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Abstract

In the oligotrophic waters of the Mediterranean Sea, during the stratification period, the

microbial loop relies on pulsed inputs of nutrients through atmospheric deposition of aerosols

from both natural (¢.g. Saharan dust),-and-anthropogenic or mixed origins. While the influence of ///[ Formatted: Font: Italic

dust deposition on microbial processes and community composition is still not fully constrained,
the extent to which future environmental conditions will affect dust inputs and the microbial
response is not known. The impact of atmospheric wet dust deposition was studied both under

present and future environmental conditions (+3°C warming -and acidification of -0.3 pH units ),

envirenmental-eonditions-through experiments in 300 L climate reactors. Three Saharan dust
addition experiments were performed with surface seawater collected from the Tyrrhenian Sea,
Ionian Sea and Algerian basin in the Western Mediterranean Sea during the PEACETIME cruise
in May-June 2017. Top-down controls on bacteria, viral precessesprocesses and community, as
well as microbial community structure (16S and 18S rDNA amplicon sequencing) were followed
over the 3-4 days experiments. Different microbial and viral responses to dust were observed
rapidly after addition and were most of the time highermore pronounced when combined to
future environmental conditions. The dust input of nutrients and trace metals changed the
microbial ecosystem from bottom-up limited to a top-down controlled bacterial community,
likely from grazing and induced lysogeny. The eempesition-relative abundance of mixotrophic
microeukaryotes and phototrophic prokaryotes also was-alse-alteredincreased. Overall, these
results suggest that the effect of dust deposition on the microbial loop is dependent on the initial
microbial assemblage and metabolic state of the tested water, and that predicted warming, and
acidification will intensify these responses, affecting food web processes and biogeochemical

cycles.
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1. Introduction

Input of essential nutrients and trace metals through aerosol deposition is crucial to the ocean
surface water biogeochemistry and productivity (at the global scale: e.g., Mahowald et al., 2017;
in the Mediterranean Sea: e.g., Guieu and Ridame, 2020) with episodic fertilization events
driving microbial processes in oligotrophic regions such as the Pacific Ocean, the Southern
Ocean and the Mediterranean Sea.

The summer Mediterranean food web is characterized by low primary production (PP) and
heterotrophic prokaryotic production (more classically abbreviated as BP for bacterial

production) constrained by nutrient availability. Low BP further hmiting-limits dissolved organic

matter (DOM) utilization and export, resulting in DOM accumulation. Therefore, inputs of
bioavailable nutrients through deposition of atmospheric particles are essential to the
Mediterranean Seats microbial ecosystem. Indeed, these nutrient pulses have been shown to
support microbial processes but the degree-extent to which the microbial food web is affected
might be dependent on the degree of oligotrophy of the water (Marin-Beltran et al., 2019;
Maraiion et al., 2010).

In the Mediterranean Sea, dust deposition may stimulates PP and N> fixation (Guieu et al.,
2014; Ridame et al., 2011, 2021) but also BP, bacterial respiration, virus production, grazing
activities, and can alter the composition of the microbial community (e.g., Pulido-Villena et al.,
2014; Tsiola et al., 2017; Guo et al., 2016; Pitta et al., 2017; Marin-Beltran et al., 2019). Overall,
in such oligotrophic system, dust deposition appears to predominantly promote heterotrophic
activity which will increase respiration rates and CO; release.

Anthropogenic CO: emissions are projected to induce an increase in seawater temperature

and an accumulation of CO: in the ocean, leading to its acidification and an alteration of ocean
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carbonate chemistry (IPCC, 2014). In response to ocean warming and increased stratification,
low nutrient low chlorophyll (LNLC) regions such as the Mediterranean Sea, are projected to
expand in the future (Durrieu de Madron et al., 2011). Moreover, dust deposition is also expected
to increase due to desertification (Moulin and Chiapello, 2006). HeneeFor these reasons, in the
future ocean, the microbial food web might become even more dependent on atmospheric
deposition of nutrients. Expected increased temperature and acidification might have complex
effects on the microbial loop by modifying microbial and viral and community (e.g., Highfield et
al., 2017; Krause et al., 2012; Hu et al., 2021; Allen et al., 2020; Malits et al., 2021). While
increasing temperature in combination with nutrient input might enhance heterotrophic bacterial
growth (Degerman et al., 2012; Moran et al., 2020) more than PP (Maraién et al., 2018), future
environmental conditions could push even further this microbial community towards
heterotrophy. But so far, the role of dust on the microbial food web in future climate scenarios is
unknown.

Here, we studied the response of Mediterranean microbial and viral communities (i.e., viral
strategies, microbial growth; and controls, as well as community composition) to simulated wet
Saharan dust deposition during onboard minicosm experiments conducted in three different
basins of the Western and Central Mediterranean Sea under present and future projected
conditions of temperature and pH. To our knowledge, this is the first study assessing the effect of

atmospheric deposition on the microbial food web under future environmental conditions.



