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1. Abstract 17 

The production and removal of ammonium (NH₄⁺) are essential upper-ocean nitrogen cycle 18 
pathways, yet in the Southern Ocean where NH₄⁺ has been observed to accumulate in surface 19 
waters, its mixed-layer cycling remains poorly understood. For surface seawater samples 20 
collected between Cape Town and the marginal ice zone in winter 2017, we found that NH₄⁺ 21 
concentrations were five-fold higher than is typical for summer, and lower north than south of 22 
the Subantarctic Front (0.01–0.26 µM versus 0.19–0.70 µM). Our observations confirm that 23 
NH₄⁺ accumulates in the Southern Ocean’s winter mixed layer, particularly in polar waters. NH₄⁺ 24 
assimilation rates were highest near the Polar Front (12.9 ± 0.4 nM day-1) and in the Subantarctic 25 
Zone (10.0 ± 1.5 nM day-1), decreasing towards the marginal ice zone (3.0 ± 0.8 nM day-1) despite 26 
the high ambient NH₄⁺ concentrations in these southernmost waters, likely due to the low 27 
temperatures and limited light availability. By contrast, rates of NH₄⁺ oxidation were higher south 28 
than north of the Polar Front (16.0 ± 0.8 versus 11.1 ± 0.5 nM day-1), perhaps due to the lower 29 
light and higher iron conditions characteristic of polar waters. NH₄⁺ concentrations were also 30 
measured on five transects of the Southern Ocean (Subtropical- to marginal ice zone) spanning 31 
the 2018/2019 annual cycle. These measurements reveal that mixed-layer NH₄⁺ accumulation 32 
south of the Subantarctic Front derives from sustained heterotrophic NH₄⁺ production in late 33 
summer through winter that in net, outpaces NH₄⁺ removal by temperature-, light-, and iron-34 
limited microorganisms. Our observations thus imply that the Southern Ocean becomes a 35 
biological source of CO2 to the atmosphere for half the year not only because nitrate drawdown 36 
is weak, but also because the ambient conditions favour net heterotrophy and NH₄⁺ accumulation.  37 

2. Introduction 38 

The Southern Ocean impacts the Earth system through its role in global thermohaline circulation, 39 
which drives the exchange of heat and nutrients among ocean basins (Frölicher et al., 2015; 40 
Sarmiento et al., 2004). The Southern Ocean also plays an integral role in mediating climate, by 41 
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transferring carbon to the deep ocean via its biological and solubility pumps (Sarmiento & Orr, 78 
1991; Volk & Hoffert, 1985) and through the release of deep-ocean CO2 to the atmosphere during 79 
deep-water ventilation (i.e., CO2 leak; Broecker & Peng, 1992; Lauderdale et al., 2013; Sarmiento 80 
& Toggweiler, 1984). Upper Southern Ocean circulation is dominated by the eastward-flowing 81 
Antarctic Circumpolar Current (ACC) that consists of a series of broad circumpolar bands 82 
(“zones”) separated by oceanic fronts. These fronts can drive water mass formation (Ito et al., 83 
2010) and nutrient upwelling that supports elevated productivity (Sokolov & Rintoul, 2007).  84 

Concentrations of the essential macronutrients, nitrate (NO3-) and phosphate (PO43-), are 85 
perennially high in Southern Ocean surface waters, in contrast to most of the global ocean. 86 
Assimilation of these nutrients, and thus primary productivity in the Southern Ocean, is limited 87 
by numerous overlapping factors, including temperature, light, micronutrient concentrations, and 88 
grazing pressure (e.g., Boyd et al., 2001; Martin et al., 1990; Reay et al., 2001; Smith Jr & 89 
Lancelot, 2004). The strength of these limitations varies with sector (i.e., longitude), zone (i.e., 90 
latitude), and season, resulting in spatial and temporal variability in chlorophyll-a, primary 91 
production, plankton community composition, and nutrient uptake regime (Mdutyana et al., 92 
2020; Mengesha et al., 1998; Shadwick et al., 2015; Thomalla et al., 2011). In addition to the 93 
seasonality of temperature and light, Southern Ocean ecosystems are influenced by seasonal 94 
changes in nutrient availability. In winter, deep mixing replenishes the nutrients required for 95 
phytoplankton growth but the low temperatures and light levels impede biological activity 96 
(Rintoul & Trull, 2001). Once the mixed layer shoals in spring and summer, phytoplankton 97 
consume the available nutrients until some form of limitation (usually iron; Nelson et al., 2001; 98 
Nicholson et al., 2019) sets in. This balance between wintertime nutrient recharge and 99 
summertime nutrient drawdown is central to the Southern Ocean’s role in setting atmospheric 100 
CO2 (Sarmiento & Toggweiler, 1984).  101 

The onset of iron limitation following the spring/early summer bloom in the Southern Ocean 102 
drives phytoplankton to increased reliance on recycled ammonium (NH₄⁺; Timmermans et al., 103 
1998), the assimilation of which has a far lower iron requirement than that of NO3- (Price et al., 104 
1994). The extent to which phytoplankton rely on NO3- versus NH₄⁺ as their primary N source 105 
has implications for Southern Ocean CO2 removal since phytoplankton growth fuelled by 106 
subsurface NO3- (“new production”) must be balanced on an annual basis by the export of sinking 107 
organic matter (“export production”; Dugdale & Goering, 1967), which drives CO2 sequestration 108 
(i.e., the biological pump; Volk & Hoffert, 1985). By contrast, phytoplankton growth on NH₄⁺ or 109 
other recycled N forms (“regenerated production”) yields no net removal of CO2 to the deep 110 
ocean (Dugdale & Goering, 1967). Considerable research has focused on NO3- cycling in the 111 
Southern Ocean mixed layer because of the importance of this nutrient for the biological pump 112 
(e.g., Francois et al., 1992; Johnson et al., 2017; Mdutyana et al., 2020; Primeau et al., 2013; 113 
Sarmiento & Toggweiler, 1984) and global ocean fertility (Fripiat et al., 2021; Sarmiento et al., 114 
2004). By contrast, the cycling of regenerated N within the seasonally-varying mixed layer – 115 
including the production of NH₄⁺ and its removal by phytoplankton and nitrifiers – remains 116 
poorly understood. 117 

NH₄⁺ is produced in the euphotic zone as a by-product of heterotrophic metabolism (Herbert, 118 
1999) and as a consequence of zooplankton grazing (Lehette et al., 2012; Steinberg & Saba, 119 
2008), and is removed by phytoplankton uptake (in euphotic waters) and nitrification (mainly in 120 
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aphotic waters). Heterotrophic bacteria can also consume NH₄⁺ (Kirchman, 1994) and have been 166 
hypothesized to do so at significant rates in the Southern Ocean mixed layer in winter (Cochlan, 167 
2008; Mdutyana et al., 2020). The assimilation of NH₄⁺ by phytoplankton requires relatively little 168 
energy (Dortch, 1990) such that NH₄⁺ is usually consumed in the euphotic zone as rapidly as it 169 
is produced (Glibert, 1982; La Roche, 1983), resulting in very low surface NH₄⁺ concentrations 170 
in the open ocean (<0.2 μM; Paulot et al., 2015). Additionally, NH₄⁺ is often the preferred N 171 
source to small phytoplankton (Dortch 1990), which typically dominate when iron and/or light 172 
are limiting (Deppeler & Davidson, 2017; Pearce et al., 2010; Tagliabue et al., 2014) since their 173 
higher cell surface area-to-volume ratio renders them less vulnerable to diffusion- and/or light 174 
limitation (Finkel et al., 2004; Fujiki & Taguchi, 2002; Hudson & Morel, 1993; Mei et al., 2009).  175 

In addition to the implications for size distribution, the dominant N source to phytoplankton is 176 
indicative of their potential for CO2 removal, as per the new production paradigm (Dugdale & 177 
Goering, 1967). The N isotopic composition (d15N, in ‰ vs. N2 in air, = (15N/14Nsample/15N/14Nair 178 
– 1) x 1000) of particulate organic N (PON; a proxy for phytoplankton biomass) can be used to 179 
infer the dominant N source to phytoplankton (Altabet, 1988; Fawcett et al., 2011; Lourey et al., 180 
2003; Van Oostende et al., 2017) since the assimilation of subsurface NO3- yields PON that is 181 
higher in d15N than that fuelled by recycled NH₄⁺ uptake (Treibergs et al., 2014). As such, 182 
measurements of bulk 𝛿15N-PON can be used to infer the net N uptake regime (Altabet, 1988; 183 
Fawcett et al., 2011; 2014; Lourey et al., 2003).  184 

Nitrification, the oxidation of NH₄⁺ to nitrite (NO2-) and then NO₃⁻ by chemoautotrophic bacteria 185 
and archaea, was historically considered unimportant in euphotic zone waters due to the evidence 186 
for light inhibition of nitrifiers (Hooper & Terry, 1974; Horrigan & Springer, 1990; Olson, 1981) 187 
and the fact that they are outcompeted by phytoplankton for NH₄⁺ (Smith et al., 2014; Ward, 188 
1985; 2005; Zakem et al., 2018). However, this view has been challenged in numerous ocean 189 
regions (Yool et al., 2007), including the Southern Ocean (Smart et al., 2015; Cavagna et al., 190 
2015; Fripiat et al., 2015; Mdutyana et al., 2020). Wintertime upper-ocean NH₄⁺ dynamics thus 191 
have implications for annual estimates of carbon export potential, insofar as NO3- produced by 192 
nitrification in the winter mixed layer that is subsequently supplied to spring/summer 193 
phytoplankton communities constitutes a regenerated rather than a new N source on an annual 194 
basis (Mdutyana et al., 2020).  195 

Surface concentrations of NH₄⁺ are typically near-zero in spring and early- to mid-summer in the 196 
open Southern Ocean (Daly et al., 2001; Henley et al., 2020; Sambrotto & Mace, 2000; Savoye 197 
et al., 2004) due to assimilation by phytoplankton. In late summer, a peak in NH₄⁺ concentration 198 
has been observed and attributed to enhanced bacterial and zooplankton activity following 199 
elevated phytoplankton growth (Becquevort et al., 2000; Dennett et al., 2001; Mengesha et al., 200 
1998). The limited available observations suggest that wintertime surface NH₄⁺ concentrations 201 
are high (often >1 µM), particularly south of the Subantarctic Front (SAF) (Bianchi et al., 1997; 202 
Henley et al., 2020; Philibert et al., 2015; Mdutyana et al., 2020; Weir et al., 2020). It thus appears 203 
that NH₄⁺ is not depleted following the late summer peak in its concentration, which indicates 204 
enhanced NH₄⁺ regeneration, either coincident with (but in excess of) NH₄⁺ assimilation in winter 205 
and/or prior to this in late summer and/or autumn. Under these conditions, the Southern Ocean 206 
mixed layer may become net heterotrophic and thus a biological source of CO2 to the 207 
atmosphere.  208 
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Here, we focus mainly on NH₄⁺ cycling in the Southern Ocean mixed layer in winter, a season 285 
assumed to be largely biologically dormant (Arrigo et al., 2008; Schaafsma et al., 2018) and for 286 
which NH₄⁺ cycle data are scarce. We confirm that NH₄⁺ accumulates throughout the winter 287 
mixed layer south of the SAF, and examine the potential drivers thereof. Using NH₄⁺ 288 
concentration data collected over a full annual cycle, we propose that these drivers include a 289 
contribution from the residual late-summer NH₄⁺ pool, sustained NH₄⁺ production in the autumn 290 
and winter, and limited wintertime NH₄⁺ uptake and oxidation that nonetheless exceed the rate of 291 
in situ NH₄⁺ production. Finally, from our temporally-resolved NH₄⁺ concentration data, we 292 
propose – for the first time – a measurement-based seasonal cycle for the mixed-layer NH₄⁺ pool 293 
south of the SAF. 294 

