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Abstract  24 

The flow of carbon through terrestrial ecosystems and the response to climate is a critical but highly uncertain 25 
process in the global carbon cycle.  However, with a rapidly expanding array of in situ and satellite data, there is an 26 
opportunity to improve our mechanistic understanding of the carbon (C) cycle’s response to land use and climate 27 
change. Uncertainty in temperature limitation on productivity poses a significant challenge to predicting the 28 
response of ecosystem carbon fluxes to a changing climate.  Here we diagnose and quantitatively resolve 29 
environmental limitations on growing season onset of gross primary production (GPP) using nearly two decades of 30 
meteorological and C flux data (2000-2018) at a subalpine evergreen forest in Colorado, USA. We implement the 31 
CARDAMOM model-data fusion network to resolve the temperature sensitivity of spring GPP. To capture a GPP 32 
temperature limitation—a critical component of integrated sensitivity of GPP to temperature—we introduced a cold 33 
temperature scaling function in CARDAMOM to regulate photosynthetic productivity.  We found that GPP was 34 
gradually inhibited at temperature below 6.0 °C (± 2.6 °C) and completely inhibited below -7.1 °C (± 1.1 °C).  The 35 
addition of this scaling factor improved the model’s ability to replicate spring GPP at interannual and decadal time 36 
scales (r = 0.88), relative to the nominal CARDAMOM configuration (r = 0.47), and improved spring GPP model 37 
predictability outside of the data assimilation training period (r = 0.88) . While cold temperature limitation has an 38 
important influence on spring GPP, it does not have a significant impact on integrated growing season GPP, 39 
revealing that other environmental controls, such as precipitation, play a more important role in annual productivity. 40 



 

2 

This study highlights growing season onset temperature as a key limiting factor for spring growth in winter-dormant 41 
evergreen forests, which is critical in understanding future responses to climate change. 42 

1. Introduction 43 

Northern hemisphere evergreen forests contribute significantly to terrestrial carbon (C) storage and exchange 44 
(Beer et al., 2010; Thurner et al., 2014). High-latitude and high-elevation evergreen forests show increasing gross 45 
primary productivity (GPP) with increasing temperature driven in large part by earlier growing seasons (Myneni et 46 
al., 1997; Randerson et al., 1999; Forkel et al., 2016; Winchell et al., 2016, Lin et al., 2017). However, the response 47 
of gross and net C fluxes to warming remains uncertain, especially in subalpine temperate forests, which can 48 
experience freezing temperature while still absorbing large amounts of sunlight; both these factors ultimately 49 
influence the timing and magnitude of GPP (Bowling et al., 2018). In particular, warmer springs can also lead to 50 
earlier snowmelt, which can reduce spring C uptake through increased surface exposure to colder ablation-period air 51 
temperatures (Winchell et al., 2016), and can reduce summer C uptake via drought (Hu et al., 2010). Many 52 
subalpine forests in western North America are also highly water limited, with warming and earlier snow melt 53 
creating accumulated water deficits, increased drought stress, and growing season C uptake losses (Wolf et al., 54 
2016; Sippel et al., 2017; Buermann et al., 2018, Goulden and Bales, 2019); these factors ultimately make subalpine 55 
forest ecosystems sensitive to the direct and indirect effects of climate change and other disturbances, including the 56 
effects of droughts, fires and insect infestations (Keenan et al., 2014; Frank et al., 2014; Knowles et al., 2015). The 57 
uncertainty in the temperature sensitivity of springtime GPP, increasing vulnerability to disturbance, and GPP 58 
modeling challenges (Anav et al., 2015) create urgency to improve our ability to observe and model these 59 
ecosystems to understand how C exchange will be altered in a warming climate.  60 

Fortunately, availability of long term ecosystem observations is improving. The expansion of international 61 
flux tower networks over the last three decades (e.g. AmeriFlux, FLUXNET, ChinaFLUX, ICOS) has greatly 62 
improved C flux sampling across global ecosystems at 1 km scale (Baldocchi 2008; Baldocchi et al., 2018), and the 63 
number of spaceborne sensors continues to grow, allowing global estimation of gross primary production (GPP) and 64 
net ecosystem C exchange (NEE) over the last decade (e.g. Stavros et al., 2017; Sun et al., 2017; Schimel et al., 65 
2019). While uncertainties in estimating C fluxes from in situ and satellite data remain a challenge, the expanding 66 
observational record offers a great opportunity to study the temperature sensitivity of subalpine forests at multiple 67 
temporal scales.  68 

