1. **Abstract**

The production and consumption of ammonium (NH$_4^+$) are essential upper-ocean nitrogen cycle pathways, yet in the Southern Ocean where NH$_4^+$ has been observed to accumulate in surface waters, its mixed-layer cycling remains poorly understood. For surface samples collected between Cape Town and the marginal ice zone (MIZ) in winter 2017, we found that NH$_4^+$ concentrations were five-fold higher than is typical for summer, and lower north than south of the Subantarctic Front (SAF; 0.01–0.26 µM versus 0.19–0.70 µM). Our observations confirm that NH$_4^+$ accumulates in the Southern Ocean’s winter mixed layer, particularly in polar waters. NH$_4^+$ uptake rates were highest near the Polar Front (PF; 12.9 ± 0.4 nM day$^{-1}$) and in the Subantarctic Zone (10.0 ± 1.5 nM day$^{-1}$), decreasing towards the MIZ (3.0 ± 0.8 nM day$^{-1}$) despite high ambient NH$_4^+$ concentrations, likely due to low sea surface temperatures and light availability. By contrast, rates of NH$_4^+$ oxidation were higher south than north of the PF (16.0 ± 0.8 versus 11.1 ± 0.5 nM day$^{-1}$), perhaps due to the lower light and higher iron conditions characteristic of polar waters. Augmenting our dataset with NH$_4^+$ concentration measurements spanning the 2018/2019 annual cycle reveals that mixed-layer NH$_4^+$ accumulation south of the SAF likely derives from sustained heterotrophic NH$_4^+$ production in late summer through winter that outpaces NH$_4^+$ consumption by temperature-, light, and iron-limited microorganisms. Our observations thus imply that the Southern Ocean becomes a biological source of CO$_2$ to the atmosphere for half the year not only because nitrate drawdown is weak, but also because the ambient conditions favour net heterotrophy and NH$_4^+$ accumulation.

2. **Introduction**

The Southern Ocean impacts the Earth system through its role in global thermohaline circulation, which drives the exchange of heat and nutrients among ocean basins (Frolicher et al., 2015; Popp et al., 1999; Sarmiento et al., 2004). The Southern Ocean also plays an integral
role in mediating climate, by transferring carbon to the deep ocean via its biological and solubility pumps (Sarmiento & Orr, 1991; Volk & Hoffert, 1985) and through the release of deep-ocean CO$_2$ to the atmosphere during deep-water ventilation (i.e., CO$_2$ leak; Broecker & Peng, 1992; Lauderdale et al., 2013; Sarmiento & Toggweiler, 1984). Upper Southern Ocean circulation is dominated by the eastward-flowing Antarctic Circumpolar Current (ACC) that consists of a series of broad circumpolar bands (“zones”) separated by oceanic fronts. Southern Ocean fronts can drive water mass formation (Ito et al., 2010) and nutrient upwelling that supports elevated biological activity (Longhurst, 1998; Sokolov & Rintoul, 2007).

Concentrations of the essential macronutrients, nitrate (NO$_3^-$) and phosphate (PO$_4^{3-}$), are perennially high in Southern Ocean surface waters, in contrast to most of the global ocean. Consumption of these nutrients, and thus primary productivity in the Southern Ocean, is limited by numerous (often overlapping) factors, including temperature, light, micronutrient concentrations, and grazing pressure (e.g., Boyd et al., 2001; Martin et al., 1990; Reay et al., 2001; Smith Jr & Lancelot, 2004). These limitations vary with Southern Ocean sector (i.e., longitude), zone (i.e., latitude), and season, resulting in spatial and seasonal variations in chlorophyll-a concentrations, primary production, plankton community composition, and nutrient uptake regime (Shadwick et al., 2015; Thomalla et al., 2011; Mengesha et al., 1998; Mdutyana et al., 2020). For example, the Antarctic Zone (AZ; see Text S1 for definitions of zones and fronts), which includes the Open and Polar Antarctic Zones (OAZ and PAZ, respectively), is characterized by sparser phytoplankton populations than the Polar Frontal Zone (PFZ; Mengesha et al., 1998) even though AZ spring blooms generally host higher diatom abundances than the blooms of the Subantarctic Zone (SAZ) and PFZ (Kopezyńska et al., 2007). In addition to the seasonal cycles of temperature and light, Southern Ocean ecosystems are influenced by seasonal changes in nutrient availability. In winter, deep mixing replenishes the nutrients required for phytoplankton growth but the low temperatures and light levels impede biological activity (Rintoul & Trull, 2001). Once the mixed layer shoals in spring and summer, phytoplankton begin to consume the available nutrients until some form of limitation (usually iron; Mtshali et al., 2019; Nelson et al., 2001) sets in. This balance between wintertime nutrient recharge and summertime nutrient drawdown is central to the role of the Southern Ocean in setting atmospheric CO$_2$ (Sarmiento & Toggweiler, 1984).

Iron limitation, which sets in following the spring/early summer bloom, causes phytoplankton to increase their dependence on recycled ammonium (NH$_4^+$; Timmermans et al., 1998), which has a far lower iron requirement than NO$_3^-$ assimilation (Price et al., 1994). The extent to which phytoplankton rely on NO$_3^-$ versus NH$_4^+$ as their primary N source has implications for Southern Ocean CO$_2$ removal since phytoplankton growth fuelled by upwelled NO$_3^-$ (“new production”) must be balanced on an annual basis by the export of sinking organic matter (“export production”; Dugdale & Goering, 1967), which drives CO$_2$ sequestration (i.e., the biological pump; Volk & Hoffert, 1985). By contrast, phytoplankton growth on NH$_4^+$ or other recycled N forms (“regenerated production”) yields no net removal of CO$_2$ to the deep ocean (Dugdale & Goering, 1967; Eppley & Peterson, 1979). To-date, considerable research has focused on NO$_3^-$ cycling in the Southern Ocean mixed layer because of the importance of this nutrient for the biological pump (e.g., DiFiore et al., 2006; Francois et al., 1992; Johnson et al., 2017; Mdutyana et al., 2020; Primeau et al., 2013; Sarmiento & Toggweiler, 1984; Sigman & Boyle, 2000) and global ocean fertility (Sarmiento et al., 2004). By contrast, the active cycling
of regenerated N within the seasonally-varying mixed layer – including the production of NH$_4^+$ and its consumption by phytoplankton uptake and nitrification (the microbial oxidation of NH$_4^+$ to nitrite (NO$_2^-$) and then NO$_3^-$) – remains poorly understood.

NH$_4^+$ is produced in the euphotic zone as a by-product of heterotrophic metabolism (i.e., ammonification; Herbert, 1999) and as a consequence of grazing by zooplankton (Lehette et al., 2012; Steinberg & Saba, 2008), and is removed by phytoplankton uptake (in euphotic waters) and nitrification (mainly in aphotic waters). Heterotrophic bacteria can also directly consume NH$_4^+$ (Kirchman, 1994) and have been hypothesized to do so at significant rates in the Southern Ocean mixed layer in winter (Cochlan, 2008; Mdutyana et al., 2020). NH$_4^+$ assimilation by phytoplankton, in contrast to NO$_3^-$ consumption, requires relatively little energy (Dortch, 1990) such that NH$_4^+$ is usually consumed in the surface ocean as rapidly as it is produced (Glibert, 1982; La Roche, 1983), resulting in very low open-ocean NH$_4^+$ concentrations (<0.2 μM; Paulot et al., 2015). Additionally, NH$_4^+$ is often the preferred N source to phytoplankton communities dominated by smaller species, while larger phytoplankton such as diatoms that invest more energy in nutrient consumption specialize in the assimilation of NO$_3^-$ (e.g., Chisholm, 1992; Fawcett & Ward, 2011). Phytoplankton communities typically shift towards smaller species when iron and/or light are limiting (Pearce et al., 2010; Tagliabue et al., 2014; Deppeler & Davidson, 2017), since a higher cellular surface area-to-volume ratio renders small phytoplankton less vulnerable to diffusion limitation (Hudson & Morel, 1993; Mei et al., 2009) and a larger cell volume limits light absorption efficiency (Finkel et al., 2004; Fujiki & Taguchi, 2002).

In addition to the consequences for small versus large phytoplankton abundance, which has implications for the organic matter sinking flux (i.e., the strength of the biological pump; Allard & Gotschalk, 1988; Richardson & Jackson, 2007) and higher trophic levels (e.g., Venkataramana et al., 2019), determining the dominant N source to phytoplankton provides a means of estimating their potential for CO$_2$ removal, as per the new production paradigm (Dugdale & Goering, 1967). The N isotopic composition ($\delta^{15}N$, in ‰ vs. N$_2$ in air, = (^{15}N/^{14}N$_{sample}$/^{15}N/^{14}N$_{air}$ − 1) x 1000) of particulate organic N (PON) can be used to infer the dominant N source to phytoplankton (Altabet, 1988; Lourey et al., 2003; Fawcett et al., 2011; Van Oostende et al., 2017) since the assimilation of subsurface NO$_3^-$ yields PON that is higher in $\delta^{15}N$ than that fuelled by recycled NH$_4^+$ (the $\delta^{15}N$ of which is inferred from isotopic fractionation associated with its production to be low) (Macko et al. 1986; Silfer et al. 1992; Checkley & Miller, 1989; Sigman et al., 1999). The $\delta^{15}N$ of bulk PON yields an integrated view of the autotrophic N uptake regime (Fawcett et al., 2011; 2014; Lourey et al., 2003), which can be complicated by overlapping processes such as bacterial degradation of organic matter (Möbius, 2013; Smart et al., 2020). By contrast, ^{15}N tracer-derived N uptake rates provide an instantaneous measure of the extent of phytoplankton reliance on new versus regenerated N (Lipschultz, 2008), although these rates can be poorly-suited to extrapolation.

Nitrification was historically considered unimportant in euphotic zone waters due to the evidence for light inhibition of nitrifiers (Hooper & Terry, 1974; Horrigan & Springer, 1990; Olson, 1981; Schön & Engel, 1962) and competition with phytoplankton for NH$_4^+$ (Smith et al., 2014; Ward, 1985; 2005; Zakem et al., 2018). However, this view has been challenged in numerous oceanic regions (Yool et al., 2007) including the Southern Ocean (Smart et al., 2015;
Cavagna et al., 2015; Fripiat et al., 2015), with elevated rates of NH₄⁺ oxidation recently observed throughout the winter mixed layer in all major Southern Ocean zones (Mdutyana et al., 2020). Wintertime upper-ocean NH₄⁺ dynamics thus have implications for annual estimates of carbon export potential, insofar as NO₃⁻ produced by nitrification in the winter mixed layer that is subsequently supplied to spring/summer phytoplankton communities constitutes a regenerated rather than a new source of N on an annual basis (Yool et al., 2007; Mdutyana et al., 2020).

Surface concentrations of NH₄⁺ and other reduced N forms are often near-zero in spring and early/mid-summer in the open Southern Ocean (Daly et al., 2001; Sambrotto & Mace, 2000; Savoye et al., 2004; Henley et al., 2020) as NH₄⁺ is readily consumed by phytoplankton. In late summer, a peak in NH₄⁺ concentration has been observed and attributed to enhanced bacterial and zooplankton activity following elevated phytoplankton growth (Mengesha et al., 1998; Becquevort et al., 2000; Dennett et al., 2001; Sambrotto & Mace, 2000; El-Sayed, 1984). One might expect this high-concentration NH₄⁺ pool to be quickly consumed given the capacity of phytoplankton for rapid NH₄⁺ uptake, leaving the winter mixed layer NH₄⁺-deplete. However, the limited available observations suggest that wintertime surface NH₄⁺ concentrations are high (often >1 µM), particularly south of the Subantarctic Front (SAF) (Bianchi et al., 1997; Philibert et al., 2015; Mdutyana et al., 2020; Henley et al., 2020). If ambient NH₄⁺ is not depleted following the late summer peak in its concentration despite the high rates of NH₄⁺ uptake and oxidation measured in autumn and winter (Bianchi et al., 1997; Thomalla et al., 2011; Philibert et al., 2015; Mdutyana et al., 2020), then NH₄⁺ regeneration must be occurring at an elevated rate, either coincident with NH₄⁺ consumption in winter and/or prior to this in late summer and/or autumn. Under these conditions, the Southern Ocean mixed layer may become net heterotrophic and thus a biological source of CO₂ to the atmosphere.