3. Methods  295 

3.1 Cruise tracks and sample collection 296 

Samples were collected for a series of analyses on the southward (S) and northward (N) legs of 297 
a winter cruise between Cape Town, South Africa, and the marginal ice zone (MIZ) onboard the 298 
R/V SA Agulhas II (VOY25; 28 June to 13 July 2017) (Fig. 1). Samples were also collected for 299 
NH₄⁺ concentration analysis on three cruises onboard the R/V SA Agulhas II during 2018/19: 300 
early- and late summer samples were collected during the SANAE 58 Relief Voyage (6 301 
December 2018 to 15 March 2019; VOY035); winter samples were collected during the SCALE 302 
2019 (www.scale.org.za) winter cruise to the MIZ (18 July to 12 August 2019; VOY039); and 303 
spring samples were collected during the SCALE 2019 spring cruise to the MIZ (12 October to 304 
20 November 2019; VOY040) (Fig. S1). 305 

Leg S of VOY25 in winter 2017 crossed the Atlantic sector and due to logistical constraints, 306 
involved only surface underway collections, while leg N bordered the Atlantic and Indian sectors 307 
(30°E; WOCE IO6 line) and included eight conductivity-temperature-depth (CTD) hydrocast 308 
stations. Frontal positions were determined using the ship’s hull-mounted thermosalinograph, 309 
supported by temperature, salinity, and oxygen concentration data from CTD measurements 310 
made during leg N. The salinity and oxygen sensors were calibrated against seawater samples 311 
that were analyzed for salinity using a Portasal 8410A salinometer and for dissolved oxygen by 312 
Winkler titration (Strickland & Parsons, 1972). Frontal positions were determined from sharp 313 
gradients in potential temperature, salinity, potential density, and oxygen concentrations (Belkin 314 
& Gordon, 1996; Lutjeharms & Valentine, 1984; Orsi et al., 1995). For leg N, the mixed layer 315 
depth (MLD) was determined for each Niskin (up)cast as the depth between 10 m and 400 m at 316 
which the Brunt Väisälä Frequency squared, N2, reached a maximum (Carvalho et al., 2017). 317 

During leg S, samples were collected every four hours from the ship’s underway system (~7 m 318 
intake; “underway stations”) while samples on leg N were collected from surface Niskin bottles 319 
(~10 m, approximately 55% light depth) mounted on the CTD rosette (“CTD stations”). NH₄⁺ 320 
samples were also taken at 13 depths over the upper 500 m at the CTD stations. At all stations, 321 
40 mL of unfiltered seawater was collected for the analysis of NH₄⁺ concentrations in duplicate 322 
50 mL high density polyethylene (HDPE) bottles that had been stored (“aged”) with 323 
orthophthaldialdehyde (OPA) working reagent. Unfiltered seawater was collected in duplicate 324 
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50 mL polypropylene centrifuge tubes for the analysis of NO3-, NO2-, and PO43-, and in a single 349 
tube for urea. Immediately following collection, NH₄⁺ and nutrient samples were frozen at -20°C.  350 

Duplicate size-fractionated chlorophyll-a samples were collected by filtering seawater (500 mL) 351 
through 25 mm-diameter glass fibre filters (0.3 μm and 2.7 μm; Sterlitech GF-75 and Grade D, 352 
respectively). Acetone (90%) was added to foil-wrapped borosilicate tubes containing the filters 353 
and incubated at -20 °C for 24 hours. Duplicate seawater samples (4 L) were also gently vacuum-354 
filtered through combusted 47 mm-diameter, 0.3 μm GF-75 filters for POC and PON 355 
concentrations and 𝛿15N-PON. Filters were stored in combusted foil envelopes at -80°C.  356 

For microscopy, unfiltered seawater samples (250 mL) were collected during leg S in amber 357 
glass bottles and immediately fixed by the addition of 2.5 mL of Lugol’s iodine solution (2% 358 
final concentration), then stored at low room temperature in the dark until analysis. For flow 359 
cytometry, seawater samples were collected in triplicate 2 mL microcentrifuge tubes, fixed with 360 
glutaraldehyde (1% final concentration), and stored at -80°C until analysis (Marie et al., 2005).  361 

Ten incubation experiments were conducted during leg S to measure net primary production 362 
(NPP). In addition, four NPP experiments were conducted during leg N using seawater collected 363 
from Niskin bottles fired at ~10 m. In all cases, pre-screened (200-μm mesh; to remove large 364 
grazers) seawater was collected in three 2-L polycarbonate bottles to which NaH13CO3 was added 365 
at ~5% of the estimated ambient DIC concentration. 13C enrichment was re-calculated post-cruise 366 
using measured DIC concentrations, and these enrichments were used in all NPP rate 367 
calculations. Bottles were incubated for 5 to 6.5 hours in custom-built deck-board incubators 368 
shaded with neutral-density screens to mimic the 55% light level and supplied with running 369 
surface seawater. Following incubation, each sample was divided (1 L per size fraction) and 370 
gently vacuum filtered through combusted 0.3 μm and 2.7 μm glass fibre filters that were stored 371 
in combusted foil at -80°C until analysis. 372 

N uptake (as NO3-, NH₄⁺ and urea) and NH₄⁺ oxidation experiments were conducted at five 373 
stations during leg S, with NH₄⁺ oxidation measured at two additional stations at the ice edge 374 
(Fig. 1). On leg N, experiments were also conducted using seawater collected from ~10 m at the 375 
same four CTD stations as the NPP experiments. Duplicate 1 L polycarbonate bottles were 376 
amended with 15N-labeled NO3-, NH₄⁺ or urea at ~10% of the ambient N concentration, estimated 377 
based on past wintertime measurements (Mdutyana et al., 2020) and, in the case of NH₄⁺, 378 
coincident shipboard analyses. 15N enrichment was re-calculated post-cruise using the measured 379 
nutrient concentrations, and these enrichments were used in all rate calculations. Incubations 380 
were carried out as for NPP. For NH₄⁺ oxidation, duplicate black 250 mL HDPE bottles were 381 
amended with 0.1 µM 15NH₄⁺ and 0.1 µM 14NO2- (the latter as a “trap” for the 15NO2- produced 382 
by NH₄⁺ oxidation; Ward 2011). NH₄⁺ oxidation bottles were incubated for 24 hours under the 383 
same temperature conditions as the N uptake and NPP experiments. Subsamples (50 mL) were 384 
collected from each bottle immediately following tracer addition (T0) and at the end of the 385 
experiments (Tf), and frozen at -20°C until analysis.  386 

3.2 Sample processing 387 

3.2.1. Ammonium concentrations 388 
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On all cruises, NH₄⁺ concentrations were measured shipboard using the fluorometric method of 426 
Holmes et al. (1999) and a Turner Designs Trilogy fluorometer 7500-000 equipped with a UV 427 
module. The detection limit, calculated as twice the pooled standard deviation of all standards, 428 
was 0.06 μM. To prevent possible in/efflux of ammonia (NH3) due to the temperature difference 429 
between surface waters and the shipboard laboratory, samples were frozen immediately upon 430 
collection, for a maximum of 24 hours. OPA working reagent was added to the frozen samples 431 
prior to defrosting them for analysis. Samples were slowly warmed to room temperature in a 432 
water bath after OPA addition, incubated in the dark for four hours once defrosted, and then each 433 
replicate was measured in triplicate. Standards and blanks were made daily using Type-1 Milli-434 
Q water. Precision was ± 0.03 μM for replicate samples and standards.  435 

During VOY040 (spring 2019), we investigated the possibility that the ship’s underway system 436 
alters the seawater NH₄⁺ concentrations (e.g., due to contamination or cell breakage). We 437 
collected surface samples from the underway and Niskin bottles concurrently and measured an 438 
average NH₄⁺ concentration difference of 0.07 ± 0.15 µM (n=17), with no noticeable trend of 439 
one method consistently yielding higher/lower concentrations. We thus have no reason to doubt 440 
NH₄⁺ concentrations measured for seawater samples collected from the ship’s underway system.   441 

3.2.2. Macronutrient concentrations 442 

Following the winter 2017 cruise, duplicate seawater samples were analysed manually for NO2- 443 
and PO43- (Bendschneider & Robinson, 1952; Murphy & Riley, 1962) using a Thermo Scientific 444 
Genesys 30 Visible spectrophotometer. Precision and detection limit was ± 0.05 μM and 0.05 445 
μM for NO2- and ± 0.06 μM and 0.05 µM for PO43-. The concentrations of NO3- + NO2- and 446 
Si(OH)4 were measured using a Lachat QuickChem 8500 Series 2 flow injection autoanalyzer. 447 
Aliquots of a certified reference material (JAMSTEC) were measured during each run to ensure 448 
measurement accuracy (SD ≤ 2%). The precision of the NO3- + NO2- and Si(OH)4 measurements 449 
was ± 0.4 μM and ± 0.2 μM, respectively, and the detection limit was 0.1 μM and 0.2 μM. NO3- 450 
concentrations were calculated by subtraction (i.e., NO3- + NO2- – NO2-), with error propagated 451 
according to standard statistical practices. Urea-N (hereafter, urea) concentrations were 452 
determined via the room-temperature, single-reagent colorimetric method (Revilla et al., 2005) 453 
using a Thermo Scientific Genesys 30 Visible spectrophotometer; precision was ± 0.04 μM and 454 
the detection limit was 0.04 μM. 455 

3.2.3. Chlorophyll-a concentrations 456 

Chlorophyll-a concentrations ([chl-a]) were determined shipboard using the nonacidified 457 
fluorometric method (Welschmeyer, 1994). The Turner Designs Trilogy fluorometer was 458 
calibrated with an analytical standard (Anacystis nidulans, Sigma-Aldrich®) prior to and 459 
following the cruise. The [chl-a] of the 0.3-2.7 μm size class (hereafter, “pico” size class) was 460 
calculated by subtracting the measured [chl-a] of the >2.7 μm size class (hereafter, “nano+” size 461 
class) from the >0.3 μm size class (hereafter, “bulk”). Given previous work showing that the 462 
winter Southern Ocean phytoplankton community is composed primarily of small cells (i.e., 463 
typically <15 μm; e.g., Hewes et al., 1985; 1990; Weber & El-Sayed, 1987), we did not separate 464 
micro- from nanophytoplankton.  465 
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The NPP and N uptake filters were fumed with hydrochloric acid in a desiccator for 24 hours to 505 
remove inorganic carbon, then dried for 24 hours at 40°C and packaged into tin cups. Filters for 506 
𝛿15N-PON were dried in the same way, but not acidified. Samples were analysed using a Delta 507 
V Plus isotope ratio mass spectrometer (IRMS) coupled to a Flash 260 elemental analyser, with 508 
a detection limit of 0.17 μmol C and 0.07 μmol N and precision of ±0.005 At% for C and 509 
N. Unused pre-combusted filters (blanks) were included in each batch run. POC and PON content 510 
was determined from daily standard curves of IRMS area versus known C and N masses. For the 511 
isotope ratios, sample measurements were referenced to internal laboratory standards calibrated 512 
against IAEA reference materials that were measured after every 5-7 samples.  513 

3.2.5. Size-fractionated rates of NPP and N uptake 514 

Carbon and N uptake rates (NPP, ρNH4+, ρNO3-, ρUrea) were calculated according to Dugdale 515 
& Wilkerson (1986) as: 516 

 ρ𝑀 =	 ['(]	*	(,-%/0123,-%1/4)
6	*	(,-%78793,-%1/4)

  (Eqn 1) 517 

 where,  𝐴𝑡%<=<- = ([(]	*	,-%1/4)	>	([(9?1@0?]	*	,-%9?1@0?)