86 2. Material & Method

87 2.1 Experimental set-up

88 During the ‘ProcEss studies at the Air-sEa Interface after dust deposition in the

89  MEditerranean sea’ project cruise (PEACETIME), onboard the R/V “Pourquoi Pas ?” in

90  May/June 2017, three experiments were conducted in 300 L climate reactors (minicosms) filled
91  with surface seawater collected at three different stations (Table 1), in the Tyrrhenian Sea (TYR),
92  lonian Sea (ION) and in the Algerian basin (FAST). The experimental set-up is described in

93  details in Gazeau et al. (2020202 1a). Briefly, the experiments were conducted for 3 days (TYR
94  and ION) and 4 days (FAST) in trace metal free conditions, under light, temperature and pH-

95  controlled conditions following ambient or future projected conditions of temperature and pH.
96  For each experiment, the biogeochemical evolution of the water, after dust deposition, under

97  present and future environmental conditions was followed in three duplicate treatments: i)

98  CONTROL (C1, C2) with no dust addition and under present pH and temperature conditions, ii)
99  DUST (D1, D2) with dust addition under present environmental conditions and iii)

100 GREENHOUSE (G1, G2) with dust addition under projected temperature and pH for 2100

101 (IPCC, 2014; ca. +3 °C and -0.3 pH units). Water was acidified by addition of COp saturated 0.2 //[ Formatted: Subscript ]

102 um filtered seawater and slowly warmed overnight (Gazeau et al. 2021a). The same dust analog

103 was used as during the DUNE 2009 experiments as described in Desboeufs et al. (2014) and the

104  same dust wet flux of 10 g m™ was simulated (as described in Gazeau et al 2021a). Briefly, the /{ Formatted: Font: (Default) Times New Roman, 12 pt ]

105  dust was derived from the <20 um fraction of soil collected in Southern Tunisia (a major source

106  for material transported and deposited in the Northwestern Mediterranean) with most particles

107  (99%) smaller than 0.1 um (Desboeufs et al., 2014), The collected material underwent an /{ Formatted: Font: (Default) Times New Roman, 12 pt ]

Formatted: Font: (Default) Times New Roman, 12 pt J

108 artificial chemical aging process by addition of nitric and sulfuric acid (HNO3 and HoSO4,
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respectively) to mimic cloud processes during atmospheric transport of aerosol with

anthropogenic acid gases (Guieu et al., 2010, and references therein), To mimic a realistic wet /{ Formatted: Font: (Default) Times New Roman, 12 pt

)

Formatted: Font: (Default) Times New Roman, 12 pt

)

flux event for the Mediterranean of 10 g m™, 3.6 g of this analog dust were quickly diluted in 2 L

ultrahigh-purity, and sprayed at the surface of the dust amended treatments (D1, D2 and G1, G2;

Gazeau et al., 20261a). Such deposition event represents a high but realistic scenario, as several

studies reported even higher short wet deposition events in this area of the Mediterranean Sea

(Ternon et al., 2010; Bonnet and Guieu, 2006; Loye-Pilot and Martin, 1996), suggesting that wet

deposition is the main pathway of dust input in the Western Medirranean Sea.{Fernon-etal;

Samples for all parameters (except described below) were taken at t-12h (while filling the

tanks), t0 (just before dust addition), t1h, t6h, t12h, t24h, t48h, t72h and t96h (after dust addition,

and t96h only for FAST).

2.2. Growth rates, mortality, and top down controls

BP was estimated at all sampling points from rates of *H-Leucine incorporation
(Kirchman et al., 1985; Smith and Azam, 1992) as described in Gazeau et al. (2021b). Briefly,

triplicate 1.5 mL samples and one blank were incubated in the dark for 1-2 h after addition of 20

nM of a mix of cold and H-leucine in two temperature-controlled incubators maintained /{ Formatted: Superscript

respectively at ambient temperature for C1, C2, D1 and D2 and at ambient temperature +3 °C for

G1 and G2. Heterotrophic prokaryotes (HB);-Sy#echococeuspicoeukaryotes-and heterotrohic

nanoflagellates (HNF) abundances were measured by flow cytometry as described in Gazeau et

al. (20226201a). Briefly, samples (4.5 mL) were fixed with glutaraldehyde grade 1 (1% final ///[ Formatted: Not Highlight
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concentration) and stored at -80°C until analysis. Counts were performed on a FACSCanto 11

flow cytometer (Becton Dickinson©). HBCells were stained with SYBR Green I at 0.025% (vol

/ vol) final concentration (Gasol & DelGiorgio 2000, Christaki et al 2011). Bacterial eel-biomass

specific growth rates (BBGR) swere estimated following Kirchman (2002), BP/Bacterial

Biomass, assuming expenential-growth-and-assuming a carbon to cell ration of 20 fg C cell!

(Lee and Fuhrman, 1987). Net-srowthrates-(h)-were-caleulated from-the variation-of

Mortality was estimated as the difference between HB present between two successive sampling

points and those produced during that time.

2.3. Viral abundance, production and life strategy

Virus abundances were determined on glutaraldehyde fixed samples (0.5% final
concentration, Grade II, Sigma Aldrich, St Louis, MO, USA) stored at -80 °C until analysis. Flow
cytometry analysis was performed as described by Brussaard (2004). Briefly, samples were
thawed at 37 °C, diluted in 0.2 um filtered autoclaved TE buffer (10:1 Tris-EDTA, pH 8) and
stained with SYBR-Green I (0.5 x 10 of the commercial stock, Life Technologies, Saint-Aubin,
France) for 10 min at 80 °C. Virus particles were discriminated based on their green fluorescence
and SSC during 1 min analyses (Fig. S1). All cytogram analyses were performed with the Flowing
Software freeware (Turku Center of Biotechnology, Finland).

