrub Cover, closed-open, evergreen

and deciduous, Herbaceous Cover, closed-open, and Sparse herbaceous or sparse shrub cover for GLC2000; Closed Shrublands, Open Shrublands, Woody

Savannas, savannas, and Grassland for MCD12Q1. Crop: Cultivated and managed areas, Mosaic: Cropland, Tree Cover, Other natural vegetation, and Mosaic:

Cropland, Shrub and/or grass cover for GLC2000; Croplands and Cropland/Natural Vegetation Mosaics for MCD12Q1.
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Table 3. Mean AGB (g m−2) from the four BB emissions estimates for forest and shrub/savanna/grass over southern tropical Africa (Fig.

2b). Numbers in parentheses are the annual AGB decrement (%) caused by fires.

Type GlcGlob GlcGeoc McdGlob McdGeoc

Forest 3,567 (1.0) 2,749 (0.9) 1,896 (0.7) 1,925 (0.7)

Shrub/Savanna/Grass 738 (2.2) 28 (1.3) 2,704 (3.1) 893 (3.2)
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Table 4.
::::

Mean
:::::
annual

:::
BB

:::
CO

:::::::
emissions

:::
(Tg

:::::
yr−1)

::::
from

::
the

:::::::::
GFED4.1s,

:::::::::
GFASv1.2,

:::
and

:::
this

::::
study

:::::::
estimates

::::
over

::
the

:::
14

:::::
global

:::::
regions

::::
(see

:::
Fig.

:::
A1)

:::::::
between

::::
2009

:::
and

::::
2015.

:::::
Region

:
GFED4.1s GFASv1.2 EsmAve GlcGlob GlcGeoc McdGlob McdGeoc

:::::
BONA

: :::
21.5

: :::
34.5

: :::
16.9

:::
17.0

:::
12.7

: ::::
21.6

:::
16.4

:::::
TENA

::
3.3

: ::
7.0

: :::
16.3

:::
17.5

::
9.0

: ::::
24.3

:::
14.3

:::::
CEAM

: ::
4.4

: ::
5.2

: :::
11.0

:::
15.5

::
4.8

: ::::
16.5

::
7.1

:::::
NHSA

: ::
3.6

: ::
3.7

: ::
7.4

:::
12.0

::
2.6

: ::::
11.5

::
3.6

:::::
SHSA

:::
39.3

: :::
33.2

: :::
68.5

:::
78.1

:::
48.5

: ::::
84.0

:::
63.3

:::::
EURO

::
1.1

: ::
1.3

: ::
2.7

::
3.5

::
1.2

: :::
4.3

::
2.0

:::::
MIDE

::
0.3

: ::
1.5

: ::
0.5

::
0.6

::
0.2

: :::
1.0

::
0.3

:::::
NHAF

: :::
52.4

: :::
42.9

: :::
67.0

::::
104.5

:::
16.6

: ::::
127.1

:::
20.0

:::::
SHAF

:::
90.6

: :::
61.1

: :::
94.6

::::
119.9

:::
38.9

: ::::
164.5

:::
55.0

:::::
BOAS

:::
29.2

: :::
67.2

: :::
43.5

:::
48.3

:::
29.4

: ::::
58.5

:::
37.5

:::::
CEAS

:::
10.4

: :::
12.8

: :::
13.5

:::
20.4

::
4.8

: ::::
21.8

::
7.2

:::::
SEAS

:::
19.1

: :::
20.4

: :::
26.4

:::
40.8

:::
14.6

: ::::
33.4

:::
16.9

:::::
EQAS

:::
40.4

: :::
39.5

: :::
25.6

:::
33.1

:::
17.2

: ::::
31.8

:::
20.3

:::::
AUST

:::
14.8

: :::
19.6

: :::
21.2

:::
14.5

:::
18.2

: ::::
23.1

:::
29.1

::::
Total

::
331

: ::
350

: :::
415

:::
526

:::
219

: :::
624

:::
293
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Table 5. Statistics comparing observed and simulated time series of daily atmospheric CO concentrations at the BKT, ETL, and MNM sites

between 2009 and 2015.