[(]	>	[(9?1@0?]
 (Eqn 2) 518 

Here, M is the species of interest (C, NH₄⁺, NO3-, or urea); ρM is the uptake rate of that species 519 
(nM hour⁻¹, i.e., nmol C or N L-1 hour-1); [PM] is the concentration of POC or PON (μM) on the 520 
filters; [M] is the ambient concentration of DIC, NH₄⁺, NO3-, or urea at the time of sample 521 
collection; [Mtracer] is the concentration of NaH13CO3, 15NH₄⁺, 15NO3-, or 15N-urea added to the 522 
incubation bottles; and T is the incubation period (days). DIC concentrations were measured 523 
shipboard using a VINDTA 3C instrument and ranged from 2017 to 2130 µM (Bakker et al., 524 
2016). The PM and ρM of the picoplankton size class was calculated by subtracting the 525 
nanoplankton from the bulk measurements. Daily rates were computed by multiplying the hourly 526 
rates by the number of daylight hours, the latter calculated using the sampling latitude and day 527 
of the year (Forsythe et al., 1995). 528 

The f-ratio (Eppley & Peterson, 1979), used to estimate the fraction of NPP potentially available 529 
for export, was calculated as: 530 

 f − ratio = 	 HIJK
L

HI9M9
 (Eqn 3) 531 

where ρNtot = ρNH4+ + ρNO3- + ρUrea. Urea uptake was not measured at underway stations 532 
50.7ºS and 55.5ºS (both in the Antarctic Zone); here, the f-ratio was calculated omitting ρUrea. 533 
For the two Antarctic Zone stations at which urea uptake was measured, including ρUrea 534 
decreased the f-ratio by 8-25% compared to that calculated using only ρNO₃⁻ and ρNH₄⁺.  535 

3.2.6. Ammonia oxidation rates 536 

The azide method (McIlvin and Altabet 2005) was used to convert NO2- produced by NH₄⁺ 537 
oxidation to N2O gas that was measured using a Delta V Plus IRMS with a custom-built purge-538 
and-trap front end (McIlvin & Casciotti, 2011). This configuration yields a detection limit of 0.2 539 
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nmol N with a d15N precision of ± 0.1‰. The d15N of NO2- was derived from 45N2O/44N2O and 578 
the rate of NH₄⁺ oxidation (NH₄⁺ox; nM day⁻¹) was calculated following Peng et al. (2015) as: 579 

 NHR>ST =
∆[VWXYZL]
[
\]^

_
VW ×	a

  (Eqn 4) 580 

Here, D[15NO2-] is the change in the concentration of 15NO2- (nM) between the start and end of 581 
the incubation, calculated as the difference in the measured d15N of NO2- between the Tf and T0 582 
samples, fXb^_

cd  is the fraction of the NH₄⁺ substrate labelled with 15N at the start of the incubation, 583 
and T is the incubation length (days). All 15NO2- produced during the incubations was assumed 584 
to derive from 15NH₄⁺ oxidation. The detection limit ranged from 0.02 to 0.11 nM day⁻¹, 585 
calculated according to Santoro et al. (2013). 586 

We note that isotope dilution (i.e., the dilution of 15NH₄⁺ by co-occurring 14NH₄⁺ regeneration) 587 
during the NH₄⁺ uptake and oxidation experiments could potentially lead to an underestimation 588 
of the rates (Glibert et al., 1982; Mdutyana, 2021). For the NH₄⁺ uptake experiments, their short 589 
duration (3 to 7.5 hours) would have rendered the effect of regeneration minor (Mdutyana et al., 590 
2020). Moreover, the 15NH₄⁺ additions were high (100 nM) relative to both the ambient NH₄⁺ 591 
concentrations north of the SAF and the Km values derived for NH₄⁺ uptake and oxidation in the 592 
winter Southern Ocean (150-405 nM and 28-137 nM, respectively; Mdutyana, 2021), making a 593 
significant dilution effect unlikely (Lipschultz, 2008). Finally, at the stations south of the SAF, 594 
the ambient NH₄⁺ concentrations were so high that even if the regeneration of 14NH₄⁺ occurred 595 
at an elevated rate (e.g., 50 nM day-1; as has been measured in the late-summer Southern Ocean 596 
when remineralization is expected to be high; Goeyens et al., 1991), the 15N/14N of the NH₄⁺ pool 597 
would decrease by <1-2%. We thus consider the potential effect of isotope dilution to be minor.  598 

A further consideration is possible stimulation of the NH₄⁺ uptake and oxidation rates by 15NH₄⁺ 599 
addition (Lipschultz, 2008). Given the Km values listed above and the high ambient NH₄⁺ 600 
concentrations measured in the PFZ and AZ, a stimulation effect could only be significant at the 601 
stations north of the SAF where the NH₄⁺ concentrations were 10-100 nM, and even then, to a 602 
lesser extent for NH₄⁺ oxidation than NH₄⁺ uptake given that ammonia oxidizers in the winter 603 
Southern Ocean become saturated at NH₄⁺ concentrations of 100-200 nM (Mdutyana, 2021). The 604 
rates reported for the stations north of the SAF should therefore be considered “potential rates.” 605 
However, since our focus is mainly on explaining the accumulation of NH₄⁺ south of the SAF, 606 
having “potential” rather than “true” rates for the STZ and SAZ does not affect our conclusions.  607 

3.2.7 Plankton community composition 608 

Microplankton groups (>15 μm) were identified and counted in a subsample (20 mL) from each 609 
amber bottle using the Utermöhl technique (Utermöhl, 1958) and following the recommendations 610 
of Hasle (1978). Plankton groups and individual species were counted and identified using an 611 
inverted light microscope (Olympus CKX41) at 200x magnification. This level of magnification 612 
limited the cell sizes that could be reliably distinguished to >15 µm. For each sample, at least 613 
100 cells were enumerated to ensure a statistically valid count. 614 
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Pico- and nanoplankton cells (<15 µm) were enumerated using an LSR II flow cytometer (BD 628 
Biosciences) equipped with blue, red, violet, and green lasers. Prior to analysis, 1 mL of sample 629 
was incubated with 1% (v/v) SYBR Green-I (a DNA stain) at room temperature in the dark for 630 
10 minutes (Marie et al., 1997). From light scatter and autofluorescence, the DNA-containing 631 
particles were identified as nano- and picoeukaryotes, and Synechococcus. Additionally, small 632 
heterotrophic prokaryotes (i.e., bacteria and possibly archaea; hereafter “bacteria”) were 633 
identified as DNA-containing particles with the lowest detectable autofluorescence (Marie et al., 634 
1997; Gasol & del Giorgio, 2000) (see also Text S2). All particles lacking DNA were considered 635 
detritus. The populations of interest were gated using FlowJo 10.3 software (TreeStar, Inc.; 636 
www.flowjo.com).   637 

In this study, we did not directly measure NH₄⁺ regeneration (i.e., heterotrophy). Instead, we use 638 
the abundance of heterotrophic bacteria as a qualitative indicator of NH₄⁺ regeneration potential, 639 
recognizing that cell abundance does not imply activity. Additionally, we estimate the rate of 640 
NH₄⁺ production from our concentration and rate data (see section 3.3). The availability of 641 
organic matter to heterotrophs is inferred from the abundance of detritus.  642 

3.3 Mixed-layer NH₄⁺ residence time and NH₄⁺ production rate estimates 643 

The residence time of the mixed-layer NH₄⁺ pool can be estimated using the measured ambient 644 
NH₄⁺ concentrations and corresponding NH₄⁺ removal rates as  645 

 𝑁𝐻R>ghi<jh=kh	-<lh =
[Im^_]

Im^
_
?0/Mn1o	?190

  (Eqn 5) 646 

Here, NH₄⁺residence time is the time period (days) over which a given NH₄⁺ concentration will be 647 
depleted assuming a constant NH₄⁺removal rate. We set NH₄⁺removal rate = ρNH₄⁺ + NH₄⁺ox in winter 648 
and = ρNH₄⁺ in late summer given the evidence for negligible mixed-layer NH₄⁺ oxidation rates 649 
in this latter season (Bianchi et al., 1997; Mdutyana et al., 2020). 650 

 651 

To determine the contribution of late summer NH₄⁺ production to the wintertime NH₄⁺ pool (see 652 
section 5.2), we define a rate of NH₄⁺concentration decline: 653 

  𝑁𝐻R>gp-h	qr	jhks<=h = 	𝑁𝐻R
>
tgqjuk-<q=	gp-h	 − 	𝑁𝐻R

>
ghlqvps	gp-h  (Eqn 6) 654 

Here, NH₄⁺production rate is the NH₄⁺ flux required to compensate for NH₄⁺ removal over the late-655 
summer-to-winter period, in order to yield the observed seasonal change in the ambient NH₄⁺ 656 
concentration.  657 

The rate of NH₄⁺concentration decline can also be defined as: 658 

 𝑁𝐻R>gp-h	qr	jhks<=h =
[Im^_]w0@o780

-
 (Eqn 7) 659 

Where [NH₄⁺]decline is the difference between the late summer and winter NH₄⁺ concentrations 660 
and t is the time period (days) over which the NH₄⁺ concentration declines. Setting Eqn 6 and 7 661 
equal yields: 662 

 𝑁𝐻R>tgqjuk-<q=	gp-h =
xIm^

_
yw0@o780
-

+ 𝑁𝐻R>ghlqvps	gp-h (Eqn 8) 663 
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Where, NH₄⁺consumption rate = ρNH₄⁺ + NH₄⁺ox. Eqns 7 and 8 assume that the elevated wintertime 724 
NH₄⁺ concentrations result from continuous NH₄⁺ production in excess of removal rather than 725 
from sporadic events of removal and/or production occurring between late summer and winter.  726 

3.4 Statistical analyses 727 

The correlations among latitude, N concentrations, NPP, N assimilation rates, and NH₄⁺ oxidation 728 
rates were investigated at the 5% significance level using the Pearson correlation coefficient and 729 
the R packages, stats (R Core Team, 2020) and corrplot (Wei & Simko, 2017). Standard 730 
deviations were propagated using standard statistical practices. 731 

4. Results 732 

4.1 Hydrography  733 

Sea surface temperature (SST) decreased by ~17 °C between Cape Town (~34°S) and the edge 734 
of the MIZ (61.7°S), with similar gradients measured for legs S and N. During leg N, fairly deep 735 
MLDs were observed (124-212 m), similar to June and July climatological MLDs compiled from 736 
Argo float data for this region (Dong et al., 2008). While the focus of this study is the surface 737 
(i.e., upper ~10 m), we report the MLDs here to show that sampling took place under typical 738 
winter conditions, with the deep MLDs evincing ongoing winter mixing and associated nutrient 739 
recharge. Where not specified, the trends discussed below refer to the surface data only. 740 
Latitudinal variations in each parameter are assessed by comparing the various Southern Ocean 741 
zones – the Subtropical Zone (STZ) north of the Subtropical Front (STF), the Subantarctic Zone 742 
(SAZ) between the STF and the Subantarctic Front (SAF), the Polar Frontal Zone (PFZ) between 743 
the SAF and the Polar Front (PF), and south of the PF, the Open and Polar Antarctic Zones (OAZ 744 
and PAZ, which are divided by the Southern Antarctic Circumpolar Current Front (SACCF) and 745 
collectively termed the Antarctic Zone (AZ); see Text S1 for detailed definitions of the fronts 746 
and zones, and Fig. 1 and S1 for their positions at the time of sampling). For each parameter, the 747 
average ± 1 standard deviation (SD) for each Southern Ocean zone is reported in Table 1.  748 

4.2 Macronutrient concentrations 749 

In winter 2017, the surface and mixed-layer concentrations of NH₄⁺ ranged from below detection 750 
to 0.70 µM (Fig. 2a and b). Surface concentrations were higher in the PFZ, OAZ, and PAZ (0.42 751 
± 0.01 µM, 0.52 ± 0.01 µM, and 0.58 ± 0.01 µM, respectively) than in the STZ and SAZ (0.08 ± 752 
0.03 µM and 0.06 ± 0.01 µM, respectively), with a sharp gradient observed at the SAF. South of 753 
the SAF, high NH₄⁺ concentrations persisted near-homogeneously throughout the mixed layer, 754 
with mixed layer averages ranging from 0.65 ± 0.01 µM at station 58.5°S to 0.27 ± 0.01 µM at 755 
station 48.0°S and averaging 0.47 ± 0.02 µM, with concentrations that were below detection 756 
north of the SAF (Fig. 2b). Below the mixed layer, NH₄⁺ concentrations decreased rapidly at all 757 
stations to values below detection by 200 m.  758 