Viral production and bacterial losses due to phages were assessed by the virus reduction approach

(Weinbauer et al., 2010) at t0_and; t24 h and-t48h-in all six minicosms. Briefly, 3 L of seawater

were-filtered through 1.2-um-pore-size polycarbonate filter (Whatman©), and heterotrophie

prokaryotes(HB; (filtrate) were concentrated by ultrafiltration (0.22 um pore size, Vivaflow 200©

///[ Formatted: Not Highlight

///[ Formatted: Not Highlight
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polyethersulfone, PES) down to a volume of 50 mL. Virus-free water was obtained by filtering 1
L of seawater through a 30 kDa pore-size cartridge (Vivaflow 2000, PES). Six mixtures of HB
concentrate (2 mL) diluted in virus-free water (23 mL) were prepared and distributed into 50 mL
Falcon tubes. Three of the tubes were incubated as controls, while the other three were inoculated
with mitomycin C (Sigma-Aldrich, 1 ug mL"! final concentration) as inducing agent of the lytic
cycle in lysogenic bacteria. All tubes were incubated in darkness in two temperature-controlled
incubators maintained respectively at ambient temperature for C1, C2, D1 and D2 and at ambient
temperature +3 °C for G1 and G2. Samples for HB and viral abundances were collected every 6 h
for a total incubation period of 18 h.

The estimation of virus-mediated mortality of HB was performed according to Weinbauer et al.
(2002) and Winter et al. (2004). Briefly, increase in virus abundance in the control tubes represents

lytic viral production (VPL), and an increase in mitemyein—C—treatments_with mitomycin C

represents total viral production (VPT), i.e., lytic plus lysogenic, viral production. The difference
between VPT and VPL represents lysogenic production (VPLG). The frequency of lytically
infected cells (FLIC) and the frequency of lysogenic cells (FLC) were calculated as:

FLIC =100 x VPL/BS x HB; )
FLC=100x VPLG/BS x HB; ?2)
where HB; is the initial HB abundance in the viral production experiment and BS is a theoretical
burst size of 20 viruses per infected cell (averaged BS in marine oligotrophic waters, Parada et al.,

2006).

2.4 DNA sampling, sequencing and sequence analysis
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To study the temporal dynamics of the microbial diversity, water samples (3 L) were
collected in acid-washed containers from each minicosm at t0, t24h, and at the end of the
experiments (t72h at TYR and ION and t96h at FAST). Samples were filtered onto 0.2 um PES
filters (Sterivex©) and stored at -80 °C until DNA extraction. Nucleic acids were extracted from
the filters using a phenol-chloroform method and DNA was then purified using filter columns from
NucleoSpin® PlantlI kit (Macherey-Nagel©) following a modified protocol. DNA extracts were
quantified and normalized at 5_ng uL™" and used as templates for PCR amplification of the V4
region of the 18S rRNA (~380 bp) using the primers TAReuk454FWD1 and TAReukREV3
(Stoeck et al., 2010) and the V4-V5 region of the 16S rRNA (~411 bp) using the primers 515F-Y
(5'-GTGYCAGCMGCCGCGGTAA) and 926R-R (5'-CCGYCAATTYMTTTRAGTTT) (Parada
etal., 2016). Following polymerase chain reactions, DNA amplicons were purified, quantified and

sent to Genotoul (https://www.genotoul.fr/, Toulouse, France) for high throughput sequencing

using paired-end 2x250bp Illumina MiSeq. Note that although we used universal primer, Archaea
were mostly not detected and the prokaryotic heterotrophic communities corresponded essentially
to Eubacteria, therefore the taxonomic description referred to the general term ‘bacterial
communities’

All reads were processed using the Quantitative Insight Into Microbial Ecology 2 pipeline
(QIIME2 v2020.2, Bolyen et al., 2019). Reads were truncated 350bp based on sequencing
quality, denoised, merged and chimera-checked using DADA?2 (Callahan et al., 2016). A total of
714 and 3070 amplicon sequence variants (ASVs) were obtained for 16S and 18S respectively.
Taxonomy assignments were made against the database SILVA 132 (Quast et al., 2013) for 16S
and PR2 (Guillou et al., 2013) for 18S. All sequences associated with this study have been

deposited under the BioProject ID: PRINA693966.
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2.5 Statistics

Alpha and beta-diversity indices for community composition were estimated after
randomized subsampling to 26000 reads for 16S rDNA and 19000 reads for 18S rDNA. Analysis
were run in QIIME 2 and in Primer v.6 software package (Clarke and Warwick, 2001).
Differences between the samples richness and diversity were assessed using Kruskal-Wallis
pairwise test. Beta diversity werewas run on Bray Curtis dissimilarity. Differences between
samples’ beta diversity were tested using PERMANOVA (Permutational Multivariate Analysis
of Variance) with pairwise test and 999 permutations. The sequences contributing most to the
dissimilarity between clusters were identified using SIMPER (similarity percentage). A linear
mixed model was performed using the R software (R Core Team, 2020) using the ‘nlme’
package (Pinheiro et al., 2014) to test if the amended treatments differed from the controls at

t24h and t72h or t96h.