The range of modeling tools available to quantify and study major C pools under ever growing 69 
observational constraints is also increasing. Process-based models, in general terms, use explicit mathematical 70 
relationships to mechanistically describe bio-physical processes (Korzukhin et al., 2011; Huxman et al., 2003; 71 
Keenan et al., 2012).  In contrast, model-data fusion (MDF) is a relatively new tool that alters model parameters to 72 
statistically reduce mismatches between observations and model predictions (Raupach et al., 2005; Wang et al., 73 
2009; Keenan et al., 2012).  MDF methods can be used to statistically represent the terrestrial C balance by 74 
generating optimized state and process variable parameterizations, with uncertainties, which best match the signal 75 
and noise in observations (Bloom et al., 2020).   76 
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Models of varying complexity and assimilation capabilities have been used to study how C exchange varies 78 
with temperature in subalpine evergreen ecosystems (e.g., Moore et al., 2008; Scott-Denton et al., 2013; Knowles et 79 
al., 2018). Moore et al. (2008) used a simplified ecosystem function model and assimilated C flux data from the 80 
Niwot Ridge (US-NR1) subalpine evergreen forest AmeriFlux tower in Colorado to show the importance of accurate 81 
meteorological forcing for parameter optimization and the usefulness of assimilating C flux data for determining 82 
connections between the C and water cycles.  Scott-Denton et al. (2013) integrated meteorological and flux data 83 
from 1999-2008 from the same site with an ensemble of more sophisticated Earth System Models (ESM) and 84 
showed higher rates of C uptake by the end of the 21st century associated with warming and lengthening growing 85 
seasons, and driven by greater increases of spring GPP relative to late season respiration.  86 

Interestingly, model and empirical studies of the C flux response to climate at US-NR1 focus on the 2000-87 
2011 period, which saw increasing summer drought coupled with sustained declines in spring temperature and GPP. 88 
US-NR1 has since experienced a gradual recovery of spring GPP with increased spring warming throughout 2011-89 
2018 (Fig. 1), which begs the question: what is the temperature sensitivity of spring GPP over multiple decades of 90 
spring cooling and warming at US-NR1, and how well can data-constrained models reproduce long term variability? 91 
To answer this question, we combine a mechanistic ecosystem C model (Data Assimilation Linked Ecosystem 92 
Carbon, or DALEC2; Williams et al., 2005; Bloom et al., 2016) with the CARbon DAta-MOdel fraMework 93 
(CARDAMOM; Bloom and Williams, 2015; Bloom et al., 2020) driven by observed meteorological forcing and 94 
constrained against eddy covariance fluxes at US-NR1, to investigate the temperature sensitivity of this subalpine 95 
evergreen forest at seasonal and interannual timescales. We introduce a new cold temperature limitation function, 96 
trained on observed temperature, for more realistic simulation of spring GPP onset. The use of high quality and long 97 
term (2000-2018) meteorology and partitioned GPP data at US-NR1 to drive and constrain the model enables robust 98 
statistical analysis of interannual variability (IAV), and assessment of “model predictability” through training and 99 
validation against subsets of data. We also leverage a recent model intercomparison study (Parazoo et al., 2020), 100 
driven by site level meteorological data at US-NR1, to provide a model benchmark assessment, and extract any 101 
common environmental controls on modeled GPP. Finally, we examine whether using a decade of flux tower-102 
derived GPP observations to train the model is sufficient to match and predict seasonal to annual patterns in GPP.  103 
Given the complexity of carbon-water cycle interactions during the growing (summer) season in this highly water 104 
limited ecosystem, and the relatively weak correlation between tower-derived spring and summer GPP (r = -0.31, p 105 
= 0.20), we focus on spring GPP-temperature interactions, with the aim to resolve just one piece of the larger, 106 
complex problem of understanding changes in C uptake in a subalpine evergreen ecosystem.  107 

2. Materials & Methods 108 

2.1. Study Site: Niwot Ridge, CO., USA 109 

Our study focuses on an AmeriFlux (https://ameriflux.lbl.gov/) core site in Niwot Ridge, Colorado, USA 110 
(US-NR1, 40°1’58’’N; 105°32’47’’ W), where a tower-based eddy covariance system has been used to continuously 111 
monitor the net ecosystem exchange (NEE) of carbon dioxide over a subalpine forest since November 1998. The 26 112 
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m tall tower is located in a high elevation (3050 m) subalpine site in the Rocky Mountains of Colorado (Monson et 119 
al., 2002).  Located in an evergreen needleleaf (ENF) ecosystem, the dominant tree species include lodgepole pine 120 
(Pinus contorta), subalpine fir (Abies lasiocarpa), and Engelmann spruce (Picea engelmannii) (Turnipseed et al., 121 
2002; Turnipseed et al., 2004).  Average annual precipitation is 800 mm, with a majority of precipitation falling in 122 
the winter as snow (Greenland, 1989; Knowles et al., 2015), which creates a persistent winter snowpack from 123 
November through early June (Bowling et al., 2018).   124 

