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Abstract. Competitive ligand exchange–adsorptive cathodic stripping voltammetry (CLE-AdCSV) is used to determine the 10 

conditional concentration ([L]) and the conditional binding strength (log𝐾ௗ) of dissolved organic Fe-binding ligands, which 

together influence the solubility of Fe in seawater. Electrochemical applications of Fe speciation measurements vary 

predominantly in the choice of the added competing ligand. Although different applications show the same trends, [L] and 

log𝐾ௗ  differ between the applications. In this study, binding of two added ligands in three different common applications 

to three known types of natural binding ligands are compared. The applications are: 1) Salicylaldoxime (SA) at 25µM (SA25) 15 

and short waiting time, 2) SA at 5µM (SA5) and 3)2-(2-thiazolylazo)-ρ-cresol (TAC) at 10 µM, the latter two with overnight 

equilibration. The three applications were calibrated under the same conditions, although having different pH values, resulting 

in the detection window centers (D) DTAC > DSA25 ≥ SA5 (as logD values with respect to Fe3+: 12.3>11.2≥ 11).  

For the model ligands, there is no common trend in the results of log𝐾ௗ . The values have a considerable spread, which 

indicates that the error in log𝐾ௗ  is large. The ligand concentrations of the non humic model ligands are overestimated by 20 

SA25 which we attribute to the lack of equilibrium between Fe-SA species in the SA25 application. The application TAC 

more often underestimated the ligand concentrations and the application SA5 over and under estimated the ligand 

concentration. The extent of overestimation and underestimation differed per model ligand, and the three applications showed 

the same trend between the non humic model ligands especially for SA5 and SA25. The estimated ligand concentrations for 

the humic and fulvic acids differed approximately 2 fold between TAC and SA5 and another factor of 2 between SA5 and 25 

SA25. 

The use of SA above 5 µM suffers from the formation of the species Fe(SA)x (x>1) that is not electro-active as already 

suggested by Abualhaija and Van den Berg (2014). Moreover, we found that the reaction between the electro-active and non-

electro-active species is probably irreversible. This undermines the assumption of the CLE principle, causes overestimation of 

[L] and could result in a false distinction into more than one ligand group. 30 

For future electrochemical work it is recommended to take the above limitations of the applications into account. Overall, the 

uncertainties arising from the CLE-AdCSV approach mean we need to search for new ways to determine the organic 

complexation of Fe in seawater. 

 

1. Introduction 35 

The trace element Fe is an important micro-nutrient for phytoplankton (De Baar and La Roche, 2003; Achterberg et al., 2018; 

Lauderdale et al., 2020). Together with light it limits the growth of phytoplankton in 30 to 40% of the oceans (De Baar, 1990; 

Martin et al., 1990; Rijkenberg et al., 2018; Boyd et al., 2000;). One of the reasons for the limiting role of Fe is its low solubility 

in seawater, which can be enlarged at least tenfold by complexation with dissolved organic ligands (Liu and Millero, 2002). 

The organic complexes of dissolved iron (DFe) in the oceans are important since these decrease the inorganic Fe concentration, 40 

and therefore reduce precipitation as Fe(oxy)hydroxides and adsorption onto particles (scavenging). Organic ligands can also 
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be oxidised under the influence of light and reduce Fe(III) into the labile but more bio-available Fe(II) via ligand-metal charge 

transfer reactions (Barbeau et al., 2001; Barbeau, 2006; Rijkenberg et al. 2006). Furthermore, organic complexation of Fe can 

be expected to modify Fe bioavailability, although the relationship between DFe speciation and bioavailability appears to be 

complex (Van den Berg 1995; Hutchins at al., 1999; Shaked et al., 2005; Salmon et al., 2006; Morrisey and Bowler, 2012; 45 

Gledhill and Buck, 2012; Shaked et al., 2020). The significance of Fe speciation to its biogeochemistry has led to incorporation 

of chemical Fe speciation into global biogeochemical models, with varying levels of complexity (Tagliabue and Völker, 2011, 

2015; Ye and Völker, 2017). Recent modelling work has also highlighted the potential importance of the physico-chemical 

environment on Fe speciation, in particular highlighting the role that pH plays in modifying Fe speciation (Ye et al., 2020). 

The role of both pH and temperature is potentially of great significance considering climate change and ocean acidification. 50 

Out of the natural ligand pool, the following Fe-binding organic ligands groups have been identified: 

1. siderophores, being relatively strong Fe-binding ligands excreted by micro-organisms to bind Fe and make it bio-

available (Gledhill et al., 2004; Mawji et al., 2008, 2011; Boiteau and Repeta, 2015; Boiteau et al., 2018);  

2. humic substances, a diverse group of large molecules, that include ligands with affinity for iron in a broad range 

possibly spanning from weak to as strong as some siderophores (Laglera et al., 2007, 2011, 2019, Su et al., 2018; 55 

Slagter et al., 2019);  

3. polysaccharides, a group of ligands binding Fe relatively weakly (Hassler et al, 2011, 2015), although stronger 

polysaccharides have also been reported (Norman et al. 2015). 

Organic ligands increase the solubility and residence time of Fe. Although specific methods exist that focus on analyzing 

siderophores, humic materials and polysaccharides, the connection between the actual abundance of these groups and the 60 

overall Fe-binding capacity is often not well resolved. A few exceptions include Laglera et al. (2019) who determined 

specifically humic Fe-binding ligands, Boiteau et al. (2018) who focused on DFe bound to siderophores and Bundy et al. 

(2014, 2015) who combined methods to determine the abundance of specific groups.  

For approximately three decades, competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-AdCSV) has 

been used to estimate the overall Fe-binding capacity of organic matter in seawater. The application of this method enlarged 65 

our knowledge on the marine chemistry of Fe and the results formed the base of the explanation why DFe depth profiles 

deviated from those of other trace metals (Van den Berg, 1995; Rue Bruland, 1995; Hutchins et al., 1999; Croot et al., 2004; 

Laglera and van den Berg, 2009; Gledhill and Buck, 2012; Bundy et al., 2014; Buck et al., 2015;Hassler et al., 2019; Lauderdale 

et al., 2020). The technique estimates the conditional concentration of ligands in the sample ([𝐿]), and the conditional stability 

constant (𝐾ி
ௗ) of their complexes without specifying the different contributions of specific ligands (Gledhill and van den 70 

Berg, 1994; Rue Bruland, 1995; Wu and Luther, 1995; Croot Johansson, 2000; Boye et al., 2001; Buck et al., 2007; Cabanes 

et al., 2020; Ardiningsih et al., 2020). The term “conditional” is extremely important and means that the obtained results are 

specific to the composition of the sample matrix analysed (DFe, temperature, pH, ionic strength). Since [𝐿] also depends on 

the conditions like pH, salinity and dissolved organic matter, we will use the term conditional for both parameters. The results 

cannot therefore be considered as an absolute quantification of the properties of all the available Fe-binding sites and 75 
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extrapolated to other conditions or matrices (Gledhill and Gerringa, 2017, Town and van Leeuwen, 2014). The technique uses 

an added ligand (AL) with known concentration and conditional stability constant with Fe that form an electro active Fe-ligand 

complex that competes with the natural ligands present in a sample for Fe. The sample is equilibrated for a defined time period 

under controlled conditions of pH, light and temperature. The Fe bound to the artificial ligand is analyzed through its electro-

active properties. By adding increasing amounts of Fe to subsamples, the competing natural organic ligands are titrated until 80 

the natural binding sites are no longer strong or abundant enough to compete successfully with the AL. The competition is 

reflected by the increased proportion of Fe bound to the artificial ligand and from this the conditional concentration and binding 

strength can be calculated (Van den Berg 1982). Although the method does not provide information on the molecular 

composition of the binding sites, CLE-AdCSV does give information on the Fe binding capacity of seawater at the 

measurement pH, temperature and DFe concentration of the sample. Thus, an indication of the potential capacity for further 85 

Fe-binding in a particular sample can be assessed (van den Berg 1995; Tagliabue and Völker, 2011; Pham and Ito, 2019). 

Application of CLE-AdCSV allowed in some samples the division of the overall ligand in two broad ligand groups as a function 

of their conditional stability constants indicated with 1, (𝐾ଵ,ி
ௗ), for the relatively strong ligand group and with 2, (𝐾ଶ,ி

ௗ), for 

the relatively weak ligand group (Rue and Bruland, 1995, 1997, Buck et al 2015, 2018; Bundy et al., 2014, 2015).  

Four different ALs have been reported as forming effective electroactive complexes for the purposes of CLE-AdSCV:  1-90 

nitroso-2-napthol (NN) (Gledhill and van den Berg, 1994), salicylaldoxime (SA) (Rue and Bruland 1995), TAC 2-(2-

thiazolylazo)-p-cresol (Croot and Johansson, 2000) and 2,3-dihydroxynaphthalen (DHN) (Van den Berg, 2006). The two ALs, 

SA and TAC, are the usual selection in field studies (Rue and Bruland, 1995, 1997; Croot and Johansson, 2000; Croot et al., 

2004; Boye et al., 2005; Thuróczy et al., 2011a, 2011b, 2012; Kondo et al., 2012; Bundy et al., 2014, 2015; Buck et al., 2015, 

2018; Gerringa et al., 2015, 2017; Abualhaija et al., 2015; Klein et al., 2016; Slagter et al., 2017, 2019) and basin scale data 95 

sets now exist for 𝐾ி
ௗ  and [𝐿] obtained using these two ALs (Caprara et al., 2016; Cabanes et al. 2020; Schlitzer et al., 2018) 

which provide an important resource for our understanding of iron biogeochemistry in the ocean (Boyd and Ellwood, 2010; 

Boyd and Tagliabue, 2015; Völker and Tagliabue, 2015; Tagliabue et al., 2016; Lauderdale et al., 2020). However, results of 

inter-comparisons of field data suggest that although trends may be similar for different ALs, the different methods may not 

be directly intercomparable as conditional [𝐿] differed significantly, with SA giving higher [𝐿] and often identifying more than 100 

one ligand group compared with TAC (Buck et al., 2012; Buck et al., 2015). With SA, often two ligand groups can be 

distinguished, while TAC distinguishes only one, complicating comparison of trends in 𝐾ி
ௗ . The 𝐾ி

ௗ  obtained by TAC 

is in between the two 𝐾ி
ௗvalues of the two groups obtained with SA. The question is therefore - what is the underlying cause 

of these differences? It was found urgent within the SCOR work group 139 to test or calibrate methods with model ligands. 