Statistics No Fire Months Fire Months

BKT ETL MNM BKT ETL

No. of Observations 2,236 2,053 2,511 237 226

Mean (ppb)

Observations 153.3 130.6 101.3 660.2 163.7

::::::
EsmAve

::::
148.4

::::
140.0

::::
104.5

::::
287.3

::::
198.0

GlcGlob 156.3
::::
152.6 144.2

::::
142.8 107.5

::::
108.0 309.4

::::
317.1 188.0

::::
187.4

GlcGeoc 141.2
::::
137.9 130.2

::::
129.2 98.1

:::
98.9 216.2

::::
218.8 175.1

::::
176.2

McdGlob 160.0
::::
156.2 153.1

::::
151.2 109.6

::::
110.1 335.9

::::
342.7 223.2

::::
222.0

McdGeoc 151.0
::::
146.9 138.3

::::
136.8 100.3

::::
101.1 266.0

::::
269.9 205.5

::::
206.3

Standard deviation (ppb)

Observations 53.2 19.7 32.1 707.5 196.4

::::::
EsmAve

::
44.2

: ::
27.9

: ::
18.2

: ::::
104.5

::::
126.6

GlcGlob 48.9
:::
47.1 29.7

:::
26.4 19.8 105.2

::::
113.2 107.7

::::
109.5

GlcGeoc 39.4
:::
37.8 29.3

:::
26.0 15.9

:::
16.4 57.2

:::
61.2 106.3

::::
108.3

McdGlob 52.3
:::
49.1 34.8

:::
30.7 20.0

:::
20.2 134.6

::::
142.7 144.1

::::
146.8

McdGeoc 49.4
:::
45.1 34.3

:::
30.1 16.5

:::
16.9 105.3

::::
112.1 139.5

::::
142.4

Mean absolute error (ppb)

::::::
EsmAve

::
35.5

: ::
19.8

: ::
15.0

: ::::
407.2

::
96.8

:

GlcGlob 37.6
:::
35.3 20.6

:::
19.3 15.6

:::
15.5 396.4

::::
388.3 88.7

:::
89.5

GlcGeoc 38.0
:::
36.5 20.7

:::
19.1 15.6

:::
15.3 459.5

::::
456.2 84.7

:::
86.3

McdGlob 38.8
:::
36.1 26.8

:::
25.0 16.1

:::
16.2 383.4

::::
376.1 111.5

::::
112.0

McdGeoc 39.4
:::
36.8 23.3

:::
21.4 15.4

:::
15.2 426.6

::::
423.0 102.0

::::
103.8

Correlation coefficient

::::::
EsmAve

::
0.51

: ::
0.38

: ::
0.88

: ::
0.56

: ::
0.31

:

GlcGlob 0.48
:::
0.54 0.41

:::
0.43 0.87 0.55

:::
0.61 0.33

:::
0.31

GlcGeoc 0.42
:::
0.49 0.38

:::
0.41 0.87 0.41

:::
0.46 0.33

:::
0.31

McdGlob 0.45
:::
0.51 0.33

:::
0.35 0.88 0.55

:::
0.60 0.33

:::
0.31

McdGeoc 0.38
:::
0.46 0.32

:::
0.34 0.87 0.41

:::
0.45 0.33

:::
0.31

Modified index of agreement

GlcGlob
:::::
EsmAve

:
0.52

:::
0.54 0.46

:::
0.45 0.64 0.54

::
0.35

:

::::::
GlcGlob

::
0.55

: ::
0.47

: ::
0.65

: ::
0.54

:
0.41

GlcGeoc 0.49
:::
0.51 0.45

:::
0.46 0.61

:::
0.62 0.51

:::
0.52 0.45

:::
0.29

McdGlob 0.51
:::
0.54 0.39

:::
0.40 0.63

:::
0.64 0.54 0.35

:::
0.44

McdGeoc 0.49
:::
0.52 0.41

:::
0.42 0.62

:::
0.63 0.52

:::
0.53 0.40

:::
0.31
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Table 6. As Table 5, but observed and simulated XCO (ppb) fields over the six selected areas: SEN, ESB, AMZ, SAS, CAF, and SBI between

2013 and 2015.