10
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3. Results

3.1. Microbial growth, mortality and top-down controls

Nutrients inputs were observed with dust addition (Fig. S2) and in response the

autotrophic and heterotrophic microbials abundances increased, as well as baeterial

productionBP (Fig. S3). as described in more details in Gazeau et al (2021a, b). Already 24h

following dust addition, Ssignificant increases in heterotrophic bacterial eel-biomass specific

growth rates (BBGR. p < 0.016 at t24 h) were observed in all experiments with dust under D and

G as seen oin (Fig. 1;p=<0-016-after 24-h-and-72-h (showing data) relative-normalized to C) and

Fig. S4.

2)-.-the-The highest growth rates relative-te-C-were observed already 24 h after dust seeding (up

t0 2.9 d-' in G2 at FAST, Table S1. Fig.S4). Baetesialsa: terewthratesw

///[ Formatted: Superscript

shewed-asimilartrendeemparedte{Table 2)-At 24h. in both D and G, Hheterotrophic bacterial

mortality rates was-were alse-higher than in C_(Fig. 1) especially at TYR in D (up 0.5 d;') and //[ Formatted: Superscript

in G at ION _(up to 0.6 d.') and FAST (up to 0.7 d.', WFie1_Table S1). Over the course of the //[ Formatted: Superscript

\£ Formatted: Superscript

three experiments, the slope of the linear regression between log bacterial biomass and log
bacterial production was below 0.4 in the three treatments suggesting a weak bottom up control
(Fig. 2A; Ducklow, 1992). The slope decreased in D and G relative to C. Overall, the top--down
index, as described by Moran et al. (2017), was higher in G (0.92) relative to C and D (0.80).
The relationship between log transformed HNF and log bacterial abundance (Fig. 3B), plotted
according to the model in Gasol (1994), showed that HNF were below the MRA (Mean realized

HNF abundance) in all treatments, suggesting a top--down control of HNF abundance. HNF and

11



234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

bacteria were weakly coupled in all treatments. The relationship between total viruses and

bacterial abundance was weaker in D and G relative to C (Fig. S2S5).

3.2. Viral dynamics and processes

The initial abundance and production of virus-like particles (VLP) was higher in the
western stations-inereased-folowing-an-east-to-west-gradient (Table 1). Viral strategy (lysogenic
vs. lytic replication) was also different between stations, with a higher frequency of lysogenic
cells (FLC) at TYR and ION (23 and 19%, respectively, Table 1) and a higher frequency of

Iytically infected cells (FLIC) at FAST (43%, Table 1).

During TYR and ION experiments, the relative contribution of VLP populations was similar
and stable over time with Low DNA viruses representing over 80% of the community (Figs. 3
and S3S5). The Low DNA VLP abundance was however slightly higher in D and G relative to C
after 24 h at TYR and significantly higher at ION after 48h (p = 0.037; Fig. S34). In contrast to

the other two stations, at FAST, Giruses_(giant viruses, characterized by high DNA fluorescence

and high SSC) were also present and increased in all treatments but especially in G where they
made up to 9% of the viral community at the end of the experiment (Figs. 3 and S34). The
abundance of high DNA viruses at FAST also increased independent of treatments and

accounted for 16 — 18% of the community at the end of the experiment (Figs. 3 and $34).

The sampling strategy for production and life strategies of HB viruses allowed to
discriminate independently the effect of i) greenhouse conditions (sampling at TO before dust
addition), ii) dust addition (sampling at Ft24h) and the combined effects of dust addition and

greenhouse. Lytic viral production (VPL) increased significantly at TO in G at TYR and ION

12
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compared to C (p <0.036). The addition of dust induced higher VPL in D at TYR eempared
(normalized to C, Fig.1). No significant impact of dust on VPL was observed in G compared to
D after 24h for any of the experiments. Changes in viral infection strategy were observed with G
conditions at TO where; FLC decreased relative to the non-G treatments at TYR and ION, and
especially at FAST (Fig. 1. p=0.047). FLIC increased slightly in G at TYR and ION already at
TO. Dust addition had no detectable significant effect on this parameter for any experiments.
Looking at the relative share between lytic and lysogenic infection, dust addition favored lytic
infection at TYR (no lysogenic bacteria were observed after 24h) but the contribution of both
infection strategies remained unchanged compared to C at ION and FAST. Greenhouse
conditions also favored replication through lytic cycle already at TO for all three experiments and

this trend was not impacted by dust addition.

3.3. Microbial community composition

Microbial community structure, bacteria and micro-eukaryotes from 16S rDNA and 18S
rDNA sequencing respectively, responded to dust addition in all three experiments relative to C
(Figs. 4-5 and 56). After quality controls, reads were assigned to 714 and 1443 ASVs for 16S and

18S respectively.

