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Abstract.

Grasslands cover around two thirds of the agricultural land area of Great Britain (GB) and are important reservoirs of

organic carbon (C). Outside a few well-monitored sites the quantification of C dynamics in managed grasslands is limited.

Using process models to extrapolate site data is made complex by the spatio-temporal variability of climate, soils, and of

grazing and cutting patterns. However, new earth observations (EO) provide sub-field resolution proxy data on the state of5

grassland canopies to support upscaling. Here, we show the potential of model-data fusion (MDF) to provide robust near-real

time C analyses of managed grasslands across GB. We combine EO data and biogeochemical modelling to estimate grassland

C balance and to infer the role of management and environment. We implement a MDF algorithm to (1) infer grassland

cutting and grazing from data on vegetation volume (Proba-V), (2) optimise model parameters by assimilating leaf area index

(LAI) times series data (Sentinel-2) and (3) simulate livestock grazing, grass cutting, and C allocation and C exchanges with10

the atmosphere. The MDF algorithm was applied for 2017 and 2018 to generate probabilistic C estimates at 1855 fields

sampled from across GB. The algorithm was able to effectively assimilate the Sentinel-2 based LAI time-series (overlap=80%,

RMSE=1.1 m−2m−2, bias=0.35 m2m−2) and predict livestock densities per area that correspond with independent agricultural

census-based data (r=0.68, RMSE=0.45 LU ha−1, bias=-0.06 LU ha−1). The mean total removed biomass across all simulated

fields was 6 (±1.8) tDMha−1y−1. The simulated grassland ecosystems were on average C sinks in 2017 and 2018; the net15

biome exchange (NBE) was -191±81 (2017) and -49±69 gCm−2y−1 (2018). Our results show that the 2018 European summer

drought reduced the strength of C sinks in UK grasslands and led to a 9-fold increase in the number fields that were annual C

sources (NBE>0) in 2018 (18% of fields) compared to 2017 (2% of fields). The field-scale analysis showed that management

in the form of timing, intensity and type of defoliation were key determinants of the C balance of managed grasslands, with

cut fields acting as weaker C sinks compared to grazed fields. Nevertheless, extreme weather, such as prolonged droughts, can20

convert grassland C sinks to sources.
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Abbreviations

GPP: Gross Primary Productivity

Ra: Autotrophic Respiration

Rh : Heterotrophic Respiration25

Bg: Grazed Biomass

Bc: Cut Biomass

GCD: Bg - Bc

M: Manure produced by grazing livestock

Reco: Ecosystem Respiration (Reco = Ra + Rh )30

NEE: Net Ecosystem Exchange (NEE = Reco - GPP)

NBE: Net Biome Exchange (NBE = NEE + Bc + Bg -

M)

NPP: Net Primary Production (NPP = GPP - Ra)

LAI: Leaf Area Index35

CI: Confidence Interval

RCR: Relative Confidence Range (100 × CI ÷ mean)

SD: Standard Deviation

SOC: Soil Organic Carbon

∆SOC : Change in SOC pool size40

AGB: Aboveground Biomass

LU: Livestock Units

VPD: Vapour Pressure Deficit (Pa)

1 Introduction

Grasslands, natural and managed, are important biomes globally, with large soil carbon (C) pools and an important role in45

the cycling of water and nutrients (Ostle et al., 2009). In Great Britain (GB), approximately two thirds of the agricultural

land is grassland, managed at varying intensities as part of livestock farming systems (DEFRA, 2020). According to their

biomass productivity and management intensity GB grasslands are grouped into rough grazing (low productivity), permanent

(medium productivity) and temporary (high productivity) grasslands (Qi et al., 2017). The environmental impacts of grassland

management increase with its intensity. Impacts range from local-scale air and water pollution, due to manure production and50

nutrient loss, to emissions of all three major global warming-causing greenhouse gases (GHG) i.e. CO2, CH4 and N2O (Herrero

et al., 2016; Vertès et al., 2018). Quantifying how C travels through the coupled system of the atmosphere, grass, livestock and

soil is challenging, due to their dynamic management (grazing, cutting, re-seeding, fertiliser application) (Felber et al., 2016;

Fetzel et al., 2017; Conant et al., 2017; Blanke et al., 2018; Abdalla et al., 2018). However, quantifying C cycling in grasslands

is a prerequisite for shaping, implementing and monitoring policies for reducing the climate impact of managed grasslands in55

GB and across the world (Committee on Climate Change, 2019; Sollenberger et al., 2019).

Grasses fix C through photosynthesis (gross primary production, GPP), and allocate a fraction of this C to grow stems,

leaves and roots. Plant senescence results in transfers of biomass C to litter and dead organic matter in the soil which undergo

decomposition. Defoliation, through grazing and cutting, is a major disturbance to C cycling (Gastal and Lemaire, 2015;

Skinner and Goslee, 2016). Grass cutting abruptly removes most of the aboveground C from the ecosystem, forcing the grass60
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to rebuild the leaf area necessary for photosynthesis and growth. In contrast, livestock grazing causes frequent but less intense

removals of aboveground biomass C. A fraction of the grazed C accumulates in livestock biomass but most of it exits the

animal’s body as manure, respiration-CO2 and digestion-CH4. The amount of grazing-based manure C that is added to the

soil’s dead organic matter pool varies significantly depending on farm-level manure management decisions (Dangal et al.,

2020).65

The potential of managed grasslands in GB, and beyond, to act as C sinks (Mcsherry and Ritchie, 2013; Ward et al., 2016;

Chang et al., 2017; Abdalla et al., 2018; Pawlok et al., 2018) is premised on achieving a negative C balance at the ecosystem

scale. Net ecosystem exchange (NEE) quantifies the C balance at the ecosystem scale based purely on gas fluxes and is

equal to the difference between ecosystem respiration (Reco = Rh + Ra) and GPP. Net biome exchange (NBE) quantifies the

C balance including lateral flows connected to cutting and animal management. NBE is equal to NEE after accounting for70

removals (grazing, cutting) and inflows (manure deposition) of C to the ecosystem. Animal-based C fluxes to the atmosphere

(respiration CO2, digestion CH4) and other ecosystem-scale C losses (leached C, manure-induced CH4) are sometimes included

in the calculation of NBE (Soussana et al., 2007). NEE makes up the bulk of NBE and is measured at field-scale using closed

chambers and eddy covariance towers with both techniques having contrasting strengths and weaknesses, and requiring expert

knowledge to deploy (Riederer et al., 2014, 2015). NBE calculation requires measurements of the lateral flows on which human75

management plays a major role (Chang et al., 2021).

Quantitative understanding of the dynamics of C pools and fluxes in grasslands is gained through field and lab-based ex-

periments. This understanding is incorporated into models of ecosystem C biogeochemistry, which are conceptually-coherent

structures of mathematical equations that track the fluxes of C in the atmosphere-plant-soil-livestock system (Snow et al., 2014;

Chang et al., 2013; Ma et al., 2015; Sándor et al., 2018; Puche et al., 2019). Biogeochemical models can upscale knowledge on80

ecosystem C dynamics across large areas and over time. Model-based upscaling represents a robust way for diagnosing the role

of climate and management on C exchanges, and exploring C sensitivity of future climate and alternate management scenarios.