Here, we focus on NH₄⁺ cycling in the Southern Ocean mixed layer in winter, a season assumed to be largely biologically dormant (Arrigo et al., 2008; Schoaafsma et al., 2018) and for which NH₄⁺ cycle data are scarce. We confirm that NH₄⁺ accumulates throughout the winter mixed layer, particularly south of the SAF, and examine a number of potential causes thereof, including a contribution from the residual late-summer NH₄⁺ pool, sustained NH₄⁺ production in the autumn/winter, and limited NH₄⁺ uptake and/or oxidation in winter. We further consider the possible drivers and implications of each of these scenarios. Finally, using NH₄⁺ concentration data collected over a full annual cycle, we propose a seasonal cycle for the mixed-layer NH₄⁺ pool south of the SAF.

3. Methods

3.1 Cruise track and sample collection

Samples were collected on the southward (S) and northward (N) legs of a winter cruise between Cape Town, South Africa, and the marginal ice zone (MIZ) of the Southern Ocean onboard the R/V SA Agulhas II (VOY25; 28 June to 13 July 2017) (Fig. 1). Leg S, involving only surface underway collections, crossed the Atlantic sector of the Southern Ocean, while leg N bordered the Atlantic and Indian sectors (30°E; WOCE IO6 line) and involved eight conductivity-temperature-depth (CTD) hydrocast stations. Frontal positions were determined
using the ship’s hull-mounted thermosalinograph and supported by temperature, salinity, and oxygen concentration data from CTD measurements made during leg N. The criteria for determining frontal positions included identifying sharp gradients in potential temperature, salinity, potential density, and oxygen concentrations (Belkin & Gordon, 1996; Lutjeharms & Valentine, 1984; Orsi et al., 1995). For leg N, the mixed layer depth (MLD) was determined for each Niskin (up)cast as the depth between 10 m and 400 m at which the Brunt Väisälä Frequency squared, N^2, reached a maximum (Carvalho et al., 2017).

During leg S, samples were collected every four hours from the ship’s underway system (~7 m intake; “underway stations”) while samples on leg N were collected from surface (~10 m) Niskin bottles mounted on the CTD rosette (“CTD stations”). NH$_4^+$ samples were also taken at 13 depths over the upper 500 m at all CTD stations. At all stations (underway + CTD), ~40 mL of unfiltered seawater was collected for the analysis of NH$_4^+$ concentrations in duplicate 50 mL high density polyethylene (HDPE) bottles that had been stored (“aged”) with orthophthalaldehyde (OPA) working reagent. Unfiltered seawater was collected in 50 mL polypropylene centrifuge tubes for the analysis of macronutrients including urea. Immediately following collection, NH$_4^+$ and nutrient samples were stored at -20°C.

Duplicate size-fractionated chlorophyll-a samples were collected by filtering seawater (500 mL) through 25 mm-diameter glass fibre filters with pore sizes of 0.3 μm and 2.7 μm (Sterlitech, GF-75 and Grade D, respectively). Acetone was added to foil-wrapped borosilicate test tubes containing the filters that were then incubated at -20 °C for 24 hours. Additionally, duplicate seawater samples (4 L) were gently vacuum-filtered through combusted 47 mm-diameter, 0.3 μm-pore size GF-75 filters for POC and PON concentrations and δ^{15}N-PON. Filters were stored in combusted foil envelopes at -80°C.

For microscopy, unfiltered seawater samples (250 mL) were collected along leg S in darkened glass bottles and immediately fixed by the addition of 2.5 mL of Lugol’s iodine solution (2% final concentration), then stored at low room temperature away from direct sunlight until analysis. Surface seawater samples (~2 mL) were collected in triplicate microcentrifuge tubes for flow cytometry. These samples were fixed with glutaraldehyde (1% final concentration) and stored at -80°C until analysis (Marie et al., 2005; Vaulot et al., 1989).

Ten incubation experiments were conducted during leg S to measure the rate of net primary production (NPP). NH$_4^+$ and chlorophyll-a samples were collected at the beginning of each experiment as described above. In addition, four NPP experiments were conducted during leg N using seawater collected from Niskin bottles fired at 10 m. In all cases, pre-screened (using 200-μm mesh to remove large grazers) seawater was collected in three 2-L polycarbonate bottles to which NaH13CO$_3$ was added at ~5% of the ambient DIC concentration. Bottles were incubated on the deck for 5 to 6.5 hours in custom-built incubators shaded with neutral-density screens to mimic the 55% light level (typically encountered between 5 and 10 m) and supplied with running surface seawater. Following incubation, each sample was divided (1 L per size fraction) and gently vacuum filtered through 0.3 μm, and 2.7 μm glass fibre filters that were stored in combusted foil at -80°C until analysis.
N uptake (as NO$_3^-$, NH$_4^+$ and urea) and NH$_4^+$ oxidation experiments were conducted at five stations during leg S, with NH$_4^+$ oxidation measured at two additional stations at the ice edge (Fig. 1). On leg N, experiments were also conducted using seawater collected from 10 m at the same four CTD stations as the NPP experiments. In all cases, duplicate polycarbonate bottles were amended with 15N-labeled NO$_3^-$, NH$_4^+$ or urea at ~10% of the ambient N concentration, estimated based on past wintertime measurements (Mdutyana et al., 2020) and, in the case of NH$_4^+$, coincident shipboard analyses. Incubations were carried out as described above for NPP. For NH$_4^+$ oxidation, duplicate black 250 mL HDPE bottles were amended with 0.1 μM 15NH$_4^+$ and 0.1 μM 14NO$_2^-$ (the latter as a “trap” for the 15NO$_2^-$ produced by NH$_4^+$ oxidation given the expected low ambient NO$_2^-$ concentrations (<0.2 μM; Zakem et al., 2018; Fripiat et al., 2019; Mdutyana et al., 2020). NH$_4^+$ oxidation bottles were incubated for 24 hours under the same temperature conditions as the N uptake and NPP experiments. Subsamples (50 mL) were collected from each bottle immediately following the addition of 15NH$_4^+$+14NO$_2^-$ (T_0) and at the end of the experiments (T_f), and frozen at -20°C until analysis.

3.2. Sample processing

3.2.1. Ammonium concentrations

NH$_x$ (NH$_4^+$ + NH$_3$) concentrations were measured shipboard following the fluorometric method of Holmes et al. (1999) and using a Turner Designs Trilogy fluorometer 7500-000 equipped with a UV module. The detection limit, calculated as twice the pooled standard deviation of all standards, was 0.06 μM. NH$_x$ is hereafter referred to as NH$_4^+$ given convention in the oceanographic literature and the dominance of NH$_4^+$ over NH$_3$ at seawater pH. To prevent possible in/efflux of contaminant ammonia (NH$_3$) due to the temperature difference between winter surface waters and the shipboard laboratory, samples were frozen immediately upon collection and OPA working reagent was subsequently added to the frozen samples prior to defrosting them for analysis. Samples were slowly warmed to room temperature in a water bath after OPA addition, incubated in the dark for four hours once defrosted, then analysed in triplicate. Standards and blanks were made daily using Type-1 ultrapure Milli-Q water. Precision was ± 0.03 μM for replicate samples and standards.

3.2.2. Macronutrient concentrations

Following the cruise, duplicate seawater samples were analysed manually for NO$_2^-$ and PO$_4^{3-}$ (Bendschneider & Robinson, 1952; Murphy & Riley, 1962) using a Thermo Scientific Genesys 30 Visible spectrophotometer. Standards and blanks were prepared in Type-1 ultrapure Milli-Q water. Precision was ± 0.05 μM for NO$_2^-$ and ± 0.06 μM for PO$_4^{3-}$, and the detection limit for NO$_2^-$ and PO$_4^{3-}$ was 0.05 μM. NO$_3^-$+NO$_2^-$ and Si(OH)$_4$ concentrations were measured in duplicate using a Lachat QuickChem 8500 Series 2 flow injection autoanalyzer. Aliquots of a certified reference material (JAMSTEC) were measured during each run to ensure measurement accuracy (SD ≤ 2%). The precision of the NO$_3^-$+NO$_2^-$ and Si(OH)$_4$ measurements was ± 0.4 μM and ± 0.2 μM, respectively, and the detection limit was 0.1 μM and 0.2 μM. The NO$_3^-$ concentration was calculated by subtraction (i.e., [NO$_3^-$+NO$_2^-$] – [NO$_2^-$]), with error propagated according to standard statistical practices. Urea-N (hereafter, urea) concentrations were determined according to the room-temperature, single-reagent colorimetric
method (Revilla et al., 2005) using a Thermo Scientific Genesys 30 Visible spectrophotometer; precision was ± 0.04 μM and the detection limit was 0.04 μM.

3.2.3. Chlorophyll-a concentrations

Chlorophyll-a concentrations ([chl-a]) were determined shipboard using the nonacidified fluorometric method (Welschmeyer, 1994). The fluorometer was calibrated with an analytical standard (Anacystis nidulans, Sigma-Aldrich®) prior to and following the cruise. The [chl-a] of the 0.3-2.7 μm size class (picophytoplankton) was calculated by subtracting the measured [chl-a] of the >2.7 μm size class (nanophytoplankton) from the >0.3 μm size class (bulk). We assumed based on previous work (e.g., Hewes et al., 1985, 1990; Weber & El-Sayed, 1987) that the wintertime phytoplankton community would be composed primarily of small cells (i.e., typically <10 μm), such that we did not separate micro- from nanophytoplankton.

3.2.4. Bulk POC, PON and δ¹⁵N-PON

The NPP and N uptake filters were fumed with hydrochloric acid in a desiccator for 24 hours to remove inorganic C, then dried for 24 hours at 40°C and packaged in tin cups. Filters to be measured for δ¹⁵N were dried in the same way as the NPP/N uptake filters, but not acidified. Samples were analysed using a Delta V Plus isotope ratio mass spectrometer (IRMS) coupled to a Flash 260 elemental analyser, with a detection limit of 0.17 μmol C and 0.07 μmol N and precision of ±0.005 At% for C and N. Eight unused pre-combusted filters (blanks) were prepared with each batch run of ~88 samples. POC and PON content was determined from daily standard curves of IRMS area versus known C and N masses. For isotope ratios, sample measurements were standardised to Merck Gel (δ¹⁵N = 7.5‰, δ¹³C = -20.1‰; Merck), Valine (δ¹⁵N = 12.1‰, δ¹³C = -26.8‰; Sigma), Choc (δ¹⁵N = 4.3‰, δ¹³C = -17.8‰), and NH₄Cl (δ¹⁵N = -0.6‰), internal laboratory standards calibrated against IAEA reference materials.

3.2.5. Size-fractionated rates of NPP and N uptake

Carbon and N uptake rates (NPP, ρNH₄⁺, ρNO₃⁻, ρUrea) were calculated according to the equations outlined in Dugdale & Wilkerson (1986) as:

\[
ρM = \frac{[PM] \times (At\%_{\text{meas}} - At\%_{\text{amb}})}{T \times (At\%_{\text{init}} - At\%_{\text{amb}})} \quad (\text{Eqn 1})
\]

\[
At\%_{\text{init}} = \frac{[M] \times At\%_{\text{amb}} + ([M_{\text{tracer}}] \times At\%_{\text{tracer}})}{[M] + [M_{\text{tracer}}]} \quad (\text{Eqn 2})
\]

Here, M is the species of interest (C, NH₄⁺, NO₃⁻, or urea); ρM is the uptake rate of that species (nM day⁻¹); [PM] is the concentration of POC or PON (μM) on the filters; [M] is the ambient concentration of DIC, NH₄⁺, NO₃⁻, or urea at the time of sample collection; [M_{tracer}] is the concentration of NaH¹³CO₃, ¹⁵NH₄⁺, ¹⁵NO₃⁻, or ¹⁵N-urea added to the incubation bottles; and T is the incubation period (days). The PM and ρM of the picoplankton size class was calculated by subtracting the >2.7 μm-filter measurements (i.e., nanoplankton) from the >0.3 μm-filter (i.e., bulk) measurements.
The specific carbon fixation rate \((V_C) \) was calculated as \(\rho_C/\text{POC} \) and the specific uptake rate of total N \((V_{N_{\text{tot}}}) \) was calculated as \(\rho_{N_{\text{tot}}} = \rho_{\text{NH}_4} + \rho_{\text{NO}_3} + \rho_{\text{Urea}} \). The f-ratio (Eppley & Peterson, 1979), used to estimate the fraction of NPP potentially available for export, was then calculated as:

\[
f - \text{ratio} = \frac{V_{\text{NO}_3}}{V_{\text{NO}_3} + V_{\text{NH}_4} + V_{\text{urea}}} \quad (\text{Eqn 3})
\]

No urea uptake experiments were conducted at the underway stations at 50.7ºS and 55.5ºS (both AZ); here, the f-ratio was calculated omitting \(V_{\text{urea}} \). For the other AZ stations at which urea uptake was measured, including \(V_{\text{urea}} \) decreased the fraction of new-to-total production by only 4-8% compared to f-ratio calculations based on \(V_{\text{NO}_3} \) and \(V_{\text{NH}_4} \).