Although there are studies that determined [𝐿] and 𝐾ி
ௗ  for model ligands such as siderophores, with some success with 105 

respect to [𝐿] at least (Rue and Bruland, 1995; Buck et al. 2000; Witter e al. 2000; Croot and Johansson, 2000), a thorough 

examination of multiple ligands and approaches that also sought to compare determined [𝐿] and 𝐾ி
ௗ  with values calculated 

from thermodynamic constants has not been previously undertaken to our knowledge. In this work we chose to examine 
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potential bias between ALs via a series of carefully controlled studies of selected Fe-binding ligands that are likely 

representative of those found in the marine environment. We chose to work with SA and TAC, and further compared two 110 

reported SA methods. Our three approaches comprised a) 10 µM TAC with overnight equilibration at pH = 8.05 (Croot and 

Johansson, 2000), b) 25 µM SA (SA25) at pH = 8.2 with a short waiting time of 15 minutes for the competing reaction to 

occur (Rue and Bruland 1995, Buck et al., 2007), and c) 5 µM SA (SA5) at pH = 8.2 with overnight equilibration as described 

by Abualhaija et al., (2015). Since all parameters derived in CLE-AdCSV are fundamentally dependent on the side reaction 

coefficient of the Fe-AL under the conditions of analysis, we calibrated each ligand in the same laboratory under comparable 115 

conditions for consistency and to avoid any issues of bias relating to the choice of calibrating ligand, the calculation methods 

employed in the original papers and the choice of side reaction coefficient for Fe. We made some (arbitrary) choices on 

conditional binding constants between DTPA and Fe, however, we worked with one set of thermodynamic constants to make 

comparison between the methods consistent. We therefore press the point that the focus of the paper is on comparing the 

empirical outcome of the three applications and not on the accuracy of 𝐾ி
ௗ . 120 

We used Diethylenetriaminepentaacetic acid (DTPA) as a model simple well-defined molecule, the naturally occurring phytic 

acid, the hydroxamate siderophores desferrioxamine B, ferrioxamine E, ferrichrome, and the cathecholate siderophore 

virbriobactin, and fulvic and humic acids. Moreover, we carried out for the first time a specific study on the kinetics of complex 

formation and ligand exchange of Fe(SA)x complexes. All the experiments were performed in a single laboratory in order to 

minimize inter-laboratory variations in protocol, material and reagent variations. We begin with a short review of previous 125 

criticisms of the CLE-AdCSV approach, since this provides important context for our study. Our overall aim was to shed light 

on the processes that lead to method discrepancies in the determination of natural iron ligand concentrations.  

2. Potential origins of bias in the determination of binding parameters by CLE-AdCSV 

CLE-AdCSV is based on many limitations and assumptions which have been discussed at some length in the literature (e.g. 

Apte et al., 1988; Turoczy and Sherwood, 1997; Town and Filella, 2000; Hudson et al., 2003; Croot and Heller, 2012; Laglera 130 

et al., 2013; Town and van Leeuwen, 2014; Gerringa et al., 2014; Laglera and Fillela, 2015; Pižeta et al., 2015; Turner et al., 

2016; Gledhill and Gerringa, 2017). If the assumptions are sufficiently satisfied, the calculation of ligand complexation 

parameters like the conditional ligand concentration [𝐿]and the conditional stability constant log𝐾ி
ௗ  can be undertaken, 

usually using the Langmuir isotherm (e.g. Gerringa et al., 2014 and references herein).  

 Here we give a brief overview of the limitations and assumptions.  135 

1. Thermodynamic equilibrium between Fe, the added ligand and natural ligands must be established. Failure to achieve 

equilibrium can lead to incorrect estimates of [𝐿] and the conditional constants (Hudson, 1998; Gerringa et al., 2014; Town 

and van Leeuwen, 2014; Laglera and Filella, 2015). Non-equilibrium conditions arise if the electroactive complex is a reaction 

intermediate, if insufficient time is allowed for equilibration of the reactants, or if there is a fraction of DFe that is kinetically 

inert in the time scale of the equilibrium period (e.g. aged inorganic colloids or Fe(AL) complexes).  140 
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2. There must be a detectable level of competition between the added and natural ligands.  The competitive interaction is 

summarised by the side reaction coefficients for the natural and added ligands (αFeL, αFeAL respectively). The side reaction 

coefficient, which is often expressed as a logarithm, is defined as  

𝛼ி =  𝐾ி
ௗ × [𝐿´] =  

ி

ி´
   (1) 

or 145 

𝛼ி =  𝐾ி
ௗ × [𝐴𝐿´] = 𝐷  (2) 

 

 where [𝐿´] and [𝐴𝐿´] are the conditional concentration of the organic ligand not bound by Fe and the concentration of AL not 

bound by Fe respectively and 𝐹𝑒´ is the Fe concentration not bound to L. The side reaction coefficient of AL defines the center 

of the detection window or analytical window, which we defined here as D to prevent confusion between side reaction 150 

coefficients of added and natural ligands. The window is assumed to be approximately two to three orders of magnitude wide, 

one to two orders of magnitude above and below D (Apte et al. 1988; Van den Berg and Donat, 1992; Milller and Bruland, 

1997, Laglera et al., 2013; Laglera and Fillela, 2015). In practice, the upper limit of D is defined by the analytical sensitivity 

of the AdCSV method, as it is bound by the limit of detection of FeAL. The lower limit of D is bound by ligands that are 

outcompeted by the AL within the range of Fe added during the titration. Since AdCSV is internally calibrated via standard 155 

additions, in practice the lower limit of the detection window is bound by the value of  𝛼ி achieved when the analytical 

response is deemed to be linear (Apte et al, 1988; Laglera and Fillela, 2015).  

3. The concentration of the FeAL complex can be accurately determined at each titration point. AdCSV is internally calibrated 

via standard additions, D and values obtained for 𝐾ி
ௗ  and [𝐿] are strongly influenced by our ability to accurately calculate 

the sensitivity (Turoczy and Sherwood, 1997, Hudson et al., 2003; Pizeta et al., 2015).  160 

4. Complexes of Fe with natural ligands cannot be electro-labile under the experimental conditions since this could result in 

interferences with the actual detection of the Fe-AL complex (Yang and van den Berg, 2009; Laglera et al., 2011). 

5. The equilibrated Fe-AL complex must be electro-active since it is the reaction on which the detection is based. 

6. The AL should not react with the natural ligands altering or cancelling their binding ability. 

 165 

In the last decade, many studies have questioned the compliance of the CLE-AdCSV methodology to these assumptions and 

their influence on method discrepancies. Laglera et al. (2011) showed the inability of TAC to measure fulvic and humic acids 

as Fe-binding dissolved organic ligands, which might be due to either assumption 2 or 6. Humic substances are ubiquitous, 

they form large diverse molecules and are broadly recognized as Fe-binding ligands (Krachler et al, 2015; Su et al., 2018; 

Laglera et al 2019; Whitby et al., 2020, Yamashita et al., 2020). According to other work, TAC is able to detect at least part 170 

humics as Fe binding organic ligands (Batchelli et al., 2010; Slagter et al., 2017; Dulaquais et al., 2018).  
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The SA25 application has been criticized for not meeting assumption 1, SA25 has a waiting time of 15 to 20 minutes in contrast 

with the overnight equilibration used for the TAC and SA5 applications (Abualhaija and Van den Berg, 2014, Abualhaija et 

al., 2015; Slagter et al., 2019).  

Abualhaija and Van den Berg (2014) found that two Fe-SA complexes are formed, FeSA and Fe(SA)2, and only FeSA is 175 

electro-active. At higher [SA], the proportion of Fe(SA)2 increases and the analytical signal decreases resulting in a negative 

relationship between sensitivity and competitive force. Finally, we would like to point out that the pH of the analysis may have 

a larger influence on the organic complexation of DFe than previously thought (Gledhill et al, 2015; Avendaño et al., 2016; 

Ye et al., 2020) but the same competition of OH ions in binding Fe, irrespective of the buffered pH values of the SA and TAC 

applications is sometimes used (8.2 and 8.05, respectively, which is a factor 1.4 different in terms of H+ concentration). This 180 

complicates a direct comparison of data even more. 

 

3. Methods 

The natural seawater used in the experiments consisted of mixed leftover filtered samples of the northern Western Atlantic 

GEOTRACES cruise GA02 (stored frozen at -20 ◦C) (Rijkenberg et al., 2014). A sample volume, assumed to be necessary for 185 

the following few days, was thawed, mixed, UV-irradiated to destroy the natural organic Fe-binding ligands, and stored in the 

refrigerator. Consequently, one batch differs from others with respect to the DFe content, and also potentially in other 

constituents, such as other trace metals. Since surface samples were not used we do not expect large differences in salinity, the 

average salinity was 35.09 ±0.61 (N=434), obtained as average of all samples >100 m depth taken for the ligand analysis in 

Gerringa et al. (2015). Samples for DFe analysis were taken from every batch. UV irradiated sea water was stored for 3 days 190 

at most. 

3.1 Equipment and measuring conditions 

3.1.1. Equipment and electrochemical parameters 

We carefully followed procedures as described in the literature to ensure methodology was as close as possible to that originally 

described (Tables S1 and S2). Three different voltammetric setups were used (Table S1). A standard Metrohm set up was used 195 

for TAC. For use with SA, a separate Metrohm system was modified to allow for air purging whilst the mercury drop formation 

was still executed under nitrogen pressure. Nitrogen did not leak into the headspace of the sample during the measurements in 

our Metrohm stand. However, when drops are formed pulses of nitrogen are released and end up in the headspace of the 

sample, purging with air would remove (at least part of) the nitrogen. To check a potential effect of this nitrogen a kinetic 

experiment with SA25 was executed. To five identical subsamples SA was added at the same time. These subsamples were 200 

each measured repetitively during one to several hours, one after the other. No effect was seen after sub sample replacements 

(Figure S1). We concluded that nitrogen from the stand did not influence the kinetic process, since the measured FeAL 
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concentrations had a gradual change over time, independent of the subsample. For the other kinetic experiments with SA, 

BASi equipment was used (Table S1). The electrochemical settings used by Croot and Johansson (2000), Buck et al. (2007) 

and Abualhaija and van den Berg (2014) were used without alteration and are summarized in Table S2. 205 

 

3.1.2 Conditioning and equilibration  

Electroactive complexes with Fe typically have low solubility and thus tend to adsorb on the walls of containers. Conditioning 

and equilibration of all contact surfaces is thus an important pre-treatment step in order to minimize losses of Fe and ligand 

species during the course of the experiment. Different materials do not have the same adsorption properties (Fischer et al., 210 

2006), all cells and titration vials were made of Teflon, other bottles, sample bottles and those used for kinetic experiments 

were low density polyethylene (LDPE) bottles (NalgeneTM, Fisher Scientific). For all three applications, the same materials 

were used, cancelling any deviation among methods from the interaction of solution component and containers. Equilibration 

between the samples and AL was attained at room temperature. 

Before use, all materials such as vials, bottles and cells, were conditioned overnight in UV-irradiated seawater with the 215 

prepared combinations of seawater and ligand. The conditioning procedure was performed at least three times for the analysis 

with TAC and at least five times for analysis with SA. The cell with electrodes, stirrer and purge tube were kept overnight in 

low metal seawater. Before a titration started first two measurements were executed with seawater containing all chemicals 

but no Fe addition, these measurements served also as check for possible contamination of the cell. Hereafter, two zero 

additions were measured (see section 3.4), of which the second was used as start of the titration.  220 

Before starting kinetic measurements, a 30 ml vial with the same content and treatment as the sample was used for three 

analyses (thus three times 10 ml) in order to condition the cell wall, electrodes and stirrer. 

The 200 ml bottles used for kinetic studies were conditioned with 6 nM Fe, in the absence of the added ligand. For tests with 

UV irradiated seawater without a model ligand, 200 ml bottles were conditioned by rinsing the bottle three times for two 

minutes with 30 ml of the test seawater. Since UV-irradiated seawater did not contain Fe-binding organic ligands, most of the 225 

added 6nM DFe would adsorb on the bottle walls or precipitate.  

Samples were equilibrated according to the specific method descriptions, which was overnight equilibration for the TAC and 

5 µM SA and 15 minutes for 25 µM SA (Croot and Johansson, 2000, Buck et al., 2007; Abualhaija and Van den Berg, 2014). 