2.2. Observations 125 

NEE measurements are screened for calm conditions using the standard ustar filtering, gap-filled, and 126 
partitioned into GPP and ecosystem respiration based on the relationship between nighttime NEE 127 
(photosynthetically active radiation, PAR < 50 µmol m-2 s-1) and air temperature (Reichstein et al., 2005; Wutzler et 128 
al., 2018). Monthly averages of GPP based on nighttime partitioning show similar seasonal structure to results found 129 
using an alternative daytime partitioning algorithm (Lasslop et al., 2009), so only nighttime partitioned GPP data are 130 
reported here. All GPP estimates are processed as half hourly means, then averaged monthly. Details on the flux 131 
measurements, data processing and quality control are provided in Burns et al. (2015). 132 

2.3. The CARDAMOM Model-Data Fusion System 133 

The CARbon DAta-MOdel FraMework (CARDAMOM; Bloom et al., 2016; Yin et al., 2020; Exbrayat et 134 
al., 2018; Smallman et al., 2017; Quetin et al., 2020; López-Blanco et al., 2019; Famiglietti et al., 2021; Bloom et 135 
al., 2020; amongst others) uses carbon cycle and meteorological observations to constrain carbon fluxes, states and 136 
process controls represented in the DALEC2 model of terrestrial C cycling (Williams et al., 2005; Bloom and 137 
Williams, 2015). Specifically, CARDAMOM uses a Bayesian model-data fusion approach to optimize DALEC2 138 
time-invariant parameters (such as leaf traits, allocation and turnover times) and the “initial” C and H2O conditions 139 
(namely biomass, soil and water states at the start of the model simulation period). 140 

The DALEC model (Williams et al., 2005; Rowland et al., 2014; Fox et al., 2009; Richardson et al., 2010; 141 
Famiglietti et al., 2021; Bloom & Williams, 2015; amongst others) is a box model of C pools connected via fluxes 142 
that has been used to evaluate terrestrial carbon cycle dynamics across a range of ecosystems and spatial scales.  In 143 
all site, regional, and global applications, DALEC parameters are subject to very broad, but physically realistic, prior 144 
distributions, and independently estimated and constrained by available observations at each grid point. Here we use 145 
DALEC version 2 (DALEC2; Yin et al., 2020; Quetin et al., 2020; Bloom et al., 2020); gross and net carbon fluxes 146 
are determined as a function of 33 parameters, including 26 time-invariant parameters relating to allocation, turnover 147 
times, plant traits, respiration climate sensitivities, water-use efficiency and GPP sensitivity to soil moisture, and 7 148 
parameters describing the initial conditions of live biomass pools (live biomass C, dead organic C and plant-149 
available H2O). Within DALEC2, GPP estimates are generated in the aggregated canopy model (ACM, Williams et 150 
al., 1997); the ACM is derived from simple functional relationships with environmental and plant structural and 151 
biochemical information (Williams et al., 1997), that are produced from a sensitivity analysis of GPP estimates from 152 
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the more comprehensive SPA land surface model scheme (Williams et al., 1996, Williams et al., 2001). ACM GPP 161 
estimates are contingent on plant structural and biochemical variables (including LAI, foliar nitrogen and nitrogen-162 
use efficiency) and meteorological forcing (total daily irradiance, maximum and minimum daily air temperature, day 163 
length, atmospheric CO2 concentration). In DALEC2, water limitation on ACM is prescribed as a linear response to 164 
soil water deficit (Bloom et al., 2020). For more details on the model-data fusion methodology and CARDAMOM 165 
ensembles, we refer the reader to Appendix A.  For a comprehensive overview of the DALEC2 model, we refer the 166 
reader to Bloom et al. (2020) and references therein. 167 