3.2.6. Ammonia oxidation rates

The azide method of McIlvin and Altabet (2005) was used to convert \(\text{NO}_2^- \) deriving from \(\text{NH}_4^+ \) oxidation to \(\text{N}_2 \) gas that was measured using a Delta V Plus IRMS with a custom-built purge-and-trap front end (McIlvin & Casciotti, 2011). This configuration yields a detection limit of 0.2 nmol N with a \(\delta^{15} \text{N} \) precision of ± 0.1‰. The \(\delta^{15} \text{N} \) of \(\text{NO}_2^- \) was derived from \(^{45} \text{N}_2\text{O}/^{44} \text{N}_2\text{O} \) and the rate of \(\text{NH}_4^+ \) oxidation \((\text{NH}_4^+_{\text{ox}} \; \text{nM day}^{-1}) \) was calculated following Peng et al. (2015) as:

\[
\text{NH}_4^+_{\text{ox}} = \frac{\Delta^{^{15}\text{NO}_2^-}}{f_{\text{NH}_4}^{^{15}\text{N}} \times T} \quad (\text{Eqn 4})
\]

Here, \(\Delta^{^{15}\text{NO}_2^-} \) is the change in the concentration of \(^{15}\text{NO}_2^- \) (nM) between the start and end of the incubation, calculated as the difference in the measured \(\delta^{15} \text{N} \) of \(\text{NO}_3^- \) between the \(T_f \) and \(T_0 \) samples, \(f_{\text{NH}_4}^{^{15}\text{N}} \) is the fraction of the \(\text{NH}_4^+ \) substrate labelled with \(^{15} \text{N} \) at the start of the incubation, and \(T \) is the incubation length (days). All \(^{15}\text{NO}_2^- \) produced during the incubations was assumed to derive from \(^{15}\text{NH}_4^+ \) oxidation. The detection limit ranged from 0.02 to 0.11 nM day\(^{-1}\), calculated according to Santoro et al. (2013) and Mdutyana et al. (2020).

3.2.7 Plankton community composition

Microphytoplankton and microzooplankton groups (>5-10 μm) were identified and counted in a subsample (20 mL) from each 250 mL amber bottle using the Utermöhl technique (Utermöhl, 1958) and following the recommendations of Hasle (1978). Plankton groups and individual species were counted and identified using an inverted light microscope (Olympus CKX41) at 200x magnification.

Cells were also enumerated using an LSR II flow cytometer (BD Biosciences) equipped with blue, red, violet, and green lasers. Here, our focus was on enumerating pico- and nanoplankton. Prior to flow cytometric analysis, 1 mL of each sample was incubated with 10 µL of 1% (v/v) SYBR Green-I, which stains DNA, at room temperature in the dark for 10 minutes (Marie et al., 1997). Autofluorescence was detected in the following bandpass filter sets, named for commonly-used fluorochromes: allophycocyanin (APC, 660/20), R-phycoerythrin (PE) (575/25), fluorescein isothiocyanate (FITC) (525/20), PE-cyanine 7 (PE-Cy7) (780/40), PE-
Texas Red (610/20), and Pacific Blue (450/50). Background ‘noise’ was gated out based on the forward and side light scatter values (FSC = 800 and SSC = 200). DNA-containing cells were isolated in each sample based on their detected autofluorescence on the FITC bandpass filter (above a minimal fluorescence threshold of x10^3 RFU). Subsequently, based on their detected autofluorescence on the APC bandpass filter relative to the PE bandpass filter, the isolated DNA-containing cells were grouped into the following populations: Nano- and picoeukaryotes, and Synechococcus. Additionally, small heterotrophic cells were identified as containing DNA but with the lowest detected autofluorescence across all bandpass filters, except the FITC (Marie et al., 1997; Gasol & Del Giorgio, 2000). All particles lacking DNA were considered detritus. For each sample, data acquisition was terminated when a minimum of 5000 and maximum of 10000 events were recorded. The populations of interest were gated using FlowJo 10.3 software (TreeStar, Inc.; www.flowjo.com). Relative cell sizes were determined using 60 µL of SPHERO™ Blank Calibration Particles, 1.8 – 2.2 µm in diameter, added to 1 mL of selected samples to yield a final concentration of ~6x10^5 particles mL^-1. Relative to the 1.8 – 2.2 µm calibration beads, nanoeukaryotes were larger than 2.2 µm, picoeukaryotes and heterotrophic cells were smaller than 1.8 µm, and Synechococcus exhibited a range of sizes around 2 µm, with two distinct subgroups; one of ~2 µm in size and another slightly larger than 2.2 µm (see Fig. S1). Synechococcus was isolated from the nanoeukaryotes by its pigment characteristics – both subgroups of Synechococcus had high PE relative to APC content (Barlow et al., 1985; Marie et al., 1997), whereas nanoeukaryotes had high APC and PE.

Since no direct measurements of NH₄⁺ regeneration (i.e., heterotrophy) were made in this study, potential heterotrophic activity is evaluated from the abundance of heterotrophic cells determined via flow cytometry and the ratio of bulk POC to PON concentrations (POC:PON). The availability of organic matter to heterotrophs is estimated from the abundance of detritus and the ratio of POC-to-chl-a concentrations (POC:chl-a; Holm-Hansen et al., 1989).

The correlations among latitude, N concentrations, inorganic carbon and N uptake rates, and NH₄⁺ oxidation rates were investigated at the 5% significance level using the Pearson correlation coefficient and the R packages, stats (R Core Team, 2020) and corrplot (Wei & Simko, 2017).

4. Results
4.1 Hydrography

Sea surface temperature (SST) decreased from Cape Town (~34°S) to the edge of the MIZ (61.7°S) by ~17 °C (Fig. 1). During leg N, fairly deep MLDs were observed (124-212 m), similar to June and July climatological MLDs compiled from Argo float data for this region (Dong et al., 2008). While the focus of this study is the surface (i.e., upper ~10 m), we describe the hydrography of the mixed layer here to demonstrate that sampling took place under conditions typical of winter, with the deep MLDs evincing ongoing wintertime mixing and associated nutrient recharge. Where not specified, the trends discussed below refer to the surface data only. For each parameter, the average ± 1 standard deviation (SD) calculated for each Southern Ocean zone is reported in Table 1.

4.2 Macronutrient concentrations
The surface and mixed-layer concentrations of NH₄⁺ ranged from below detection to 0.70 µM along legs S and N (Fig. 2a and b). The concentrations were higher in the PFZ, OAZ, and PAZ (0.42 ± 0.01 µM, 0.52 ± 0.01 µM, and 0.58 ± 0.01 µM, respectively) than in the Subtropical Zone (STZ) and SAZ (0.08 ± 0.03 µM and 0.06 ± 0.01 µM, respectively), with a sharp gradient observed in the PFZ just south of the SAF. South of the SAF, high NH₄⁺ concentrations persisted near-homogeneously throughout the mixed layer, ranging from 0.65 ± 0.01 µM at station 58.5°S to 0.27 ± 0.01 µM at station 48.0°S, with concentrations that were below detection north of the SAF (Fig. 2b). Beneath the mixed layer, the NH₄⁺ concentration decreased rapidly at all stations to values below detection by 200 m.

The concentrations of PO₄³⁻ and NO₃⁻ increased southwards from <1 µM and <10 µM in the STZ to >1.5 µM and >20 µM in the PFZ, OAZ, and PAZ (Fig. S2a and 2c), with the sharpest gradients occurring near the SAF. The concentrations of Si(OH)₄ increased rapidly across the PF, from an average of 3.2 ± 1.1 µM between 35.0°S and 48.0°S to 45.6 ± 0.6 µM between 52.1°S and 58.9°S (Fig. S2c). The NO₂⁻ concentrations were consistently low across the transect (0.16 ± 0.02 µM; Fig. S2b), as were the concentrations of urea (0.20 ± 0.04 µM), although slightly lower urea concentrations were observed in the SAZ than in the other zones.

4.3 Chlorophyll-a, POC and PON

The highest bulk (i.e., >0.3 µm) [chl-a] was observed near the South African continental shelf, decreasing across the STF and remaining low thereafter (Fig. 3a), consistent with previous autumn and winter studies (Froneman et al., 1999; Philibert et al., 2015; Scharek et al., 1994). The proportion of chl-a in the >2.7 µm size class (hereafter, “nano+” size class) varied across the region but was >50% at all stations, with higher (>80%) contributions near the fronts and at many OAZ and PAZ stations (Fig. 3b). The nano+ contribution was ≤60% at only five stations (three in the SAZ, two in the OAZ).

The concentrations of bulk POC and PON were highest north of the STF and slightly higher in the OAZ than in the SAZ and PFZ (Fig. S3a and b). The contribution of the nano+ size fraction to POC and PON across the transect was 80.6 ± 31.8% and 69.8 ± 50.3%, respectively (Fig. S3c and d). The ratio of bulk POC:chl-a (weight:weight) was on average low in the STZ, SAZ, and PFZ, and reached a maximum in the OAZ (Fig. 4a). Contrastingly, the ratio of POC:PON (mol:mol) appeared to decrease southwards, although there was no significant difference among zones (p-value > 0.05) (Fig. 4b). The δ¹⁵N-PON also decreased southwards from the STZ and SAZ to the PFZ and OAZ (Fig. 4c). Despite considerable differences among zones, the δ¹⁵N-PON was relatively homogenous within each zone.

4.4 Rates of net primary production, nitrogen uptake, and ammonium oxidation

The surface rates of bulk NPP were high in the STZ, and two- to six-fold higher in the SAZ and PFZ than has been reported previously for the Atlantic sector in winter (Mdutyana et al., 2020; Froneman et al., 1999) (Fig. 5a). By contrast, NPP was low in the OAZ, consistent with previous measurements (Kottmeier & Sullivan, 1987; Mdutyana et al., 2020). The relative contribution of the small size class (0.3-2.7 µm) generally increased southwards, from 14.6% at 37.0°S to 75.6% at 53.5°S, before decreasing to <20.0% at ~55.5°S near the SACCF.
The bulk \(\text{NH}_4^+ \) uptake rates (\(\rho_{\text{NH}_4^+} \)) generally increased southwards from the STZ to the SAZ and PFZ, and then decreased across the OAZ to reach a minimum at the southernmost station (58.5°S; 3.0 ± 0.8 nM day\(^{-1}\)) (Fig. 5b). In the nano+ size fraction, \(\rho_{\text{NH}_4^+} \) changed little latitudinally, although it was slightly lower in the PFZ than in the other zones. The contribution of nanoplanckton to \(\rho_{\text{NH}_4^+} \) ranged from 32.8% in the PFZ to 71.9% in the STZ. The bulk \(\text{NO}_3^- \) uptake rates (\(\rho_{\text{NO}_3^-} \)) were also low in the STZ, while the highest \(\rho_{\text{NO}_3^-} \) was measured in the SAZ before decreasing southwards. \(\rho_{\text{NO}_3^-} \) in the nano+ size class followed the same trend as total community \(\rho_{\text{NO}_3^-} \), with the nanoplancton accounting for 71.5 ± 0.3% of bulk \(\rho_{\text{NO}_3^-} \) on average. The rates of bulk urea uptake (\(\rho_{\text{Urea}} \)) were highest in the STZ, with the SAZ and the PFZ hosting similar rates, and the lowest rates were measured in the OAZ. \(\rho_{\text{Urea}} \) for the nano+ size class followed a similar trend to bulk \(\rho_{\text{Urea}} \), and nanoplankton accounted for 51.8% of \(\rho_{\text{Urea}} \) in the SAZ to 100% in the PAZ. The uptake rates of the different N forms were not significantly correlated with one another or with the ambient N concentrations (Fig. S4).