3.3.1. Bacterial community composition

The initial community composition (t-12h) was significantly different at the three stations
(PERMANOVA; p =0.001, Fig. S4aS6a, S5S7). Rapid and significant changes in the bacterial
community composition were observed already 24 h after dust addition (Fig. 4). Despite the
initial different communities, the three stations appeared to converge towards a closer

community composition in response to dust addition (Fig. S5S7). At TYR, communities in D and

13
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G significantly changed 24 h after dust addition (PERMANOVA; p = 0.001). This cluster
presented no significant differences between treatments (D and G) or time (24 and 72 h). The
differences between C and D/G were attributed to a relative increase of ASVs related to different
Alteromonas sp., OM60 and Pseudophaeobacter sp. and Erythrobacter sp.; contribution of
ASVs related to SAR11 and Verrucomicrobia and Synechococcus decreased (Table StaS2a). At
ION, the bacterial community composition significantly changed 24 h after dust addition
(PERMANOVA; p =0.001) and was significantly different between D and G (PERMANOVA; p
=0.032). As observed at TYR, no further change occurred between 24 h and the end of the
experiment (72 h; Fig. 45). The difference between the controls and dust amended minicosms
were assigned to an increase of ASVs related to different Alteromonas sp., Erythrobacter sp.,
Dokdonia sp. and OM60, and a decrease of ASVs related to SAR11, Synechococcus,
Verrucomicrobia, Rhodospirillales and some Flavobacteria (Table S+bS2b). Several ASVs
related to Alteromonas sp., Synechococcus sp. and Erythrobacter sp. were further enriched in G
compared D while Dokdonia sp. was mainly present in D. At FAST, the bacterial community
after 24 h only significantly changed in G (PERMANOVA; p = 0.011; Fig. 45). However, after
96 h, the community in D and G were similar and appeared to transition back to the initial state
at 96 h (PERMANOVA; p = 0.077). The higher relative abundance in Erythrobacter sp.,
Synechoccocus sp., different ASVs related to Alteromonas sp. and Flavobacteria appeared to
contribute mainly to the difference between C and D/G (Table S+S2) while ASVs related to
SARI11, Verrucomicrobia, Celeribacter sp. Thalassobius sp. and Rhodospirillales were mainly

present in C (Table SteS2c).

3.3.2 Nano- and micro-eukaryotes community composition
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The diversity of initial community was large (Fig. S5S7) and significantly different at the
three stations (PERMANOVA; p = 0.001; Fig. S4bS6b). At TYR, the nano- and micro-
eukaryotes community responded rapidly (24 h) to dust addition (PERMANOVA; p = 0.003).
This initial high diversity disappeared after 72 h, with similar communities in all minicosms (Fig.
S5S7). They were significantly different from initial and t24h communities (p = 0.002 and 0.03
respectively; Fig 56) in D/G. The variations at t24h were attributed to changes in the
dinoflagellate communities in particular to an increase in ASVs related to Heterocapsa
rotundata, Gymnodiniales and Gonyaulacales as well as to an increase in Chlorophyta (Table
S2aS3a). At ION, no significant changes were observed between C and D/G after 24 h.

However, after 72 h, the communities were significantly different in D (p =0.018) and G (p =
0.05) compared to the communities at t24h in these treatments (Table S2BS3b). In D, diversity
was significantly higher at t72h compared to t24h and to C at the same sampling time (p =
0.036). In contrast, diversity in G at t72h was lower than at t24h and lower to the one observed in
C at the same sampling time (p = 0.066; Fig S6S8). These differences were mainly attributed to
changes in ASVs related to dinoflagellates and to the increase at t72h of Emiliana huxleyi and
Chlorophyta in D and G, respectively (Table S2bS3b). At FAST, significant differences were
observed between the controls and initial communities compared to the dust amended (D and G)
treatments at t24h (p = 0.036). No major differences were observed between D/G at t24h and
t96h (p = 0.06). The differences were mainly attributed to changes in dinoflagellates ASVs and

to an increase in Acantharea and Emiliana huxleyi in D and G treatments at t96h (Table S2eS3c).
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4. Discussion

Pulsed inputs of essential nutrients and trace metals through aerosol deposition are crucial to
surface microbial communities in LNLC regions such as the Mediterranean Sea (reviewed in
Guieu and Ridame, 2020). Here we assessed the impact of dust deposition on the late spring
microbial loop under present and future environmental conditions on the surface water of three
different Mediterranean basins (Tyrrhenian, TYR; Ionian, ION; and Algerian, FAST). The initial
conditions at the three sampled stations for the onboard experiments are described in more
details in Gazeau et al. (2021a0). Briefly, very low levels of dissolved inorganic nutrients were
measured at all three stations, highlighting the oligotrophic status of the waters;-. This is typical
of the stratified conditions_generally observed in the Mediterranean Sea in late spring/early
summer (e.g., Bosc et al., 2004; D'Ortenzio et al., 2005). Despite similar total chl. a
concentrations at the three stations (Gazeau et al., 20281a), PP was higher at FAST (Table 1,
Gazeau et al., 2021b; Marafion et al., 2021). The initial microbial communities differed
substantially between the three stations as shown by pigments (Gazeau et al., 2021a0), 18S and
16S rDNA sequencing (this study). DOC concentrations were slightly higher at TYR where PP
was the lowest (Gazeau et al., 2021b). HB, HNF abundances (Gazeau et al., 2021a9), as well as
viral abundance and production increased following the east to west gradient of the initial water

conditions.

The dust addition induced similar nitrate + nitrite (NOx) and dissolved inorganic phosphate
(DIP) release during all three experiments. Rapid changes were observed on plankton stocks

(autotrophs and heterotrophs abundances and chl,a, Gazeau et al., 2021a) and metabolisms (BP

and PP, Gazeau et al., 2021b), suggesting that the impact of dust deposition is constrained by the

initial composition and metabolic state of the investigated community{Gazeau-et-al-2020:
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2021H). While no direct effect of warming and acidification was observed on the amount of
nutrient released from dust, Gazeau et al.; (2021a, b6;262+) showed that biological processes
were generally enhanced by these conditions and suggested that deposition may weaken the
biological pump in future climate conditions. Here we are further investigating how dust addition
in present and future conditions affected, on a short-term scale (< 4 days), the microbial trophic

interactions and community composition.