2.4. Experiment Design 168 

In order to develop model experiments that could reliably evaluate temperature-GPP interactions, we first 169 
examine the observed environmental controls on tower-derived GPP.  We focus on GPP during spring, defined here 170 
as the period from March-May, which encompasses the climatological onset of GPP and transition from dormant 171 
winter conditions to peak summer conditions (Fig 1a). Mean spring GPP exhibits large interannual variability (IAV) 172 
with both a small decreasing trend from 2000-2010 (-0.02 g C m-2 day-1 per year) and increasing trend from 2010-173 
2018 (0.04 g C m-2 day-1 per year) (Fig. 1b).  Comparison to tower observed temperature data (Fig. 1b and Fig. 2) 174 
shows that spring GPP is positively correlated to mean spring air temperature (Pearson’s linear r = 0.89, p = 175 
0.000004) and summer (June-September) air temperature (r = 0.10, p = 0.70, Fig. S1a).  Mean winter (December-176 
February) precipitation also has a positive correlation with spring GPP, (r = 0.07, p = 0.77, Fig. S1b), but it is much 177 
smaller than spring temperature. At interannual timescales, mean annual GPP shows a small increasing trend 178 
(0.0072 g C m-2 day-1 per year) over the time period (Fig. S2), and largest correlation with winter (December – 179 
February) precipitation (Pearson’s linear r = 0.63, p = 0.003, Fig. S3d) and shortwave irradiance (r = -0.30, p = 0.22, 180 
Fig. S3f).  In contrast, spring temperature shows little correlation with mean annual GPP (r = -0.02, p = 0.92, Fig. 181 
S3c).  It appears that winter precipitation and total irradiance are the dominant drivers in annual productivity, both of 182 
which are correlated, while spring temperature show a first order effect in driving spring GPP.   183 

 184 
Figure 1. Time series of (a) mean monthly GPP (blue) and air temperature (orange) and (b) mean spring (March-May) GPP and 185 
air temperature at Niwot Ridge (US-NR1) from 2000-2018. GPP data are derived using a nighttime partitioning technique based 186 
on tower observations of NEE and air temperature.   187 
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 198 

 199 
Figure 2. Scatterplot of mean spring (March-May) GPP with mean spring air temperature with the color bar showing the 200 
corresponding year (2000-2018). ‘r’ is Pearson’s correlation coefficient.  201 
 202 

We also find that cold temperature has an important limitation on seasonal GPP at US-NR1.  The seasonal 203 
cycle of GPP shows peak productivity in early summer (around June) and falling to near-zero values by early winter 204 
(November), continuing through late winter (February-March).  Comparison of monthly GPP and minimum, 205 
maximum, and mean monthly air temperature shows an initiation of photosynthesis at monthly maximum air 206 
temperature above 0 °C (Fig. 3a) and monthly minimum air temperature above -5 °C (Fig. 3b).  The strong 207 
dependence of monthly GPP on temperature is consistent with previous findings that temperature is an important 208 
driver of spring onset and seasonal variability of GPP in evergreen forests (e.g., Pierrat et al., 2021; Parazoo et al., 209 
2018; Euskirchen et al., 2014; Arneth et al., 2006).  As temperature falls in winter dormant plants, productivity 210 
becomes negligible.  Productivity is triggered again when spring air temperature becomes warm enough to thaw 211 
stems, trigger xylem flow and promote access to soil moisture (e.g., Pierrat et al., 2021; Bowling et al., 2018; Ishida 212 
et al., 2001).  Due to this observed dependence of GPP on temperature at US-NR1, we focus our analysis 213 
specifically on spring GPP, where we hypothesize that cold temperature is the dominant control on spring GPP 214 
variability.  215 

 216 
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 222 
Figure 3. Scatter plot of mean monthly GPP vs. a.) mean maximum air temperature, b.) mean minimum air temperature and c.) 223 
mean air temperature for 2000-2018. Dots are colored with the corresponding month.  224 
  225 

In the baseline version of CARDAMOM, seasonal GPP in DALEC2 is limited primarily by incoming 226 
shortwave radiation. This light-focused limitation works well for deciduous forests where spring temperature and 227 
sunlight are correlated, as well as high latitude regions where sunlight is limited.  However, for reasons discussed 228 
above, this method fails in evergreen forests such as Niwot Ridge whose green canopies are exposed to high sunlight 229 
and below-freezing temperature in spring.  As such, we implement a cold temperature scaling factor (g) in DALEC2 230 
Eq. (1), to act as a thermostat that regulates evergreen needleleaf carbon uptake phenology.  This scaling factor is 231 
developed by analyzing the relationship between monthly minimum & maximum air temperature with tower-derived 232 
monthly GPP, where 233 

𝐼𝑓:		𝑇!"#	(𝑡) < 	𝑇$ 	 ∶ 	𝑔	 = 	0          (1) 234 
𝐼𝑓 ∶ 	 𝑇!"#		(𝑡) > 	𝑇% ∶ 	𝑔	 = 	1  235 

𝐸𝑙𝑠𝑒:	𝑔(𝑡) = 	 ('!"#(()*'$	)
('%*'$)