Surface ammonium oxidation rates (\(\text{NH}_4^+_{\text{ox}} \)) increased southwards, with higher \(\text{NH}_4^+_{\text{ox}} \) in the OAZ and PAZ than in the STZ, SAZ, and PFZ (Fig. 5c). Generally, \(\text{NH}_4^+_{\text{ox}} \) was comparable to previous wintertime measurements from the surface of the open Southern Ocean (Bianchi et al., 1997; Mduytanya et al., 2020), and also similar to summertime rates measured deeper in the mixed layer in the Ross and Scotia Seas (Tolar et al., 2016). \(\text{NH}_4^+_{\text{ox}} \) was not correlated with the ambient \(\text{NH}_4^+ \) concentration (Fig. S4).

4.5 Plankton community composition

The abundance of microplankton, analysed at 16 stations on leg S, was generally low, with the highest cell counts at stations 37.2°S and 41.3°S in the STZ and no cells counted at 38.1°S (STZ) and 55.5°S (OAZ) (Fig. 6a). Total microplankton abundance was on average higher in the STZ than in the SAZ, PFZ, and OAZ. The greatest diversity of microplankton groups was observed at 41.3°S near the AF and at 50.0°S near the PF. The observation of enhanced plankton diversity and abundance near the fronts, particularly the PF, is consistent with previous studies showing higher biomass and variability in phytoplankton communities associated with these features (Hense et al., 2000; Kopczynska et al., 2007; Moore & Abbott, 2000).

Centric diatoms (including *Planktoniella*, *Coscinodiscus*, and *Thalassiosira* species) were detected only at 58.9°S (3 cells mL\(^{-1}\)), the southernmost station. Pennate diatoms (including *Pseudo-nitzschia*, *Pleurosigma*, and *Navicula* species) were more abundant in the STZ, PFZ, and OAZ, with negligible abundances observed in the SAZ. Higher pennate diatom abundances occurred near the PF (7 cells mL\(^{-1}\)), as has been observed in summer (e.g., Bracher et al., 1999). Dinoflagellates were identified at every station except 38.1°S and were most abundant in the STZ and PFZ. At all but three stations, small (<15 μm) dinoflagellates were the most abundant group, although the larger *Protoperidinium* dinoflagellate species (mainly heterotrophic; Jeong & Latz, 1994) were almost as abundant in the PFZ and at 54.0°S. The abundance of microzooplankton (ciliates only, 20-200 μm) was highest across the STZ, and microzooplankton were also identified in the PFZ at 46.1°S (3 cells mL\(^{-1}\)) and 48.9°S (3 cells mL\(^{-1}\)) and in the OAZ at 50.0°S (1 cells mL\(^{-1}\)) and 54.0°S (4 cells mL\(^{-1}\)). All other stations were characterized by negligible (<1 cells mL\(^{-1}\)) microzooplankton abundances.
Nano- and picoeukaryotes, Synechococcus, and small heterotrophs (collectively, “small cells”) sampled at 13 stations along leg S were roughly 10^3-times more abundant than the microplankton (Fig. 6b). Notwithstanding a lack of data from the STZ, the highest small cell abundances occurred in the SAZ near the SAF. Across the transect, picoeukaryotes were generally more abundant than all other phytoplankton groups (average picoeukaryote contribution to total small cells of 12-54%; nanoeukaryotes of 7-39%; Synechococcus of 15-42%). A similar trend was observed previously for the Southern Ocean in spring (Detmer & Bathmann, 1997) and late summer (Fiala et al., 1998), in contrast to mid-summer observations showing nanoplankton dominance (e.g., Ishikawa et al., 2002; Weber & El-Sayed, 1987). Additionally, picoeukaryotes were two- to three orders of magnitude more abundant in the SAZ and PFZ than in the OAZ. Nanoeukaryotes dominated small cell abundances near the PF at 50.0°S (39%) and in the southern OAZ at 55.5°S (36%), while Synechococcus dominated at 42.7°S and 54.0°S (42% and 33%, respectively). Nanoeukaryote abundance was higher in the SAZ than in the PFZ and OAZ, as was the abundance of Synechococcus.

The relative contribution of heterotrophs to total small cells varied considerably (10-62%), reaching a maximum south of the PF at 53.0°S and 57.8°S (62% and 50%; Fig. 7a). Heterotroph abundance followed a similar pattern to that of the nanoeukaryotes, with higher abundances in the SAZ than in the PFZ and OAZ. The food source available to heterotrophs, represented by the small detrital particles, was highest near the southern edge of the SAF. More generally, detrital particles were more abundant in the PFZ than in the SAZ and OAZ. The relative contributions of detrital, photosynthetic, and heterotrophic particles are shown in Fig. S5.

5. Discussion

5.1 Drivers of NH₄⁺ cycling in the surface layer of the Southern Ocean

Previous work has suggested that NH₄⁺ accumulates in the Southern Ocean mixed layer following the late summer increase in zooplankton abundance and heterotrophic activity, then decreases into autumn as heterotrophic activity subsides, to be depleted by winter due to advective processes and consumption (Koike et al., 1986; Serebrennikova & Fanning, 2004). However, our data show that NH₄⁺ concentrations are elevated in the Southern Ocean mixed layer in winter, particularly south of the SAF (Fig. 2). Similarly elevated winter surface-layer NH₄⁺ has been observed previously in both the Atlantic and Indian sectors, with concentrations typically increasing towards the south (Philibert et al., 2015; Mdutyana et al., 2020; Bianchi et al., 1997). Numerous overlapping processes are likely involved in setting the ambient NH₄⁺ concentrations, as summarized in Fig. 8. In this study, we directly measured the rates of NH₄⁺ uptake by different size fractions of the winter plankton community, as well as the rates of NH₄⁺ oxidation. We infer the contribution of heterotrophic bacteria and microzooplankton to NH₄⁺ production from cell count data and the abundance of small heterotrophs relative to phytoplankton and detritus. For the NH₄⁺ cycle processes in Fig. 8 that are not quantified or inferred here – microzooplankton grazing, atmospheric NH₄⁺ deposition, NH₃ air-sea exchange, sea-ice melt, and dissolved organic nitrogen (DON) conversion to NH₄⁺ –, we consider their potential role in Southern Ocean NH₄⁺ cycling based on findings reported in the literature.
The high NH₄⁺ concentrations observed in the winter PFZ and AZ (OAZ + PAZ) may result from net NH₄⁺ accumulation during late summer, autumn and/or winter. The persistence of high NH₄⁺ concentrations that are near-homogeneously distributed throughout the mixed layer suggests a residence time for the winter NH₄⁺ reservoir in excess of the time-scale for upper-ocean mixing. One implication of this suggestion is that the wintertime NH₄⁺ pool likely reflects processes that occurred earlier in the season, as well as those that are ongoing. We posit that the elevated NH₄⁺ concentrations in the PFZ and AZ may result from higher wintertime rates of NH₄⁺ production than consumption and/or from the gradual but incomplete depletion in winter of NH₄⁺ produced mainly in late summer and autumn. We evaluate both possibilities throughout the discussion below.

5.1.1 Ammonium consumption

Ammonium uptake – Microbial growth is limited in the winter Southern Ocean (Arrigo et al., 2008; Smith Jr et al., 2000, Takao et al., 2012), resulting in low cell abundances and nutrient uptake rates (Church et al., 2003; Iida & Odate, 2014; Mdu tyana et al., 2020). While the concentrations of chl-a and rates of NPP were low across our transect, they were not negligible (Fig. 3a and 5a), consistent with previous reports for this season (Mordy et al., 1995; Pomeroy & Wiebe, 2001). Southern Ocean phytoplankton are adapted to survive suboptimal conditions; for example, numerous species achieve their maximum growth rates at temperatures that are considerably lower than the optimal growth temperatures of temperate and tropical species (2-9 °C versus 10-30 °C and 15-35 °C, respectively), with sharp declines in growth rates observed for temperatures outside this range (Boyd et al., 2013; Coello-Camba & Agusti, 2017; Fiala & Oriol, 1990). In addition, ice-free Southern Ocean waters typically extend to <60°S in the east Atlantic and west Indian sectors in winter, so that although irradiance levels may not be optimal for phytoplankton growth, there is always some light available for photosynthesis. The hostile conditions of the open winter Southern Ocean do not, therefore, prevent ecosystem functioning (Pomeroy & Wiebe, 2001), although the microbial dynamics and associated biogeochemical processes differ from those occurring in summer (Smart et al., 2015; Mdu tyana et al., 2020).

We measured fairly low NH₄⁺ uptake rates in surface waters (3.0-13.2 nM day⁻¹; Fig. 5b) compared to previous wintertime observations (ranging from 32-66 nM day⁻¹; Cota et al., 1992; Mdu tyana et al., 2020; Philibert et al., 2015). Such low rates, if generally representative of winter, would limit mixed-layer NH₄⁺ drawdown, especially south of the PF where ρNH₄⁺ was particularly low. Recycled N (NH₄⁺ + urea) nonetheless accounted for most of the N consumed, including in the AZ (Fig. 5b).

The δ¹⁵N-PON data (Fig. 4c) suggest that this elevated reliance on recycled N persisted from the late summer. In theory, PON generated in early- through mid-summer from the consumption of upwelled NO₃⁻ (δ¹⁵N-NO₃⁻ of 5.2‰ in the AZ and 6.2‰ in the SAZ; Smart et al., 2015; Fripiat et al., 2019) will have a δ¹⁵N of ~0‰ in the AZ and 1-2‰ in the SAZ given the isotope effect of NO₃⁻ assimilation and the degree of seasonal NO₃⁻ drawdown (Sigman et al., 1999; Granger et al., 2004; 2010). Such δ¹⁵N-PON values have indeed been observed in early- and mid-summer (Lourey et al. 2003; Smart et al. 2020; Soares et al., 2015). By late summer, δ¹⁵N-PON declines to -5 to -1‰, with the lowest values occurring in the AZ (Lourey et al. 2003; Smart et al. 2020; Trull et al., 2008). Since the δ¹⁵N of recycled N is expected to be
low (<0‰; Checkley & Miller, 1989, Macko et al., 1986), the early-to-late summer decline in 15N-PON implicates a switch from dominantly NO_3^- to dominantly recycled N-supported phytoplankton growth (Lourey et al., 2003). For the SAZ, the subsequent late summer-to-winter rise in 15N-PON (i.e., from ~ -1‰ to 1-2.5‰; Fig. 4c) has previously been attributed to PON decomposition by heterotrophic bacteria (Smart et al., 2020), during which 14N-NH_4^+ is preferentially remineralized, leaving the remaining PON enriched in 15N (Möbius, 2013). That NH_4^+ concentrations are not elevated in the SAZ mixed layer in winter (Fig 2b.) indicates that the remineralized NH_4^+ is rapidly re-assimilated by phytoplankton and/or oxidized to NO_2^- in this zone. In the AZ, the 15N-PON of -3 to -1‰ that we observe in winter surface waters requires the sustained consumption of low-15N N (i.e., recycled NH_4^+ and urea) to offset a remineralization-driven 15N rise similar to that of the SAZ. We conclude that Southern Ocean phytoplankton dominantly consume regenerated N from late summer until at least July (albeit at low rates in winter), particularly south of the PF.

The fact that the NH_4^+ concentration was high in the winter mixed layer despite NH_4^+ being the preferred phytoplankton N source in late summer through winter implies that low rates of NH_4^+ uptake contributed to the accumulation of this N form. Multiple factors may cause low rates of photoautotrophic NH_4^+ uptake, including deplete NH_4^+ and micronutrient concentrations, light limitation, and low temperatures. North of the SAF, NH_4^+ concentrations below detection likely limited ρNH_4^+, as evidenced by the fact that in a series of experiments conducted on the same cruise, ρNH_4^+ increased with the addition of NH_4^+ at these stations (Mdutyana, 2021). By contrast, south of the SAF, NH_4^+ concentrations were similar to or higher than the half-saturation constant (K_m) derived for NH_4^+ uptake in the winter Southern Ocean (0.2 to 0.4 µM; Mdutyana, 2021), suggesting that something other than NH_4^+ availability was limiting to phytoplankton at these latitudes.

Iron is not directly involved in NH_4^+ assimilation but is required for electron transport during photosynthesis and respiration (Raven, 1988). While iron limitation is widespread across the Southern Ocean (Janssen et al., 2020; Pausch et al., 2019; Viljoen et al., 2019), iron availability appears to be higher in winter than during other seasons (Mtshali et al., 2019; Tagliabue et al., 2014) due to enhanced mixing, storms, and increased aeolian deposition (Coale et al., 2005; Honjo et al., 2000; Sedwick et al., 2008). The fact that ρNO_3^- and ρNH_4^+ were generally similar across the transect (Fig. 5b) argues against a dominant role for iron in controlling ρNH_4^+ since NO_3^- assimilation has a far higher iron requirement than NH_4^+ consumption (Morel et al., 1991).