The concentrations of NO3- and PO43- increased southwards from <10 µM and <1 µM in the STZ 759 
to >20 µM and >1.5 µM in the PFZ, OAZ, and PAZ (Fig. 2c and S3a), with the sharpest gradients 760 
occurring near the SAF. The concentrations of Si(OH)4 increased rapidly across the PF, from an 761 
average of 3.2 ± 1.1 µM between 35.0°S and 48.0°S to 45.6 ± 0.6 µM between 52.1°S and 58.9°S 762 
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(Fig. S3b). The NO2- concentrations were consistently low across the transect (0.16 ± 0.02 µM; 790 
Fig. S3c), as were the concentrations of urea (0.20 ± 0.04 µM; Table 1), with slightly lower urea 791 
concentrations observed in the SAZ than in the other zones. 792 

4.3 Chlorophyll-a, POC and PON  793 

The highest bulk [chl-a] was observed near the South African continental shelf, decreasing across 794 
the STF and remaining low thereafter (Fig. 3a). The proportion of chl-a in the nano+ size class 795 
varied across the region but was >50% at all stations, with higher (>80%) contributions near the 796 
fronts and at many OAZ and PAZ stations (Fig. 3b). The nano+ contribution was ≤60% at only 797 
five stations (three in the SAZ, two in the OAZ). 798 

The concentrations of bulk POC and PON were highest north of the STF and slightly higher in 799 
the OAZ than in the SAZ and PFZ (Fig. S4a and b). The contribution of the nano+ size fraction 800 
to POC and PON across the transect was 77.1 ± 22.6% and 66.9 ± 24.2%, respectively (Fig. S4c 801 
and d). The 𝛿15N-PON decreased southwards from the STZ and SAZ (1.7 ± 1.0‰) to the PFZ 802 
and OAZ (0.5 ± 0.5‰; Fig. 4). Despite considerable differences among zones, the 𝛿15N-PON	803 
was relatively homogenous within each zone. 804 

4.4 Rates of net primary production, nitrogen uptake, and ammonium oxidation  805 

Rates of bulk NPP were two- to six-fold higher in the SAZ and PFZ than has been reported 806 
previously for the Atlantic sector in winter (Mdutyana et al., 2020; Froneman et al., 1999) (Fig. 807 
5a). By contrast, NPP was low in the OAZ, consistent with previous measurements (Kottmeier 808 
& Sullivan, 1987; Mdutyana et al., 2020). The relative contribution of the nano+ size class 809 
generally decreased southwards, from 85.4% at 37.0°S to 24.4% at 53.5°S, before increasing to 810 
>80% near the SACCF. 811 

The bulk NH₄⁺ uptake rates (ρNH₄⁺) generally increased southwards from the STZ to the SAZ 812 
and PFZ, and then decreased across the OAZ to reach a minimum at the southernmost station 813 
(Fig. 5b). In the nano+ size fraction, ρNH₄⁺ changed little latitudinally, although it was slightly 814 
lower in the PFZ than in the other zones. The contribution of nanoplankton to ρNH₄⁺ ranged from 815 
32.8% in the PFZ to 71.9% in the STZ. The bulk NO3- uptake rates (ρNO3-) were also low in the 816 
STZ, while the highest ρNO3- was measured in the SAZ, with the rate then decreasing 817 
southwards. ρNO3- in the nano+ size class followed the same trend as total community ρNO3-, 818 
with the nanoplankton accounting for 71.5 ± 0.3% of bulk ρNO3- on average. The rates of bulk 819 
urea uptake (ρUrea) were highest in the STZ, with the SAZ and the PFZ hosting similar rates, 820 
and the lowest rates were measured in the OAZ. ρUrea for the nano+ size class followed a similar 821 
trend to bulk ρUrea, and nanoplankton accounted for 51.8% of ρUrea in the SAZ, increasing to 822 
100% in the PAZ. The uptake rates of the different N forms were not significantly correlated 823 
with one another or with the ambient N concentrations (Table S1).  824 

Ammonium oxidation rates (NH₄⁺ox) increased southwards, with higher NH₄⁺ox in the OAZ and 825 
PAZ than in the STZ, SAZ, and PFZ (Fig. 5c). NH₄⁺ox was generally comparable to previous 826 
wintertime measurements from the surface of the open Southern Ocean (Mdutyana et al., 2020). 827 
NH₄⁺ox was not correlated with the ambient NH₄⁺ concentration (Table S1).  828 
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4.5 Plankton community composition 871 

Microplankton abundance was low, with the highest cell counts recorded at stations 37.2°S and 872 
41.3°S in the STZ and no cells counted at 38.1°S (STZ) and 55.5°S (OAZ) (Fig. 6a). On average, 873 
microplankton abundance was higher in the STZ than in the SAZ, PFZ, and OAZ. The greatest 874 
diversity of microplankton groups was observed at 41.3°S in the STZ and at 50.0°S near the PF.  875 

Centric diatoms (including Planktoniella, Coscinodiscus, and Thalassiosira species) were 876 
detected only at the southernmost station 58.9°S (3 cells mL⁻¹). Pennate diatoms (including 877 
Pseudo-nitzschia, Pleurosigma, and Navicula species) were more abundant in the STZ, PFZ, and 878 
OAZ, with negligible abundances in the SAZ. Higher pennate diatom abundances occurred near 879 
the PF (7 cells mL⁻¹), as has been observed in summer (e.g., Bracher et al., 1999). Dinoflagellates 880 
were identified at every station except 38.1°S and were most abundant in the STZ and PFZ. At 881 
all but three stations, small (~15 μm) dinoflagellates were the most abundant group, although the 882 
larger Protoperidinium dinoflagellate species (mainly heterotrophic; Jeong & Latz, 1994) were 883 
almost as abundant in the PFZ and at 54.0°S. Microzooplankton (i.e., ciliates, 20-200 µm) were 884 
most abundant in the STZ, and were also present in the PFZ at 46.1°S (3 cells mL⁻¹) and 48.9°S 885 
(3 cells mL⁻¹) and in the OAZ at 50.0°S (1 cells mL⁻¹) and 54.0°S (4 cells mL⁻¹). All other 886 
stations were characterized by negligible (<1 cells mL⁻¹) microzooplankton abundances. 887 

Nano- and picoeukaryotes, Synechococcus, and heterotrophic bacteria (collectively, “small 888 
cells”) were roughly 103-times more abundant than the microplankton (Fig. 6b). Notwithstanding 889 
a lack of data from the STZ, the highest small cell abundances occurred in the SAZ near the SAF. 890 
Across the transect, picoeukaryotes were generally more abundant than all other phytoplankton 891 
groups (average picoeukaryote contribution to total small cells of 12-54%; nanoeukaryotes of 7-892 
39%; Synechococcus of 15-42%). A similar trend has been observed for the Southern Ocean in 893 
spring (Detmer & Bathmann, 1997) and late summer (Fiala et al., 1998), in contrast to mid-894 
summer observations showing nanoplankton dominance (e.g., Ishikawa et al., 2002; Weber & 895 
El-Sayed, 1987). Additionally, picoeukaryotes were two- to three orders of magnitude more 896 
abundant in the SAZ and PFZ than in the OAZ. Nanoeukaryotes dominated near the PF at 50.0°S 897 
(39%) and in the southern OAZ at 55.5°S (36%), while Synechococcus dominated at 42.7°S and 898 
54.0°S (42% and 33%, respectively). In general, nanoeukaryote abundance was higher in the 899 
SAZ than in the PFZ and OAZ, as was that of Synechococcus.  900 

The contribution of heterotrophic bacteria to total small cells varied considerably (10-62%), 901 
reaching a maximum south of the PF at 53.0°S and 57.8°S (62% and 50%), and with higher 902 
abundances in the SAZ than in the PFZ and OAZ (Fig. 7). Additionally, heterotrophic bacterial 903 
abundances were ten-fold lower to two-fold higher than the total pico- and nanophytoplankton 904 
cell counts. Detrital particles were most abundant near the southern edge of the SAF, and were 905 
generally more abundant in the PFZ than in the SAZ and OAZ (Fig. S5). 906 

4.6 2018/19 cruises: ammonium concentrations 907 

In early summer, surface NH₄⁺ concentrations were uniformly low across the transect (average 908 
of 0.11 ± 0.09 µM; Fig. 8a). South of the SAF, NH₄⁺ increased to an average concentration of 909 
0.81 ± 0.92 µM by late summer (Fig. 8b). By winter 2019, the NH₄⁺ concentrations south of the 910 
SAF were ~40% lower than they had been in late summer (Fig. 8c), and were similar to those 911 
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observed in winter 2017 (0.50 ± 0.30 µM and 0.52 ± 0.11 µM, respectively), confirming that our 957 
2017 observations are generally representative of the wintertime Southern Ocean. By early 958 
spring, the NH₄⁺ concentrations south of the SAF had declined to near or below detection (0.09 959 
± 0.08 µM; Fig. 8d) before rising again by late spring to an average value only slightly lower 960 
than that measured in winter (0.40 ± 0.74 µM; Fig. 8e). However, the late-spring NH₄⁺ 961 
concentrations were only elevated in the PFZ (range of 0.11 ± 0.01 to 4.39 ± 0.03 µM, average 962 
of 0.77 ± 1.11 µM), as has been observed previously (Bathmann et al., 1997). Excluding the PFZ 963 
data yields a far lower late-spring average of 0.17 ± 0.11 µM south of the SAF, which we take 964 
as more broadly representative of this season. 965 

4.7 Mixed-layer NH₄⁺ residence time and NH₄⁺ production rate estimates 966 

The NH₄⁺residence time in winter 2017 south of the SAF, computed using Eqn 5, ranged from 10 to 967 
38 days (median of 21 days). These values were estimated using wintertime measurements only 968 
and as such, may not be representative of the transition from summer to winter. To refine our 969 
estimates, we use the average ρNH₄⁺ and NH₄⁺ concentration measured south of the SAF in late 970 
summer (50.6 ± 24.0 nM day-1 and 0.81 ± 0.92 µM, respectively; Deary, 2020), which yields an 971 
NH₄⁺residence time of 2 to 27 days (median of 5 days). 972 

The NH₄⁺production rate, calculated using Eqn 8 and an [NH₄⁺]decline of 330 nM (i.e., 810 nM – 480 973 
nM), t of 141 days, and NH₄⁺removal rate of 50.6 ± 24.0 nM day-1 (here, the average late-summer 974 
ρNH₄⁺ south of the SAF is used to approximate NH₄⁺removal rate), was 52.9 ± 25.0 nM day-1. If we 975 
instead use the average NH₄⁺removal rate and NH₄⁺ concentration measured in winter 2017 (21.4 ± 976 
0.6 nM day-1 and 520 ± 110 nM), the NH₄⁺production rate was 23.4 ± 6.6 nM day-1. Using the range 977 
of NH₄⁺removal rate values and the average ambient NH₄⁺ concentration measured south of the SAF 978 
in winter 2017 (16.7 to 31.2 nM day-1 and 520 nM) and late summer 2019 (22.6 to 98.6 nM day-979 
1 and 810 nM), we calculate that over the late-summer-to-winter transition, the NH₄⁺production rate 980 
ranged from 18.8 to 100.9 nM day-1. 981 