Models require information on environmental conditions as inputs. Providing these inputs across space introduces uncertainty

(input uncertainty) to model predictions because the relevant data come from spatial extrapolations of point measurements

(i.e. soil surveys, weather stations). Another key source of input uncertainty is the lack of accurate spatial data on grassland85

management i.e. harvest and grazing patterns and manure and fertiliser use, which must therefore be inferred by some means

(Chang et al., 2015a; Fetzel et al., 2017; Vuichard et al., 2007; Rolinski et al., 2018; Blanke et al., 2018; Abdalla et al., 2018;

Chang et al., 2021). Model credibility can be supported by effective calibration with ground data and validating predictions

using independent data. Providing uncertainty estimates on model outputs provides robust contexts for model interpretation

(Kennedy and O’Hagan, 2001; Dietze, 2017).90

Advances in satellite-based remote sensing methods, i.e. Earth Observation (EO), over the past decade have increased the

volume and resolution of spatial data on grassland states (e.g. sward biomass, chlorophyll content) and soil factors (e.g. soil

moisture and temperature) (Reinermann and Asam, 2020; Ustin and Middleton, 2021). There is an opportunity to use EO data

in model-based studies to perform upscaling with reduced input and parametric uncertainty and with constrained predictive

uncertainty and model bias. In this context, high resolution (<100 m), frequently-retrieved (∼weekly) EO data on the state of95
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grassland vegetation can be assimilated and used to validate relevant model predictions and to calibrate model parameters at

the scale of individual grassland fields (Patenaude et al., 2008; Oijen et al., 2011; Maselli et al., 2013; Pique et al., 2020b, a).

In addition, time-series of EO-based vegetation indices can be used to monitor vegetation volume change and identify the

timing of the relevant management i.e. grass harvesting and livestock grazing (Dusseux et al., 2014; Giménez et al., 2017;

Yu et al., 2018; Reichstein et al., 2019). Leaf area index (LAI) conveys information on vegetation structure and volume, and100

can be estimated from multispectral optical EO data (Munier et al., 2018). The volume of EO-derived LAI data is, however,

dependant on the frequency of satellite overpasses and the level of cloudiness.

In previous analyses at two grassland eddy flux sites in GB we have shown that calibrating biogeochemical model parameters

with ground-based LAI observations allowed robust diagnoses of the effects of grazing and cutting on independently measured

net C exchanges (Myrgiotis et al., 2020). In a follow-up study at another grassland research farm in GB we demonstrated105

that model calibration with satellite-based LAI observations was effective for monitoring biomass removals and quantifying

management impacts on field-scale C balance (Myrgiotis et al., 2021). Here, we build on this earlier work to demonstrate how

EO data and biogeochemical modelling can be combined to (1) detect vegetation-related management operations (i.e. grass

cutting and grazing intensity) and (2) to estimate the variation in C dynamics over a large domain (GB) and at fine resolution

(sub-field scale). We use a parsimonious process-based biogeochemical model of grassland C dynamics (DALEC-Grass) that110

is integrated into a probabilistic model-data fusion (MDF) algorithm (CARDAMOM). DALEC-Grass is driven by weather data

and field-specific EO-based data on weekly change in vegetation volume. CARDAMOM performs field-specific calibrations

of DALEC-Grass parameters by assimilating local EO LAI time-series. The MDF algorithm is implemented for 2017-2018 on

a large sample of 1855 managed grassland fields in GB (England, Wales and Scotland). We obtain a sample representative of

the different grassland ecosystems and management types by randomly selecting 1 field per 25 km2 across GB from the UK’s115

Land Cover Map (vector land parcels). Grazing intensity, cutting timing and yields and C pools and fluxes are predicted by

DALEC-Grass for every simulated field. In order to evaluate our MDF analysis, we compare predictions of annual grass yields

(grazed and cut biomass) to biomass utilisation data from the relevant literature and to livestock density data from the most

recent GB agricultural census data. In 2018, GB was affected by a summer heat and drought wave (summer 2018 was ≈ 1oC

warmer than summer 2017) allowing us to examine the impact of climate anomalies on grassland C balance (Kendon et al.,120

2018, 2019) The aim of this study is to answer four key questions:

1. Can we detect realistic variations in grassland vegetation management over national domains at field scale by assimilating

EO information on LAI?

2. What is the C balance of managed grasslands and how does it vary across GB?

3. Which factors control the predicted C balance and biomass removals?125

4. How large is the analytical uncertainty on C cycling and which factors affect it?

The novelty of this research is to combine EO data and modelling to infer management of grasslands at field-scale across

a nation and then to simulate the role of management on grassland C exchanges. The advent of highly-resolved satellite data
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from Sentinel 2 makes this possible, allowing tracking of ∼weekly changes in LAI at sub-field scales for a national sample

of grassland fields. The intermediate complexity model employed means that Bayesian approaches to model calibration can130

explore the uncertainty of parameters and estimates of C cycling. The key innovation is to combine observations of changes

in grassland LAI from space with expected changes in LAI (i.e. grass growth rates) derived from process modelling. The

difference between observed and expected change in LAI is used to infer consumption by grazing livestock or removals by

grass cutting. The C cycle estimate is then updated based on this estimation.

2 Materials and methods135

2.1 Materials

2.1.1 Location of managed grasslands

For the identification of the location and limits of field boundaries for representative grasslands we used the 2018 Land Cover

Map plus (LCM), which is updated annually by the Centre of Ecology and Hydrology (CEH) of the UK (www.ceh.ac.uk/crops2015).

The LCM includes geo-referenced polygons of improved grassland fields in GB that are identified as such by using a combi-140

nation of reflectance data. The LCM data are validated against ground observations of land-use type.

2.1.2 DALEC-Grass Model

DALEC-Grass (Fig. 1) is a process-orientated model of intermediate complexity representing the C cycling of grassland ecosys-

tems. DALEC-Grass uses meteorological information to calculate gross primary productivity, autotrophic and heterotrophic

respiration, changes in leaf area index (LAI), the C turnover of different plant and soil pools as well as the removal of C via145

grazing and grass cutting. Photosynthesis is calculated using the Aggregated Canopy Model (ACM) and phenology is calcu-

lated using the Growing Season Index (GSI) approach (Williams et al., 1997; Smallman et al., 2017). DALEC-Grass uses a

dynamic scheme to allocate C to above and below-ground plant tissues, which is based on the assumption that C allocation to

roots increases after sufficient leaf area has been developed such that there are diminishing returns on further canopy expansion

(Myrgiotis et al., 2020). The model uses a simple scheme to describe C allocation to soil with two pools considered; a more150

labile litter pool to which dead plant material and manure-C are added, and a more recalcitrant soil organic carbon pool (SOC),

which receives C from the litter pool only. At each time-step the volume of simulated grazed biomass-C is converted to animal

respiration CO2-C, digestion CH4-C and manure-C using generic conversion factors (see Fig. 1) extracted from the relevant

literature (Parsons et al., 2009; Zeeman et al., 2010; Worrall and Clay, 2012; Bell et al., 2016; Lee et al., 2017). These generic

conversion factors are used because the type, weight and age of animals grazing on individual fields can neither be inferred155

from EO data nor be reliably estimated from available datasets of livestock spatial distribution (e.g. agricultural census). The

conversion factors reflect an averaging of relevant data for beef and dairy cattle and sheep, which are the main types of livestock

in the GB. The model’s 31 parameters are presented in Table A1 in Appendix A. In this study, DALEC-Grass is implemented

at a weekly time-step.