In contrast to NH_4^+ and iron availability, light limitation is exacerbated in winter due to low insolation, increased cloud-cover, and mixed layers that can be hundreds of meters deeper than the euphotic zone (Brightman & Smith Jr., 1989; Buongiorno Nardelli et al., 2017; Sallée et al., 2010). Light is thus often considered the dominant constraint on Southern Ocean primary productivity in this season (Thomalla et al., 2011; Llort et al., 2019; Wadley et al., 2014). However, since NH_4^+ consumption by phytoplankton is fairly energetically inexpensive (Dortch, 1990), it should occur even under low light (recognizing that light remains critical for coincident CO_2 fixation). Heterotrophic bacteria can also consume NH_4^+ (Kirchman, 1994), including in the dark since they derive energy from organic carbon oxidation rather than light.
At an ecosystem level, therefore, NH₄⁺ consumption may not be primarily limited by light, although this parameter clearly strongly controls the rate of NPP (Fig. 5a).

Previous observations suggest that temperature influences NH₄⁺ uptake, especially in winter (Glibert, 1982; Reay et al., 2001). The negative effect of temperature appears to be enhanced under high-nutrient and low-light conditions, at least in the case of phytoplankton growth rates (Baird et al., 2001). Additionally, Southern Ocean phytoplankton may be psychrotolerant and not psychrophilic, which means that while they can function at in situ wintertime temperatures, their optimal temperatures for growth and photosynthesis are higher (Reay et al., 2001; Smith Jr & Harrison, 1991; Tilzer et al., 1986). Experiments conducted coincident with our sampling showed that the maximum rate of NH₄⁺ uptake (V_{max}) achievable by the in situ community was strongly negatively correlated with temperature and latitude (M dutyana, 2021), with the latter parameter indicative of the combined role of light, temperature, and possibly iron, the concentration of which appears to increase from the SAZ to the AZ (Tagliabue et al., 2012). We conclude that these three drivers, along with NH₄⁺ availability north of the SAF, all play a role in controlling photoautotrophic NH₄⁺ uptake in the winter Southern Ocean, with complex interactions among them that are difficult to disentangle.

In addition to physical and chemical limitations, microbial preference for other N species may impact the depletion of the NH₄⁺ pool. For example, the preferential uptake of urea and other DON species by some organisms (e.g., cyanobacteria or heterotrophic bacteria) could dampen total NH₄⁺ uptake rates. While large contributions of urea to total N uptake have previously been observed in the Southern Ocean in summer and autumn (predominantly in the SAZ; Joubert et al., 2011; Thomalla et al., 2011), we measured fairly low ρUrea (Fig. 5b), which is perhaps unsurprising given the low ambient urea concentrations (Table 1). The exceptions were stations 37°S and 43.0°S where ρUrea was higher than ρNH₄⁺, coincident with very low ambient NH₄⁺ (0.10 µM and below detection) and relatively high urea concentrations (0.36 µM and 0.15 µM).

Community composition can also alter the N uptake regime. Smaller phytoplankton, such as the numerically-dominant nano- and picoeukaryotes, are more likely to consume NH₄⁺ and urea than NO₃⁻ (Koike et al., 1986; Lee et al., 2012, 2013), especially in the Southern Ocean where NO₃⁻ assimilation is severely limited by iron and light availability (Sunda & Huntsman, 1997). Across our transect, the sum of NH₄⁺ and urea uptake (i.e., reduced N uptake) exceeded NO₃⁻ uptake for both the total phytoplankton community (transect average of 12.0 ± 0.9 nM day⁻¹ for reduced N versus 5.8 ± 1.0 nM day⁻¹ for NO₃⁻; f-ratio of 0.36) and the 0.3-2.7 µm size fraction (5.0 ± 1.2 nM day⁻¹ versus 1.9 ± 1.2 nM day⁻¹; f-ratio of 0.27 (Fig. 5b). That said, the NO₃⁻ uptake rates were not negligible, including in the 0.3-2.7 µm size fraction. In the PFZ and AZ, NO₃⁻ uptake by the 0.3-2.7 µm size fraction was more strongly correlated with the abundance of picoeukaryotes than Synechococcus (r = 0.75 and 0.03, respectively), consistent with observations of dominant reliance on NO₃⁻ by picocyanobacteria and NH₄⁺ by Synechococcus in other ocean regions (Casey et al., 2009; Fawcett et al., 2011, 2014; Treibergs et al., 2014; Painter et al., 2014). Nonetheless, Synechococcus can consume all N forms (Capone et al., 2008 and references therein) and has evolved strategies to conserve iron by using other trace metals in some enzymes (Palenik et al., 2003). Thus, Synechococcus may be adapted to consume NO₃⁻ in the Southern Ocean when reduced N concentrations are near depletion (e.g., north of the SAF in winter), but are likely to consume NH₄⁺ as long as it is available, as implied by their
strong correlation with NH₄⁺ concentration south of the SAF (r = 0.65). In the nano+ size class, NO₃⁻ uptake was likely driven in the SAZ by dinoflagellates and some nanoeukaryotes, and in the PFZ and AZ by diatoms, which remain active in these zones in winter (Weir et al., 2020). By contrast, nanoeukaryotes, which have a higher per-cell nutrient requirement than the equally-abundant picoeukaryotes, may have dominated NH₄⁺ uptake in the PFZ and AZ given that higher nanoeukaryote abundances corresponded with lower NH₄⁺ concentrations at a number of stations (e.g., stations 50.0°S, 51.1°S, and 55.5°S; Fig. 6b).

The low abundances of diatoms and dinoflagellates and absence of coccolithophores (Fig. 6a) across our transect is expected given the limitations imposed on nutrient uptake and CO₂ fixation by winter Southern Ocean conditions. The lower surface area-to-volume ratio of larger cells means that they rapidly experience diffusion-limitation of NH₄⁺ and micronutrient uptake and are more susceptible to light limitation (Finkel et al., 2004), resulting in their being outcompeted by smaller species for essential resources (Franck et al., 2005; Cavender-Bares et al., 1999). The near-absence of centric diatoms is also best explained thus, particularly given their low surface area-to-volume ratio compared to pennate species (Kobayashi & Takahashi, 2002) that are more likely to consume NH₄⁺ (Semeneh et al., 1998) and were more abundant. That said, we did not observe a clear relationship between pennate diatom abundance and NH₄⁺ concentration, except proximate to the PF (stations 47.9°S, 48.9°S, and 50.0°S) where higher pennate abundance was associated with lower NH₄⁺. Diatom success in winter may also be limited by enhanced mixing, as this group is generally adapted for stratified waters (Kopczynska et al., 2007).

In sum, NH₄⁺ uptake rates were low across our transect but not negligible, indicating that phytoplankton activity in winter, which is dominated by smaller species, represents a sink for NH₄⁺. Hostile Southern Ocean conditions imposed limitations on NH₄⁺ uptake that varied with latitude, with NH₄⁺ concentrations controlling pH₄⁺ north of the SAF, while light and temperature were important south of the SAF, with a possible supporting role for iron. Additionally, *Synechococcus*, nanoeukaryotes, and pennate diatoms likely dominated NH₄⁺ consumption, consistent with previous observations from the Southern Ocean and elsewhere (Klawonn et al., 2019; Semeneh et al., 1998).

Ammonium oxidation – Nitrification removes more mixed-layer NH₄⁺ than phytoplankton consumption south of the PF, with NH₄⁺ oxidation rates that were two- to five-times the co-occurring NH₄⁺ uptake rates (Fig. 5c). The comparative success of NH₄⁺ oxidisers may be due to decreased competition with phytoplankton for NH₄⁺ in winter, augmented by decreased photoinhibition (Wan et al., 2018; Lu et al., 2020) and elevated NH₄⁺ availability (Baer et al., 2014; Mutyana et al., 2020; Mutyana, 2021). One implication of the dominance of NH₄⁺ oxidation is that in addition to the limitations on phytoplankton NH₄⁺ uptake discussed above, low phytoplankton success in the AZ may also result from nitrifiers outcompeting phytoplankton under conditions of low incident light and enhanced mixing for scarce resources (e.g., trace elements required for enzyme functioning, such as iron and copper; Shafiee et al., 2019; Maldonado et al., 2006; Amin et al., 2013).

Although NH₄⁺ oxidisers appear to be truly psychrophilic given the southward increase in NH₄⁺ oxidation rates, the effect of temperature is difficult to disentangle in an environment with
multiple overlapping drivers. While several studies have reported a minimal effect of temperature on NH₄⁺ oxidation rates (Bianchi et al., 1997; Baer et al., 2014; Horak et al., 2013; Mdutyana et al., in review), nitrifiers in the winter Southern Ocean may yet be living at suboptimal temperatures (Jones et al., 1988). Indeed, a relative inefficiency of NH₄⁺ oxidation at low temperatures could be inferred from the general southward increase in the ratio of NH₄⁺ to NO₂⁻ concentration (NH₄⁺:NO₂⁻; Fig. S6). This trend is unexpected given the lower affinity of nitrite oxidizing bacteria for NO₂⁻ compared to that of ammonia oxidisers for NH₄⁺, which should result in an accumulation of NO₂⁻ relative to NH₄⁺ (Pachiadaki et al., 2017; Zakem et al., 2018; Zhang et al., 2020). However, other factors such as mixing and increased predation and viral lysis can also affect NH₄⁺:NO₂⁻, and the dynamics of NH₄⁺ are less predictable in space and time than those of NO₂⁻ because of their different residence times (Zakem et al., 2018).

The Kₘ derived for NH₄⁺ oxidation in the winter Southern Ocean has recently been reported to be low (0.03 to 0.14 µM), with ammonia oxidizers observed to become saturated at ambient NH₄⁺ concentrations of ~0.1-0.2 µM (Mdutyana, 2021). This means that south of the SAF in winter 2017, ammonia oxidizers were not substrate limited (further implied by the lack of correlation between NH₄⁺ and NH₄⁺ concentration; Fig. S4), which raises the question of why NH₄⁺ oxidation did not occur at higher rates. The answer may involve temperature, in that psychrophilic organisms can be less responsive to high substrate concentrations at low temperatures (Baer et al., 2014). Another possibility is that NH₄⁺ oxidation was iron-limited (Shiozaki et al., 2016; Mdutyana, 2021), with a recent culture study revealing the surprisingly low affinity for iron of the globally-abundant ammonia oxidiser, Nitrosopumilus maritimus (Shafiee et al., 2019). In any case, NH₄⁺ oxidisers were moderately successful across the surface Southern Ocean in winter, with low light, reduced competition with phytoplankton, and substrate repletion likely explaining the elevated NH₄⁺ oxidation rates south of the PF compared to the stations to the north.

5.1.2 Ammonium production and other inputs

NH₄⁺ production, although not measured directly in this study, must be sustained during the winter to retain an NH₄⁺ pool that is high in concentration relative to the early summer. With low or no NH₄⁺ production in the autumn and winter, the NH₄⁺ pool south of the SAF would be depleted in 10 to 38 days (median of 21 days) given the consumption rate (ρNH₄⁺ + NH₄⁺ox) and NH₄⁺ concentration measured at each station (Text S2). Heterotrophic NH₄⁺ production must, therefore, be ongoing in winter despite the limited production of PON substrate.