5. Discussion 982 
 983 
5.1 Drivers of NH₄⁺ cycling in the surface layer of the Southern Ocean 984 

Previous work has suggested that NH₄⁺ accumulates in the Southern Ocean mixed layer following 985 
the late summer increase in heterotrophy, then decreases into autumn as heterotrophic activity 986 
subsides, to be depleted by winter due to advective processes and biological removal (Koike et 987 
al., 1986; Serebrennikova & Fanning, 2004). However, our data show that NH₄⁺ concentrations 988 
are elevated in the mixed layer in winter, particularly south of the SAF (Fig. 2). Similarly elevated 989 
winter surface-layer NH₄⁺ has been observed previously in both the Atlantic and Indian sectors, 990 
with concentrations typically increasing towards the south (Philibert et al., 2015; Mdutyana et 991 
al., 2020; Bianchi et al., 1997). Numerous overlapping processes are likely involved in setting 992 
the ambient NH₄⁺ concentrations, as summarized in Fig. 9. In this study, we directly measured 993 
the rates of NH₄⁺ uptake and oxidation, and estimated the rates of NH₄⁺ production, along with 994 
qualitatively evaluating heterotrophy from the relative abundance of heterotrophic bacteria, 995 
phytoplankton, and detritus. For the NH₄⁺ cycle processes shown in Fig. 9 that are not quantified 996 
or inferred from our dataset, we consider their potential role in Southern Ocean NH₄⁺ cycling 997 
based on findings reported in the literature. 998 
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The high NH₄⁺ concentrations observed south of the SAF in winter may result from net NH₄⁺ 1026 
accumulation during late summer, autumn, and/or winter. The persistence of elevated NH₄⁺ 1027 
concentrations that are near-homogeneously distributed throughout the mixed layer is consistent 1028 
with a residence time for the winter NH₄⁺ reservoir in excess of the time-scale for upper-ocean 1029 
mixing. Indeed, we calculate a median residence time of 21 days south of the SAF, compared to 1030 
2 days north of the SAF. One implication of the long residence time computed for the polar zones 1031 
is that the wintertime NH₄⁺ pool likely reflects both ongoing processes and those that occurred 1032 
earlier in the year. We posit that the elevated NH₄⁺ concentrations south of the SAF may result 1033 
from higher wintertime rates of NH₄⁺ production than removal and/or from the gradual but 1034 
incomplete depletion in winter of NH₄⁺ produced mainly in late summer and autumn. We evaluate 1035 
both possibilities throughout the discussion below. 1036 

5.1.1 Ammonium removal 1037 

Ammonium assimilation – Microbial growth is limited in the winter Southern Ocean (Arrigo et 1038 
al., 2008; Smith Jr et al., 2000, Takao et al., 2012), resulting in low cell abundances and nutrient 1039 
uptake rates (Church et al., 2003; Iida & Odate, 2014; Mdutyana et al., 2020). However, while 1040 
the concentrations of chl-a and rates of NPP were low across our transect, they were not 1041 
negligible (Fig. 3a and 5a), consistent with previous reports for this season (Mordy et al., 1995; 1042 
Pomeroy & Wiebe, 2001). Southern Ocean phytoplankton are adapted to survive suboptimal 1043 
conditions; for example, numerous species achieve their maximum growth rates at temperatures 1044 
that are considerably lower than the optimal growth temperatures of temperate and tropical 1045 
species (2-9 °C versus 10-30 °C and 15-35 °C, respectively), with sharp declines in growth rates 1046 
observed at temperatures outside this range (Boyd et al., 2013; Coello-Camba & Agusti, 2017; 1047 
Fiala & Oriol, 1990). In addition, ice-free Southern Ocean waters typically extend to <60°S in 1048 
the eastern Atlantic and western Indian sectors in winter, so that even though irradiance levels 1049 
may not be optimal for phytoplankton growth, there is always some light available for 1050 
photosynthesis. The hostile wintertime conditions of the open Southern Ocean do not, therefore, 1051 
prevent ecosystem functioning, although the microbial dynamics and associated biogeochemical 1052 
processes differ from those occurring in summer (Smart et al., 2015; Mdutyana et al., 2020).  1053 

We measured fairly low surface NH₄⁺ uptake rates (3.0-13.2 nM day⁻¹; Fig. 5b) compared to 1054 
previous wintertime observations (ranging from 32-66 nM day⁻¹; Cota et al., 1992; Mdutyana et 1055 
al., 2020; Philibert et al., 2015). Such low rates, if generally representative of winter, would limit 1056 
mixed-layer NH₄⁺ drawdown, especially south of the PF where ρNH₄⁺ was particularly low. 1057 
Recycled N (NH₄⁺ + urea) nonetheless accounted for most of the N assimilated during winter, 1058 
including in the AZ (Fig. 5b).  1059 

The available 𝛿15N-PON data suggest that the preferential reliance of phytoplankton on recycled 1060 
N may have persisted from the late summer. In theory, PON generated in early- through mid-1061 
summer from the assimilation of upwelled NO₃⁻ (𝛿15N-NO₃⁻ of 5.2‰ in the AZ and 6.2‰ in the 1062 
SAZ; Smart et al., 2015; Fripiat et al., 2019; 2021) will have a 𝛿15N of ~0‰ in the AZ and 1-2‰ 1063 
in the SAZ given the isotope effect of NO₃⁻ assimilation and the degree of seasonal NO₃⁻ 1064 
drawdown (Sigman et al., 1999; Granger et al., 2004; 2010). Such 𝛿15N-PON values have indeed 1065 
been measured in the early- and mid-summer Southern Ocean (Lourey et al., 2003; Smart et al., 1066 
2020; Soares et al., 2015). By late summer, δ15N-PON has been observed to decline to between 1067 
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-5 and -1‰, with the lowest values occurring in the AZ (Lourey et al., 2003; Smart et al., 2020; 1099 
Trull et al., 2008). Since the 𝛿15N of recycled N is expected to be low (<0‰; Checkley & Miller, 1100 
1989, Macko et al., 1986), the early-to-late summer decline in 𝛿15N-PON implicates a switch 1101 
from dominantly NO₃⁻- to dominantly recycled N-supported phytoplankton growth (Lourey et 1102 
al., 2003). For the SAZ, the subsequent late summer-to-winter rise in 𝛿15N-PON (i.e., from ~ -1103 
1‰ to 1-2.5‰; Fig. 4) has previously been attributed to PON decomposition by heterotrophic 1104 
bacteria (Smart et al., 2020), during which 14N-NH₄⁺ is preferentially remineralized, leaving the 1105 
remaining PON enriched in 15N (Möbius, 2013). That NH₄⁺ concentrations are not elevated in 1106 
the SAZ mixed layer in winter (Fig. 2b) indicates that the remineralized NH₄⁺ is rapidly re-1107 
assimilated by phytoplankton and/or oxidized to NO2- in this zone. In the AZ, the much lower 1108 
𝛿15N-PON of -3 to -1‰ that we observe in winter surface waters requires the sustained 1109 
assimilation of low-𝛿15N N (i.e., recycled N) to offset a remineralization-driven 𝛿15N rise akin to 1110 
that of the SAZ. We conclude that Southern Ocean phytoplankton preferentially consume 1111 
regenerated N from late summer until at least July (albeit at low rates in winter), particularly 1112 
south of the PF.  1113 

The fact that NH₄⁺ accumulated in the winter mixed layer despite being the preferred 1114 
phytoplankton N source in late summer through winter implies that low rates of NH₄⁺ uptake 1115 
contributed to its accumulation. Multiple factors may cause low rates of photoautotrophic NH₄⁺ 1116 
assimilation, including deplete NH₄⁺ and micronutrient concentrations, light limitation, and low 1117 
temperatures. North of the SAF, NH₄⁺ concentrations below detection likely limited ρNH₄⁺, as 1118 
evidenced by the fact that in a series of experiments conducted on the same cruise, ρNH₄⁺ 1119 
increased with the addition of NH₄⁺ at these stations (Mdutyana, 2021). By contrast, south of the 1120 
SAF, NH₄⁺ concentrations were similar to or higher than the half-saturation constant (Km) derived 1121 
for NH₄⁺ uptake in the winter Southern Ocean (0.2 to 0.4 µM; Mdutyana, 2021), suggesting that 1122 
something other than NH₄⁺ availability was limiting to phytoplankton at these latitudes.  1123 

Iron is not directly involved in NH₄⁺ assimilation but is required for electron transport during 1124 
photosynthesis and respiration (Raven, 1988). While iron limitation is widespread across the 1125 
Southern Ocean (Janssen et al., 2020; Pausch et al., 2019; Viljoen et al., 2019), iron availability 1126 
appears to be higher in winter than during other seasons (Mtshali et al., 2019; Tagliabue et al., 1127 
2014) due to enhanced mixing, storms, and increased aeolian deposition (Coale et al., 2005; 1128 
Honjo et al., 2000; Sedwick et al., 2008). The fact that ρNO₃⁻ and ρNH₄⁺ were generally similar 1129 
across the transect (Fig. 5b) argues against a dominant role for iron in controlling ρNH₄⁺ since 1130 
NO₃⁻ assimilation has a far higher iron requirement than NH₄⁺ assimilation (Morel et al., 1991).  1131 

In contrast to NH₄⁺ and iron availability, light limitation is exacerbated in winter due to low 1132 
insolation, increased cloud-cover, and mixed layers that can be hundreds of meters deeper than 1133 
the euphotic zone (Buongiorno Nardelli et al., 2017; Sallée et al., 2010). Light is thus often 1134 
considered the dominant constraint on Southern Ocean primary productivity in this season 1135 
(Thomalla et al., 2011; Llort et al., 2019; Wadley et al., 2014). However, since NH₄⁺ assimilation 1136 
by phytoplankton is fairly energetically inexpensive (Dortch, 1990), it should occur even under 1137 
low light conditions (recognizing that light remains critical for coincident CO₂ fixation). 1138 
Heterotrophic bacteria can also consume NH₄⁺ (Kirchman, 1994), including in the dark, as they 1139 
derive energy from organic carbon oxidation rather than light. At an ecosystem level, therefore, 1140 
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NH₄⁺ assimilation may not be primarily limited by light, although this parameter clearly strongly 1160 
controls the rate and distribution of NPP (Fig. 5a). 1161 

Previous observations suggest that temperature can influence NH₄⁺ uptake, especially in winter 1162 
(Glibert, 1982; Reay et al., 2001). The negative effect of temperature appears to be enhanced 1163 
under high-nutrient and low-light conditions, at least in the case of phytoplankton growth rates 1164 
(Baird et al., 2001). Experiments conducted coincident with our sampling showed that the 1165 
maximum rate of NH₄⁺ uptake (Vmax) achievable by the in situ community was strongly 1166 
negatively correlated with temperature and latitude (Mdutyana, 2021), with the latter parameter 1167 
representing the combined role of light, temperature, and possibly iron, the average concentration 1168 
of which appears to increase from the SAZ to the AZ (Tagliabue et al., 2012). We conclude that 1169 
these three drivers, along with NH₄⁺ availability north of the SAF, may all play a role in 1170 
controlling photoautotrophic NH₄⁺ assimilation in the winter Southern Ocean, with complex 1171 
interactions among them that are difficult to disentangle.  1172 

In addition to physical and chemical limitations, microbial preference for other N species may 1173 
impact NH₄⁺ depletion. For example, the preferential uptake of urea and/or other dissolved 1174 
organic N (DON) species by some organisms (e.g., picoeukaryotes, cyano- or heterotrophic 1175 
bacteria) could cause a net decrease in the total NH₄⁺ uptake rates. While urea has been shown to 1176 
constitute a large fraction of the total N assimilated by Southern Ocean phytoplankton in summer 1177 
and autumn (albeit mainly in the SAZ; Joubert et al., 2011; Thomalla et al., 2011), we measured 1178 
fairly low ρUrea (Fig. 5b), which is perhaps unsurprising given the low ambient urea 1179 
concentrations (Table 1). The exceptions were stations 37°S and 43.0°S where ρUrea was higher 1180 
than ρNH₄⁺, coincident with very low ambient NH₄⁺ (0.10 µM and below detection) and relatively 1181 
high urea concentrations (0.36 µM and 0.15 µM).  1182 