5

https://www.ceh.ac.uk/crops2015


m
anure (32%

)

GPP

Ra

NPP

CLeaf

CStem

CRoot CLitter

CSOC

Rh

aCH4 (4%)

aCO2 (54%)

Bc
VRc

VRg

Vegetation Removal (VR)

Bg

ALeaf

AStem

ARoot
N

P
P

 A
llo

ca
tio

n 
(A

)

L
LeafLStem

LRoot

Figure 1. Schematic description of the DALEC-Grass model. DALEC-Grass simulates the dynamics of 5 C pools (C) : leaf, stem, roots,
litter and SOC. C is allocated to the 5 C pools via NPP allocation (A) and litter production (L). Vegetation removals (VR) can occur due
to grazing or cutting. DALEC-Grass determines whether a vegetation removal is caused by grazing, cutting or neither (see section 2.2.2).
When cutting is simulated (VRc>0) cut biomass (Bc) is removed from the ecosystem. When grazing is simulated (VRg>0) 32% of grazed
biomass (Bg) is converted to manure, 54% of grazed biomass (Bg) is converted to animal respiration (aCO2) and 4% of grazed biomass (Bg)
is converted to methane (aCH4). Dotted lines (· · ·) show outward fluxes of C. Solid lines ( ) show internal and inward fluxes of C

2.1.3 Carbon Data Model Framework (CARDAMOM)160

The CARbon DAta MOdel FraMework (CARDAMOM) is a Bayesian MDF framework that is tailored for use in ecosys-

tem biogeochemistry studies (Bloom et al., 2016). By assimilating observational data CARDAMOM updates the distribution

of model parameters following the rules of Bayesian inference. A key aspect of CARDAMOM is the use of ecological and

dynamic constraints (EDC), which are conditions applied to the parameter sampling process in order to ensure the mathemat-

ical, ecological and biogeochemical sensibility (or "common sense") of the simulated system (Bloom and Williams, 2015). In165

simple terms, CARDAMOM examines whether the simulated pools and fluxes that result from implementing the model with

a sampled parameter vector behave in realistic ways; i.e. do not exceed certain user-defined, widely-accepted and literature-

based limits. The EDCs used in CARDAMOM are presented in Table A2 in Appendix A. A schematic description of how

CARDAMOM and DALEC-Grass are connected is provided in Figure A1 in Appendix A.

Bayesian inference is performed in CARDAMOM using the root mean square error (RMSE) between the simulated and170

the EO-based LAI time-series to calculate and attribute likelihoods to every sampled parameter vector. In this study, the

Simulated Annealing (SA) algorithm is used to implement the probabilistic parameter sampling process (Kan et al., 2016).
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After testing the SA algorithm to identify the optimal number of repetitions for achieving acceptable chain convergence the

number of parameter proposals was set to 5,000,000. The uncertainty around the assimilated (Sentinel-2) LAI data was set to

15% (relative standard deviation) in this study. However, it should be noted that the uncertainty around remote sensing-based175

LAI data is poorly determined but largely underestimated (Zhao et al., 2020).

A uniform distribution was used for each of the 31 DALEC-Grass parameter priors and the range for each parameter prior

is presented in Table A1 (Appendix A). In Myrgiotis et al. (2020) DALEC-Grass parameter priors were refined through im-

plementing the model using known vegetation management (cutting dates, livestock density time-series) and by assimilating

field-measured LAI and CO2 flux data (chamber-based and eddy covariance). In Myrgiotis et al. (2021) these model pri-180

ors have been tested and refined further using EO-based vegetation reduction time-series (as vegetation management-related

model drivers) and by assimilating Sentinel-2 based LAI time-series. The limits of the uniform parameter distributions used

in the present study are based on the results of Myrgiotis et al. (2021) but 4 parameters were allowed to vary more than these

results suggested in order to better consider the variability in management factor across GB grasslands (indicated with * in

Table A1 in Appendix A). These parameters are the plant photosynthetic N use efficiency (PNUE), the leaf mass C per area185

(LCA), and the pre-grazing and pre-cutting biomass.

2.1.4 Earth observation data

EO-based information of vegetation canopy cover was used to infer vegetation-related management operations (i.e. grazing

or cutting). This canopy cover time-series was generated for each simulated field from LAI data from the Copernicus Global

Land Service (CGLS) EO database. The CGLS LAI data comprise top-of-atmosphere reflectance processed products from the190

Proba-V satellite, with a spatial resolution of 300m and a temporal resolution of 10 days. Gaps in the CGLS LAI time-series

due to cloud coverage are filled using a machine learning model built with time-series for past years and neighbouring pixels

(Smets et al., 2018). For each simulated field the corresponding time-series has been converted, from their original 10-day

time-step, to a weekly time step using linear interpolation. Thereafter, the reduction between subsequent dates in the time-

series was calculated. When the change between week n and n+ 1 was positive the reduction value for week n is 0. Hereafter,195

we refer to this time-series as the "vegetation reduction" time-series.

The EO-based LAI data assimilated in CARDAMOM were calculated from Sentinel-2 images. Atmospherically-corrected

images at 20m and 60m resolutions (L2A product) were downloaded from the Amazon Web Services (AWS) Sentinel-2

datapool. The images were processed to remove pixels with cloud and haze and, then, used to calculate LAI (at 20m) using the

sen2cor algorithm (Weiss and Baret, 2016). When available, the field-average Sentinel-2-based LAI value that corresponds to200

the day closest to the first day of every simulated week is added to the weekly observational LAI time-series that are assimilated

through the CARDAMOM MDF framework.

Using two independent EO datasets on LAI provides a more robust and continuous estimate of vegetation dynamics. Due

to frequent cloud cover field-specific, high-resolution (20m) and continuous weekly LAI time-series are not available from

Sentinel-2 images alone. Hence we use a separate EO-based data product (CGLS LAI) in which observational LAI time-series205

are gap-filled using techniques that are more robust than simple temporal interpolation. In order to control the impacts of the
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observational uncertainty of the vegetation reduction data (due to their 300m resolution) we : (1) use relevant mechanisms in

DALEC-Grass (see section 2.2.2) and (2) adjust the process of sampling grassland fields (see section 2.2.1) accordingly to

match the coarser resolution of vegetation reduction data.

2.1.5 Environmental and management data210

Six meteorological drivers are used in DALEC-Grass to drive variations in biogeochemical process: (1) minimum and max-

imum temperature (oC), (2) total short-wave radiation (MJm−2d−1), (3) atmospheric CO2 concentration (ppm), (4) 21-day

average photoperiod (sec), (5) 21-day average minimum T and (6) 21-day average vapour pressure deficit (Pa). Data were

obtained from the ERA5 global atmospheric reanalysis database of the European Centre for Medium-Range Weather Forecasts

(ECMWF). Values of soil C (gCm−2 at 60cm depth) at 300m resolution were obtained from the the SoilGrids database (Hengl215

et al., 2017). For every simulated field the mean and standard deviation (SD) of the corresponding SoilGrids pixels are used to

define the range of the model’s initial SOC pool size parameter.

Agricultural census-based data on the number of sheep and cattle (beef and dairy) were obtained from the EDINA AgCensus

database (AgCensus, 2020). They are used in this study to independently evaluate the estimates from the MDF implementation.

The AgCensus data are produced by spatially disaggregating the numbers of cattle and sheep recorded at the level of local220

administrative units (for each UK country), into a 5km grid of the UK. The most recently available livestock data for each

constituent country of the UK refer to different years; 2010 for England, 2015 for Wales and 2017 for Scotland.

2.2 Methodology

2.2.1 Sampling of grassland fields from the UK land cover map

Implementing the MDF algorithm for the thousands of fields that are classified as improved grassland in the LCM database is225

computationally demanding and time consuming. In addition, the resolution of the CGLS (Proba-V-based) vegetation reduction

data is 300 m (9 ha). Taking into account that the average managed grassland field is 5-9 ha in area, we set a minimum limit

of 6 ha (and a maximum of 13 ha) when filtering the LCM dataset to obtain the location of fields. Moreover, the number of

EO data points available for each field depends on the time of image capturing and the amount of cloud cover at overpass.

As a consequence, the number of dates of available EO data can vary considerably between fields. We set a limit of having at230

least 30 Sentinel-2 data points (during 2017-2018) for a field to be selected for simulation. The fields that met the conditions

were allocated to 25km2 cells of a 5km grid of GB. One field was randomly selected from each cell, which resulted in a set of

2108 fields (Fig, 2). The CARDAMOM MDF algorithm was implemented for each of the selected fields for 2017 and 2018 by

running DALEC-Grass at a weekly-time step while assimilating the corresponding available EO-based LAI data. We refer to

the outputs of this implementation as "MDF predictions".235
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Figure 2. Topographic map of Great Britain (GB) with red symbols showing the locations of sampled fields. Built-up areas are shown in
black. Digital elevation model from Pope, A. (2017).