Heterotrophic activity by bacteria – Heterotrophic bacteria may contribute significantly to NH₄⁺ accumulation via ammonification of organic N (Hewes et al., 1985; Koike et al., 1986; Treguer & Jacques, 1992), including in winter (Rembaiville et al., 2017). However, since these bacteria are likely more active in late summer and autumn when both temperature and the supply of fresh PON are high (Beccuevort et al., 2000; Dennet et al., 2001), we expect that the winter NH₄⁺ pool includes residual NH₄⁺ produced towards the end of the growing season. At the time of our sampling, heterotrophic abundances were ten-fold lower to two-fold higher than total pico- and nanophytoplankton abundances (Fig. 7a). Higher ratios of heterotrophic-to-photosynthetic cells occurred at stations with higher NH₄⁺ concentrations (e.g., stations 48.9°S, 53.0°S, 54.0°S and 57.8°S), suggesting a role for the short-term balance between NH₄⁺
production and consumption in controlling the ambient NH₄⁺ concentration in winter. The heterotrophic bacteria were likely consuming detritus (as opposed to living cells), with the relative availability of detrital substrate evident from the high detrital particle counts (Fig. 7b) and the persistently high POC:chl-a ratios, particularly south of the PF (Fig. 4a; Holm-Hansen et al., 1989). Additionally, a southward increase in heterotrophic biomass (which has a C:N ratio typically ≤5:1) can be inferred from the southward decline in POC:PON (Fig. 4b; Frigstad et al., 2011; del Giorgio & Cole, 1998), although this could also be due to iron and light limitation of CO₂ fixation (Mongin et al., 2006; Talmy et al., 2016). Active remineralization of detritus south of the SAF is further implicated by lower ratios of detrital-to-heterotrophic particles coincident with higher NH₄⁺ concentrations (Fig. 7b). Finally, the specific uptake rate of NO₃⁻ + NH₄⁺ + urea (i.e., V_{Ntot}) exceeded that of CO₂ fixation (V_C) at some AZ stations (Fig. S7). Similar observations in the winter Southern Ocean have been interpreted as indicating the consumption of reduced N by heterotrophic bacteria (thus evincing their activity), which occurs in the absence of CO₂ fixation, thereby decoupling V_C and V_{Ntot} (Text S2; Mdutyana et al., 2020).

Despite the indirect evidence for an active heterotrophic bacterial population at the time of sampling, it is possible that heterotrophic activity was also limited in the wintertime Southern Ocean, in part because PON concentrations are generally low in this season (Pomeroy & Wiebe, 2001; Smart et al., 2020). That said, bacteria may be more efficient at lower temperatures than phyto- and zooplankton given their similar metabolic rates in temperate and polar waters (Pomeroy & Wiebe, 2001 and references therein). Additionally, bacteria may be less vulnerable to resource limitation because of their small size. Only slight differences in Q₁₀ values (i.e., the proportional increase in growth rate with a 10 °C rise in temperature) between phytoplankton and heterotrophs are required for heterotrophic NH₄⁺ production to exceed phytoplankton NH₄⁺ uptake (Koike et al., 1986). Nonetheless, it is highly unlikely that the surface NH₄⁺ pool measured in winter derived solely from wintertime bacterial production given that yet higher NH₄⁺ concentrations have been observed in late summer/autumn (Becquevort et al., 2000; Dennett et al., 2001); this is discussed further in section 5.2 below.

Heterotrophic activity by zooplankton – The microzooplankton enumerated in this study may also contribute to NH₄⁺ accumulation, although they are probably less important in winter than heterotrophic bacteria given their low and variable abundances (Fig. 6a). At the PFZ and AZ stations characterized by high ratios of heterotrophic-to-photosynthetic cells but relatively low absolute heterotrophic bacterial abundances, the coincident elevated NH₄⁺ concentrations could be due to the higher microzooplankton abundances compared to other stations (e.g., station 54.0°S). In other words, elevated microzooplankton abundances may help to explain the high NH₄⁺ concentrations at stations where the abundance of small heterotrophs was relatively low.

Above, we have assumed that the pathways leading to NH₄⁺ production are associated with heterotrophy. However, there are other possible mechanisms of NH₄⁺ generation that should be considered.

DON cycling – NH₄⁺ can be released by heterotrophic bacteria that directly consume DON (e.g., urea) (Billen, 1983; Tupas & Koike, 1990), and possibly also by ammonia oxidisers that convert DON to NH₄⁺ intracellularly, through the equilibration between intra- and extracellular
NH₄⁺ pools (Kitzinger et al., 2019). DON can also be converted to NH₄⁺ through photodegradation by UV radiation (e.g., Aarnos et al., 2012). However, bacterial decomposition of DON (rather than PON) to NH₄⁺ is implicit in most estimates, qualitative and quantitative, of heterotrophic bacterial remineralization. Additionally, the magnitude of cellular NH₄⁺ efflux by ammonia oxidisers is likely be extremely low given that they also require NH₄⁺ to fix CO₂. Finally, the low light levels of the wintertime Southern Ocean mean that photodegradation is unlikely to yield a significant NH₄⁺ flux. We thus conclude that DON conversion to NH₄⁺, through any mechanism, is probably negligible.

External inputs of ammonium – High surface ocean NH₄⁺ concentrations may theoretically derive from external inputs of NH₄⁺, such as from nitrogen fixation, NH₄⁺ aerosol deposition, or sea-ice melt. Nitrogen fixation should be negligible in the winter Southern Ocean due to the extremely cold temperatures, low light and iron availability, and high NO₃⁻ concentrations (Jiang et al., 2018; Knapp et al., 2012; Kustka et al., 2003). Similarly, NH₄⁺ aerosols are unlikely to be abundant over regions of the Southern Ocean remote from islands and coastal Antarctica. Those that are present mainly originate from surface ocean NH₃ efflux; once re-deposited, this NH₄⁺ does not constitute a new input term to surface waters (Altieri et al., 2021).

Additionally, NH₄⁺ aerosol concentrations are at a minimum in winter (Legrand et al., 1998; Xu et al., 2019). NH₄⁺ deposition to the surface Southern Ocean is thus likely minimal. Finally, since our sampling took place before the sea-ice reached its northernmost extent (Cavalieri & Parkinson, 2008), the dominant process would have been sea-ice formation rather than sea-ice melt, the latter a source of NH₄⁺ at times (Kattner et al., 2004; Zhou et al., 2014), although probably not during our study. Additionally, we observed elevated NH₄⁺ as far north as 46ºS, which is ~1700 km beyond the reach of sea-ice melt.

5.2 Seasonal cycling of NH₄⁺ in the Southern Ocean mixed layer south of the SAF

To contextualize our wintertime observations, we need to explore the seasonality of the NH₄⁺ pool in the surface Southern Ocean, especially given that NH₄⁺ production in late summer and autumn almost certainly contributes to wintertime NH₄⁺ accumulation. Surface NH₄⁺ concentrations were measured during three additional cruises in the Atlantic sector (December 2018-March 2019, early- and late summer; July-August 2019, winter; October-November 2019, spring; Fig. 9a-e). During these cruises, underway samples were collected for analysis of NH₄⁺ concentrations every two hours between Cape Town and Antarctica (early- and late summer) or the MIZ (winter and spring), and analysed as described in section 3.2.1 for winter 2017.

In early summer, the surface NH₄⁺ concentrations were uniformly low across the transect (average of 0.11 ± 0.09 µM; Fig. 9a) due to rapid consumption by phytoplankton, as has been observed previously (Mdutyana et al., 2020; Savoye et al., 2004; Daly et al., 2001). South of the SAF, NH₄⁺ concentrations increased significantly as the growing season progressed, reaching an average concentration of 0.81 ± 0.92 µM by late summer (Fig. 9b). This NH₄⁺ increase can be explained by elevated heterotrophic activity following the spring/summer phytoplankton bloom (Mengesha et al., 1998; Le Moigne et al., 2013), coupled with iron- and/or silicate-limitation of phytoplankton (Hiscock et al., 2003; Sosik & Olson, 2002) and enhanced grazing pressure (Becquevort et al., 2000). The NH₄⁺ concentrations measured south
of the SAF during the 2019 winter cruise (Fig. 9c) were similar to those observed in winter 2017 (0.48 ± 0.30 µM and 0.52 ± 0.11 µM, respectively), confirming that our 2017 observations are generally representative of the wintertime Southern Ocean. Additionally, the winter measurements indicate that mixed-layer NH$_4^+$ concentrations remain high between late summer and winter, consistent with sustained heterotrophic NH$_4^+$ production.

Our hypothesis for sustained late summer-to-winter heterotrophic activity is supported by calculations of the residence time of NH$_4^+$ south of the SAF (Text S3). Using the NH$_4^+$ concentrations and ρNH$_4^+$ measured in late summer 2019 (Deary, 2020), we calculate that the NH$_4^+$ pool would be depleted in 2 to 27 days (median of 5 days) without coincident NH$_4^+$ production. Indeed, given the average ρNH$_4^+$ south of the SAF in late summer (50.6 ± 24.0 nM/day), the net decline in NH$_4^+$ concentration of 0.33 ± 0.97 µM between late summer and winter (a roughly four-month period) requires an average NH$_4^+$ production rate of 52.9 ± 25.0 nM/day. This estimate is comparable to NH$_4^+$ remineralisation rates measured in the AZ near the Antarctic Peninsula in summer (the only measurements of NH$_4^+$ regeneration available for the Southern Ocean; average of 55 nM day$^{-1}$; Goeyens et al., 1991).

By the early spring, the NH$_4^+$ concentrations south of the SAF had declined to near or below the methodological detection limit (0.09 ± 0.08 µM; Fig. 9d), implicating increased photosynthetic activity following the alleviation of light-limitation that results in the consumption of nutrients introduced into surface waters in winter. We postulate that the residual NH$_4^+$ would have been consumed prior to significant NO$_3^-$ drawdown because far less energy (i.e., light) is required for its assimilation (Dorch, 1990). NH$_4^+$ concentrations south of the SAF rose again by the late spring to an average value only slightly lower than that measured in winter (0.37 ± 0.69 µM; Fig. 9e). However, late-spring NH$_4^+$ concentrations were only elevated in the PFZ (range of 0.11 ± 0.01 to 4.39 ± 0.03 µM, average of 0.71 ± 1.04 µM), as has been observed previously (Bathmann et al., 1997), which we attribute to increased heterotrophic activity in response to elevated regional springtime phytoplankton growth driven by frontal upwelling (Becquevort et al., 2000; Mayzaud et al., 2002). Excluding the PFZ data yields a far lower late-spring average NH$_4^+$ concentration of 0.18 ± 0.14 µM, which we take as broadly representative of this season.

Using our high-resolution NH$_4^+$ concentration measurements, we propose a seasonal cycle for mixed-layer NH$_4^+$ south of the SAF (Fig. 9f). Our proposal is consistent with previous characterizations of the early summer-to-autumn evolution of Southern Ocean NH$_4^+$ concentrations (i.e., from below detection due to phytoplankton uptake to elevated due to net heterotrophic activity), but contradicts the hypothesis that NH$_4^+$ will subsequently decline due to persistent but low rates of photosynthesis that yield insufficient biomass to support late-summer heterotrophy, thus resulting in a coincident decrease in photosynthetic and heterotrophic activity (Koike et al., 1986; Serebrennikova & Fanning, 2004). Instead, our data evince a gradual decline in mixed-layer NH$_4^+$ concentrations from late summer through winter that we attribute to heterotrophic NH$_4^+$ production outpacing NH$_4^+$ consumption in late summer/autumn, with NH$_4^+$ regeneration then decreasing during winter to lower rates than the combination of phytoplankton NH$_4^+$ consumption and NH$_4^+$ oxidation. By late spring, NH$_4^+$ reaches concentrations similar to those observed in early summer as the improved growing conditions (i.e., elevated light and iron availability; Ellwood et al., 2008; Mtshali et al., 2019)
allow phytoplankton to rapidly consume any NH$_4^+$ remaining at the end of winter and subsequently produced in spring. An exception to this scenario is elevated (and localized) NH$_4^+$ production near fronts, such as in late spring 2019, which likely resulted from biological activity supported by frontal upwelling of silicate- and iron-bearing Upper Circumpolar Deep Water (Prézelin et al., 2000).