4.1. Trophic interactions after dust addition under present and future conditions

Parallel nutrient enrichment incubations conducted in darkness showed that in situ

heterotrophic bacterioplankton communities_(initial conditions of the present experiments), were

N, P co-limited at TYR, mainly P limited at ION and N limited at FAST (Van Wambeke et al.,

20219). However, after incubation, the HB appeared to be weakly bottom up controlled

(Ducklow, 1992) in-eurexperimrent-especially in D and G (Fig 2a) after dust addition. Such top-

down control on the bacterioplankton has been previously observed in the Mediterranean Sea,

where the bacterioplankton community lives in a dynamic equilibrium between grazing pressure

and nutrients limitation, as reviewed by {Siokou-Frangou et al., 2010J. Moreover,-and-might
potential increase under future conditions as suggested by the higher top-down index in G (G =

0.92 vs. C/D=0.80, Moran et al., 2017)_should be further assessed.

Bacterial mortality increased relative to controls in D and G at TYR, and only in G at ION
and FAST. The weak coupling between bacteria and viruses, as well as the increased virus
production and relative abundance of lytic cells (see below), only explained a small fraction of
the estimated bacterial mortality (max. 17%), suggesting an additional grazing pressure on

bacteria. Nanoflagellates bacterivory can account for up to 87% of bacterial production in the

Mediterranean Sea, however rates can be variable in space and time (Siokou-Frangou et al

17



366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

2010). Here, HNF abundances increased in D at TYR and at all stations in G (Gazeau et al.,
2021a0), which could explain the increased bacterial mortality. Increased grazing rate by HNF
on bacteria with dust addition has been previously reported in the Eastern Mediterranean Sea
(Tsiola et al., 2017). While our results suggest a strong grazing pressure on bacteria, no direct

coupling between HNF and bacteria were observed, probably because HNF appeared to be top-

down controlled as-welthemselves (Gasol, 1994, Fig 3b), potentially by the increasing
populations of mixotrophic dinoflagellates and/or Giruses (see below). this suggest

intensification of trophic cascades in the microbial loop with nutrient input. It is also possible

that HB were grazed by mixotrophic nanoflagellates or by larger protozoans, or that the HNF

abundance was underestimated by flow cytometry. Towards the end of the experiment bacterial

growth and mortality may also have been linked to DIP depletion at TYR and ION.

Considering the seasonal impact of grazing and viral mortality in the Mediterranean Sea,
where higher grazing pressure and lysogeny were observed in the stratified nutrient-limited
waters in summer (Sanchez et al., 2020), it will be important to further study the seasonal impact
of dust deposition on trophic interactions and indirect cascading impact on microbial dynamics

and community composition.

4.2. Viral processes and community during dust enrichment in present and future conditions

Viruses represent pivotal components of the marine food web, influencing genome evolution,
community dynamics, and ecosystem biogeochemistry (Suttle, 2007). The impacts

environmental-and-evolutionary-implieations- of viral-infeetionmarine viruses differ depending

on whether they establish whetherviruses-establish-lytic or lysogenic infections (Zimmerman et
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al. 2019, Howard-Varona et al. 2017). -

Understanding how viral infection processes are impaeted-influenced by changes in

environmental conditions, is thus crucial to better constrain microbial mortality and cascading
impaets-effects on marine ecosystems. Aerosol deposition was already identified as a factor that
stimulates virus production and viral induced mortality of bacteria in the Mediterranean Sea

(Pulido-Villena et al., 2014; Tsiola et al., 2017) and direct deposition of airborne viruses and

viruses attached to dust particles may also affect microbial food webs (Sharoni et al., 2015;

Rahav et al.. 2020). However, while-the impact of future environmental conditions remains more

controversial (-Larsen et al., 2008; Brussaard et al., 2013; Maat et al., 2014; Vaqué et al., 2019;
Malits et al., 2021). -The combined effect of acrosol deposition and future conditions of
temperature and pH on the viral compartment has, to our knowledge, never been investigated.
The rapid changes in viral production and lifestyle observed in all three experiments support the
idea that the viral component is sensitive to the environmental variability even on short (hourly)-
time scales. The dynamics in viral activities was however impacted differently depending on the
treatments and the experiments. Viral production increased in D and G at TYR and only in G at
ION and FAST. Regarding the G treatments, increase in viral production was detected before
dust addition for all three experiments and remained mostly unchanged for the remaining of the
incubation. This suggests that water warming, and acidification were responsible for most
changes in viral activities while dusts had no detectable impact in such conditions regardless of
the studied station. Based on our results, the most likely explanation for observed changes in