The 15 minutes equilibrations were applied precisely using a stopwatch, whereas overnight equilibration resulted in a period 

of at least 14 hours.  230 
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3.1.3 UV irradiation 

Samples, without any additions, were poured into 30 ml Nalgene FEP bottles and placed in a custom-made UV box between 

4 TUV 15W/G15 T8 fluorescent tubes (Phillips) for 4 h (Rapp et al., 2017; Wuttig et al., 2019). Precipitates were not observed. 

After UV irradiation, samples were transferred into a trace-metal clean one-liter LDPE bottle and kept in the refrigerator. 235 

 

3.1.4 Model Ligands 

The following discrete synthetic ligands of known concentration (model A ligands) were used at a concentration of 2 nM, 

unless otherwise stated. No tests were undertaken to check the purity of the siderophores. The solutions were used within two 

weeks after preparation, and kept in the refrigerator in the dark at 4◦C, which should at least for DFOB be short enough to 240 

prevent degradation (Hayes et al., 1994). The aim of our research was to compare the three applications. Humics (model B 

ligands, 0.1 or 0.2 mg/liter) were added in a concentration to give an iron binding capacity of approximately 3 nM (Laglera 

and Van den Berg, 2009; Yang et al., 2017; Sukekava et al., 2018). The stoichiometry of the formed Fe-model ligand 

complexes differs for each model ligand. In order to simplify the comparison of binding strengths, stability constants are given 

for a 1:1 stoichiometry: 245 

Model A ligands 

 Diethylenetriaminepentaacetic acid (DTPA C14H23N3O10, Sigma-Aldrich D6518-5G). DTPA was used to 

calibrate the added ligands via reverse titration according to methods described previously (Croot and Johansson, 

2000). We calculated a conditional binding constant Log𝐾ி்,ிଷା
ௗ  of 19.0 using the ion pairing speciation 

software visual MINTEQ (Gustafsson, 2012), disregarding the formation of FeOHDTPA. The 250 

Log𝐾ி்,ிଷା
ௗ value was independent of the pH difference 8.05-8.2. This is 0.34 higher than the value (18.65) 

used by Croot and Johansson (2000) at I=0.7, pH =8.05 with the difference most likely arising as a result of the 

lower ionic strength predicted by the ion-pairing model. Addition of 2 and 4 nM DTPA did not increase the DFe 

content of the UV irradiated seawater (detection limit =  

 Phytic acid (C6H18O24P6·xNa+·yH2O, Sigma 68388). According to Witter et al., (2000), Log𝐾ி,ிଷା
ௗ = 22.3-255 

22.4. Rijkenberg et al. (2006) warned that at high phytic acid concentrations aggregates are formed, but at our 

concentrations (2 nM) this should not be a problem. 

 The hydroxamate siderophore desferrioxamine B ( C25H48N6O8.CH4SO3 Novartis RVG03984 U.R., 477881 NL.), 

has a thermodynamic stability constant of 30.5 (I=0.1; Hider and Kong, 2010). According to Witter et al. (2000) 

the conditional stability constant, log𝐾ிிை,ிଷା
ௗ , is between 21.6 and 22.1 (I=0.7). Van den Berg (2006) found 260 

log𝐾ிிை,ிଷା
ௗ =21.5, whereas Croot and Johansson(2000) concluded that this conditional stability constant was 

too high and outside D of their TAC method ( log𝐾ிிை,ிଷା
ௗ >23.4). However, new side reaction coefficients 
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of major cations have been determined since, which give rise to a log𝐾ிிை,ிଷା
ௗ  of 24.3 at seawater salinity 

(Schijf and Burns, 2016).   

 The hydroxamate siderophore ferrichrome (C27H45N9O12 Ferrichrome Iron-free from Ustilago sphaerogena 265 

Sigma Aldrich (F8014-1MG)). Hider and Kong (2010) gave a log𝐾ி,ிଷା= 29.1 (I=0.1). According to Witter 

et al. (2000), log𝐾ி,ிଷା
ௗ in seawater varies between 21.6 and 22.9 depending on the applied method. Kinetic 

measurements determining formation constant resulted in 22.9, the equilibrium approach with Fe-titration 

resulted in 21.6. 

 The hydroxamate siderophore ferrioxamine E, (C27H45FeN6O9 Ferrioxamine E from Streptomyces antibioticus 270 

Sigma Aldrich (38266-3MG-F). According to Hider and Kong (2010) Ferrioxamine E has a higher affinity for 

Fe than ferrioxamine B (log𝐾ி,ிଷା= 32.5, at I=0.1).  But Bundy et al. (2018) estimated log𝐾ி,ிᇱ values of 

ferrioxamine B and E , using SA5 in seawater to be close being 14.4 and 14, respectively. However, this model 

ligand as purchased was already saturated with Fe.  

 The triscatecholate siderophore Vibriobactin (C35H33FeN5O11 Vibriobactin (iron-free) from Vibrio cholerae V69, 275 

EMC micro collections). No information is available on the Fe binding characteristics of this model ligand, but 

in general catecholates have higher binding strengths with Fe than hydroxamates because of their ortho phenolate 

binding groups (Hider and Kong, 2010).   

Model B ligands 

 Humic substances are the heterogeneous mix of hydrophobic compounds originating from chemical and microbial 280 

transformation of living matter as it decays in the environment.  

 Fulvic Acids (FA) is the smaller and more soluble fraction of humic substances (Buffle, 1990). Therefore, 

this is not just the ligand but a series of compounds of which a fraction functions as iron binding ligands. 

Laglera and Van den Berg (2009) determined that 1 mg of this specific FA binds 16.7 ± 2.0 nM Fe with 

𝐾ி,ிᇱ
ௗ =10.6. (IHSS Suwannee River Fulvic Acid Standard II, 1R101F). Whereas Yang et al (2017) and 285 

Sukekava et al., (2018) found that 1 mg could bind 14.6±0.7 nM Fe. (IHSS Suwannee River Fulvic Acid 

Standard II 2S101F). It must be noted that the batches are different between the above results and these 

values can differ per produced batch, still we assumed 2.92 nM Equivalents (nM Eq) of ligand sites to be 

added with 0.2 mg SRFA per liter. 

 Humic acids (HA) are the larger fraction of humic substances that precipitate at low pH (pH 2) (Buffle, 290 

1990). Laglera and Van den Berg (2009) determined that 1 mg of this specific HA binds 32 ± 2.2 nmol Fe 

with 𝑙𝑜𝑔𝐾ிᇱ
ௗ=11.1. (IHSS Suwannee River Humic Acid Standard II, 2S101H). We assumed that 0.1 mg 

added HA per liter would add 3.2 and 0.2 mg 6.4 nM Eq of ligand sites. 
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3.2 AL Calibration  295 

Seven or eight conditioned Teflon 30 ml vials were filled with 10 ml UV irradiated seawater spiked with buffer, 6 nM Fe 

(Table S1) and increasing amounts of the calibrating ligand DTPA. For TAC the pH was 8.05 and for SA the pH was 8.2 

according to the original method specifications (according to the NSB scale). The calibrations were repeated 4 times. The 

buffer used for all applications was ammonium borate (Abualhaija and van den Berg, 2014; Buck et al., 2007). Details can be 

found in the Supplementary Information. 300 

DTPA additions were 0, 10, 100, 200, 400, 1000, 2500 nM DTPA for TAC, 0, 1, 10, 40, 80, 100 and 200 nM DTPA for SA5 

and 0, 1, 40, 100, 200, 400 and 1000 nM DTPA for SA25. Mixtures of UV seawater with buffer, DFe and DTPA were 

equilibrated for at least 8 h after which SA or TAC were added. New mixtures were equilibrated either overnight or for 15 min 

in the case of SA25, after which peak heights for FeAL were determined following the procedures described in Table S1. We 

calibrated SA25 using a short waiting time instead of 5 h of equilibration (Rue and Bruland, 1995; Buck et al., 2007) to ensure 305 

consistency with the approach applied to samples. For the calibration of TAC the normal Metrohm instrument was used, for 

SA the BASi instrument (Tables S1, S2). The measurements were done in sequence of increasing DTPA concentrations, 

without rinsing cells in between. 

3.3 Signal stability tests 

As we found the CSV signal after SA addition lacked stability and decreased with time, we performed a series of experiments 310 

to find the cause. We tested the following aspects for both instruments: the influence of a purge step with air (Figure S2), the 

influence of the size of the mercury drop (Figure S3, Table S3), the influence of the mercury puddle on the bottom of the cell, 

and the influence of the SA concentration. For the kinetic measurements (section 2.4) of the SA applications, both BASi and 

Metrohm stands were used. Details on procedures are given in the Supplementary Information file. 

3.4 Titrations 315 

3.4.1 TAC 

Fifteen vials were prepared with increasing Fe content, in a mixture of UV-irradiated seawater and model ligand (Table S1, 

Croot and Johannsson, 2000, Ardiningsih et al., 2020). Blanks were obtained by analysis in the absence of model ligands.  

3.4.2 SA5 

The application followed Abualhaija and van den Berg (2014), but used the above described BASi instrument. SA (added to a 320 

final concentration of 5 µM), buffer, Fe additions (Table S1) and samples were left to equilibrate overnight. 
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3.4.3 SA25 

For SA25, the buffer and DFe were added one hour before analysis. SA was added to a final concentration of 25 µM separately 

to each vial, 15 minutes before the measurement. 

 325 

3.5 Kinetic measurements  

The samples contained either UV-irradiated seawater, or UV-irradiated seawater with a model ligand to which buffer and 6 

nM Fe were added in a pre-conditioned bottle. If a model ligand was present, this was first allowed to equilibrate overnight 

with the buffer and 6 nM Fe. In samples with only UV-irradiated seawater, two approaches were followed: One in which Fe 

was added together with TAC or SA at t=0, and one in which Fe was equilibrated overnight prior to addition of TAC or SA. 330 

In the latter case, there is the possibility that Fe-oxide precipitates were formed prior to the addition of TAC or SA and were 

probably dissolved after the addition of TAC or SA. At t = 0, TAC or SA was added.  

At t = 0, the first measurements were done as rapidly as possible until approximately t = 1 h, followed by subsequent 

measurements every 20 min, every 40 min and 1 h until either t = 4 h or t = 7 h. The number of analyses depended on the 

application and experiment duration (4 or 7 h) but contained a minimum of 14 duplicate measurements. In this way the FeAL(x) 335 

formation in time can be followed. However, the model ligand dissociation rates cannot be calculated from the rate of peak 

increment because the addition of Fe (6 nM) was in excess of the model ligand concentration (2 nM Eq, if not indicated 

differently). Therefore, the excess Fe formed hydroxides and adsorbed on the cell and electrode surfaces. The increment of 

signal reflects the competition of TAC with all these iron species and not just with the model ligand.  

Two protocols were followed (Figure S4): 340 

1. In-cell experiments: repeated scans of the same sample. In this way, contamination was prevented and more 

measurements could be undertaken, especially at the start of the experiments. The total time of the experiments 

lasted 4 or 7 h. Samples of 30 ml were prepared of which the first 20 ml were used to condition the cell twice, after 

which, the last 10 ml was transferred to the cell and the experiment undertaken. The AL was added to the cell at t 

= 0. For TAC, the addition took place after the purge step to reduce the time-lapse between addition and first 345 

measurement. An extra set of in-cell experiments were carried out with UV irradiated seawater, natural seawater 

and UV irradiated seawater spiked with DTPA, 40 nM for SA=AL and 200 nM for TAC=AL. Other experiments 

for all model ligands were repeated with 2 nM of added model ligand. In this protocol, mercury accumulated in the 

cell during the experiment.  