5.3 Implications

Potential for ammonium inhibition of nitrate uptake – The low rates of NO$_3^-$ uptake characteristic of winter Southern Ocean surface waters have been attributed to light, temperature, and micronutrient (especially iron) limitation of phytoplankton growth (Martin et al., 1990; Reay et al., 2001; Strzepek et al., 2019; Sunda & Huntsman, 1997). Wintertime NO$_3^-$ uptake may be further inhibited by the high NH$_4^+$ concentrations (Goeyens et al., 1995; Philibert et al., 2015; Reay et al., 2001), as has been observed in other regions (Dortch, 1990; Flynn et al., 2018). Previous Southern Ocean studies have identified an inhibitory effect of NH$_4^+$ on NO$_3^-$ uptake at NH$_4^+$ concentrations >1 µM (and occasionally between 0.5 µM and 1 µM; Cochlan, 1986; Cochlan et al., 2002; Kristiansen & Farbrot, 1991; Reay et al., 2001). Such concentrations were measured at a number of stations along our 2019 transects (Fig. 9b,c,e; and in 2017 if inhibition occurs at NH$_4^+$ concentrations of 0.5 µM; Fig. 1). If the seasonal accumulation of NH$_4^+$ inhibits NO$_3^-$ drawdown, this amounts to an inefficiency in the biological pump. However, some culture studies report only a slight inhibition of NO$_3^-$ uptake, even at high NH$_4^+$ concentrations (>1 µM; Bagwell, 2009; Dortch, 1990 and references therein), while others have detected no influence of NH$_4^+$ on NO$_3^-$ consumption (Rees et al., 1999), suggesting that this effect is not straightforward. In winter 2017, we observed little evidence of NH$_4^+$ inhibition of NO$_3^-$ uptake – for example, the southward decrease in pNO$_3^-$ was not sharper than that of pNH$_4^+$ despite the increase in pNH$_4^+$ concentration, and we observed no relationship between NH$_4^+$ concentration and the proportion of NO$_3^-$-to-total N uptake (i.e., the f-ratio, r = 0.28 including urea; n=7). We conclude that NH$_4^+$ inhibition of NO$_3^-$ uptake is unlikely in open Southern Ocean surface waters, but may occur near fronts and/or the coasts of islands and Antarctica where NH$_4^+$ can accumulate to concentrations >>1 µM (Henley et al., 2017; Koike et al., 1986; Krell et al., 2005; Goeyens et al., 1995). In the case of coastal waters, the damping effect of NH$_4^+$ inhibition on the biological pump is only relevant if the NH$_4^+$ being consumed in lieu of NO$_3^-$ derives from *in situ* regeneration rather than being supplied from land.

Palaeoceanographic proxies – NH$_4^+$ cycling in the Southern Ocean mixed layer may be important for palaeoceanographic proxies (Smart et al., 2020; Robinson et al., 2020), such as those that use the δ^{15}N of organic matter preserved in fossil foraminifer or diatom shells to infer the extent of upper ocean NO$_3^-$ consumption in the past (and by extension, the role of Southern Ocean biology in determining atmospheric CO$_2$; e.g., Martínez-García et al., 2014; Studer et al., 2015). A recent ground-truthing study from the Southern Ocean showed that the δ^{15}N of foraminifer-bound organic N tracks the δ^{15}N of PON rather than NO$_3^-$ (Smart et al., 2020), in contrast to results from the low-latitude ocean (Ren et al., 2012; Smart et al., 2015). Between summer and winter, the δ^{15}N of mixed-layer PON declines in the Southern Ocean (particularly in the AZ) due to enhanced mixed-layer NH$_4^+$ cycling (Fig. 4c; Lourey et al., 2003); this decrease will subsequently be reflected in the δ^{15}N of the foraminifera that feed on
PON (Smart et al., 2020) and the late summer/autumn diatom communities that consume proportionally more NH$_4^+$ relative to NO$_3^-$ than in spring and early summer (Studer et al., 2015; Kemeny et al., 2018). Thus, a decrease in the δ^{15}N of fossil foraminifera or diatoms could reflect enhanced NH$_4^+$ consumption by the upper ocean ecosystem rather than a change in the extent of NO$_3^-$ drawdown, although this will depend on the degree to which surface conditions in the different seasons are communicated to the sediments (Smart et al., 2020). Further clarifying the seasonal mixed-layer NH$_4^+$ cycle in the Southern Ocean may thus aid interpretations of palaeoceanographic records.

Ocean ammonia emissions – The implications of NH$_4^+$ cycling extend beyond the upper ocean to the atmosphere. Ammonium aerosols that influence Earth’s albedo through scattering and absorption of solar radiation and cloud formation (Tevlin & Murphy, 2019) are formed in the marine boundary layer from reactions of NH$_3$ gas with acidic species, usually sulfur derived from surface ocean dimethylsulfide emissions. The ocean is the largest natural source of NH$_3$ globally, however, the magnitude of the marine NH$_3$ source remains highly uncertain (Paulot et al., 2015). Surface ocean NH$_4^+$ concentrations play a central role in determining the sign and magnitude of the air-sea NH$_3$ flux, along with wind speed, surface ocean temperature, and pH. Therefore, the biogeochemical pathways that drive seasonality in surface ocean NH$_4^+$ concentrations are an important control on the remote Southern Ocean air-sea NH$_3$ flux, with implications for aerosol composition, cloud formation, and climate (Altieri et al., 2021).

6. **Summary**

This study, conducted in the Southern Ocean during the infrequently-sampled winter season, provides new insights into the internal cycling of N in the mixed layer of a globally-important region. We used measurements of NO$_3^-$, NH$_4^+$, and urea uptake, NH$_4^+$ oxidation rates, δ^{15}N-PON, and the ratio of heterotrophic-to-photosynthetic cells to investigate NH$_4^+$ consumption, and the ratios of POC:chl-a and POC:PON, the relationship of V_{Ntot} to V_C, and measurements of plankton community composition to evaluate the potential for heterotrophic NH$_4^+$ production. We attribute the elevated NH$_4^+$ concentrations that persist in the winter mixed layer south of the SAF to sustained heterotrophic NH$_4^+$ production in excess of phytoplankton- and nitrifier-mediated NH$_4^+$ consumption, driven by temperature-, light-, and possibly iron-limitation of the NH$_4^+$ consumers. We further conclude that heterotrophic bacteria are the main NH$_4^+$ producers in winter and that the contributions of DON degradation, nitrogen fixation, aerosol deposition, and sea-ice melt to the Southern Ocean’s mixed-layer NH$_4^+$ pool are negligible. Future measurements of heterotrophic NH$_4^+$ production rates are required to validate our conclusions, and higher spatial resolution sampling of community composition and N consumption rates may help to explain smaller-scale variability in NH$_4^+$ concentrations, particularly near the fronts.

From observations of surface NH$_4^+$ concentrations made between December 2018 and November 2019, we suggest that the high-concentration NH$_4^+$ pool cannot be generated solely during winter. Instead, we propose that NH$_4^+$ initially accumulates in late summer following the peak phytoplankton growing season, after which sustained heterotrophy throughout the autumn and winter prevents this NH$_4^+$ from being depleted until the early spring. The persistence of elevated NH$_4^+$ concentrations across the polar Southern Ocean between late summer and winter
implies that the mixed layer is a biological source of CO₂ to the atmosphere for at least half the year, not only because NO₃ drawdown is weak at this time (Arteaga et al., 2019; Johnson et al., 2017), but also because the ambient conditions allow for NH₄⁺ accumulation. Additionally, high surface ocean NH₄⁺ concentrations may alter components of the ocean-atmosphere NH cycle and may have implications for palaeoceanographic reconstructions based on N isotope measurements.

Acknowledgements

We acknowledge Captain Knowledge Bengu and the crew of the R/V SA Agulhas II, and Chief Scientists Hermann Luyt, Marcello Vichi, and Thomas Ryan-Keogh. We thank Tahlia Henry for CTD operations and CTD and SDS data processing. We are grateful to the students from the Cape Peninsula University of Technology for help with sample collection and analysis of chl-a samples. We thank Sedick Gallie for his assistance with sampling and for conducting the microscope counts, and Raquel Flynn, Mishka Rawatilal, and Raymond Roman for assistance with nutrient analyses. We acknowledge the Flow Cytometry Core Facility at the University of Cape Town (UCT) and the efforts of Ian Newton at the Stable Light Isotope Laboratory (UCT). This work was supported by the South African Departments of Forestry, Fisheries, and Environment (formerly Environmental Affairs) and Science and Innovation (DSI), and the National Research Foundation (NRF) through the South African National Antarctic Program (SANAP, 110732 to K.E.A and 105539, 110735, and 129232 to S.E.F.), Equipment-related Travel and Training Grant (118615 to K.E.A.), Competitive Support for Rated Researchers Grant (111716 to K.E.A.), and Incentive Fund (115335 to S.E.F.), S.S., M.M., K.A.M.S., and J.M.B. acknowledge funding from the NRF through postgraduate scholarships (120105, 112380, 113193, and 108757, respectively). S.S. was partially supported by a UCT Vice-Chancellor Research Scholarship and M.M. by the UCT Harry Crossley Foundation Research Fellowship. S.E.F. and K.E.A. acknowledge the support of the UCT Vice-Chancellor Future Leaders 2030 programme. S.E.F. acknowledges an African Academy of Sciences/Royal Society FLAIR fellowship and K.E.A. acknowledges support from UCT through a University Research Council Launching Grant and a University Equipment Committee Grant. We further acknowledge the support of the DSI Biogeochemistry Research Infrastructure Platform (BIOGRIP).

7. References

Kassambara A. (2019). ggpuzz: `ggplot2` Based Publication Ready Plots, R package version 0.2.4. https://CRAN.R-project.org/package=ggpubr

Figure 1: Winter 2017 cruise track overlaid on sea surface temperature (SST) measured by the hull-mounted thermostalimograph. The underway (Leg S) and CTD (Leg N) stations are indicated by white circles. Stations at which net primary production (NPP), nitrogen uptake, and ammonium oxidation experiments were conducted are denoted by red squares. The pink triangles indicate stations where only NPP experiments were conducted while the green circles show stations where only ammonium oxidation was measured. Solid lines indicate the positions of the fronts, identified using temperature and salinity measurements. Abbreviations for fronts: AF – Agulhas Front (~40.2°S); STF – Subtropical Front (~42.1°S); SAF – Subantarctic Front (~45.6°S); PF – Polar Front (~49.5°S); SACCF – Southern Antarctic Circumpolar Current Front (~56.5°S); SBdy – Southern Boundary (~58.5°S). Abbreviations for zones: STZ – Subtropical Zone; SAZ – Subantarctic Zone; PFZ – Polar Frontal Zone; OAZ – Open Antarctic Zone; PAZ – Polar Antarctic Zone; WG – Weddell Gyre; MIZ – Marginal Ice Zone. Figure produced using the package ggplot2 (Wickham, 2016).