2.2.2 Identifying and calibrating grazing and cutting from EO data

Field-scale vegetation management activities are inferred from EO-based reduction data. At each time step the vegetation

reduction information is used to infer whether a field has undergone a grass cutting event or a livestock grazing event or

neither. For a vegetation reduction input data point to be simulated as a cutting: (1) the event should occur between April and

October, when cutting tends to occur; (2) the simulated aboveground biomass at the time of cutting should be greater than the240

pre-cutting biomass parameter (P28, see Table A1) indicating that there is enough grass for a cut to be worthwhile; and (3)

the resulting yield should be > 80 g C m−2, another economic test for cutting to be likely. If any of these 3 conditions is not

met then a grazing event is indicated and simulated if the simulated aboveground biomass exceeds the pre-grazing biomass

parameter (P27, see Table A1). Otherwise, if neither a cut nor a grazing event can be simulated, no vegetation removal is

simulated.245

In addition to this, DALEC-Grass parameters are locally calibrated at every simulated field by assimilating Sentinel-2 based

LAI data. This means that the vegetation management-related decisions made by DALEC-Grass during the simulated period
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are conditioned on observational LAI data also (Fig. 3). Assimilation is performed by implementing DALEC-Grass while

sampling from the model’s parameter space in order to minimise the error (RMSE) between observational and simulated LAI

time-series.250

Figure 3. Description of how Sentinel-2 LAI observations, (CGLS) vegetation reduction time-series and DALEC-Grass are used to infer
and calculate managed vegetation removals (grazing, cutting). The DALEC-Grass biophysical module simulates weekly leaf growth and
senescence driven by weather data. The DALEC-Grass management module simulates weekly vegetation removals driven by the vegetation-
reduction data. The CARDAMOM MDF algorithm calibrates the parameters of DALEC-Grass in order to achieve the smallest possible
error (RMSE) between Sentinel-2 LAI and simulated LAI time-series. LAI = Cleaf ÷ P15 (see table A1 for details on parameter P10). The
DALEC-Grass management module determines whether LAI reduction is due to grazing (Lg) or cutting (Lc) or neither. When a grazing
reduction is identified (VRg>0 thus VRc=0) the livestock C-turnover process (described in 2.1.2) is implemented. When a reduction is
identified as produced by cutting (VRc>0 thus VRg=0) most leaf biomass is removed; parameters P27, P28, P29, P31 (table A1) play a
direct role in cut yield estimation. When neither grazing nor cutting is identified then VRc=0 and VRg=0. Boxes in black show EO-based
information. Cleaf : leaves C pool, A: C allocation, L: litter production, VRg: vegetation removal due to grazing, VRc: vegetation removal
due to cutting, t: time.

2.2.3 Calculation of presented variables and sign convention

The micrometeorological sign convention is used when presenting C balance variables, whereby a positive (+) sign before a

NEE and NBE value signifies an addition of C to the atmosphere, and a negative sign (-) signifies a removal of C from the

atmosphere. The net change (gCm−2) in the size of the soil organic C (SOC) pool is presented and referred to as ∆SOC .

Positive ∆SOC values signify an increase in the SOC pool size and negative values signify a decrease in the SOC pool size. We255

use the difference between total annually grazed and cut biomass (GCD) to quantify the relative impact of these two vegetation

removals methods. A negative (-) GCD value signifies that more biomass was removed from the simulated field via cutting
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than it was via livestock grazing. A positive (+) GCD value signifies that more biomass was removed via livestock grazing than

it was via grass cutting.

NEE = Reco - GPP (1)260

Reco = Ra - Rh (2)

NBE = NEE + Bc + Bg - M (3)

∆SOC = C flux to SOC - C losses from SOC (4)

GCD = Bg - Bc (5)

where NEE: Net Ecosystem Exchange, NBE: Net Biome Exchange, REco: Ecosystem respiration, Ra: Autotrophic respiration,265

Rh : Heterotrophic respiration, Bc: Cut biomass, Bg: Grazed biomass, M: manure, GCD: grazed - cut biomass, Bg : Grazed

biomass, Bc: Cut biomass. Note that C flows into the SOC pool from the litter pool only and C is lost from the SOC pool via

heterotrophic respiration (Fig. 1). All variables are presented in gC m−2 t−1, where t is the time period over which the results

are summed (e.g. 3-months, year).

2.2.4 Assessment and analysis of MDF predictions270

To assess the effectiveness of the LAI assimilation process we quantify the level of fit between MDF-predicted and EO-based

LAI time-series using (1) the % of overlap between the EO-based data points (field mean) and the corresponding MDF-

predicted ranges (95% confidence interval); and (2) the root mean square error (); and (3) the bias between the simulated and

observed time-series. To account for the possibility that some of the simulated fields may not be managed grasslands due to

changes in management, but classified as such in the LCM data, we remove from the results any fields for which the estimated275

overlap is < 50% (see results for size of post-MDF dataset).

To answer our first science question, the MDF-predicted weekly grazed biomass is converted into livestock units (LU) per ha

following the assumptions that : (1) 1 cattle is 1 LU and one sheep is 0.11 LU; (2) 1 LU weighs 650kg; (3) an animal demands

≈ 2.5% of its weight in the form grass dry matter (DM) when grazing; and (4) 47.5% of DM consists of C (Vertès et al., 2018).

The MDF-predicted and independent census-based LU ha−1 are compared using the correlation coefficient (r) and the RMSE280

as the assessment metrics. The MDF-based estimates of grass biomass utilisation across GB are assessed against data from the

Qi et al. 2017 study.

To answer our second science question we present and examine the annual and seasonal C balance and the cumulative annual

fluxes of the simulated fields. To assess what controls the predicted C balance of the simulated grasslands (our third science

question) we quantify the correlation coefficient between meteorological model drivers, management-related model parameters285

and MDF predictions of C cycling. In order to provide a more quantitative assessment of the factors that control grassland

C dynamics we quantify the relative impact of management and climate on the MDF-predicted NBE. We use the model
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meteorological drivers and the posterior model parameters related to management and climatic controls for every simulated

field to train a random forest (RF) model that estimates NBE. 75% of the data are used to train the RF model and 25% to assess

its predictive ability (coefficient of determination). Thereafter, we use the Shapley Additive Explanations (SHAP) method to290

quantify how much each RF-predictor affects the RF-predicted NBE (Rodríguez-Pérez and Bajorath, 2020). The SHAP method

examines the structure of the RF model and provides the weight (SHAP value) that the model gave to each predictor. SHAP

values can be seen as the machine learning equivalent of the coefficient of determination (r2). The estimated SHAP values are

normalised (0-1) to be comparable to r2. We note that RF is used in this study solely to support MDF data analysis and not for

predictive purposes.295

For each simulated field and model output the MDF algorithm produces a mean and 95% confidence interval. To answer

our fourth science question, we quantify the predictive uncertainty around an output by calculating its relative confidence

range (RCR). RCR is equal to the size of the MDF-predicted 95% confidence interval divided by the corresponding mean, and

expressed as %. We present and examine the estimated RCRs to identify the key factors that affect uncertainty.