2.  Bottle experiments: scans were carried out on separate aliquots of one sample. In this experiment, a fresh aliquot 350 

of 10 ml was pipetted into the voltammetric cell for the determination of peak height at each time point. The total 

sample volume was 200 ml and the AL was added at t = 0. In this experiment, accumulation of mercury at the 

bottom of the cell was limited. The experiment lasted for 4 or 7 h, consistent with the “in-cell” approach. The first 
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10 ml was transferred as quickly as possible into the preconditioned cell and the measurement started. In order to 

determine the amount of adsorbed Fe on the 250 ml bottle walls, the bottles were rinsed carefully with 5 ml of 355 

elution acid (1.5 M teflon distilled HNO3 that contained rhodium see below section 3.6 ICPMS analysis) and Fe 

concentration in the acid rinse determined by ICPMS (section 3.7). 

 

3.6 Calculations  

The sensitivity, S, the ligand concentration [L] and conditional stability constant (𝐾ௗ) were calculated by direct non-linear 360 

fitting of the Langmuir isotherm (Gerringa et al., 2014) with inherent co-dependence of [L] and 𝐾ௗ  (Apte et al., 1988; 

Hudson et al., 2003; Gerringa et al., 2014) 

The inorganic side reactions of DFe with dissolved hydroxides, αFe, was calculated using the constants from Liu and Millero 

(2002) resulting in an inorganic alpha for Fe (αinorg) of logαinorg = 9.9 at pH = 8.05 and of logαinorg = 10.4 at pH = 8.2. These are 

slightly different from literature values of Croot and Johansson (2000) and Abualhaija and van den Berg (2014). The 365 

conditional binding strength of DTPA was obtained using Visual Minteq. We used an average seawater major ion composition, 

and an average deep sea DFe concentration of 0.5 nM was chosen for these calculations. DTPA was added to the composition 

at the concentrations used, and the pH was fixed at values of 8.05 and 8.2. According to the VMinteq calculations, 

𝐾ி்,ிଷା = 27.3, the logarithm of side reaction coefficients for DTPA with major cations was 8.26, resulting in 

𝐾ி்,ிଷା
ௗ  = 19.0. 370 

 

3.7 ICPMS analysis of dissolved Fe  

Dissolved Fe was analysed with a Thermo Finnigan HR-ICPMS element 2 (for details see Middag et al., 2015; Gerringa et al., 

2020). Briefly, seawater aliquots, with and without the addition of model ligands were concentrated using a seaFAST system 

after UV-destruction.  375 

For the analyses of DFe in UV irradiated seawater with and without added model ligands the limit of detection for DFe was 

22 pM±8 pM. The DFe of model ligands DTPA, Phytic acid, desferrioxamine B and ferrichrome were in the dilutions used (2 

nM and 4nM) below the detection limit. This means the addition of the model ligand did not increase the DFe in the UV 

irradiated seawater. Analyses of 2 nM vibriobactin resulted once in <detection limit and once in 0.1 nM DFe. However, 

ferrioxamine E, FA and HA contained measurable amounts of DFe. 2 nM FerrioxamineE= 1.76±0.04 nM (N=2), 0.2 mg FA= 380 

1.1 ±0.02 nM  (N=3), 0.2 mg HA=3.39±0.05 nM (N=2). 

Background Fe concentrations in TAC, SA and both buffers were determined by pipetting 100 µl in 20 ml of elution acid (1.5 

M Teflon distilled HNO3 containing rhodium). These samples were measured by ICPMS without further sample handling as 

were the acid rinse samples to measure adsorption on bottle walls. The results of the ICPMS on samples with added ligands is 
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given in Table 2 as the DFe of the samples. Upon addition of the buffers 0.04 nM DFe was added inadvertently to the samples.  385 

The addition of 10 µM TAC added 0.2 nM Fe, 25 µM SA 0.2 nM and 5 µM SA 0.04 nM Fe. These inadvertent additions have 

been included in the Fe concentrations. The acid rinse of the 250 ml LDPE bottles, contained 106 nM Fe, when conditioned 

with 6 nM Fe and TAC and 59 nM Fe when conditioned by 6 nM Fe, 2nM phytic acid and TAC. This means that the potential 

release in a 200 ml sample could be at maximum 1.3 and 0.7 nM Fe. The difference in Fe adsorption on the bottle wall shows 

very well the effect of conditioning. 390 

4 Results and discussion 

 

4.1 Calibration of Fe-AL α coefficients  

Details of the calibration are given in the Supplementary Information, here we explain our choice to use an overall α coefficient 

for SA as AL instead of the sum of separate α coefficients of FeSA and FeSA2. We further present and discuss the resulting 395 

binding characteristics of the AL’s.  

The competition by DTPA causes a reduction in peak height compared to the situation without DTPA (Figure S5). At 

equilibrium, dissolved Fe is distributed over the following species,  

𝐷𝐹𝑒 = [𝐹𝑒𝐷𝑇𝑃𝐴] + [𝐹𝑒𝐴𝐿ଶ] + [𝐹𝑒𝐴𝐿] +  [𝐹𝑒ᇱ].    (3) 

For the application of TAC, the contribution of FeTAC is thought to be negligible with respect to the formation of Fe(TAC)2  400 

(Croot and Johansson, 2000). For SA in the micromolar range, both FeSA2 and FeSA are formed, although only FeSA is the 

electroactive species (Abualhaija and Van den Berg, 2014). Using (1) and (3)  give, 

𝐷𝐹𝑒 = αFeDTPA×[Fe3+] + αFeAL2×[Fe3+] + αFeAL×[Fe3+] + αinorg [Fe3+] =  

[Fe3+] × (αFeDTPA+ αFeAL2+ αFeAL + αinorg).      (4) 

The α coefficients determine the distribution of Fe over the complexes with DTPA and AL. When [FeDTPA] = Σ[FeAL], the 405 

α coefficients of DTPA and AL are equal illustrating that a calibration is actually comparing α-values of the added ligand (AL) 

and the calibrating ligand. From the α-values at a determined AL concentration, 𝐾ி
ௗ  and/or 𝛽ிଶ

ௗ  are calculated. The 

calculation of 𝛽ி(ௌ)ଶ
ௗ  cannot be done with precision using only our two SA concentrations. Since we actually need the α-

values for calculating the ligand characteristics from the titration data, we do not need to calculate 𝛽ி(ௌ)ଶ
ௗ . The α-values 

include the contributions of 𝐾ி
ௗ  and 𝛽ிଶ

ௗ  (Table 1) (for more detail see SI). 410 

The obtained α values (Table 1) differ from the original literature values, which is likely due to the toolbox we used, Visual 

Minteq. If we consider the log𝛼ி,ிଷା values, the calibration results for TAC and SA5 we obtained (Table 1) compare very 

well with values from the literature (Croot and Johansson, 2000; Abualhaija and Van den Berg, 2014). Our log𝛼ఀிௌ,ிଷା of 
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SA25 (considering both FeSA and Fe(SA)2 formation) shows a larger discrepancy with Buck et al., (2007) than the above 

comparisons (our log𝛼ఀிௌ,ிଷା= 11.2 versus log𝛼ிௌଶ,ிଷା = 11.9 of Buck et al. 2007).  415 

The difference becomes larger when calculated with respect to inorganic Fe (Fe′) when using the pH adjusted values of logαinorg 

= 9.9 for 8.05 and logαinorg = 10.4 for pH = 8.2 (Liu and Millero, 2002). For SA5 and SA25, the comparison between our data 

and literature values is thus offset with respect to Fe′, due to the application of logαinorg = 10.4. It is possible that the larger 

deviation in SA25 from previously reported values is partly due to the shorter waiting time used in our study,15 minutes instead 

of 5 hours (Rue and Bruland, 1995). However, the calibration should be executed according to the published protocol of the 420 

analyses. 

 

4.2 Titrations 

We present the concentrations of FeAL determined during the titrations of the selected ligands with the 3 different methods to 

allow direct comparison between the approaches (Figure 1, Tables 2 and 3). Differences due to variations in sample materials 425 

are assumed to be small. However, a variance in the content of metals that could compete with Fe for ligand sites can have 

influenced the results and might have caused an underestimation of the model ligand concentration and indirectly also have 

influenced the value of 𝐾ௗ . This could not have influenced the comparison between the applications, since always the same 

mixed sample was used per experiment for the three applications. We again emphasize that CLE-AdCSV titrations in natural 

waters result in the derivation of conditional parameters and this applies to the ligand concentration as well as the stability 430 

constant. 

Overall 𝐾ௗ  and αFeL values of the model ligands were highest with TAC. In other words, they were highest with the 

application with the highest D. For model A ligands like siderophores, this points to bias in the determination of 𝐾ௗ  perhaps 

as a result of true values too high to be measured with accuracy. For example, an estimate of 24.25 for 𝐾ௗ  for FeDFO in 

seawater can be calculated using the side reaction coefficient of 6.25 for DFO binding to Ca and Mg at pH 8.0 (Schijf and 435 

Burns, 2016; Wuttig et al., 2013) and the stability constant for FeDFO given by Hider and Kong (2010). For the complex 

ligands, model B, like humic and fulvic acids, which contain multiple binding sites with a range of affinities, an average 𝐾ௗ  

will be determined based on D of the method being applied (Tables 1 and 2). Both factors highlight important concepts that 

relate to the CLE-AdCSV approach in general, that need to be taken into consideration when interpreting 𝐾ௗ  derived from 

CLE-AdCSV titrations.  440 

Ligand concentrations were highest with SA25 and lowest with TAC (Tables 2 and 3, Supplementary Figure S6) and thus 

showed the opposite trend to 𝐾ௗ . Comparison with the actual added concentrations of the model A ligands shows that [L] 

was, with the only exception of the Fe saturated Ferrioxamine E, relatively underestimated by TAC (5-58%) and systematically 

overestimated by SA25 (26-125%, Supplementary Figure S6). The overestimation by SA25 might be due to a lack of 

equilibrium. In theory when Fe binding ligands are not yet in equilibrium with the AL, the dissociation of FeL complexes 445 
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required to reach equilibrium is incomplete and the so-called straight part is curved and not straight. In principle this will 

underestimate the ligand concentration. The overestimates observed for SA25 might therefore be caused by disequilibrium in 

the Fe-SA species. The extent of overestimation and underestimation differed per model ligand (see below), and the three 

applications showed the same trend between the model A ligands (Supplementary Figure S6) especially for SA5 and SA25. 

Assuming the concentration of ligand sites per weight unit determined by Laglera and van den Berg (2009) and Sukekava et 450 

al. (2018) to be correct, the overestimation by SA25 was larger for model B ligands (Tables 2 and 3). The difference from the 

average value for duplicate measurements of [L] was 0.3 and 0.2 nM Eq of Fe for the TAC and SA5 application, respectively 

(excluding Ferrioxamine E because it was saturated with Fe, see below). The standard deviation with SA25 (N=5) was 0.3 nM 

Eq of Fe. In the following we will assume ±0.3 nM Eq of Fe as precision for [L]. The differences between the applications are 

smaller when the αFeL values are compared (Table 3), which is understandable, since it is αFeL that is titrated and also because 455 

αFeL is calculated from the product of L not bound by Fe ([L′]) and 𝐾ௗ  and thus compensates for any codependence between 

𝐾ௗ  and [L]. 

We ‘back’ calculated the titration curves using our present results, 𝐾ௗ  and [L], and presented this in log-log plots of [FeAL] 

versus total dissolved Fe together with the actual data points (Figure 2). For DTPA and desferrioxamine B we added the 

theoretical titration curves that should be obtained given the  𝐾ௗ  calculated from the thermodynamic constants and the 2 460 

nM of added model A ligands. We presented the back calculations in log-log plots in order to magnify the initial part of the 

titration (Figure 2). 