Table 1: Mean (± 1 SD) of surface ocean POC, PON, chl-a, and nutrient concentrations, cell abundances, and nutrient uptake rates measured in each zone of the Southern Ocean in winter 2017. Where no SD is given, only one sample was measured. ND – no data available. Abbreviations as in Figure 1.
<table>
<thead>
<tr>
<th></th>
<th>STZ</th>
<th>SAZ</th>
<th>PFZ</th>
<th>OAZ</th>
<th>PAZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH$_4^+$ (µM)</td>
<td>0.08±0.03</td>
<td>0.06±0.01</td>
<td>0.42±0.01</td>
<td>0.52±0.01</td>
<td>0.58±0.01</td>
</tr>
<tr>
<td>PO$_4^{3-}$ (µM)</td>
<td>0.44±0.07</td>
<td>0.90±0.06</td>
<td>1.59±0.1</td>
<td>2.00±0.13</td>
<td>1.99±0.09</td>
</tr>
<tr>
<td>NO$_3^-$ (µM)</td>
<td>3.6±0.2</td>
<td>10.5±0.5</td>
<td>21.5±0.2</td>
<td>26.7±0.4</td>
<td>27.5±0.4</td>
</tr>
<tr>
<td>Si(OH)$_4$ (µM)</td>
<td>2.6±0.1</td>
<td>2.5±1.8</td>
<td>6.6±0.1</td>
<td>40.3±0.5</td>
<td>45.0±0.8</td>
</tr>
<tr>
<td>NO$_2^-$ (µM)</td>
<td>0.15±0.02</td>
<td>0.13±0.02</td>
<td>0.17±0.02</td>
<td>0.19±0.01</td>
<td>0.21±0.02</td>
</tr>
<tr>
<td>Urea (µM)</td>
<td>0.23±0.04</td>
<td>0.11±0.04</td>
<td>0.26±0.08</td>
<td>0.24</td>
<td>0.21±0.03</td>
</tr>
<tr>
<td>chl-a (>0.3 µm) (µg L$^{-1}$)</td>
<td>0.65±0.08</td>
<td>0.43±0.05</td>
<td>0.35±0.03</td>
<td>0.25±0.02</td>
<td>0.21±0.00</td>
</tr>
<tr>
<td>chl-a (>2.7 µm) (µg L$^{-1}$)</td>
<td>0.50±0.05</td>
<td>0.30±0.04</td>
<td>0.24±0.02</td>
<td>0.18±0.02</td>
<td>0.17±0.02</td>
</tr>
<tr>
<td>chl-a (0.3-2.7 µm) (µg L$^{-1}$)</td>
<td>0.15±0.1</td>
<td>0.13±0.07</td>
<td>0.11±0.04</td>
<td>0.06±0.03</td>
<td>0.04±0.02</td>
</tr>
<tr>
<td>chl-a (% of total of >2.7 µm)</td>
<td>77.5±13.9</td>
<td>73.1±10.9</td>
<td>69.8±8.7</td>
<td>76.7±11.3</td>
<td>80.1±8.5</td>
</tr>
<tr>
<td>POC (>0.3 µm) (µM)</td>
<td>4.38±6.67</td>
<td>3.4±0.43</td>
<td>3.23±0.26</td>
<td>3.43±0.48</td>
<td>3.47±0.22</td>
</tr>
<tr>
<td>POC (>2.7 µm) (µM)</td>
<td>2.63±0.51</td>
<td>2.59±0.43</td>
<td>1.87±1.22</td>
<td>1.92±0.36</td>
<td>4.64</td>
</tr>
<tr>
<td>PON (>0.3 µm) (µM)</td>
<td>0.61±0.19</td>
<td>0.48±0.08</td>
<td>0.44±0.08</td>
<td>0.50±0.14</td>
<td>0.54±0.09</td>
</tr>
<tr>
<td>PON (>2.7 µm) (µM)</td>
<td>0.26±0.06</td>
<td>0.28±0.06</td>
<td>0.24±0.08</td>
<td>0.22±0.12</td>
<td>0.38±0.02</td>
</tr>
<tr>
<td>POC (% of total of >2.7 µm)</td>
<td>79.70±33.25</td>
<td>75.5±24.17</td>
<td>50.89±65.32</td>
<td>77.19±28.10</td>
<td>143.02</td>
</tr>
<tr>
<td>PON (% of total of >2.7 µm)</td>
<td>69.04±32.6</td>
<td>67.10±29.47</td>
<td>53.82±12.41</td>
<td>66.98±49.74</td>
<td>ND</td>
</tr>
<tr>
<td>POC:chla (g g$^{-1}$)</td>
<td>103.0±22.1</td>
<td>102.5±14.4</td>
<td>122.5±11</td>
<td>234.1±29.2</td>
<td>219.3±10.0</td>
</tr>
<tr>
<td>POC:PON (M/M)</td>
<td>7.81±6.49</td>
<td>6.90±1.25</td>
<td>7.13±0.71</td>
<td>6.72±1.62</td>
<td>5.8±3.75</td>
</tr>
<tr>
<td>δ^{15}N-PON</td>
<td>1.4±0.6</td>
<td>1.2±1.0</td>
<td>0.3±0.5</td>
<td>-1.3±0.5</td>
<td>-1.3±0.4</td>
</tr>
<tr>
<td>NPP (>0.3 µM) (nM day$^{-1}$)</td>
<td>497.1±42.4</td>
<td>277.5±21.3</td>
<td>289.7±19.2</td>
<td>85.3±26.1</td>
<td>27.7±0.2</td>
</tr>
<tr>
<td>NPP (>2.7 µm) (nM day$^{-1}$)</td>
<td>384.7±29.7</td>
<td>178.2±23.4</td>
<td>193.5</td>
<td>49.6±5.0</td>
<td>ND</td>
</tr>
<tr>
<td>pNH$_4^+$ (>0.3 µM) (nM day$^{-1}$)</td>
<td>5.7±0.8</td>
<td>8.9±1.1</td>
<td>12.9±0.4</td>
<td>4.8±0.1</td>
<td>3.0±0.8</td>
</tr>
<tr>
<td>pNH$_4^+$ (>2.7 µm) (nM day$^{-1}$)</td>
<td>4.0±1.1</td>
<td>4.1±1.2</td>
<td>4.2±4.7</td>
<td>3.1±0.4</td>
<td>ND</td>
</tr>
<tr>
<td>pH$_2$O (>0.3 µM) (nM day$^{-1}$)</td>
<td>4.1±0.4</td>
<td>11.5±1.4</td>
<td>5.9±1</td>
<td>3.6±0.4</td>
<td>3.7±1.8</td>
</tr>
<tr>
<td>pH$_2$O (>2.7 µm) (nM day$^{-1}$)</td>
<td>3.4±0.3</td>
<td>6.6±0.4</td>
<td>4.3±0.4</td>
<td>2.6±0.8</td>
<td>2.7±1.2</td>
</tr>
<tr>
<td>pUrea (>0.3 µM) (nM day$^{-1}$)</td>
<td>7.5±0.6</td>
<td>6.9±0.3</td>
<td>6.5±1.0</td>
<td>2.1±0.3</td>
<td>0.6±0.01</td>
</tr>
<tr>
<td>pUrea (>2.7 µm) (nM day$^{-1}$)</td>
<td>4.9±0.3</td>
<td>3.8±0.2</td>
<td>4.0±0.6</td>
<td>1.3±0.2</td>
<td>0.7±0.4</td>
</tr>
<tr>
<td>NH$_4^+$ (nM day$^{-1}$)</td>
<td>9.3±0.5</td>
<td>12.9±0.6</td>
<td>11.1</td>
<td>17.7±0.6</td>
<td>14.3±1.0</td>
</tr>
<tr>
<td>Total microplankton (cells mL$^{-1}$)</td>
<td>13±11</td>
<td>5±3</td>
<td>9±3</td>
<td>6±6</td>
<td>4±2</td>
</tr>
<tr>
<td>Centric diatoms (cells mL$^{-1}$)</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>1±2</td>
</tr>
<tr>
<td>Pennate diatoms (cells mL$^{-1}$)</td>
<td>2±4</td>
<td><1</td>
<td>2±1</td>
<td>2±3</td>
<td><1</td>
</tr>
<tr>
<td>Dinoflagellates (cells mL$^{-1}$)</td>
<td>7±6</td>
<td>4±0</td>
<td>6±2</td>
<td>3±2</td>
<td>2±0</td>
</tr>
<tr>
<td>Micro-zooplankton (cells mL$^{-1}$)</td>
<td>4±3</td>
<td><1</td>
<td>2±2</td>
<td>1±2</td>
<td><1</td>
</tr>
<tr>
<td>Nanoeukaryotes (cells mL$^{-1}$)</td>
<td>ND</td>
<td>2.2±1.4 E+03</td>
<td>1.5±0.7 E+03</td>
<td>1.6±0.7 E+03</td>
<td>1.4±0.3 E+03</td>
</tr>
<tr>
<td>Picoeukaryotes (cells mL$^{-1}$)</td>
<td>ND</td>
<td>4.5±2.9 E+03</td>
<td>4.9±3.7 E+03</td>
<td>1.5±0.5 E+03</td>
<td>8±02</td>
</tr>
<tr>
<td>Synecococcus (cells mL$^{-1}$)</td>
<td>ND</td>
<td>3.8±1.8 E+03</td>
<td>2.3±1.1 E+03</td>
<td>1.4±0.2 E+03</td>
<td>1±03</td>
</tr>
<tr>
<td>Small heterotrophs (cells mL$^{-1}$)</td>
<td>ND</td>
<td>4.5±3.2 E+03</td>
<td>2.3±1.2 E+03</td>
<td>2.1±2.3 E+03</td>
<td>3.2±03</td>
</tr>
<tr>
<td>Detritus (particules mL$^{-1}$)</td>
<td>ND</td>
<td>38.2±14.9 E+03</td>
<td>63.8±42.9 E+03</td>
<td>25.7±18.6 E+03</td>
<td>2.57±04</td>
</tr>
<tr>
<td>NH$_4^+$: NO$_3^-$</td>
<td>0.62±0.17</td>
<td>0.44±0.3</td>
<td>2.6±0.10</td>
<td>2.88±0.07</td>
<td>2.79±0.07</td>
</tr>
</tbody>
</table>
Figure 2: Concentrations of dissolved ammonium (NH₄⁺) a) at the surface for Legs S and N and b) with depth for Leg N, and c) concentrations of nitrate (NO₃⁻) at the surface for Legs S and N. Pink circles in panel b show the mixed layer depth at each CTD station. Abbreviations as in Figure 1. Figure produced using the package ggplot2 (Wickham, 2016).

Figure 3: a) Bulk (>0.3 µm) chlorophyll-a (chl-a) concentrations and b) proportion of chlorophyll-a in the >2.7 µm size fraction (i.e., nanophytoplankton; % of total bulk chl-a) at the surface for Legs S and N. Abbreviations as in Figure 1. Figure produced using the package ggplot2 (Wickham, 2016).
Figure 4: a) Bulk (>0.3 µm) POC to chlorophyll-a ratio (weight:weight) at the surface for Legs S and N, and b) bulk POC to PON (molar) ratio and c) δ¹⁵N-PON at the surface for Leg S. The stations nearest South Africa at which biomass concentrations were extremely high have been excluded from panels b and c. Abbreviations as in Figure 1. Figure produced using the package ggplot2 (Wickham, 2016).

Figure 5: Surface rates of a) net primary production (NPP; ρC) for two plankton size fractions (>0.3 and >2.7 µm); b) urea, ammonium (NH₄⁺), and nitrate (NO₃⁻) uptake for two plankton size fractions (>2.7 µm overlaid on >0.3 µm), and c) NH₄⁺ oxidation. Error bars indicate ±1 standard deviation of duplicate experiments. The percentage of total NPP attributable to the 0.3-2.7 µm size fraction is written next to each bar in panel a. NPP and NH₄⁺ uptake were not measured for the >2.7 µm size fraction at 58.5°S, and urea uptake was not measured at 50.7°S and 55.5°S. On panels b and c, the surface NH₄⁺ concentration at each station is shown by the yellow circles. Leg N stations (i.e., at which samples were collected from Niskin bottles fired at 10 m) are indicated by the open square around the station latitude. Abbreviations as in Figure 1. Figure produced using the package ggplot2 (Wickham, 2016).

Figure 6: Surface community composition for a) plankton >5-10 µm (enumerated by microscopy) and b) the total community <15 µm (enumerated by flow cytometry). The surface NH₄⁺ concentration at each station is shown by the yellow circles. * indicates stations at which no measurements were made. The abundance axis in panel b is 10³-times greater than the abundances shown in panel a. The fronts are indicated on panel a with abbreviations as in Figure 1.
Figure 7: Relative abundances of a) total photosynthetic versus heterotrophic cells and b) detritus (DNA-negative) versus heterotrophic cells at the surface for Leg S. The surface NH$_4^+$ concentration is indicated by the yellow dots. The values shown on the right side of panel a are the heterotrophic-to-photosynthetic cell ratios. The upper x-axis in panel b begins at 75% in order to highlight the (much smaller) heterotrophic contribution to the summed detrital + heterotrophic particles. Abbreviations as in Figure 1.

Figure 8: Schematic of the possible mixed-layer NH$_4^+$ consumption and production pathways. Bold text indicates components of the NH$_4^+$ cycle that were directly measured (seawater concentrations of NH$_4^+$, NO$_2^-$, and urea; phytoplankton and microzooplankton cell abundances) or inferred (bacterial NH$_4^+$ remineralization) in this study. Dotted lines indicate processes for which we have rate measurements (phytoplankton uptake of NH$_4^+$; oxidation of NH$_4^+$ to NO$_2^-$). Dashed-line boxes represent the atmosphere and sea-ice, with all other processes occurring in the ocean. DON – dissolved organic nitrogen; NH$_3$(aq) – aqueous (seawater) ammonia; NH$_4$(p) – ammonium aerosols (including ammonium sulphate, ammonium bisulphate, and ammonium nitrate); NH$_3$(g) – ammonia gas.
Figure 9: Surface concentrations of NH$_4^+$ across the Atlantic sector of the Southern Ocean measured between December 2018 and November 2019. Five unique transects additional to the winter 2017 dataset are shown: a) early summer 2018, b) late summer 2019, c) winter 2019, d) early spring 2019, and e) late spring 2019. f) Proposed seasonal cycle of NH$_4^+$ concentrations in the mixed layer for the waters south of the Subantarctic Front. The colour gradient in panel f indicates the transition period between winter and summer. Panels a and b cover a latitudinal extent of 30-70°S, while panels c-e cover 30-60°S due to the presence of sea-ice. Early- and late summer data were collected during the SANAE 58 Relief Voyage (6 December 2018 to 15 March 2019; VOY035); winter data were collected during the SCALE 2019 (www.scale.org.za) winter cruise to the MIZ (18 July to 12 August 2019; VOY039); and spring data were collected during the SCALE 2019 spring cruise to the MIZ (12 October to 20 November 2019; VOY040). All sampling was conducted onboard the R/V SA Agulhas II. Abbreviations as in Figure 1, with AZ referring to the combined OAZ and PAZ. Figure produced using the package ggplot2 (Wickham, 2016).