3 Results300

3.1 Assimilation of EO-based LAI data

For 12% of the initial dataset of 2108 simulated fields, our analysis failed to generate a simulated-vs-observed LAI overlap

> 50%. These fields were removed from the analysis and the final reported dataset includes 1855 fields. Based on the 1855

fields, three performance metrics indicated that CARDAMOM effectively assimilated the provided EO-based LAI time-series

(Fig. A2 in Appendix). Thus, CARDAMOM could identify parameter values for DALEC-grass for each field so that the model305

could effectively reproduce the phenological development of the canopy, consistent with meteorological forcing and a realistic

removal of grass by grazing and/or cutting. The overlap between EO-based and simulated LAI was 80 (±11) %, the RMSE

was 1.1 (±0.22) m−2m−2 and the bias was 0.35 (±0.40) m−2m−2. There were no clear spatial patterns (Fig. A2) in the error

statistics across GB and no obvious geographical biases.

3.2 MDF-predicted livestock density and removed biomass310

A comparison of MDF-predictions of livestock density against census-based data (Fig. A3) shows that the MDF-predictions

mirrored the census-based livestock density data well (r=0.68, RMSE=0.45 LU ha−1). Both datasets show the highest LU

concentrated in the SW England with lower values in the Eastern part of England (Fig. 4). Scotland has consistent areas of high

LU in both datasets, in the SW and NE. The GB-average census-based livestock density was 0.76±47 LU ha−1 and respective

MDF-predicted livestock density was 0.70±56 LU ha−1. The census-based data (cattle and sheep) for each GB country refer315

to different years. Livestock census numbers for England, in particular, were recorded in 2010, since when numbers have

declined (DEFRA, 2020). This time mismatch with our 2018-2018 estimate could explain the small negative bias (-0.06 LU

ha−1) between MDF-predicted and census-based LU ha−1.
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Figure 4. Cartograms of census-based and MDF-predicted livestock density (livestock units, LU ha−1). The size of cells is adjusted according
to the number of simulated fields within it.

The analysis suggests that the 1855 simulated fields were managed with varying intensity. The majority of simulated fields

were grazed-only (75%) and no cut-only fields were simulated. Grazed biomass exceeded cut biomass in 85% of the fields320

(GCD > 0) and cut biomass exceeded grazed biomass in the remaining 15% (GCD < 0). The mean MDF-predicted annual

yield (grazed and cut biomass) was 6±1.8 tDMha−1y−1 (5th|25th|75th|95th percentiles : 2.8|4.6|7.3|8.5 tDMha−1y−1). These

results reflect biomass utilisation per grassland management intensity in the UK. Rough grazing grasslands (40% of UK

grassland area) have an annual yield (total removed biomass) of 3.09±1.56 tDMha−1y−1, permanent grasslands (50% of UK

grassland area) have an annual yield of 7.41±2.02 tDMha−1y−1 and temporary grasslands (10% of UK grassland area) have a325

yield of 9.76±2.03 tDMha−1y−1 (Qi et al., 2017, 2018).

Most of the MDF-predicted first grass cuts (85%) occurred between the first half of May and the second half of July. For the

fields where more than one cut was identified the period between the first and last cut was ≈ 2 months. The MDF-predicted

day-of-year of first cut increased northwards with the mean date of first cut in northern England and Scotland being 3-6 weeks

later than in the southern half of GB. This spatial pattern is likely the combined effect of differences in the onset and duration of330

the grass growing season and in related management decisions. Due to the small share of cut-and-grazed fields in the simulated

dataset, and in order to make the spatial pattern more visible, we present the average month of first cut on a regional basis (Fig.

A4 in Appendix A ).
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3.3 Predicted C balance and dynamics

MDF-based C cycle estimates show that management affected the C balance of the simulated grassland ecosystems signifi-335

cantly. The difference between grazed and cut biomass volume (GCD) is used to present the impact that these two biomass

removal methods have on C balance. The mean annual GPP across GB fields was 30% higher (1992±400 gCm−2y−1) for

fields where most biomass was removed via grazing (GCD>0) compared to those where cut biomass exceeded grazed biomass

(GCD<0) (1518±426 gCm−2y−1) (Figure 5). Reco was higher for fields dominated by grazing also. The mean NEE across

GB was -232±94 gCm−2y−1, the relative role of grazing compared to cutting did not affect NEE significantly, and 95% of340

the simulated fields were net C sinks at the ecosystem scale. When considering the role of cutting and grazing C removals

and returns to the ecosystem, the impact of cutting as a biomass removal method becomes important. The NBE of fields

dominated by cutting removals (GCD<0) was 38±70 gCm−2y−1 while fields dominated by grazing removals (GCD>0) had

a NBE of -126±95 gCm−2y−1. On average, 60% more C was removed (grazed and cut) in mostly-cut (GCD>0) grasslands

than in mostly-grazed (GCD<0) grasslands. The flux of C into the SOC pool was, on average, 66% larger in mostly-grazed345

(GCD<0) than mostly-cut (GCD>0) fields. The annual change in the size of the SOC pool (∆SOC) for mostly-cut (GCD<0)

grasslands was 116±52 gCm−2y−1 and 36±40 gCm−2y−1 for grazing-dominated (GCD>0) fields. The spatial distribution of

MDF-predicted GPP, Reco, NEE, NBE, removed biomass and C flux into SOC is presented in the cartograms of Figure A5 in

Appendix A.

Seasonal NEE varied across GB, with strongest sinks in Spring and Summer, strongest sources in Autumn, and close to350

neutral net exchanges during Winter (Fig. A8). However, there were clear inter-annual differences between 2017 and 2018 in

the analysis. Across the southern third of GB (the Midlands and Southern England) many grasslands became C sources during

the summer of 2018 while remaining areas were weaker sinks than in 2017 A8). This pattern was driven by the 2018 European

drought and heat wave, which affected GB as a whole and was particularly acute in the southern half of England (Sibley,

2019). The three-week rolling average VPD in summer 2018 across GB was 50% higher than in summer 2017 (Fig. A7 in355

supplementary material). The GB-average GPP, Reco, Hr, C flux to soil and soil C sequestration (annual change in SOC size)

decreased between 2017 and 2018 (Table 1). The GB-average NEE and NBE increased between 2017 and 2018, indicating

a reduction in sink strengths (Fig. 5). While only 2% of the simulated grasslands had a NBE>0 in 2017 this share increased

9-fold to 18% in 2018 (Fig. A6 in Appendix A ). The GB-average total removed biomass in the drought-affected 2018 was 27%

higher than in 2017. Reductions in cut yields and increases in grazed biomass underlie this increase in GB-average removed360

biomass (Fig. 5). In this context, the area-mean grazed biomass during the 3 months of spring 2018, in the southern half of GB,

and the 3 months of summer 2018, in the northern half, was higher than the respective seasons in 2017 (results not presented).

3.4 Controls on C cycling in UK grasslands

Correlation coefficients (Fig. 7) generated across the 1855 fields show the links between meteorological drivers, key processes

(model parameters) and model outputs (C exchanges). There are strong positive correlations between GPP, Reco, C inputs365

to soil and root:shoot ratio, and these factors are strongly negatively correlated with NBE and NEE. The most productive
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Figure 5. Violin plots of GPP, Reco, removed biomass and C flux from litter to SOC based on MDF-predictions (2017-2018) for all simulated
fields. Violin plots are split according to whether grazing or cutting removed most grass biomass. The blue side of each violin-plot shows
results for fields in which most biomass was removed via grazing (GCD>0). The orange side shows results for fields in which most biomass
was removed via cutting (GCD<0).
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Table 1. GB-average annual C fluxes and C balance (in gCm−2y−1) in 2017 and 2018

2017 2018

GPP 2390±383 1900±402
Reco 2100±332 1725±352
Rh 975±156 831±166
NEE -289±76 -174±74
NBE -191±81 -49±69
Removed biomass* 220±98 280±85
C flux into soil 218±51 186±55
∆SOC 129±50 98±55

* the sum of grazed and cut biomass in a year
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Figure 6. Cartograms of cumulative NEE for summer 2017, summer 2018 and change in summer NEE between 2017 and 2018 (cumulative
NEE 2018 - cumulative summer NEE 2017). The mean MDF-predicted seasonal NEE of all fields in each cell is presented. The size of cells
is adjusted according to the number of simulated fields within it

fields (higher GPP) are associated with high inputs of C to soils and are the strongest C sinks (more negative NEE and NBE).