DTPA 

All applications have been calibrated by reverse titration with DTPA. We would expect to recover comparable binding 

parameters for DTPA during the Fe titration. However, in all cases the log𝐾ௗ  for DTPA calculated from the Fe titration 465 

was overestimated. The overestimation of 𝐾ி்
ௗ  for all three added ligands is likely a result of αFeDTPA< D and thus 

theoretically below the detection window for all applications. For determinations in marine samples, Caprara et al. (2016) 

showed in a compilation of data from the open ocean that with the exception of NN, the ligands were above D of the used AL, 

thus deviation caused by ligands with α<D is likely a minor problem in seawater samples. For TAC and SA5 [L] was 

underestimated. Although such a discrepancy in [L] could be a result of incorrect estimation of the Fe present in the titration, 470 

analysis with ICPMS showed that the Fe concentration increased only by 0.04 nM upon 2 nM DTPA addition, and thus we 

ruled out contamination as a cause for the underestimation of [L] for TAC and SA5. The 𝐾ௗ-values are comparable between 

the applications (ratios vary between 1 and 1.03, Table 3) although the range 21.3-21.8 is substantially higher than 19.0, the 

𝐾ௗ  used for the calibration. Due to the codependence the DTPA ligand concentration (2nM) should have been 

underestimated (Apte et al., 1988), which is the case for the results from TAC and SA5 (by a factor of 0.56-0.87, Table 3). But 475 

the DTPA ligand concentration was overestimated by SA25 (by a factor of 1.31, Table 3, also see titration in Fig. 1). Indeed, 
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in the log-log plots (Figure 2A) our results are well off from the theoretical titration line. Additionally, at the very low 

concentrations the data points of all applications deviate from the modeled curves.  

Phytic acid 

The differences between the applications are also not large for phytic acid, the two SA applications are even quite similar. The 480 

large difference for the 𝐾ௗ-values of phytic acid estimated by TAC was not expected when comparing the two very similar 

titration curves. We found that small changes in determined FeTAC2 concentrations at low Fe additions could be responsible 

for this difference (Figure 2B). When the calculation was repeated for the combined titrations we obtained log𝐾ௗ  = 22.2 

(±0.2 and 0.2) and [L]=1.6 ±0.1 nM Eq.  

 485 

Siderophores  

The siderophores have high 𝐾ௗ , so high that the AL should not be able to compete. However, although, the here 

estimated 𝐾ௗ-values are highest compared to other model A ligands, still curved titrations were obtained (Figure 1C, D, 

E) although there is considerable variance (.𝐾ௗ=22.1-23.5, 21.4-22.9 and 20.2-21.7 for TAC, SA5 and SA25, 

respectively). The 𝐾ௗ , obtained for ferrichrome are close, almost identical, to those for desferrioxamine B for the three 490 

applications. However, [L] obtained for ferrichrome are higher than found for desferrioxamine B, with a factor 1.4-1.6. The 

𝐾ௗ-values for desferrioxamine B are lower than the value calculated from thermodynamic stability constants (Hider and 

Kong, 2010; Schijf and Burns, 2016) (Tables 2 and 3). Although we want to focus on comparing the applications and not on 

the exact values, we need here to compare with literature values. The 𝐾ௗ= 20.2 for desferrioxamine B obtained for SA25 

is much lower than measured by Rue and Bruland (1995) 𝐾ௗ≥23, although they recovered 100% of the added 2.5 nM. 495 

However, we note that they used another protocol and applied 4 minutes of nitrogen purging before every measurement 

which would have interfered with the signal stability according to Abualhaija and van den Berg (2014).  Buck et al., (2010) 

also successfully recovered 100 % of a different siderophore (aerobactin) using SA25. Witter et al. (2000) measured 

siderophores with CLE-AdCSV, but using NN and their results compare better with the results as obtained here. They found 

a range of 𝐾ௗ  values for a range of siderophores, and measured 21.6 for both desferrioxaine B and ferrichrome. These 500 

values are very close to those obtained here by SA5 (21.4-21.5). However, their 𝐾ௗ  for phytic acid was 𝐾ௗ  higher 

(22.3 with respect to Fe3+) than what we found with all the SA applications. However, other research reported lower 

𝐾ௗfor Fe-phytic acid complexes. Schlosser and Croot (2008) combined crossflow ultrafiltration with the Fe radioisotope 

(55Fe) and obtained a substantially lower value (18.6 with respect to Fe3+). Moreover, phytic acid can form colloids with 

FeIII (Anderson, 1963). Colloid formation will interfere in several ways with the analysis by the loss of Fe, since formation 505 

of colloids results in a potentially inert fraction of Fe, the loss of phytic acid, and interference of the colloids on the mercury 

electrode surface. However, the formation of these colloids is dependent on the phytic acid concentration (Rijkenberg et al., 

2006; Purawatt et al. 2007) and at 2 nM phytic acid we do not expect colloids to be formed. The ratios of added [L] and 
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obtained values by CLE-AdCSV by Witter et al. (2000) varied between 0.8 to 1.7, resembling our results, although the ratio 

was 1 for both desferrioxamine B and ferrichrome. Thus, even for model ligands there is no consistence in the literature 510 

between ligands or methods suggesting problems in the standardization of the methodology. It is possible that the 

siderophores used are not of 100 % purity, which would result in a systematic underestimation of [L]. However, whilst it is 

interesting to note absolute values, our research focusses on differences between the three applications, which should not be 

impacted by any impurities.  

The theoretical titration curve for desferrioxamine B has a relatively large offset at low concentrations compared to the 515 

modelled results (Figure 2C). This indicates that the theoretical 𝐾ௗwas not even approached by the three applications. That 

we obtained (and not for the first time) clearly curved titrations, where we should not within the applied D values, is hard to 

explain. One possible explanation could be a reaction taking place at the electrode surface in CSV promoting ligand exchange 

of Fe(III) siderophore complexes, which is producing a current. Another alternative explanation might be aluminium 

competition (which is not accounted for by the thermodynamic constants) since Al complexes with siderophores are detected 520 

in MS analysis of samples (Gledhill et al., 2019). The Al content however, is unknown. 

Ferrioxamine E was the only model ligand that was saturated with Fe prior to the start of the experiment. Moreover, none of 

the ALs should sequester Fe from ferrioxamine E, which is required in order to estimate 𝐾ௗ  because its  𝐾ௗ  is too high, 

outside D (Apte et al., 1988; Hudson et al., 2003; Gerringa et al., 2014). This can be explained by considering the Langmuir 

isotherm, used to derive 𝐾ௗ  and [𝐿௧], 525 

[𝐹𝑒𝐿] =
[][ிయశ]

[ிయశ]ାଵ
,       (5) 

Or 

[ி]

[]
=

ൣிయశ൧

[ிయశ]ାଵ
       (6) 

  

which shows that when 𝐾ௗ*[Fe3+] = 1, [FeL] = 0.5 [L], the equivalence point of the titration, where an almost linear 530 

relationship between [FeL] and [L] changes into an asymptotic relationship. In an Fe titration when 𝐾ௗ[𝐹𝑒ଷା] >>1, [FeL] 

will approach [L]. When a titration starts at initial [FeL]>0.5[L] the ability to estimate 𝐾ௗ  diminishes substantially. In the 

asymptote, at much larger values of [FeL]/[L], the dependence of 𝐾ௗ  is lost and 𝐾ௗ  becomes impossible to derive. 

Therefore, the titration of ferrioxamine E was more or less a standard addition and in theory [L] should be equivalent to the 

determined DFe concentration. However, all three applications overestimated the ligand concentration, but the estimated [L] 535 

of ferrioxamine E compares very well for TAC and SA5, and even SA25. The relatively large difference in resulting 𝐾ௗ  

between the two SA-applications for the hydroxamate siderophores was not expected since the D-values are close. The two 

most probable explanations are D and lack of equilibrium. Possibly the siderophores have αFeL at the borders of and >D and 

therefore a small decrease in D still had a consequence for the outcome of the calculations. The short waiting time may be the 

other reason of the deviation of SA25, which we will discuss in the next section.  540 
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The [L] of the catechol Vibriobactin was underestimated by SA5 and TAC and overestimated by SA25. We believe that this 

divergence was a combination of lack of equilibrium due to the high stability of Fe-vibriobactin complexes during the short 

equilibrium period of SA25 and consequent overestimation of [L], and possibly by the tendency of catecholates to oxidise or 

hydrolyse in water (Brickman and McIntosh, 1992), which could have resulted in partial loss of vibriobactin during overnight 

equilibration. 545 

Humic substances 

Our titrations of FA and HA show remarkable differences between the applications, [L] by TAC was 13-25 % of [L] by SA25 

(Table 3). TAC detected 55 - 70% of FA and HA in contrast to an early report that TAC could not detect any portion of IHSS 

humic reference material (Laglera et al., 2011). Our FA and HA results are in line with the partial detection of HS by TAC 

that was observed already by several field studies, where an increase in [L]TAC correlated with an increase in natural humics 550 

(Gerringa et al., 2017; Dulaquais et al., 2018; Slagter et al., 2017,2019; Laglera et al., 2019). HS showed the largest deviations 

from the expected (literature) results of all tested ligands in [L]. Humic substances are ubiquitous in seawater (Laglera et al., 

2009; Whitby et al., 2020; Yamashita et al., 2020) and potentially more representative of the dominant fraction of dissolved 

organic matter actually present in seawater than the model A ligands tested here, since although siderophores are detected in 

seawater, they are typically only present at pM concentrations (Mawji et al., 2008, 2011; Velasquez et al., 2016; Boiteau et 555 

al.,2018). The different results between the three applications could explain a major part in the offset between the TAC and 

SA methods in natural waters (Buck et al., 2012, 2015; Slagter et al., 2019; Ardiningsih et al., 2021). Moreover, the deviation 

in 𝐾ௗ  obtained by TAC from the other two applications (𝐾்
ௗ/ 𝐾ௌହ

ௗ  and 𝐾்
ௗ/ 𝐾ௌଶହ

ௗ  up to 1.1) is greater than for most 

model A ligands (Table 3). This is also likely to be linked to the heterogeneity of humic substances, which means the detection 

window of each method will have a greater influence on the groups of binding sites titrated during the experiments. We cannot 560 

provide a definitive explanation for the [L] spread. TAC showed almost straight-line patterns for FA and HA (Figure 1G, H), 

as in HS rich estuarine waters (Gerringa et al., 2007, Croot and Johansson 2000). This could be compatible with a fraction of 

HS being too strong and a fraction too weak to compete with TAC (both fractions would be at or beyond the upper and lower 

limits of D). There is an abundant presence of strong binding sites in HS that may not be outcompeted by TAC, since 

desferrioxamine B could also not outcompete all HS binding sites in Arctic Ocean samples (Laglera et al., 2019). Another 565 

possible explanation to the similar recoveries for FA and HA, despite their reported different affinity for iron, is that TAC 

could form interactions with some of the binding groups of HS, cancelling their interaction with iron. In other words, the use 

of TAC would not obey Langmuir assumption 5. For the SA applications, [L] with SA25 seems to be substantially over the 

literature values in contrast to SA5. Titration data of HA with SA5, showed detectable levels of Fe-AL at low total Fe 

concentrations, while for SA25 they could not be seen. Thus, the formation of the electro-active Fe-SA complex does not 570 

happen until after 6-7 nM Fe has been added (0.1 mg HA, or over 10 nM for 0.2 mg HA).  This is most probably an effect of 

ongoing association and dissociation processes between Fe, SA and HA, i.e. a lack of equilibration. Another explanation could 
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be a substantial decrease of the sensitivity cause by adsorption of free and complexed humics onto the surface of the electrode, 

shielding the electrode form interaction with Fe(AL) complexes (Laglera et al., 2011, 2017). Adsorption of humics at the 

mercury electrode has been extensively discussed by Buffle and co-authors (Buffle and Cominoli, 1981; Cominoli et al., 1980) 575 

and the drop of sensitivity for CLE-AdCSV was discussed in Laglera et al. (2011 and 2017). The SA25 application does not 

obey Langmuir assumption 1. This might also explain the large data spread in figure 2H for SA25. 