Statistics SEN
:::
WCA

:
ESB AMZ SAS CAF SBI

Mean (ppb)

MOPITT 103.4
::

93.4
:

103.1
::::
103.6 96.4

:::
98.2 110.0

::::
110.6 114.6

::::
114.8 91.5

::
90.5

:

::::::
EsmAve

::
95.2

: ::::
103.7

::::
101.1

::::
120.4

::::
115.1

::
99.4

:

GlcGlob 99.6
::

97.4
:

101.4
::::
105.9 93.8

::::
104.9 116.6

::::
124.7 116.7

::::
123.0 103.4

:::
102.8

:

GlcGeoc 91.0 91.5
:::
98.2 81.7

:::
93.5 105.4

::::
114.7 88.5

:::
98.1 90.4

::
93.0

:

McdGlob 102.7
::

99.1
:

105.8
::::
109.1 97.6

::::
107.6 117.4

::::
125.5 129.8

::::
130.9 103.8

:::
104.7

:

McdGeoc 93.6
::

92.9
:

95.0
::::
101.2 85.7

:::
97.3 107.4

::::
116.6 93.1

::::
102.7 94.1

::
96.4

:

Standard deviation (ppb)

MOPITT 10.0
::

11.5
:

9.5
:::
10.4 21.1 23.5 27.4

:::
23.4 30.2

:::
28.7

::
29.5

:

::::::
EsmAve

::
6.9

: ::
8.7

:::
22.2

:::
22.4

:::
28.8

::
20.5

:

GlcGlob 6.5
::
7.9

:
10.3

::
9.5 15.8

:::
22.8 19.1

:::
23.8 31.3

:::
32.8 27.1

::
24.2

:

GlcGeoc 4.6
::
5.9

:
7.7

::
7.5 11.7

:::
20.0 14.3

:::
20.9 12.9

:::
19.0 13.4

::
14.7

:

McdGlob 6.3
::
7.8

:
11.8

:::
10.2 17.1

:::
23.6 17.6

:::
23.7 41.3

:::
37.5 24.1

::
25.0

:

McdGeoc 4.6
::
6.2

:
8.9

::
8.2 14.8

:::
22.5 14.7

:::
21.3 15.9

:::
21.7 15.4

::
17.1

:

Mean absolute error (ppb)

GlcGlob
::::::
EsmAve 6.0

::
5.8

: ::
4.6

::
8.9

:::
12.8

:::
12.2

::
13.7

:

::::::
GlcGlob 5.9 8.3

::
5.1 12.5

:::
10.0 14.6

:::
15.0 15.3

:::
13.7

::
15.0

:

GlcGeoc 12.6
::
6.5

:
12.2

::
6.6 15.0

::
9.9 13.4

:::
11.1 26.6

:::
18.6 12.1

::
12.7

:

McdGlob 6.1
::
7.1

:
6.6

::
6.7 8.4

:::
11.7 13.1

:::
16.3 20.6

:::
18.4 16.0

::
16.2

:

McdGeoc 10.3
::
6.3

:
9.5

::
5.3 11.5

::
8.9 13.1

:::
11.6 23.0

:::
15.5 12.6

::
13.3

:

Correlation coefficient

GlcGlob
::::::
EsmAve 0.73

::
0.83

:
0.69

:::
0.80

:::
0.85 0.86 0.82

:::
0.85 0.77 0.87

::
0.91

:

GlcGeoc
::::::
GlcGlob 0.63

::
0.86

:
0.63

:::
0.80

:::
0.85 0.88 0.71

:::
0.85 0.73

::
0.93

:

::::::
GlcGeoc

::
0.76

: :::
0.75

:::
0.79 0.81

:::
0.79

::
0.82

:

McdGlob 0.65
::

0.85
:

0.65
:::
0.80 0.86 0.81

:::
0.87 0.77

:::
0.86 0.89

::
0.94

:

McdGeoc 0.60
::

0.76
:

0.61
:::
0.76 0.89

:::
0.83 0.71

:::
0.82 0.75

:::
0.83 0.84

::
0.87

:

Modified index of agreement

::::::
EsmAve

::
0.62

: :::
0.70

:::
0.74

:::
0.65
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Figure A1. Map of the 14 global regions derived from Giglio et al. (2006) and van der Werf et al. (2017).
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