Among modelled processes, the ratio of C allocation to roots relative to stems and leaves (root:shoot ratio) is the most strongly

correlated with the net C balance of the simulated fields (Fig. 7). More-frequent and higher-yielding grass cuts reduce root:shoot

ratio and, therefore, reduce the flux of C to litter and, subsequently, to the recalcitrant soil C pool (SOC). The predicted flux of370

C to the SOC pool has a significant but low positive correlation (r=0.38) with the size of SOC pool. Despite that, MDF results

show that the volume of C transferred to the SOC pool during the simulated period is, on average, equal to 1 (±0.25) % of the

size of the SOC pool. NBE and NEE are positively correlated to livestock units (LU) and biomass removals, i.e. increases in

LU and removals reduce C sinks. Temperature and radiation have relatively weak correlations with NEE and NBE. In contrast,

VPD was more strongly related to C fluxes. Higher VPD values correlate with lower GPP and higher NEE and NBE. This375

positive r for VPD reflects the strong, negative role of the 2018 summer drought.

We expanded on the correlations-based analysis of the MDF results by using (1) the MDF-predicted data on NBE, and (2)

the corresponding meteorological drivers and (3) model parameters describing climatic and management controls on grass
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Figure 7. Heatmap of correlation coefficients (r) between annual mean meteorological model drivers (D), selected model parameters (P) and
annual mean MDF predictions (O).

growth, to train a RF model that estimates NBE. The resulting RF model was able to explain 93% of the variance in MDF-

predicted NBE (r2=0.93) using 5 predictors: VPD, mean T, solar radiation, all posterior DALEC-Grass parameters related to380

climatic effects on grass growth and all posterior parameters related to grassland management. The weight (normalised SHAP)

attributed by the RF model to these 5 predictors suggests that management parameters (aggregated weight for all parameters

in the group) were the most important factor for grassland NBE over the simulated period (Table 2. The normalised SHAP for

management parameters was the highest among the 5 NBE predictors in 2017 (contributed by 34% to NBE) and the second

highest (contributed by 38%) in 2018. The 2018 summer heat wave caused the contribution of VPD to NBE to increase from385

3% in 2017 to 40% in 2018. Overall, these results reaffirm the conclusions of correlations-based analysis and clarify the

importance of grassland management relative to climate and climatic anomalies.

17



Table 2. Normalised SHAP values for RF-based estimation of annual NBE in 2017 and 2018.

Predictor 2017 2018

Climatic effects (parameters) 0.30 0.19
Management effects (parameters) 0.34 0.38
Mean Air Temperature 0.02 0.02
Vapour Pressure Deficit 0.03 0.40
Solar Radiation 0.31 0.01

3.5 Predictive uncertainty

The size of the uncertainty around MDF estimates is quantified using the RCR (relative confidence range) of MDF outputs.

The mean RCR is 42±9% for LAI, 21±10% for GPP, 18±6% for Reco and 26±16% for grazed biomass (Figure 8). MDF390

predictive uncertainty is therefore a small faction of the mean estimate of these scalar variables. The GB-average RCR for

LAI, GPP and grazed biomass prediction increased from 44%, 26% and 27% in fields where cut biomass did not exceed

grazed biomass (GCD>0) to 54%, 40% and 52% in fields where cut biomass exceeded grazed biomass (GCD<0). The higher

RCR (mean and SD) for LAI and grazed biomass is caused by the spatio-temporal uncertainty in the vegetation reduction

time-series. This input-related uncertainty leads to the MDF algorithm being less effective in identifying cutting instances in395

some simulated fields; i.e. sampled parameter vectors produce varying predictions on the timing and intensity of grass cuts.

The impact of input data uncertainty on RCR is also reflected on the shape of RCR distributions for GPP and grazed biomass

(violin plots in Fig. 8). The assimilated EO LAI time-series condition the simulated LAI, which combined with the simulated

removals (grazing/cutting), determine the weekly GPP at each simulated field. Reducing the uncertainty (spatial and temporal)

around the vegetation reduction data is expected to lead to less variable predictions of cutting timing and intensity and, thus, to400

lower predictive uncertainty overall.

4 Discussion

4.1 Grassland vegetation management across GB

Process modelling combined with earth observation can identify grassland vegetation management effectively over large spatial

domains. The distribution of MDF-based livestock densities across GB mirrors the independent determined census-based405

numbers of cattle and sheep per area; MDF estimated livestock density = 0.7 (±0.56) LU ha−1, census based livestock density

= 0.76 (±0.46) LU ha−1. Considering that grasslands with a corresponding LU ha−1 < ≈ 0.5 are thought as supporting a low

livestock density and those with LU ha−1 > ≈ 1 as supporting a high livestock density, the average managed grassland in GB

supported an intermediate livestock density in 2017-2018 (Chang et al., 2015b).

The MDF-predicted GB-average pasture dry matter yield (6±1.8 tDMha−1y−1) is within the range for UK permanent410

pastures (7.41±2.02 tDMha−1y−1) as estimated by Qi et al. 2017 using statistical extrapolation of field-measured data. Due to
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Figure 8. Cartograms of relative confidence range (RCR, 100 × CI ÷ mean) of MDF-predicted LAI, GPP, Reco and grazed biomass. The
mean across all fields in each cell is presented. The size of cells is adjusted according to the number of simulated fields within it. The
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(GCD>0). The orange side shows results for fields in which most biomass was removed via cutting (GCD<0).
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the field-size limits (6-13ha) used in sampling for fields across GB, the share of less intensively managed grasslands is likely

biased high in the simulated fields’ dataset (Qi et al., 2018). Cut-only grasslands were under-represented in our analysis, as we

expected ≈ 10% of field to be in temporary management for cutting. We believe this is an artefact of the noise in the vegetation

reduction time-series, which led to cut-only grasslands failing to pass the 50% overlap limit and being excluded from the final415

dataset. The inclusion of fields that are 6-13ha in size could have led to an under-representation of cut-only fields but we note

that no data exist on the percentage of managed grasslands that are grazed-only, cut-and-grazed and cut-only.

4.2 The C balance of managed grasslands

The majority of managed grasslands in GB were net C sinks during 2017 (NEE=-289±76 gCm−2y−1) and 2018 (NEE=-

174±74 gCm−2y−1) at the ecosystem level, i.e. based on CO2 gas exchanges. Numerous flux tower-based studies have con-420

cluded that managed temperate grasslands are, on average, C sinks but NEE estimates vary greatly between ≈ -700 gCm−2y−1

to almost C-neutrality (Soussana et al., 2007; Gilmanov et al., 2007; Skinner, 2008). The scale of NEE increase between 2017

and 2018 is comparable to past field-based estimates under normal and heat-wave conditions (Klumpp et al., 2011). When con-

sidering C fluxes that also included grazing/cutting removals and manure return to the soil (i.e. NBE), the simulated grasslands

were net C sinks during 2017 (NBE=-191±82 gCm−2y−1) and close to C neutral in 2018 (NBE=-49±70 gCm−2y−1). These425

NBE estimates are comparable to those in the literature but the inconsistency in the variables included in NBE calculations

makes comparisons less than straightforward (Soussana et al., 2007; Skinner, 2008). Based on RF-based analyses of climate

drivers and model parameters we argue that the increase in mean annual NEE and NBE between 2017 and 2018 was caused

by the 2018 summer heatwave. The negative effect of elevated annual temperatures on grassland biomass productivity and

NEE has been examined in measurements and model-based studies on European grasslands before (Jansen-Willems et al.,430

2016; Ciais et al., 2005; Jansen-Willems et al., 2016; Thompson et al., 2020). The mechanistic understanding, and the model

representation, of how plants respond to increased VPD is improving but key aspects are still disputed (Grossiord et al., 2020;

Massmann et al., 2019).