Community composition can also alter the N uptake regime. Small phytoplankton, such as the 1183 
numerically-dominant nano- and picoeukaryotes, are more likely to consume NH₄⁺ and urea than 1184 
NO3- (Koike et al., 1986; Lee et al., 2012; 2013), especially under conditions of severe iron and 1185 
light limitation (Sunda & Huntsman, 1997). Across our transect, reduced N (i.e., NH₄⁺ + urea) 1186 
uptake exceeded NO3- uptake for both the total phytoplankton community (transect average of 1187 
12.0 ± 0.9 nM day⁻¹ for reduced N versus 5.8 ± 1.0 nM day⁻¹ for NO3-; f-ratio of 0.36) and the 1188 
pico size fraction (5.0 ± 1.2 nM day⁻¹ versus 1.9 ± 1.2 nM day⁻¹; f-ratio of 0.27; Fig. 5b). That 1189 
said, the NO₃⁻ uptake rates were not negligible, including in the pico size fraction. In the PFZ 1190 
and AZ, NO₃⁻ uptake by the picoplankton was far more strongly correlated with the abundance 1191 
of picoeukaryotes than Synechococcus (r = 0.75 and 0.03, respectively), consistent with 1192 
observations of dominant reliance on NO₃⁻ by picoeukaryotes and NH₄⁺ by Synechococcus in 1193 
other ocean regions (Fawcett et al., 2011; 2014; Painter et al., 2014). Additionally, 1194 
Synechococcus abundance was strongly correlated with NH₄⁺ concentration south of the SAF (r 1195 
= 0.65). In the nano+ size class, NO3- uptake was likely driven in the SAZ by dinoflagellates and 1196 
nanoeukaryotes, and in the PFZ and AZ by diatoms, which remain active in these zones in winter 1197 
(Weir et al., 2020). By contrast, nanoeukaryotes, which have a higher per-cell nutrient 1198 
requirement than the equally-abundant picoeukaryotes, may have dominated NH₄⁺ uptake in the 1199 
PFZ and AZ given that higher nanoeukaryote abundances corresponded with lower NH₄⁺ 1200 
concentrations at a number of stations (e.g., stations 50.0°S, 51.1°S, and 55.5°S; Fig. 6b). 1201 
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The low abundances of diatoms and dinoflagellates and absence of coccolithophores across our 1244 
transect (Fig. 6a) is expected given the limitations imposed on nutrient uptake and CO2 fixation 1245 
by winter Southern Ocean conditions. The lower surface area-to-volume ratio of large cells 1246 
means that they rapidly experience diffusion-limitation of NH₄⁺ and micronutrient uptake and are 1247 
more susceptible to light limitation (Finkel et al., 2004), resulting in their being outcompeted by 1248 
smaller species for essential resources (Franck et al., 2005; Cavender-Bares et al., 1999). The 1249 
near-absence of centric diatoms is also best explained thus, particularly given their low surface 1250 
area-to-volume ratio compared to the more-abundant pennate species (Kobayashi & Takahashi, 1251 
2002) that are more likely to consume NH₄⁺ (Semeneh et al., 1998). Diatom success in winter 1252 
may also be limited by enhanced mixing, as this group generally prefers stratified waters 1253 
(Kopczynska et al., 2007). 1254 

In sum, NH₄⁺ uptake rates were low across our transect but not negligible, indicating that 1255 
phytoplankton activity in winter, which is dominated by smaller species, is a sink for NH4+. The 1256 
hostile conditions of the winter Southern Ocean imposed limitations on NH₄⁺ uptake that varied 1257 
with latitude, with NH₄⁺ concentrations controlling ρNH₄⁺ north of the SAF, while light and 1258 
temperature were important south of the SAF. Additionally, Synechococcus, nanoeukaryotes, and 1259 
pennate diatoms likely dominated NH₄⁺ assimilation, consistent with previous observations from 1260 
the Southern Ocean and elsewhere (Klawonn et al., 2019; Semeneh et al., 1998).  1261 

Ammonium oxidation – Nitrification removes more mixed-layer NH₄⁺ in winter than 1262 
phytoplankton assimilation south of the PF, with NH₄⁺ oxidation rates that were two- to five-1263 
times the co-occurring NH₄⁺ uptake rates (Fig. 5c). The comparative success of ammonia 1264 
oxidisers may be due to decreased competition with phytoplankton for NH₄⁺, augmented by 1265 
decreased photoinhibition (Wan et al., 2018; Lu et al., 2020), elevated NH₄⁺ availability (Baer et 1266 
al., 2014; Mdutyana et al., 2020; Mdutyana, 2021), and the minimal effect of temperature on 1267 
NH₄⁺ oxidation (Bianchi et al., 1997; Baer et al., 2014; Horak et al., 2013; Mdutyana 2021). One 1268 
implication of the dominance of NH₄⁺ oxidation in winter is that in addition to the limitations on 1269 
photoautotrophic NH₄⁺ assimilation discussed above, low phytoplankton success in the AZ may 1270 
result from nitrifiers outcompeting phytoplankton for scarce resources (e.g., trace elements 1271 
required for enzyme functioning, such as iron and copper; Amin et al., 2013; Maldonado et al., 1272 
2006; Shafiee et al., 2019) under conditions of low incident light and enhanced mixing.  1273 

The Km derived for NH₄⁺ oxidation in the winter Southern Ocean has recently been reported to 1274 
be low (0.03 to 0.14 µM), with ammonia oxidizers observed to become saturated at ambient NH₄⁺ 1275 
concentrations of ~0.1-0.2 µM (Mdutyana, 2021). This means that south of the SAF in winter 1276 
2017, ammonia oxidizers were not substrate limited (as implied by the lack of correlation 1277 
between NH₄⁺ox and NH₄⁺ concentration; Table S1), which raises the question of why NH₄⁺ 1278 
oxidation did not occur at higher rates. The answer may indirectly involve temperature, in that 1279 
psychrophilic organisms can be less responsive to high substrate concentrations at low 1280 
temperatures (Baer et al., 2014). Another possibility is that NH₄⁺ oxidation was iron-limited 1281 
(Shiozaki et al., 2016; Shafiee et al., 2019; Mdutyana, 2021). In any case, ammonia oxidisers 1282 
were moderately successful across the surface Southern Ocean in winter, with low light, reduced 1283 
competition with phytoplankton, and substrate repletion likely explaining the elevated NH₄⁺ 1284 
oxidation rates south of the PF compared to the stations to the north.  1285 
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5.1.2 Ammonium production and other sources of ammonium 1349 

NH₄⁺ production must have been sustained during the winter to maintain a mixed-layer NH₄⁺ 1350 
pool south of the SAF that was high in concentration relative to the early summer. Indeed, the 1351 
residence time estimated for NH₄⁺ in winter (10 to 38 days) is considerably shorter than the 1352 
transition from late summer to winter (approximately three months), indicating that heterotrophic 1353 
NH₄⁺ production, which would have occurred coincident with NH₄⁺ consumption, must have 1354 
been ongoing in winter. We estimate the rate of this wintertime NH₄⁺ production to be 23.4 ± 6.6 1355 
nM day-1.   1356 

Heterotrophic activity by bacteria – Heterotrophic bacteria contribute significantly to NH₄⁺ 1357 
production in the Southern Ocean (Hewes et al., 1985; Koike et al., 1986; Tréguer & Jacques, 1358 
1992), including in winter (Rembauville et al., 2017). In our dataset, lower ratios of 1359 
photosynthetic-to-heterotrophic cells were observed at stations with higher NH₄⁺ concentrations 1360 
(e.g., stations 48.9°S, 53.0°S, 54.0°S, and 57.8°S; Fig.7a), consistent with a role for the 1361 
heterotrophic bacteria present at the time of sampling in generating the ambient NH₄⁺ pool. The 1362 
potential for ongoing heterotrophic activity can also be inferred from the high detrital particle 1363 
counts along the transect (Fig. 7b). However, since heterotrophic bacteria are likely more active 1364 
in late summer and autumn when the temperature and the supply of labile PON are higher 1365 
(Becquevort et al., 2000; Dennett et al., 2001; Pomeroy & Wiebe, 2001; Smart et al., 2020), we 1366 
expect that the winter NH₄⁺ pool includes NH₄⁺ produced in late summer and autumn. A further 1367 
consideration is assimilation of NH4+ by heterotrophic bacteria, reported to occur at elevated 1368 
rates in the Southern Ocean mixed layer in winter (Mdutyana et al. 2020; Text S3). If this process 1369 
is a persistent feature of the winter Southern Ocean, it will decrease the net contribution of 1370 
heterotrophic bacteria to NH₄⁺ accumulation. We conclude that it is unlikely that the surface NH₄⁺ 1371 
pool measured in winter derived solely from wintertime bacterial NH₄⁺ production given that yet 1372 
higher NH₄⁺ concentrations have been observed in late summer and autumn (Becquevort et al., 1373 
2000; Dennett et al., 2001), including in the present study (see section 5.2 below). 1374 

Heterotrophic activity by zooplankton – While the microzooplankton enumerated in this study 1375 
occurred at very low abundances, those that were present likely contributed to the NH₄⁺ flux. For 1376 
example, at stations 48.9°S and 54.0°S in the PFZ and AZ, respectively, both the ratios of 1377 
photosynthetic-to-heterotrophic cells and the absolute abundances of heterotrophic bacteria were 1378 
low, while the microzooplankton abundances and NH₄⁺ concentrations were elevated compared 1379 
to nearby stations. The implication of these observations is that elevated microzooplankton 1380 
abundances may help to explain high NH₄⁺ concentrations in waters with low numbers of 1381 
heterotrophic bacteria, although we note that this scenario only occurred at two stations. On 1382 
balance, we posit that microzooplankton are less important for wintertime NH4+ production than 1383 
heterotrophic bacteria given their low abundances in the surface layer (Fig. 6a; Atkinson et al., 1384 
2012). 1385 

Above, we have assumed that NH₄⁺ production is the direct result of heterotrophy. However, 1386 
there are other possible mechanisms of NH₄⁺ supply that should be considered. We briefly 1387 
address some of these processes below, noting that for most, there are very few to no observations 1388 
available from the Southern Ocean. 1389 

Deleted: inputs1492 

Deleted: NH₄⁺ production, although 1493 
Deleted: Although not measured directly in this study,, 1494 
Deleted: be…ave been sustained during the winter to retain1495 ... [28]
Deleted: n1496 
Deleted: is…as high in concentration relative to the early 1497 
summer. With low or no NH₄⁺ production in the autumn and 1498 
winter…1499 ... [29]

Formatted: Not Superscript/ Subscript

Deleted: pool south of the SAF would be depleted …n winter 1500 
(10 to 38 days (median of 21 days) given… is considerably 1501 
shorter than the consumption rate (ρNH₄⁺ +…ransition from 1502 
late summer to winter (approximately three months), 1503 
indicating that heterotrophic NH₄⁺ox) and NH₄⁺ concentration 1504 
measured at each station (Text S2). Heterotrophic 1505 
NH4

+…production, which would have occurred coincident 1506 
with NH₄⁺ consumption, must, therefore, be 1507 ... [30]

Formatted: Font colour: Auto

Deleted:  despite1508 
Formatted: Font colour: Auto

Deleted: limited1509 
Formatted: Font colour: Auto

Deleted: on the order of PON substrate. 20 nM day-11510 

Formatted ... [31]

Deleted: .1511 

Formatted: Font colour: Auto

Deleted: may …ontribute significantly to NH₄⁺ accumulation 1619 
via ammonification of organic N …roduction in the Southern 1620 
Ocean (Hewes et al., 1985; Koike et al., 1986; 1621 
Treguer…réguer & Jacques, 1992), including in winter 1622 
(Rembauville et al., 2017). However, since these bacteria are 1623 
likely more active in late summer and autumn when both 1624 
temperature and the supply of fresh PON are high 1625 
(Becquevort et al., 2000; Dennet et al., 2001), we expect that 1626 
the winter NH₄⁺ pool includes residual NH₄⁺ produced 1627 ... [32]
Formatted: Font colour: Auto

Deleted: to two-fold higher than total pico- and 1618 ... [33]
Formatted: Font colour: Auto

Deleted: heterotrophic-to-1525 
Formatted ... [34]
Deleted: occurred 1526 
Formatted ... [35]
Deleted: ), suggesting … Fig.7a), consistent with a role for 1617 ... [36]
Deleted: also …ncludes residual …H₄⁺ produced in late 1616 ... [37]
Deleted: may be more efficient at lower temperatures than 1615 ... [38]
Deleted: The…hile the microzooplankton enumerated in this 1614 ... [39]
Deleted: In other words,…he implication of these 1613 ... [40]
Deleted: at stations where the abundance of small 1612 ... [41]
Deleted: l abundances… although we note that this scenario 1611 ... [42]
Deleted: the pathways leading to …H₄⁺ production are 1610 ... [43]
Deleted:  of them1609 