Overall 

The log-log plots for DTPA and desferrioxamine B, between known and observed conditional stability constants show that the 

data points obtained by TAC are closest to the theoretical curve of DTPA, and by SA5 are closest to desferrioxamine B (Figures 580 

2A,C). However, the TAC application has the highest D and should therefore be better equipped to detect desferrioxamine B, 

and least equipped to detect DTPA. The different results between applications are mostly due to data in the first curved part of 

the titration as shown in figure 1 and illustrated when compared with the theoretical titration curves. At this part of the titration 

curve peaks should in many cases be below the detection limit, thus the precision of these measurements is very low. The log 

log plots (Figures 2) emphasize the differences between expected and observed values. The observations seem to overestimate 585 

the FeAL at low metal additions. Possible reasons are: 

1. electrochemical, for example a catalytic effect becoming more important at low concentrations and enhancing the signal or 

tiny peaks caused by impurities of the reagent or the methanol solvent as show in previous work with NN (Boye et al., 2001), 

2. concentrations are more likely to be overestimated near the detection limit, 

3. desorption from conditioned cells and electrode surfaces is more significant at low concentrations.  590 

Further analysis is required in order to resolve these possibilities and verify that the response of FeAL is linearly related to 

[Fe′] or [Fe3+], even at very low Fe concentrations (< 0.5 - 1 nM). Moreover, in order to obtain reliable estimates of [L] and 

𝐾ௗ) we suggest that samples should have [L′] greater than 2*DFe to ensure the titration starts at low enough [Fe′] or [Fe3+] 

since it is this part of the curve that is used to the calculate 𝐾ௗ  (i.e. where [FeL] ≤ 0.5[L′]; equations (5 )and (6)).  

It is also possible that reactions occurred during the cathodic scan, which could also explain the deviating results of [L] for 595 

Vibriobactin, which was underestimated by 52-62% using TAC and 60-70% using SA5. Free catechols can be electro-active 

(Fakhari et al., 2008) and even a small contribution to the CSV peak from the ligand side of the complex would lead to a 

significant underestimation of the complexed fraction. A last explanation of underestimating ligand concentrations can be 

contamination after sampling for Fe determination by ICPMS took place. 

Considering average [L] and the spread in [L] in the titrations with 2 nM of model A ligands (without considering the saturated 600 

ferrioxamine), average [L] was 1.51±0.32, 3.30±0.76 and 1.96±0.73 nM Eq Fe for TAC, SA25, SA5, respectively. There 

appeared to be model ligand and AL dependent variations in the estimation of [L] as also illustrated in Supplementary Figure 

S6. We can conclude that TAC underestimated most added model ligand concentrations, with a model ligand dependent degree 

of underestimation between 0.55-0.7 for HS to an average 0.8 (0.52-1.05) for the model A ligands. The application with SA5 

both over and under-estimated model ligand concentrations but less than SA25 and TAC, respectively, although HS was 605 
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overestimated by a factor 1.27-1.82 (assuming the number of binding sites from literature). The application with SA25 

overestimated the concentrations by a factor 1.3-2.3 for model A ligands and 2.33-4.17 for HS. However, it must be 

remembered that [L] and 𝐾ௗ  are not determined independently and unfortunately, comparison of thermodynamic constants 

with our results suggest that 𝐾ௗ  cannot be estimated precisely. Here SA-applications result in worse estimates of 𝐾ௗ  due 

to a lack of data at FeL<L, and the possibility that the ligands are outside D, the detection window. As far as we know, four 610 

publications describing an intercomparison exist. Three of these compared SA25 and TAC (Buck et al., 2012, 2016; Slagter et 

al., 2019), one compared SA5 and TAC (Ardiningsih et al., 2021). In all publications, [LSA] is larger than [LTAC] when the data 

is fitted with a one ligand model). In Buck et al. (2016) it was concluded that, when using the same calculation method, 

comparison between the results of both applications seemed good with one exception that SA could measure a second ligand 

whereas TAC could not and therefore the total ligand concentration obtained with SA25 was always considerably larger (their 615 

figure 2E). This difference was attributed to an underestimation by TAC because TAC does not detect binding sites of humic 

substances and cannot discriminate a second ligand as well as SA25 (Buck et al., 2012, 2016; Slagter et al., 2019). Slagter et 

al. (2019) sampled in the Arctic Ocean where the TransPolar Drift transports high concentrations of humic substances in the 

upper 50 to 80 m. Since the humic content was an important feature, TAC was compared with SA25 (Slagter et al., 2019). and 

the voltammetric determination of humic acids (Sukekava et al., 2018). Slagter et al. (2019) found [LTAC]/ [LSA25] = 0.6. 620 

However, this ratio hardly varied with the concentration of humic substances, a strong indication that the underestimation of 

humics with the TAC method was not the only explanation for the difference in ligand concentration between the two methods. 

Ardiningsih et al.  (2021), compared TAC and SA5 in the Arctic Fram Strait and also concluded that the offset between TAC 

and SA5 could not only be directly ascribed to underestimation of binding sites in humic substances. Moreover, Ardiningsih 

et al. (2021) found a relatively constant [LTAC]/ [LSA25] on the Greenland shelf, but a variation in [LTAC]/ [LSA25] between 0.6 625 

and 1 in Fram Strait. It was largely the inconsistencies in these studies, where humic substances were believed to potentially 

play a key role in Fe speciation that lead to this study. In future use of CLE-AdCSV careful consideration is needed for the 

interpretation of the obtained [L] in relation to the application and environmental variations in ligand groups, especially the 

humic substances.  

No intercomparison between SA5 and SA25 has been undertaken since the SA5 application was published in 2014. The 630 

question remains as to why SA5 and SA25 in this work give different results. One explanation might be disequilibrium of the 

SA25 application. To further study the equilibration process, we executed some kinetic experiments.  

 

4.3. Kinetic measurements 

4.3.1. In-cell kinetics 635 

In-cell kinetics were first performed with three types of samples: normal seawater, UV irradiated seawater and UV irradiated 

seawater containing DTPA at large concentrations (200 for TAC and 40 for both SA concentrations) (Figure 3). Further, in-
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cell kinetic experiments were done on a subset of the model ligands at lower concentrations (2nM or 0.2mg). For the model A 

ligands, DTPA was chosen since it was used as the calibrating ligand. Desferrioxamine B was chosen to represent the 

hydroxamates and Vibriobactin the catecholates. Phytic acid was also included because the titration results of all applications 640 

were in agreement. FA was used to represent model B ligands, as heterogenous natural organic matter.  

The in-cell kinetic measurements with high [DTPA] gave completely different results between TAC and SA (Figures 3 and 4, 

Metrohm stand used). For SA25, the peak decrease was high at t = 3 min (initial value) and drops sharply to the values close 

to the limit of detection within an hour in UV-irradiated seawater and UV+DTPA. For TAC we observed a slow increase of 

the Fe(TAC)2 concentration followed by an asymptotic change to a constant value, as expected for a product of a ligand 645 

exchange reaction tending towards equilibrium.  

Kinetic experiments with the low concentrations of model ligands in a volume of 10 ml was not pursued with the SA 

applications, only with TAC. In these experiments, equilibrium between TAC and model ligands was reached after 

approximately 6 h, as observed previously (Croot and Johansson, 2000), 4 h for most ligands and 6 h for desferrioxamine B 

(Figure S7). Although the rate of Fe(TAC)2 formation changed with the type of model ligand,  a steep increase where the 650 

relative weaker ligands were added, DTPA, FA and phytic acid, against a slow and steady increase where desferrioxamine B 

and vibriobactin were added, all model ligands followed the theoretical ligand exchange concentration evolution (Figure S7).  

Possible explanations of the rapid decrease in peak height are: 

1. The decrease can be due to formation of the non-electro-labile Fe(SA)2 complex. Fe(SA)2 is the non-electro-active 

species (Abualhaija and Van den Berg, 2014) and becomes the dominant Fe(SA)x complex at higher SA concentrations. 655 

The two forms of Fe-SA would have different formation kinetics, with a slower formation of Fe(SA)2, with Fe coming 

not from the dissociation of the model complex but from the dissociation of Fe(SA). This process increases the time to 

reach equilibrium and D changes accordingly. We monitored the electro-labile Fe(SA) concentrations after SA additions 

in the range 2.5 and 50 µM using the adapted Metrohm instrument with a small mercury drop (size 1) and regular air 

purging (Figure 4). Possible contributions due to decreasing oxygen were excluded , and due to adsorption on mercury 660 

on the cell bottom were minimized. At 25 µM SA the concentration of the electro-active species practically disappeared 

after 2 h. At SA < 25 µM, the concentration of the electro-labile species Fe(SA) decreased exponentially with time for 

a period of at least 13 h. At concentrations ≤ 5µM there is a decrease to a constant value above zero. These results 

support the formation of a non-electro-active species Fe(SA)2 irrespective of adsorption on the mercury drop, confirming 

Abualhaija and Van den Berg (2014). 665 

2. Formation of Fe(SA)2 from FeSA is slow and probably also irreversible. We investigated this possibility by trying to 

force dissociation of Fe(SA)2 by adding the competing model ligand DTPA during the decrease of the CSV signal in a 

kinetic experiment. Addition of DTPA did show a sudden decrease in signal with SA5, but not with higher SA 

concentrations (the experiment was done at 5 and 15 µM). We suggest that at the low SA (5 µM) DTPA competed with 

FeSA, causing a decrease in FeSA and thus in peak height. Adding DTPA at the higher SA concentration of 15 µM, 670 

where Fe(SA)2 is  dominant, only a slight decrease in peak height was possible because only FeSA could dissociate and 
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not Fe(SA)2 within the two hours of the experiment (Figure 5). This result indicates irreversible formation of Fe(SA)2 

and has important implications for overnight equilibration.  

3. Adsorption on the mercury at the bottom of the cell as indicated by Buck et al. (2007) and contradicted by Abualhaija 

and Van den Berg (2014). However, both used different analytical equipment, with the latter testing with a Metrohm 675 

stand, characterized by smaller mercury drops and automatic air purge. We checked the effect of the drop size for all 

three applications, including TAC. The TAC-application did not show any decrease in signal with time and with 

increasing mercury at the cell bottom. On the contrary, the two SA-applications did show a decrease that was steeper 

and larger with increasing drop size. The decrease in the SA5 application was larger than in the SA25 application (Figure 

S3). A positive linear relationship (R2 = 0.98) exists for SA25 between the decrease in peak height within 43 min and 680 

the volume of dispensed mercury at the bottom of the cell. However, no relation exists for SA5 although the reduction 

is strongest in that application (Figure S3). We tested whether SA was reversibly adsorbed to the mercury puddle at the 

bottom of the cell by transferring mercury accumulated under SA5 and SA25 protocols into a cell filled with 10 mL 

UV-irradiated seawater with 6nM added Fe. No SA was released from the mercury into the seawater as no peak could 

be detected when analysed with the normal AdCSV procedure. An explanation could be that only Fe(SA)2 adsorbs on 685 

the mercury causing a direct relationship with peak reduction and mercury volume at high SA. Since Fe(SA)2 might be 

formed irreversibly, no release of SA into the solution that could lead to the formation of the electroactive FeSA species 

would be possible. It remains hard to explain the strong reduction of the peak height without a relationship with the 

mercury volume at SA5.  