viral production is an activation of a lysogenic to lytic switch. The factors that result in prophage
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induction are still not well constrained, but nutrients pulses and elevated temperatures have been
identified as potential stressors (Danovaro et al., 2011 and references therein). Consistent with
the observation of N, P co-limited bacterial community at TYR, it is likely that nutrients released
from dust upon deposition to surface water activate the productive cycle of temperate viruses at
this station. Such mechanism was also speculated during another dust addition study (Pulido-
Villena et al., 2014). Under future conditions (G), the low proportion of lysogens was associated
to higher frequency of lytically infected cells relative to C and D at TYR and ION. These trends
probably reflect an indirect effect of enhanced bacterial growth with increased temperature not
only on prophage induction (Danovaro et al., 2011; Vaqué et al., 2019; Mojica and Brussaard,
2014) but also on the kinetics of lytic infections. Intriguingly, the enhanced viral production did
not translate into marked changes in viral abundance. The abundance of Low DNA virus
population, which typically comprises virus of bacteria, actually decreased between t0 and t48h
pointing to possible viral decay, potentially related to an adsorption onto dust particles
(Weinbauer et al., 2009;Yamada et al., 2020)_and the potential export of viral particle to deeper
water layers (Van Wambeke et al. 26202021). While recurrent patterns emerged from this study,
the amplitude of viral responses varied between the experiments. At TYR, where heterotrophic
metabolism was higher, the dust addition induced higher viral production relative to controls
than at the two other sites, which suggests that viral processes, as other microbial processes, are

dependent on the initial metabolic status of the water.

Overall, no marked changes were observed for viral communities and abundances after dust
addition, both under present and future conditions relative to controls, except at FAST where the
abundance of Girus population increased significantly in G from t24h until the end of the

experiment. Giruses typically comprise large double stranded DNA viruses that infect
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nanoeukaryotes including photosynthetic (microalgae) and heterotrophic (HNF, amoeba,
choanoflagellate) organisms (Brussaard and Martinez, 2008; Needham et al., 2019; Fischer et al.,
2010; Martinez et al., 2014). The presence of Giruses at FAST in this treatment might be
explained by the increase in nano-eukaryote abundances at t72h and their decline after 96 h of
incubation (Gazeau et al., 2021a9). The coccolithophore Emiliania huxleyi appears as one of the
potential host candidates for these Giruses. The abundance of E. huxleyi increased in D and G at
this station and this phytoplankter is known to be infected by such giant viruses (Jacquet et al.,
2002; Schroeder et al., 2002; Pagarete et al., 2011). It is not clear from our results whether
increased Girus abundance is due to the greenhouse effect only (as discussed above for viruses of
HB) or the combination of dust addition and greenhouse effects. While temperature warming
was shown to accelerate viral production in several virus — phytoplankton systems (Mojica and
Brussaard 2014, Demory et al. 2017), a temperature-induced resistance to viral infection was
specifically observed in E. huxleyi (Kendrick et al., 2014). Previous experiments have also
reported a negative impact of acidification on E. huxleyi virus dynamics (Larsen et al., 2008). By
contrast, nutrient release following dust seeding could indirectly stimulate E. huxleyi virus
production (Bratbak et al., 1993) or induced switching between non-lethal temperate to lethal
lytic stage (Knowles et al.,2020) under future conditions. Targeted analyses are of course
required to identify the viral populations selected in G and the outcomes of their infection.
Nonetheless, this is the first time, to our knowledge, that dust deposition and enhanced
temperature and acidification have been shown to induce the proliferation of Giruses. The impact
of dust deposition under future environmental conditions on the viral infections processes could
have significant consequences for microbial evolution, food web processes, biogeochemical

cycles, and carbon sequestration.
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4.3 Microbial community dynamic after dust addition under present and future conditions

While changes in bacterial community composition during various type of dust addition
experiments have shown only minor transient responses (e.g., Marafion et al., 2010; Hill et al.,
2010; Laghdass et al., 2011; Pulido-Villena et al., 2014; Marin-Beltran et al., 2019), here
microbial community structure showed quick, significant and sustained changes in response to
dust addition in all three experiments. Similar to other parameters observed during these
experiments (discussed above and in Gazeau et al., 2021a, b0;-Gazeau-et-al;2021), the degree of

response in terms of community composition was specific to the tested waters.

At TYR, where primary production was low, only transient changes after 24 h of incubation
were observed, before the micro-eukaryotes community converged back close to initial
conditions. In contrast, the bacterial community significantly and rapidly changed after 24 h and
remained different after 72 h. At FAST, where the addition of dust appeared to promote
autotrophic processes, the micro-eukaryotes community responded quickly 24 h after dust
addition, while minor and delayed changes, probably related to the lower BP-growth rates
compared to the other tested waters, were observed in the bacterial community. At ION both
eukaryotes and bacterial community responded to dust addition. The delayed response of micro-
eukaryotes after 72 h compared to the quick bacterial response at 24 h suggests that HB were
better at competing for nutrient inputs at this station and that autotrophic processes may be
responding to bacterial nutrient regeneration after a lag phase, further suggesting the tight
coupling between heterotrophic bacteria and phytoplankton at this station. The combined effect
of decreased pH and elevated temperature on marine microbes is not yet well understood

(reviewed in O'Brien et al., 2016). The absence of significant community changes at TYR and
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FAST while changes were observed at ION, suggests that the response might be dependent on

other environmental factors, which need to be further studied.