 

 19 

DON cycling – NH₄⁺ can be released by heterotrophic bacteria that directly consume DON (e.g., 1628 
urea; Billen, 1983; Tupas & Koike, 1990), and possibly also by ammonia oxidisers that convert 1629 
DON to NH₄⁺ intracellularly, through the equilibration of the intra- and extracellular NH₄⁺ pools 1630 
(Kitzinger et al., 2019). DON can also be converted to NH₄⁺ through photodegradation by UV 1631 
radiation (e.g., Aarnos et al., 2012). Bacterial decomposition of DON (rather than PON) to NH₄⁺ 1632 
is implicit in most estimates of ammonification, however, and cellular NH4+ efflux by ammonia 1633 
oxidisers is likely extremely low given that they require NH4+ to fix CO2. Additionally, the low 1634 
light flux to the surface Southern Ocean in winter means that photodegradation will not yield a 1635 
significant supply of NH₄⁺. Thus, DON conversion to NH₄⁺, through any mechanism, is probably 1636 
negligible.  1637 

External inputs of ammonium – High surface ocean NH₄⁺ concentrations may theoretically derive 1638 
from external inputs of NH₄⁺, such as N2 fixation, NH₄⁺ aerosol deposition, or sea-ice melt. N2 1639 
fixation should be below detection in the winter Southern Ocean due to the cold temperatures, 1640 
low light and iron conditions, and high NO₃⁻ concentrations (Jiang et al., 2018; Knapp et al., 1641 
2012; Kustka et al., 2003). NH₄⁺ aerosols are unlikely to be abundant over regions of the Southern 1642 
Ocean remote from islands and coastal Antarctica, particularly in winter when NH₄⁺ aerosol 1643 
concentrations have been shown to reach a minimum (Legrand et al., 1998; Xu et al., 2019). 1644 
Moreover, the aerosols that are present over the open Southern Ocean will derive mainly from 1645 
surface-ocean NH3 efflux; once re-deposited, this NH₄⁺ does not constitute a new input to surface 1646 
waters (Altieri et al., 2021). Finally, since our sampling took place before the sea-ice reached its 1647 
northernmost extent (Cavalieri & Parkinson, 2008), the dominant process would have been sea-1648 
ice formation rather than sea-ice melt, the latter an occasional source of NH₄⁺ (Kattner et al., 1649 
2004; Zhou et al., 2014). In any case, we observed elevated NH₄⁺ concentrations as far north as 1650 
46ºS, ~1700 km beyond the influence of sea-ice melt.    1651 

5.2 Seasonal cycling of NH₄⁺ in the Southern Ocean mixed layer south of the SAF 1652 

The NH₄⁺ concentration data collected over the 2018/19 annual cycle provide context for 1653 
interpreting our winter 2017 dataset, allowing us to address our hypothesis that NH₄⁺ production 1654 
in late summer and autumn contributes to the elevated NH₄⁺ concentrations measured in winter.  1655 

The very low NH₄⁺ concentrations observed in early summer (Fig. 8a) are consistent with high 1656 
rates of phytoplankton NH₄⁺ assimilation during the spring and early-summer growing period 1657 
(Mdutyana et al., 2020; Savoye et al., 2004; Daly et al., 2001). By late summer, the NH₄⁺ 1658 
concentrations increased (Fig. 8b) due to elevated heterotrophic activity (i.e., bacterial 1659 
decomposition and zooplankton grazing) following the accumulation of algal biomass 1660 
(Mengesha et al., 1998; Le Moigne et al., 2013), coupled with iron- and/or silicate-limitation of 1661 
phytoplankton (Hiscock et al., 2003; Sosik & Olson, 2002) and enhanced grazing pressure 1662 
(Becquevort et al., 2000). Mixed-layer NH4+ remained high between late summer and winter 1663 
(Fig. 8b-c), likely due to sustained heterotrophic NH4+ production in excess of NH4+ removal. 1664 
This notion is supported by estimates of the residence time of NH₄⁺. We calculate that in summer, 1665 
the in situ NH₄⁺ pool would be depleted in 2 to 27 days (median of 5 days) without coincident 1666 
NH4+ production. In addition, the net decline in NH₄⁺ concentration of 0.31 ± 0.97 µM between 1667 
late summer and winter requires an average NH₄⁺ production rate of 52.8 ± 25.0 nM/day given 1668 
the observed NH₄⁺ assimilation rates. This estimate is remarkably similar to the only 1669 
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measurements of NH₄⁺ regeneration available for the Southern Ocean, measured near the 1875 
Antarctic Peninsula in summer (average of 55 nM day-1; Goeyens et al., 1991).  1876 

By early spring, the NH₄⁺ concentrations had declined (Fig. 8d), implicating increased 1877 
photosynthetic activity, and thus nutrient assimilation, following the alleviation of light-1878 
limitation. We suggest that any NH₄⁺ remaining in late winter would have been consumed in 1879 
early spring prior to significant NO3- drawdown because far less energy (i.e., light) is required 1880 
for its assimilation (Dortch, 1990). The high NH₄⁺ concentrations subsequently observed in late 1881 
spring (mainly in the PFZ; Fig. 8e) can be explained by elevated heterotrophic activity in 1882 
response to high levels of regional phytoplankton growth driven by frontal upwelling of limiting 1883 
nutrients (Becquevort et al., 2000; Mayzaud et al., 2002).   1884 

From our six transects of surface NH₄⁺ concentrations across the Southern Ocean, we propose a 1885 
seasonal cycle for mixed-layer NH₄⁺ south of the SAF (Fig. 8f). Our proposal is consistent with 1886 
previous characterizations of the early summer-to-autumn evolution of Southern Ocean NH₄⁺ 1887 
concentrations (i.e., from below detection due to phytoplankton assimilation to elevated due to 1888 
net heterotrophy). However, it contradicts the hypothesis that NH₄⁺ will subsequently decline due 1889 
to persistent but low rates of photosynthesis that yield insufficient biomass to support elevated 1890 
heterotrophy in autumn, thus driving a coincident decrease in photosynthetic and heterotrophic 1891 
activity (Koike et al., 1986; Serebrennikova & Fanning, 2004). Instead, our data evince a gradual 1892 
decline in mixed-layer NH₄⁺ concentrations from late summer through winter. This decline can 1893 
be explained by heterotrophic NH₄⁺ production outpacing NH₄⁺ removal in late summer/autumn, 1894 
with NH₄⁺ regeneration then decreasing during winter to lower rates than the combined rate of 1895 
NH₄⁺ assimilation and oxidation. By late spring, NH₄⁺ reaches concentrations similar to those 1896 
observed in early summer as the improved growing conditions (i.e., elevated light and iron 1897 
availability; Ellwood et al., 2008; Mtshali et al., 2019) allow phytoplankton to rapidly consume 1898 
any NH₄⁺ remaining at the end of winter and subsequently produced in spring. An exception to 1899 
this scenario is elevated, localized NH₄⁺ production near fronts, such as we observed in late spring 1900 
2019, which likely resulted from biological activity supported by frontal upwelling of silicate- 1901 
and iron-bearing Upper Circumpolar Deep Water (Prézelin et al., 2000). 1902 

6. Summary and implications 1903 

Our study of the upper Southern Ocean, focused on the infrequently-sampled winter season, 1904 
provides new insights into the internal cycling of N in the mixed layer of a globally-important 1905 
region. We attribute the elevated NH₄⁺ concentrations that persist in the winter mixed layer south 1906 
of the SAF to sustained heterotrophic NH₄⁺ production in excess of NH₄⁺ removal, driven by 1907 
temperature-, light-, and possibly iron-limitation of phytoplankton and nitrifiers. We further 1908 
suggest that heterotrophic bacteria are the main NH₄⁺ producers in winter and that the 1909 
contribution of external sources to the Southern Ocean’s mixed-layer NH₄⁺ pool is negligible. 1910 
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be due solely to wintertime NH₄⁺ production. Instead, we propose that NH₄⁺ accumulates to its 1913 
highest concentrations in late summer following the peak phytoplankton growing season, after 1914 
which sustained heterotrophy throughout the autumn and winter prevents this NH₄⁺ from being 1915 
fully depleted until the early spring, even though the rate of NH₄⁺ removal must exceed that of 1916 
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NH₄⁺ production over this period. Measurements of heterotrophic NH₄⁺ production rates are 2311 
required to confirm the hypothesized seasonal cycle of NH₄⁺ in the Southern Ocean mixed layer, 2312 
and higher spatial resolution sampling of plankton community composition and N removal rates 2313 
may help to explain local variability in NH₄⁺ concentrations, particularly near the fronts.  2314 

The persistence of elevated NH₄⁺ concentrations across the polar Southern Ocean between late 2315 
summer and winter implies that the mixed layer is a biological source of CO2 to the atmosphere 2316 
for half the year, not only because NO3- drawdown is weak at this time (e.g., Gibson & Trull, 2317 
1999; Gray et al., 2018; Hauck et al., 2015; Mongwe et al., 2018; Shadwick et al., 2015), but also 2318 
because the ambient conditions allow for NH₄⁺ accumulation. There are additional implications 2319 
of our observations. For example, NH₄⁺ concentrations >1 µM (and at times >0.5 µM) have been 2320 
reported to inhibit NO₃⁻ assimilation, including in the Southern Ocean (Cochlan, 1986; Goeyens 2321 
et al., 1995; Philibert et al., 2015; Reay et al., 2001). Inhibition of NO3- assimilation due to the 2322 
seasonal accumulation of NH₄⁺ would constitute an inefficiency in the biological pump. 2323 
However, we observed little evidence of this effect in winter 2017 – the southward decrease in 2324 
ρNO₃⁻ was not stronger than that of ρNH₄⁺ despite the latitudinal increase in NH₄⁺ concentration, 2325 
and we observed no relationship between NH₄⁺ concentration and the proportion of NO₃⁻ to 2326 
NO₃⁻+NH₄⁺ uptake (i.e., the f-ratio; Table S1).  2327 

The implications of NH₄⁺ cycling extend beyond the upper ocean to the atmosphere, since 2328 
ammonium aerosols that influence Earth’s albedo (Tevlin & Murphy, 2019) are formed in the 2329 
marine boundary layer from reactions of NH3 gas with acidic species. In the remote Southern 2330 
Ocean, marine NH₃ emissions, which are the largest natural contributors to NH₃ globally, are 2331 
likely the dominant local source of NH₃ to the atmosphere (Paulot et al., 2015). Surface ocean 2332 
NH4+ concentrations play a central role in determining the sign and magnitude of the air-sea NH3 2333 
flux, along with wind speed, surface ocean temperature, and pH. Therefore, the biogeochemical 2334 
pathways that underpin seasonal changes in surface ocean NH4+ concentrations represent an 2335 
important control on the remote Southern Ocean air-sea NH3 flux, with consequences for aerosol 2336 
composition, cloud formation, and climate (Altieri et al., 2021).  2337 
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Figure and Table Captions 3257 

 3258 

Figure 1: Winter 2017 cruise track overlaid on sea surface temperature (SST) measured by the hull-3259 
mounted thermosalinograph. The underway (Leg S) and CTD (Leg N) stations are indicated by white 3260 
circles. Stations at which net primary production (NPP), nitrogen uptake, and ammonium oxidation 3261 
experiments were conducted are denoted by red squares. The pink triangles indicate stations where only 3262 
NPP experiments were conducted while the green circles show stations where only ammonium oxidation 3263 
was measured. Solid lines indicate the positions of the fronts, identified from measurements of 3264 
temperature and salinity. Abbreviations for fronts: AF – Agulhas Front (~40.2°S); STF – Subtropical 3265 
Front (~42.1°S); SAF – Subantarctic Front (~45.6°S); PF – Polar Front (~49.5°S); SACCF – Southern 3266 
Antarctic Circumpolar Current Front (~56.5°S); SBDY – Southern Boundary (~58.5°S). Abbreviations 3267 
for zones: STZ – Subtropical Zone; SAZ – Subantarctic Zone; PFZ – Polar Frontal Zone; OAZ – Open 3268 
Antarctic Zone; PAZ – Polar Antarctic Zone; WG – Weddell Gyre; MIZ – Marginal Ice Zone. Together, 3269 
the OAZ and PAZ constitute the Antarctic Zone (AZ). See Text S1 for detailed definitions of the fronts 3270 
and zones. Figure produced using the package ggplot2 (Wickham, 2016).  3271 