4. The lack of purging influences the conditions. The BASi electrode only allows either stirring or purging in an automatic 690 

measurement, and stirring is the normal practice. Purging with air should maintain a constant concentration of oxygen 

and should increase the sensitivity and prevent decreasing peak heights with time (Abualhaija and Van den Berg, 2014). 

We checked the effect of an air purge step on the SA measurements of both electrodes, BASi and Metrohm. The decrease 

in peak height with time was not influenced by an air purge step in both electrodes (Figure S2).  

We can conclude that the formation kinetics of Fe(TAC)2 using in-cell experiments with model ligands reached equilibrium 695 

within 8 hours. In-cell kinetic experiments with SA did not reach equilibrium and showed a continuous decay of the peak 

height. This can be explained by a combination of processes like adsorption of Fe(SA)-complexes on dispensed mercury at the 

cell bottom, and formation of the irreversible (FeSA+SA forms FeSA2) and according to Abualhaija and Van den Berg (2014) 

to the non electroactive Fe(SA)2. The formation of irreversible species is not compatible with techniques such as CLE-AdCSV 

that require a dynamic equilibrium between competing ligands before analysis.  700 

 

4.3.2 Bottle kinetics 

The kinetic experiments were repeated extracting 10 mL aliquots from a 200 ml bottle. Experiments carried out were: UV-

irradiated seawater, UV-irradiated seawater with desferrioxamine B, UV-irradiated seawater with phytic acid and UV-
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irradiated seawater with FA (Figure 6). Some points have to be considered for interpretation. The conditioning procedure of 705 

the bottle in which the reaction takes place raises the question whether to condition with or without the AL. Addition of AL 

should occur at t = 0, conditioning of the bottle with AL is thus not possible. Conditioning without AL with UV-irradiated 

seawater with 6 nM added DFe could cause Fe precipitation and/or adsorption on the bottle walls. DFe at the end of the 

experiment is probably higher than 6 nM due to Fe desorption from the bottle wall. 

 710 

TAC 

The results with TAC showed the same pattern as for the in-cell experiments an increase that levels off to equilibrium for UV 

irradiated seawater, phytic acid and FA (Figure 6) characteristic of a ligand exchange reaction reaching a steady state. Higher 

equilibrium signals prove an extra Fe input from the bottle wall. The experiment with desferrioxamine B did not level off after 

8 h and the slope was less steep. This concurs with our in-cell observation that desferrioxamine B dissociates more slowly. 715 

That equilibrium is not reached even after 8 h explains, at least for this model ligand, the underestimation of [L] by TAC (Table 

2; Croot and Johansson, 2000). It also indicates that with this protocol kinetics were not just dependent on ligand exchange 

but also on Fe desorption and/or redissolution of precipitated Fe. 

 

SA 720 

The results of the bottle experiments for SA5 changed dramatically with respect to those of the in-cell protocol. They show 

that equilibrium appears to be achieved for phytic acid and fulvic acid, and the increase of signal over time in the first 1-2 h is 

similar to that for TAC (Figure 6). An equilibrium is reached after approximately 4 h with phytic acid and FA. More time, 8 

h, is needed to reach an equilibrium with desferrioxamine B, in line with the slower formation of FeTAC2 in the presence of 

desferrioxamine B compared to the other model ligands (Figures 6, S6).  725 

Equilibrium or a steady state is difficult to establish for SA25. A plateau is reached after approximately one hour. This 

seemingly depends on the added ligand, but after the plateau the signal decreases at a steady rate. We can conclude thus far 

that the steep decrease shown in the BASi electrode in the in-cell kinetics does not happen with the bottle experiments. This 

result points to adsorption on the dispensed mercury puddle as the main cause of the disappearing signal. Equilibrium is not 

reached at short waiting times after addition of 25 µM SA. Therefore, the use of the Langmuir isotherm to calculate the ligand 730 

characteristics is not possible. We hypothesize that the distinction in more than one ligand group, which was often possible 

with this application could have been caused by the absence of equilibrium. 

5. Conclusions 

All applications have drawbacks, however the SA25 application clearly does not obey the main assumption of the Langmuir 

isotherm, no equilibrium is reached and therefore the results cannot be reliable. Next to this, the most upsetting conclusion is 735 

that the estimation of the conditional stability constant 𝐾ௗ  is a very rough estimate only and systematically biased by the 
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AL. Comparing [L] obtained by the three applications with the added concentrations of the model ligands, [L] is 

underestimated by TAC with a factor 0.5 to 1.05 for model A ligands and 0.52-0.7 for HS, model B ligands. The SA5 

application both under- and over- estimated ligand concentrations (0.57-1.5 for model A ligands and 1.27-1.8 for model B 

ligands), but our kinetic studies suggest that true equilibrium may still be an issue for strong ligands. The SA25 application 740 

overestimated [L] by a factor 1.31-2.3 for model A ligands and 2.33-4.17 for model B ligands. Moreover, for all approaches, 

ligand specific interferences occurred, as for humic acids.  

We confirm the conclusion of Abualhaija and van den Berg (2014) that the SA concentration needs to be low ≤5µM to prevent 

formation of not electro-active Fe(SA)2. Our experiments suggest that the formation of Fe(SA)2 is irreversible, and thus does 

not obey the Langmuir equation. Possibly Fe(SA)2 also adsorbs on dispensed mercury on the bottom of the cell. When using 745 

a BASi electrode small mercury drops are to be preferred.  

All methods have drawbacks, and the characterization of Fe-binding organic ligands at nM concentrations in seawater with a 

high ionic strength and at 40-80 µmol/kg DOC (Hansell et al. 2009) is and remains challenging. In case voltammetric methods 

are used, we advise the SA5-application, but should not be overinterpreted and issues relating to the technique fully 

acknowledge. In particular, it is hard to justify determination of equilibrium constants using an adsorption isotherm that assume 750 

equilibrium, if a signal is not stable and the experimental system is therefore not at equilibrium (for whatever reason), especially 

bearing in mind the method specifically uses the term “equilibrium” in its title. Furthermore, it appears that apart from the 

constraint forced by D, these estimates have a much larger error than apparent from those obtained from the fits to the Langmuir 

isotherm, which may explain why direct links between speciation predicted from conditional parameters do not relate strongly 

to bioavailability (Shaked et al., 2020, 2021), although this could also be caused by the limited role assigned to iron reduction 755 

prior to bio-assimilation. Given that the research questions that are typically addressed when determining conditional 

parameters from the Langmuir isotherm actually relate to how variations in the parameters impact on Fe speciation (e.g. 

abundance of Fe not bound to organic matter and thus assumed to be bioavailable), it would seem appropriate to broaden the 

methodology applied to these questions to other methods capable of e.g. estimating concentrations and distributions of the 

dominant groups of binding sites and/or the lability and solubility of Fe. For example, Whitby et al. (2020) and Laglera et al., 760 

(2019) have used alternative methods based on voltammetry to suggest that humic substances are more important than thought 

before. Other recent studies have focused on the influence of the pH on metal organic complexation and vary the pH of titrations 

(Ye et al., 2020, Gledhill et al., 2015; Zhu et al., 2021). Here we note that the acid-base chemistry of organic matter – which 

underpins metal binding - is severely understudied, but can nevertheless quantify the distribution and concentration of the total 

cation binding sites present, at least in the portion of dissolved organic matter that can be isolated from seawater (Lodeiro et 765 

al., 2020). With further knowledge of acid-base chemistry of dissolved organic matter and how it changes with inputs of fresh 

material from biological activity, the total binding site concentration could be independently constrained and only binding 

affinities derived. Alternatively models can be applied that allow for the estimation of metal speciation for ambient conditions 

(e.g. Hiemstra and van Riemsdijk, 2006; Stockdale et al., 2015), with predictions of how binding to organic matter could 

influence e.g. iron solubility (Zhu et al., 2021). The wider application of methods employing cation chelating resins, such as 770 
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diffusive thin film gradients (Zhang and Davison, 2015; Town et al., 2009; Bayens et al., 2018) might also offer alternative 

insights into the lability of metals in seawater. Another way to apply voltammetric methods is to characterize metal-binding 

ligands by pseudovoltammetry (Luther et al, (2021), although unfortunately this method is not currently suitable for DFe. 

Whilst continued application of the CLE-AdCSV approach will no doubt further develop our knowledge on how operationally 

defined ligand concentrations and stability constants vary in the ocean under a restrictive set of conditions apparently specific 775 

to one added ligand, new approaches to both the determination and the interpretation of metal binding to organic matter will 

surely stimulate discussions in the field of the organic metal complexation and furthermore be likely lead to new insights.It is 

clear that further work needs to be done to effectively contextualise the data base and robust quality control procedures are 

urgently required. We recommend that these procedures include the determination of a standard ligand with independently 

determined thermodynamic constants that is within the detection window of the applied methodology. Our work suggests that 780 

none of the ligands examined here are ideal for this, since they might have been outside the detection window, or do not have 

available thermodynamic constants for comparison. 
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Tables and Table captions 1095 

 

Table 1: Average beta and alpha values of the added ligands (AL) with the standard deviation around the mean of N 

experiments. In bold the parameters used in this study to calculate the model ligand characteristics, 1: assuming one FeAL is 

formed, either FeSA or Fe(SA)2, 2: assuming both FeSA and Fe(SA)2 are formed. a-c indicate literature values: a Croot and 

Johanson (2000) using αinorg =10; bAbualhaija et al. (2015) using αinorg =9.98; c Buck et al. (2007) using αinorg =10.  1100 

Alpha values of the AL are the direct outcomes of the calibration exercises; therefore, these have a standard deviation added, 

which is the standard deviation around the mean of 4 calibrations. Since K and/or β are directly derived by dividing trough the 

AL concentration or squared concentration the standard deviations of 𝑙𝑜𝑔𝐾ி,ிᇱ
ௗ  and 𝑙𝑜𝑔𝛽ிଶ,ிᇱ

ௗ  have the same values. 

 

AL 𝛼ி,ிᇱ log𝛼ி,ிଷା N 𝑙𝑜𝑔𝛽ிଶ,ிᇱ
ௗ  𝑙𝑜𝑔𝛽ிଶ,ிଷା

ௗ or 𝑙𝑜𝑔𝐾ி,ி
ௗ 𝑙𝑜𝑔𝐾ி,ிଷ

ௗ

TAC 
275 

250a 

12.3±0.2 

12.4a 
4 

12.4 

12.4a 

22.3 

22.4a 
   

SA5 
4.16 

17.87b 

11.1±0.1 

11.23b 
4 

11.31 

10.7b 

21.71 

20.7b 
 

5.92 

6.5b 

16.32 

16.5 b 

SA25 5.49 

78.7 c 

11.3±0.23 

11.9 c 

5 10.11 

11.1 c 

20.51 

21.1 c 

 5.342 15.82 

 1105 
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Table 2: Results of the titrations following the three applications, SA5, SA25 and TAC for model ligands A, with a well 

described composition, and a specific added concentration of 2 or 4 nM; and for model ligand B, the humic substances FA and 

HA, that do not have a fixed composition and were added in weight units (01-0.4 mg). DFe was measured by ICPMS. LogK 

is used for log𝐾ௗ  with respect to Fe3+. log𝐾ௗ  and [L] are calculated using the non-linear Langmuir isotherm. Alpha 1110 

(𝐾ௗ*[L′]) is calculated calculating [L′] and not by simple [L]-DFe. DFe in nM, [L] in nM Eq Fe, 𝐾ௗ  in M-1. For the 

model ligands 2 nM were used unless otherwise stated. Most model ligands have been analysed in duplicate with TAC and 

SA5, and once with SA25. The addition of the humics was determined using Laglera and Van den Berg (2009) for HA and 

Sukekava et al., (2018) for FA. 