Our study shows that biomass removals were key determinants of the C balance of managed grasslands. The role of cutting

relative to grazing as a biomass removal method was found to be particularly important. Grasslands in which most biomass435

was removed via cutting had a lower GPP and Reco as opposed to grasslands in which grazing was the main biomass removal

method (Fig. 5). However, when GPP and Reco are summed the resulting NEE did not vary significantly between mostly

grazed and mostly cut grasslands. All of the simulated grasslands were grazed and underwent more or less frequent defoliation

during the simulated period. When cutting occurs the leaf area of a grassland is reduced close to zero, which represents a

diminution of the grassland’s photosynthetic capacity. According to DALEC-Grass, in the post-cutting period the simulated440

grassland allocates almost all of its C to aboveground tissues (stems,leaves) in order to build up the leaf area necessary to

increase photosynthetic activity and sustain growth. This causes a smaller root-to-shoot ratio in grazed and cut grasslands

compare to grazed-only ones as well as a reduction of root-based C inputs to the litter pool (lower Rh ). Grazing that occurs

during the post-cut period maintains the volume of leaves at relatively low levels. This leads to a reduced annual GPP for
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grasslands that are both grazed and cut and also means lower manure-C returns to the soil, which explains the weaker C sinks445

(higher NBE) of most grazed-and-cut grasslands compared to grazed-only fields.

4.3 Factors that control managed grassland C dynamics

Management and climate have a combined effect on C dynamics and disentangling their individual impacts is a challenge

(Ammann et al., 2020). Here, we used a correlation matrix of model drivers, parameters and outputs to understand how climate

and management affect the predicted C fluxes and balance of the simulated grasslands. The correlation matrix revealed a450

negative effect (r<0) of VPD on GPP and Reco, and a positive effect (r>0) on NEE and NBE. Biomass removals had a similar

effect with higher removals corresponding to lower GPP and Reco and more positive NEE and NBE. Moreover, we used the

model’s climate drivers and all of its management and climate-related parameters to train a RF model that estimates NBE. The

analysis of the RF model structure showed that the contribution of VPD as a RF predictor of NBE increased from 3% in 2017

to 40% in 2018, with VPD being the most important determinant of NBE in 2018. This increase is linked to the heat wave and455

drought conditions during that year. Management-related parameters were the most important determinant of NBE in 2017 and

the second most important in 2018.

The conclusions that we draw in regards to which factors have more influence on grassland C dynamics are based on two

assumptions. Firstly, we assume that the simulated grasslands are well-optimised for the intended use; i.e. to sustain different

types of livestock (e.g. dairy and/or beef cattle and/or sheep). This means that each sward is maintained in good condition460

and that farmers manage their fields optimally based on their long-term experience. Secondly, the fact that a large share of the

simulated fields (especially in the southern half of England) experienced continuous weeks of unusually hot and dry weather

conditions during one (2018) of the two simulated years is treated as a climate anomaly; i.e. climate in 2018 is not representative

of normal climatic controls on C balance. Based on these assumptions, we argue that the simulated vegetation management, as

inferred from the observational data, was adapted to the seasonal weather anomaly. Therefore, significant changes in ecosystem465

C cycling were beyond the control of human management and can be mostly attributed to the seasonal weather anomaly.

Our findings on the role of management are in agreement with findings in a number of relevant studies, notwithstanding

differences in methodologies and eco-climatic conditions. Skinner 2008 found that higher biomass removals increase NBE

based on C flux measurements in cut-and-grazed temperate grasslands in the USA. Koncz et al. 2017 used eddy covariance

measurements of C fluxes at a cut-only and a grazed-only field in Hungary and found that the cut field had a more positive470

NBE (smaller sink) than the grazed field. Senapati et al. 2014 reached the same conclusion as Koncz et al. 2017 using eddy

covariance measurements from a cut-only versus grazed-only experiment in France. Soussana et al. 2010 reviewed studies

on European managed grassland C balance and found that grazed-only grasslands had the lowest NBE, followed by cut-only

grasslands with cut-and-grazed grasslands having the highest NBE (NBE in this study included animal methane-C and C-

leaching fluxes). Based on eddy covariance measurements over two years at three grassland sites with varying management475

intensity in Switzerland Zeeman et al. 2010 concluded that management (including biomass removals and manure application)

has a strong influence on C fluxes and balance.
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In summary, we conclude that management is a key determinant of the C balance of managed grasslands in GB. We note that

climatic anomalies, such as heat waves and droughts, can reduce the relative importance of management as a determinant of

grassland C balance. In simple terms, human decisions can adjust grassland sink or source strength and this depends mostly on480

the soil’s existing C stock, the sward’s composition and condition and the timing and intensity of livestock grazing and grass

cutting. Climate change can change this fine C balance substantially and prolonged heat and drought is one way in which this

can occur in regions with temperate maritime climate.

4.4 Predictive uncertainty

We use the RCR to quantify the uncertainty around the MDF-predicted variables. RCR shows how wide the 95% confidence485

intervals (i.e. 2×SD, assuming normality) are relative to the mean value. The assimilated LAI data come from processing

Sentinel-2 images and have an uncertainty attached to them. This observational uncertainty is not always examined in relevant

studies but a relative SD of 15% is considered as representative (Zhao et al., 2020). This means that the average RCR of the

assimilated observational LAI data is 30%. Considering that MDF predictions incorporate model parametric uncertainty as

well, the mean analysis LAI RCR of 45% is, as expected, larger than, but of similar magnitude to, the observational uncertainty490

of 30% (Fig. 8).

The estimated predictive uncertainty for LAI, GPP and grazed biomass was noticeably higher for fields that were mostly cut

(GCD<0) (Fig. 8). The MDF algorithm does not infer cutting simply by translating large reductions in vegetation as cuts. The

MDF algorithm examines each weekly vegetation reduction input to decide whether to simulate it as cutting, grazing or ignore

it depending on the simulated amount of foliar biomass at the time. The simulated amount of foliar biomass is constrained495

through the assimilation of field-specific EO-based LAI time-series. A weekly vegetation reduction will be simulated as a cut

when it is reasonable both biophysically and agronomically based on the EDCs (see section 2.1.2). This higher predictive

uncertainty when cutting occurs suggests that the best way to obtain more accurate predictions is to improve the spatial and

temporal resolution of the vegetation reduction time-series and/or estimates of LAI. Using radar (e.g. Sentinel-1) to derive LAI

in spite of cloud cover would be a valuable advance.500

4.5 Limitations

This study uses a MDF algorithm that depends on EO data and process modelling of C dynamics in grasslands. The Proba-

V-based vegetation reduction time-series that are used to drive DALEC-Grass have a resolution (9ha) that is coarse when

compared to the average size of grassland fields in GB. These noisy data on vegetation reduction cause increased uncertainty

in MDF predictions especially in regards to the timing of cutting events. Moreover, most areas of GB are affected by frequent505

cloudiness, which means that the number of Sentinel 2-based LAI data points per year and simulated field is limited compared

to other parts of the world. However, we ensured 30 images per field over two years in our selection process, and this richness

of information at field resolution and for national domains is unprecedented in such an analysis.