Table 1: Mean (± 1 SD) of surface ocean POC, PON, chl-a, and nutrient concentrations, cell abundances, 3272 
and nutrient uptake rates measured in each zone of the Southern Ocean in winter 2017. Where no SD is 3273 
given, only one sample was measured. The >0.3 µm and >2.7 µm size fractions are referred to as “bulk” 3274 
and “nano+”, respectively. “% of nano+” refers to the average relative contribution of the nano+ size 3275 
fraction to total chl-a, POC, or PON, calculated for each station within a zone. The f-ratio including ρUrea 3276 
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is only shown for zones where ρUrea was measured at all stations. “ND” indicates no data available. 3282 
Abbreviations as in Figure 1. 3283 

 3284 
 3285 

Table 1

STZ SAZ PFZ OAZ PAZ

NH₄⁺ (µM) 0.08±0.03 0.06±0.01 0.42±0.01 0.52±0.01 0.58±0.01

PO₄³⁻ (µM) 0.44±0.07 0.90±0.06 1.59±0.1 2.00±0.13 1.99±0.09

NO₃⁻  (µM) 3.6±0.2 10.5±0.5 21.5±0.2 26.7±0.4 27.5±0.4

Si(OH)₄ (µM) 2.6±0.1 2.5±1.8 6.6±0.1 40.3±0.5 45.0±0.8

NO₂⁻ (µM) 0.15±0.02 0.13±0.02 0.17±0.02 0.19±0.01 0.21±0.02

Urea (µM) 0.23±0.04 0.11±0.04 0.26±0.08 0.24 0.21±0.03

chl-a (bulk) (µg L⁻¹) 0.65±0.08 0.43±0.05 0.35±0.03 0.25±0.02 0.21±0.00

chl-a (nano+) (µg L⁻¹) 0.50±0.05 0.30±0.04 0.24±0.02 0.18±0.02 0.17±0.02

chl-a (pico) (µg L⁻¹) 0.15±0.1 0.13±0.07 0.11±0.04 0.06±0.03 0.04±0.02

chl-a (% of nano+) 77.5±13.9 73.1±10.9 69.8±8.7 76.7±11.3 80.1±8.5

POC (bulk) (µM) 4.4±6.7 3.4±0.4 3.2±0.3 3.4±0.5 3.5+0.2

POC (nano+) (µM) 2.6±0.5 2.6±0.4 1.9±1.2 1.9±0.4 4.6

PON (bulk) (µM) 0.6±0.2 0.5±0.1 0.4±0.1 0.5±0.1 0.5±0.1

PON (nano+) (µM) 0.3±0.1 0.3±0.1 0.2±0.3 0.2±0.1 0.4±0.0

POC (% of nano+) 79.7±24.6 79.6±19.0 50.9±33.2 77.2±21.8 ND

PON (% of nano+) 69.0±31.9 67.1±17.2 53.8±24.1 67.0±21.9 51.1±24.7

POC:chl-a (g g⁻¹) 103.0±22.1 102.5±14.4 122.5±11 234.1±29.2 219.3±1.0

POC:PON (M/M) 7.81±6.49 6.90±1.25 7.13±0.71 6.72±1.62 5.80±3.75

!¹⁵N-PON 1.4±0.9 1.2±1.0 0.3±0.5 -1.3±0.5 -1.3±0.4

NPP (bulk) (nM day⁻¹) 497.1±42.4 277.5±21.3 289.7±19.2 85.3±26.1 27.7±0.2

NPP (nano+) (nM day⁻¹) 384.7±29.7 178.2±23.4 193.5 49.6±5.0 ND

ρNH₄⁺ (bulk) (nM day⁻¹) 5.7±0.8 8.9±1.1 12.9±0.4 4.8±0.1 3.0±0.8

ρNH₄⁺ (nano+) (nM day⁻¹) 4.0±1.1 4.1±1.2 4.2±4.7 3.1±0.4 ND

ρNO₃⁻ (bulk) (nM day⁻¹) 4.1±0.4 11.5±1.4 5.9±1 3.6±0.4 3.7±1.8

ρNO₃⁻ (nano+) (nM day⁻¹) 3.4±0.3 6.6±0.4 4.3±0.4 2.6±0.8 2.7±1.2

ρUrea (bulk) (nM day⁻¹) 7.5±0.6 6.9±0.3 6.5±1.0 2.1±0.3 0.6±0.01

ρUrea (nano+) (nM day⁻¹) 4.9±0.3 3.8±0.2 4.0±0.6 1.3±0.2 0.7±0.4

f-ratio (bulk) (including ρUrea) 0.21±0.31 0.43±0.11 0.23±0.18 ND 0.51±0.53

f-ratio (bulk) (excluding ρUrea) 0.43±0.32 0.57±0.12 0.31±0.18 0.43±0.16 0.55±0.54

NH₄⁺ox (nM day⁻¹) 9.3±0.5 12.9±0.6 11.1 17.7±0.6 14.3±1.0

Total microplankton (cells mL⁻¹) 13±11 5±3 9±3 6±6 4±2

Centric diatoms (cells mL⁻¹) <1 <1 <1 <1 1±2

Pennate diatoms (cells mL⁻¹) 2±4 <1 2±1 2±3 <1

Dinoflagellates (cells mL⁻¹) 7±6 4±0 6±2 3±2 2±0

Micro-zooplankton (cells mL⁻¹) 4±3 <1 2±2 1±2 <1

Nanoeukaryotes (cells mL⁻¹) ND 2.2±1.4 E+03 1.5±0.7 E+03 1.6±0.7 E+03 1.4E+03

Picoeukaryotes (cells mL⁻¹) ND 4.5±2.9 E+03 4.9±3.7 E+03 1.5±0.5 E+03 8E+02

Synechococcus (cells mL⁻¹) ND 3.8±1.8 E+03 2.3±1.1 E+03 1.4±0.2 E+03 1E+03

 1
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 3287 

Figure 2: Concentrations of dissolved ammonium (NH₄⁺) a) at the surface for Legs S and N and b) with 3288 
depth (0-300 m) for Leg N, and c) concentrations of nitrate (NO₃⁻) at the surface for Legs S and N. Pink 3289 
circles in panel b show the mixed layer depth at the CTD stations. Abbreviations are as in Figure 1. Figure 3290 
produced using the package ggplot2 (Wickham, 2016). 3291 

 3292 

Figure 3: a) Bulk chlorophyll-a (chl-a) concentrations and b) the proportion of chlorophyll-a in the nano+ 3293 
size fraction at the surface for Legs S and N. Abbreviations are as in Figure 1. Figure produced using the 3294 
package ggplot2 (Wickham, 2016). 3295 
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 3296 

Figure 4: Bulk 𝛿15N-PON at the surface for Leg S in winter 2017. Two stations nearest South Africa at 3297 
which biomass concentrations were extremely high have been excluded. Abbreviations are as in Figure 3298 
1. Figure produced using the package ggplot2 (Wickham, 2016). 3299 
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 3302 

Figure 5: Surface rates of a) net primary production (NPP) and rates of b) ammonium (ρNH₄⁺), c) nitrate 3303 
(ρNO₃⁻), and d) urea (ρUrea) uptake by the pico (light colours) and nano+ (dark colours) size fractions, 3304 
with the full length of the bars indicating the bulk rates, and e) NH₄⁺ oxidation. Error bars indicate ±1 3305 
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standard deviation of duplicate experiments. The percentage of total NPP and N uptake attributable to the 3308 
nano+ size fraction is written next to each bar in panels a-d. NPP and NH₄⁺ uptake were not measured for 3309 
the nano+ size fraction at 58.5°S, and urea uptake was not measured at 50.7°S and 55.5°S. Rates were not 3310 
measured at the latitudes where no data are shown. In panels b-e, the surface NH₄⁺ concentration at each 3311 
station is shown by the yellow circles. Leg N stations (at which samples were collected from Niskin bottles 3312 
fired at 10 m) are indicated by black boxes surrounding the latitude. By contrast, samples were collected 3313 
at the Leg S stations (no square surrounding the latitude) from the ship’s underway system (~7 m). Fronts 3314 
are indicated with arrows (labeled in panel e), and abbreviations are as in Figure 1. Figure produced using 3315 
the package ggplot2 (Wickham, 2016). 3316 

 3317 

Figure 6: Surface community composition for a) plankton ≥15 μm (enumerated by microscopy) and b) 3318 
the total community <15 μm (enumerated by flow cytometry). For context, the surface NH₄⁺ concentration 3319 
at each station is shown by the yellow circles. * indicates stations at which no measurements were made 3320 
while the absence of a bar with no * indicates that no cells were detected. Note that the abundances shown 3321 
on panel b (top x-axis) are >2 orders of magnitude greater than those shown in panel a. The 3322 
“microplankton” shown in panel a are included on panel b (slim black bars) to illustrate the difference in 3323 
abundance between the micro- and pico+nano populations. The frontal positions are indicated on panel b, 3324 
with abbreviations as in Figure 1. 3325 
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 3332 

Figure 7: Relative abundances of a) total photosynthetic versus heterotrophic bacteria and b) detritus 3333 
versus heterotrophic bacteria at the surface for Leg S. The surface NH₄⁺ concentration at each station is 3334 
indicated by the yellow dots. The values in maroon text on the right side of panel a are the photosynthetic-3335 
to-heterotrophic cell ratios. The upper x-axis in panel b begins at 75% in order to highlight the (much 3336 
smaller) heterotrophic bacterial contribution to the summed detrital + heterotrophic particles. Frontal 3337 
abbreviations are as in Figure 1. 3338 
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 3344 

Figure 9: Schematic of the possible mixed-layer NH₄⁺ assimilation and production pathways. Bold text 3345 
indicates components of the NH₄⁺ cycle that were directly measured in this study (seawater concentrations 3346 
of NH₄⁺, NO2

-, and urea; phytoplankton, bacterial, and microzooplankton cell abundances), and dotted 3347 
lines indicate processes for which we have direct rate measurements (phytoplankton uptake of NH₄⁺; 3348 
oxidation of NH₄⁺ to NO2

-). Dashed-line boxes represent the atmosphere and sea-ice, with all other 3349 
processes occurring in the ocean. DON – dissolved organic nitrogen; NH3(aq) – aqueous (seawater) 3350 
ammonia; NH4(p) – ammonium aerosols (including ammonium sulphate, ammonium bisulphate, and 3351 
ammonium nitrate); NH3(g) – ammonia gas. 3352 
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Figure 8: Surface concentrations of NH₄⁺ across the eastern 3356 
Atlantic sector of the Southern Ocean measured between 3357 
December 2018 and November 2019. Five unique transects 3358 
(additional to the winter 2017 dataset presented in Fig. 2a) are 3359 
shown: a) early summer 2018, b) late summer 2019, c) winter 3360 
2019, d) early spring 2019, and e) late spring 2019. f) The 3361 
Proposed proposed seasonal cycle of NH₄⁺ concentrations in 3362 
the mixed layer south of the Subantarctic Front. The colour 3363 
gradient in panel f indicates shows the transition period 3364 
between late summer and late winter. Panels a and b cover a 3365 
latitudinal extent of 30-70°S, while panels c-e cover 30-60°S 3366 
due to the presence of sea-ice. Abbreviations are as in Figure 3367 
1, with AZ referring to the combined OAZ and PAZ. Figure 3368 
produced using the package ggplot2 (Wickham, 2016).¶3369 
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