Dust addition likely favors certain group of micro-organisms, suggesting a quicker response
of fast growing/copiotrophic groups as well as the increase of specialized functional groups (Guo
et al., 2016; Westrich et al., 2016; Maki et al., 2016). Potential toxicity effects of metals_and
biological particles released from dust/aerosols on certain micro-organisms have also been
reported (Paytan et al., 2009; Rahav et al., 2020). Here, the micro-eukaryotic community was
dominated by a diverse group of dinoflagellates which were responsible for the main variations
between treatments at all stations. The overwhelming abundance of dinoflagellates sequences
over other micro-eukaryotes could be biased by the large genomes and multiple ribosomal gene
copies per genome found in dinoflagellates (Zhu et al., 2005) or due to their preferential
amplification. However, the dominance of dinoflagellates in surface water at this time of the year
in the Mediterranean Sea is not uncommon (Garcia-Goémez et al., 2020) and was also observed in
surface waters of the three sampled stations by Imaging Flow Cytobot (Maraiion et al., 2021).
While pigment data suggest an increase of haptophytes and pelagophytes in D (Gazeau et al.,
2021a0), the sequencing data only show the presence of Emiliana huxleyi as responsible for
some of the community changes after dust addition at ION and FAST. These pigments could also
indicate the presence of dinoflagellates through tertiary endosymbiosis, in particular
Karlodinium sp. (Yoon et al., 2002; Zapata et al., 2012), which is an important mixotrophic
dinoflagellate (Calbet et al., 2011) observed in D and G at ION and FAST. The variations in
dinoflagellate groups might have important trophic impacts due to their diverse mixotrophic

states (Stoecker et al., 2017) and the effect of dust addition on mixotrophic interactions should be
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further studied to better understand the cascading impact of dust on food webs and the biological
pump.

Positive to toxic impacts on cyanobacteria have been reported from atmospheric deposition

experiments (e.g., Paytan et al., 2009; Zhou et al., 2021, Rahav et al., 2020). Here,

Synechococcus appeared to be inhibited at TYR while it was enhanced at ION and FAST,
especially under future conditions (this study, Gazeau et al., 2021a8). The same ASVs appeared
to be inhibited at TYR and ION while promoted at FAST and a different ASVs increased at ION.
Synechococcus has recently been shown to be stimulated by wet aerosol addition in P-limited
conditions but inhibited in N-limited conditions, in the South China Sea (Zhou et al., 2021). It
was also shown to be repressed by dust addition in nutrient limited tropical Atlantic (Marafion et
al., 2010). This suggests that different Synechococcus ecotypes (Sohm et al., 2016) might
respond differently to dust addition depending on the initial biogeochemical conditions of the

water.

In the three experiments, the main bacterial ASVs responsible for the differences between
the control and treatments were closely related to different Alteromonas strains. Alteromonas are
ubiquitous in marine environment and can respond rapidly to nutrient pulses (Lopez-Pérez and
Rodriguez-Valera, 2014). Some Alteromonas are capable to grow on a wide range of carbon
compounds (Pedler et al., 2014). They can produce iron binding ligands (Hogle et al., 2016) to
rapidly assimilate Fe released from dust. Thus, they could have significant consequences for the
marine carbon and Fe cycles during dust deposition events. Other copiotrophic y-Proteobacteria,
such as Vibrio, have been observed to bloom after dust deposition in the Atlantic Ocean
(Westrich et al., 2016). Guo et al. (2016) using RNA sequencing, also show that y-Proteobacteria

quickly outcompete a-Proteobacteria (mainly SAR11 and Rhodobacterales) that were initially
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more active. Here, while SAR11 relative abundance decreased in all experiments after 24h, other
a-Proteobacteria related to the aerobic anoxygenic phototroph (AAP) Erythrobacter sp.,
increased in response to dust, in particular under future conditions. Other AAP, such as OM60,
also responded to dust addition in our experiment and in the Eastern Mediterranean Sea (Guo et

al., 2016). Moreover, bacteriochlorophyll a, a light harvesting pigment present in AAP, was

generally higher in dust addition treatments especially under future conditions compared to

controls (Fig. S9). Fast growing AAP might quickly outcompete other HB by supplementing
their growth with light derived energy (e.g., Koblizek, 2015). They have also been shown to be
stimulated by higher temperature (Sato-Takabe et al., 2019). AAP response to dust and future

conditions could have a significant role in marine biogeochemical cycles.

5. Conclusion

The microbial food web response to dust addition was dependent on the initial state of the
microbial community in the tested waters. A different response in trophic interactions and
community composition of the microbial food web, to the wet dust addition, was observed at
each station. Generally greater changes were observed in future conditions. Pulsed input of
nutrients and trace metals changed the microbial ecosystem from bottom-up limited to a top-
down controlled bacterial community, likely from grazing and induced lysogeny. The

composition of mixotrophic microeukaryotes and phototrophic prokaryotes was also altered.

Overall, the impact of such simulated pulsed nutrient deposition will depend on the initial
biogeochemical conditions of the ecosystem, with likely possible large impact on microbial

trophic interactions, in particular viral processes, and community structure. All effects might be

generally enhanced in future climate scenarios. The impact of dust deposition on metabolic

processes and consequences for the carbon and nitrogen cycles and the biological pump based on
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these minicosm experiments are further discussed in Gazeau et al. (2021b) and Ridame et al.
(2021), and the in situ effect of a wet dust deposition event is explored in Van Wambeke et al.

(206202021), in this special issue.
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