DALEC-Grass was developed and tested under UK conditions, showing high skill in predicting C allocation and CO2 fluxes

under variable management and different soil conditions (Myrgiotis et al., 2020). However, DALEC-Grass can only infer510
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effects on grass growth through the processes it simulates, and so can mis-attribute effects arising from missing processes. For

instance, the MDF algorithm can adjust a specific plant growth rate parameter (DALEC parameter P10, photosynthetic N use

efficiency) between fields based on observed LAI dynamics and weather. Inferred P10 variation among fields might be linked to

spatial patterns in soil fertility. But because there is no direct soil moisture constraint on LAI in DALEC-grass to be adjusted,

a real spatial soil moisture limitation on LAI might be mis-interpreted as a restriction on P10. So we should be cautious in515

interpreting process variation and assigning with certainty to a particular forcing. Also, a single P10 estimate is made for each

field covering both 2017 and 2018, so the current analysis does not allow field nutrient supply (and therefore P10) to change

between years. The strong differences in sink strengths observed in the 2017 and 2018 analyses are informative. The flux

differences cannot arise from parameter differences between years, as these parameters are constant. Instead differences must

arise from process changes (e.g. GPP) resulting from changes to the forcing (VPD, Fig. 2) and changes to the assimilated520

data (LAI) between years. The larger LAI uncertainty in southern GB (Fig. 8 may be related to soil moisture impacts on grass

growth that we fail to identify with the current model structure. Finally, DALEC-Grass has been validated against data from

grasslands dominated (>90%) by perennial ryegrass (Lolium perenne) and its ability to simulate swards with larger shares of

herbs and forbs has not been tested.

Overall, the ability to use field-specific observed information on key aspects of grassland vegetation and to infer its man-525

agement (vegetation grazing and cutting) are the key advancements presented in this study. In this context, the majority of

grassland-focused model-based estimates at large scales typically rely on uncertain information on grazing and cutting. Also,

with few recent exceptions most relevant studies do not include field-specific validation of model predictions, which results in

highly uncertain estimates. Despite that, the calculation of lateral flows of C remains an outstanding challenge as it depends on

information that cannot be inferred from EO-based time-series. The size, type and age of livestock significantly affect livestock530

turnover of grazed biomass-C. While we cannot infer this information from EO data, our probabilistic MDF framework allow

us to attribute uncertainty to livestock C turnover and, thus, to quantify their impact on predictions. This attribution can be done

by treating grazed biomass-C conversion factors (Fig. 1) as model parameters. It is, currently, not possible to detect manure

spreading events from EO data. Therefore, we do not consider external manure-C addition to the soil.

4.6 Future work535

Our overarching aim is to produce a computational ecosystem science framework that is (1) able to utilise the swathes of

EO data that are increasingly becoming available while (2) being easy to adapt and incorporate new knowledge gained from

field/lab experiments and ground observations. This study showed that the MDF algorithm will benefit most from improving

the temporal resolution and quality of EO LAI data used. We believe that by advancing on this front the algorithm will be able

to produce more accurate estimates across European grasslands and other with similar agro-climatic conditions. Introducing540

soil moisture and N cycling-related processes to DALEC-Grass will pave the way for more detailed consideration of the effects

of fertiliser use and different grass mixtures, and for its application at climatically-critical rangelands and pastures across the

world (e.g. tropical and dry regions). DALEC-Grass has a structure that facilitates the incorporation of modelling advances

made with other DALEC-based models such those presented in Revill et al. 2021 for foliar N and Smallman and Williams
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2019 for soil moisture. We also note that the quality of soil C-related data is critical for better constraining below-ground C545

pools and fluxes (e.g. heterotrophic respiration). Improvements in the quality of relevant spatial data in the future will improve

the credibility for MDF estimates.

5 Conclusions

This study presented how, by fusing EO data and biogeochemical modelling of managed grassland C dynamics at field resolu-

tion across a national domain, a MDF framework can detect biomass removals and use this information to predict grassland C550

fluxes and balance probabilistically. In addition, the study showed how field-specific model predictions of grassland vegetation

can be validated against field-specific EO-based LAI time-series. We argue that both of these uses of EO data in model-based

studies represent key advancements that increase the credibility of field-scale estimates of C dynamics in managed grasslands.

Our results show that MDF-predicted annual yields and livestock density mirror ground based information well. In agreement

with a range of studies on temperate grasslands in Europe and beyond, our study reaffirms the C sink potential of managed555

grasslands in GB. In contrast to previous measurements and model-based studies, however, we showed how MDF can quantify

and interpret C dynamics across a large domain (GB) while also resolving sub-field scale variability in vegetation management.

This granularity is vital as our results show how management differences between fields have strong effects on net C balance. It

is widely accepted that climate change is manifesting itself, among other ways, as more frequent droughts in northern Europe

(Peters et al., 2020). Our study showed how the most prolonged drought (2018) that has been recorded since 2000 affected560

the C balance of managed grasslands. It highlights that the ability of temperate maritime grasslands to sequester C could be

significantly affected by prolonged heat waves and drought. Various climatic and management-related factors affect both the

annual C balance and the seasonal grassland biomass utilisation in livestock farming in GB; and northwest Europe in general.

National targets for C neutrality in the agricultural sector and climate change create a challenging future for UK grassland

farming. MDF represents a robust method for monitoring the biophysical state and C dynamics of any grassland field, over any565

domain in near-real time. We argue that farmers and governments alike can use MDF approaches like this to provide needed

monitoring tools for C balance, and guidance on adaptation and mitigation of climate change effects on agriculture towards

meeting net-zero goals.

Appendix A
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Table A2. Ecological and Dynamic Constraints (EDC)

No Explanation Reference

1 The turnover rate of the soil organic matter pool
cannot be faster than that of the litter pool

2 Initial SOC pool cannot be < the sum of all other pools
(litter, roots, aboveground)

3 The soil organic matter pool cannot lose or gain > 5% of its C in a simulated year
4 Annual GPP and ecosystem respiration

cannot be <800 g C m−2 or >2800 g C m−2 (Xia et al., 2015; Gilmanov et al., 2007)
5 Weekly mean GPP cannot be >25 g C m−2 (Xia et al., 2015; Gilmanov et al., 2007)
6 Cutting yield cannot be <80 g C m−2 or >385 g C m−2 (Qi et al., 2017)
7 No more than 4 cuts can occur each simulated year (Qi et al., 2017)
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Figure A1. Schematic description of data sources and data flow in the model-data fusion process. The DALEC-Grass model is driven
by weekly weather and vegetation reduction data (see sections 2.1.5 and 2.1.4 ). The initial size of the soil organic C (SOC) pool for
each simulated field is obtained from the SoilGrids database (Hengl et al., 2017) and used as a DALEC-Grass parameter (with uncertainty
attributed to it). DALEC-Grass produces outputs on weekly C pools, fluxes and removals (see Fig. 1). It also produces weekly time-series
of LAI. Observational time-series on LAI are assimilated by reducing the RMSE between observational and simulated LAI time-series (see
section 2.1.4). The assimilation is performed in CARDAMOM by using the simulated annealing (SA) method/algorithm (see section 2.1.3).
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Figure A2. Cartograms of overlap (%), root mean square error (RMSE) (m2m−2) and bias (m2m−2) between MDF-predicted and assimilated
LAI (EO-based). The size of cells is adjusted according to the number of simulated fields within it. The violin-plot insets present the
distribution of each evaluation metric across all simulated fields.

Figure A3. Kernel density estimates plot (inner part) and distributions (outer part) of MDF-predicted (x-axes) and census-based (y-axes)
livestock density.
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Figure A4. Mean month-of-year of first simulated grass cutting per GB region.
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Figure A5. Cartograms of MDF-predicted GPP, Reco, NEE, NBE, removed biomass and C flux to SOC. The mean value for 2017-2018
across all fields in each cell is presented. The size of cells is adjusted according to the number of simulated fields within it. Unit : gCm−2y−1
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Figure A8. Cartograms of cumulative NEE per season for 2017 (December 2016 - November 2017) and 2018 (December 2017 - November
2018), and change in seasonal NEE from 2017 to 2018. The mean MDF-predicted seasonal NEE of all fields in each cell is presented. The
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