Since K' is log transformed the standard error (SE) is asymmetric to lower and to upper values, therefore two SE values are 1115 

obtained, one to lower (down) and to upper (up) values. 

NA: SE Down could not be determined for data that fitted the Langmuir isotherm less good.   

1 Unreliable result, Fe is added up to 12.5 nM, therefore [L]=13.23 cannot be calculated in a correct way, even though the SD 

of the fitted value is relatively low. 



 
 

 1120 

 

  

 TAC SA 5µM  SA 25µM 

name DFe logK SE SE [L] SE log DFe logK SE SE [L] SE log DFe logK SE SE [L] SE log 

 nM  Down Up nM Eq  αFe′   Down Up nM Eq  αFe′   Down Up nM Eq  αFe′ 

Model A                      

DTPA 0.31 21.8 0.4 0.2 1.35 0.20 2.96 0.12 21.7 NA 0.4 1.15 0.09 2.29 0.25 21.3 0.3 0.2 2.62 0.15 2.23 

2nM 0.31 21.7 0.2 0.2 1.73 0.24 2.90 0.12 21.6 NA 0.6 1.14 0.21 2.16        

PhA 0.29 21.9 0.2 0.1 1.85 0.13 3.18 0.44 20.7 0.3 0.2 2.85 0.30 1.69 0.57 20.1 0.3 0.2 3.12 0.95 1.14 

2nM 0.29 22.8 NA 0.3 1.32 0.09 2.92 0.44 20.8 0.3 0.2 2.34 0.20 1.67        

DesferB 0.29 22.4 0.6 0.2 1.43 0.12 3.53 0.3 21.4 2.4 0.3 1.80 0.13 2.22 0.43 20.2 0.3 0.12 2.98 0.84 1.16 

2nM 0.29 22.3 0.4 0.2 1.41 0.11 3.47 0.3 21.4 NA 0.34 2.04 0.20 2.28        

Ferchr 0.61 22.1 0.2 0.1 2.1 0.11 3.40 0.42 21.5 0.6 0.2 2.66 0.16 2.41 0.55 20.3 0.2 0.2 4.6 0.99 1.48 

2nM 0.61 22.6 0.2 0.1 1.66 0.05 3.68 0.42 21.4 0.4 0.2 3.00 0.15 2.37        

Ferriox 2.39 22.7 0.3 0.2 2.79 0.08 3.35 2.2 22.5 NA 0.8 2.84 0.16 2.92 2.33 21.7 0.2 0.2 3.94 0.12 2.50 

2nM 2.39 22.8 0.53 0.23 2.77 0.08 3.50 2.2 22.9 NA 1.1 2.83 0.16 3.29        

Ferriox 4.34 23.1 0.2 0.2 5.03 0.06 4.04 4.15 22.3 NA 0.6 5.01 0.14 2.86 4.28 21.6 0.2 0.1 6.81 0.14 2.63 

4nM    
      

4.15 22.2 0.8 0.3 5.26 0.08 2.82        

Vibrio 0.58 23 NA 0.4 1.25 0.07 3.94 0.39 21.6 NA 0.5 1.40 0.19 2.23 0.52 21.2 0.1 0.1 3.18 0.18 2.24 

2nM 0.58 23.5 NA 0.5 1.03 0.05 4.21 0.39 21.5 NA 0.5 1.19 0.16 1.99        

Model B                      

FA, 0.2 1.39 22.3 0.2 0.1 2.04 0.08 3.21 1.2 20.6 0.2 0.1 3.68 0.32 1.62 1.33 20.4 0.1 0.1 8.11 1.28 1.84 

mg/l 1.39 22.6 0.8 0.3 1.69 0.11 3.13 1.2 21.2 0.2 0.2 3.95 0.15 2.26 1.33 20.6 0.1 0.1 6.75 0.65 1.92 

HA, 0.1   
      

2.2 20.7 0.3 0.2 5.43 0.47 1.80 2.33 20.6 0.1 0.1 10.45 1.01 2.08 

mg/l   
     

 2.2 20.8 0.2 0.1 5.82 0.35 1.95        

HA, 0.2 3.89 21.7 0.2 0.2 3.69 0.28 1.35   
  

  
 

  2.33 21.2 0.01 0.1 13.331 0.68 2.80 

mg/l 3.89 21.9 NA 0.4 3.49 0.75 0.98     
 

                      



 
 

Table 3: The differences between the results in Table 3 of the three applications, ratio’s or the difference in 

concentration are given. Added model ligand concentrations are given in column 1. The far right column contains the 

percentual deviation from the added ligand concentration as E(%) = (([LAL]-[x])/[x])x100, with [LAL] as the result of 1125 

the applied ligand method and [x] as the added concentration of the model ligand being 2, 4, 2.9, 3.2 or 6.4 nM (as 

indicated in the first column at the left side under the name of the model ligand). LogK is used for log𝐾ௗ  with 

respect to Fe3+. 

Data containing the ligand concentration, are from the model ligands added at a concentration of 2 nM and thus 

excludes HA and FA. For these we used the ligand site concentrations of 2.92 and 6.4 nM Eq Fe for 0.2 mg added 1130 

fulvic and humic acids from Sukekava et al. (2018) and Laglera and Van den Berg (2009). Since humic acids are not 

discrete ligands the estimate %E are in italic. 

  



 
 

 logarithm values   

  Log values  

 Log values with 

respect to Fe3+   

EAL(%) = ([LAL]-

[x])/[x])x100 % 

  KSA5/ KTAC/ KTAC/ αSA5/ αTAC/ αTAC/ LSA5/ LTAC/ LTAC/ 
  

  

Name KSA25 KSA5 KSA25 αSA25 αSA5 αSA25 LSA25 LSA5 LSA25 ESA5 ESA25 ETAC 

Model A                         

DTPA 1.02 1.01 1.03 1.01 1.01 1.02 0.44 1.18 0.52 -43 31 -33 

2nM   1.00 
 

  1.02 
 

  1.52 
 

-43   -14 

Phytic acid 1.03 1.06 1.09 1.05 1.08 1.13 0.91 0.65 0.59 42 56 -8 

2nM   1.10 
 

  1.06     0.56   17   -35 

Desferrioxam. B 1.06 1.04 1.11 1.09 1.06 1.16 0.61 0.79 0.48 -10 49 -29 

2nM   1.04 
 

  1.05     0.69   2   -30 

Ferrichrome 1.06 1.03 1.09 1.08 1.04 1.12 0.58 0.79 0.46 33 130 5 

2nM   1.06 
 

  1.06     0.55   50   -17 

Ferrioxamine E 1.04 1.01 1.04 1.03 1.00 1.03 0.72 0.98 0.71 42 97 39 

2nM    1.00 
 

  0.98 
 

  0.98 
 

42   38 

Ferroxamine E 1.03 1.03 1.07 1.02 1.05 1.07 0.74 1.00 0.74 25 70 25 

4nM    
  

            31     

Vibriobactin 1.02 1.06 1.08 1.00 1.10 1.10 0.44 0.89 0.39 -30 59 -38 

2nM   1.09 
 

  1.14     0.87   -40   -49 

Model B                         

FA 1.01 1.08 1.09 0.98 1.09 1.07 0.45 0.55 0.25 26 178 -30 

0.2mg/2.9nM 1.03 1.06 1.10 1.03 1.03 1.06 0.59 0.43 0.25 35 131 -42 

HA 1.01 1.05 1.06 0.98     0.52 0.34 0.18 70 226 -41 

0.1mg /3.2nM 0.98 1.05 1.03 0.94     0.44 0.30 0.13 82 317   

HA   
  

                -43 

0.2mg /6.4nM   
  

      
    

  -46 
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Figure captions 

Figure 1: Iron titrations of UV irradiated seawater containing model ligands in competition with TAC, SA5, and SA25 as added 
ligand. [FeAL] = Fe-added ligand complex using sensitivity (S)=1, [Fe] = total iron concentration. See Table 2 for the DFe at zero 
addition. A=DTPA, B=phytic acid, C=desferrioxamine B, D=ferrichrome, E=ferrioxamine E (saturated with Fe), F=vibriobactin, 
G=fulvic acid FA, H=humic acid HA. Data for TAC and SA5 are from duplicate experiments, for SA25 from single experiments, 1140 
except for FA and HA where for SA25 also duplicate experiments were done. Note the different HA concentrations, 0.1 and 0.2 
mg. 

Figure 2: Iron titrations of UV irradiated seawater containing model ligands in competition with TAC, SA5, and SA25 as added 
ligand, [FeAL] versus total dissolved Fe. The same data as in Figure 1 is presented but with a log log transformation. The lines 
represent back calculated titration curves with the data from Table 2, the markers are the actual data points. The dashed black lines 1145 
in 2A and C, are back calculated titration curves using theoretical Kcond calculated from the thermodynamic constants and 2 nM as 
model ligand concentration. A=DTPA, B=phytic acid, C=desferrioxamine B, D=ferrichrome, E=ferrioxamine E (saturated with 
Fe), F=vibriobactin, G=fulvic acid FA, H=humic acid HA. Data for TAC and SA5 are from duplicate experiments, for SA25 from 
single experiments, except for FA and HA where for SA25 also duplicate experiments were done. Note the different HA 
concentrations, 0.1 and 0.2 mg. 1150 

Figure 3: In-cell kinetic experiments, with the three AL applications, in UV irradiated seawater, UV irradiated seawater + DTPA 
(200 nM for TAC and 40 nM for the SA25 application) and natural seawater.  For SA25 UV and UV+40 nM DTPA was done. At 
t=0 AL is added. A: TAC, B: SA25. 

Figure 4: In-cell kinetic experiments at different [SA], peak heights versus time. Measurements versus time are done in the same 
10ml, using the Metrohm electrode; drop size =1, with regular purging with air. At t=0 SA was added 1155 

Figure 5: Reversibility of Fe-SA formation upon addition of 150 nM DTPA at t=80 minutes. The experiment was undertaken with 
a Metrohm electrode in-cell in UV irradiated seawater with 6 nM Fe and two SA concentrations, 5 µM SA (right hand side Y axis) 
and 15 µM SA (left hand side Y axis) 

Figure 6: Kinetic measurements for the formation of Fe-SA complexes, the change in peak height versus time. At t=0 the AL is 
added. In-cell means the whole experiment is done in the same 10 ml which was placed in the cell, dispensed mercury accumulates 1160 
at the bottom of the cell. Bottle experiment means for every measurement a fresh 10 ml was taken from a large volume of sample. 
Here the reaction takes place in the large volume, and AL was added at t=0. A and B: UV irradiated sea water (UV); C and D: 
UV+desferrioxamine B; E and F: UV+phytic acid bottle (A, C, E) and in-cell experiments (B, D, F) are shown. G: For FA only 
bottle experiments were done with SA5 and SA25 as AL. 

 1165 