   236 

GPP,-./(t) = 	GPP(t) 	∗ 	g(t)  (2) 237 
Tmin(t) is the observed minimum temperature at Niwot Ridge at time t, GPP(t) is the nominal ACM-based DALEC2 238 
GPP estimate (see section 2.3) and GPPcold is the corresponding cold temperature GPP estimate. Equation (2) may 239 
represent changes in plant hydraulics and photosynthetic activity due to changing temperature in the spring. As 240 
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temperature increases, evergreen stems slowly thaw, which enables the trees to access available soil moisture and 243 
slowly reactivate their carbon and water exchange processes (Mayr et al., 2014; Bowling et al., 2018). Temperature 244 
also impacts the reactivation of photosynthetic activity after winter dormancy (Öquist and Huner, 2003; Tanja et al., 245 
2003). For example, fluctuating temperature in the spring has been shown to limit and sometimes reverse the 246 
activation of biochemical processes needed for photosynthesis recovery (Ensminger et al., 2004). Exposure to cold 247 
temperature, when combined with increased irradiance in the spring, can also damage evergreen trees (Öquist and 248 
Huner, 2003; Yang et al., 2020), therefore disrupting CO2 assimilation. These processes may be approximated by 249 
this cold temperature scaling factor added to CARDAMOM. The temperature thresholds for photosynthesis 250 
shutdown (referred to as T0) and initiation (referred to as Tg) are added as model parameters in DALEC2, bringing 251 
the total number of parameters to 35.  These 35 DALEC parameters are simultaneously optimized in CARDAMOM. 252 
The CARDAMOM Bayesian-inference probability distributions (see Appendix A) for the T0 (-7.1 ± 1.1 °C) and Tg 253 
(6.0 ± 2.6 °C) parameters used to define the cold temperature limitation are plotted in Fig S4. We refer to the cold 254 
temperature constrained version of DALEC2 (within CARDAMOM) as DALEC2cold.  255 

The baseline (DALEC2) and cold temperature (DALEC2cold) versions of the model are run for the 2000-256 
2018 period using tower observed, gap-filled, monthly meteorological (MET) drivers (including minimum and 257 
maximum air temperature, shortwave radiation, vapor pressure deficit, and precipitation).  We conduct four 258 
experiments, summarized in Table 1: experiments using DALEC2 and DALEC2cold within CARDAMOM, where 259 
19 years of GPP data are assimilated (referred to as CARD and CARDcold), and a corresponding pair of 260 
experiments where only the first decade of data (2000-2009) is assimilated (referred to as CARD-Half and 261 
CARDcold-Half) and the second decade of data (2010-2019) is withheld for validation, as a train-test scenario.  All 262 
months of GPP data are assimilated into the model, however our analysis focuses on the constraints on spring 263 
(March-May) GPP. These four experiments serve to evaluate the sensitivity of modeled GPP at Niwot Ridge to cold 264 
temperature limitation and parameter optimization. Specifically, the objective of experiments “CARD” and 265 
“CARDcold” is to determine whether the cold temperature scaling factor improves the representation of spring GPP 266 
variability across the 2000-2018 period; the objective of experiments “CARD-Half” and “CARDcold-Half” is to 267 
cross-validate the predictive skill of CARDcold by assessing whether the addition of a cold temperature scaling 268 
factor, informed by a subset of GPP data, can improve prediction of a withheld subset of GPP data. 269 
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Table 1. Summary of CARDAMOM modeling experiments to determine sensitivity of seasonal and interannual spring GPP 284 
variability to cold temperature limitation (CARD vs CARDCold) and the ability to perform outside training window (Half).   285 

Experiment Name Met. Drivers Time Period 

GPP 

assimilation 

Time period 

considered in 

assimilation 

Uncertainties in 

GPP 

Cold Temp. 

Limitation 

CARD yes 2000-2018 yes 2000-2018 20% No 

CARD-Half yes 2000-2018 yes 2000-2009 20% No 

CARDCold yes 2000-2018 yes 2000-2018 20% Yes 

CARDCold-Half yes 2000-2018 yes 2000-2009 20% Yes 

 286 

2.5. Comparison to Terrestrial Biosphere Model Ensemble 287 

A recent model intercomparison study provides an ideal benchmark for evaluating CARDAMOM 288 
simulations (section 2.4). Parazoo et al. (2020) conducted an experiment in which an ensemble of state-of-the-art 289 
terrestrial biosphere models (TBMs) were forced by the same observed meteorology at Niwot Ridge from 2000-2018, 290 
but with differences in spin-up, land surface characteristics, and parameter tuning. The TBMs are designed to simulate 291 
the exchanges of carbon, water, and energy between the biosphere and atmosphere, from global to local scales 292 
depending on inputs from meteorological forcing, soil texture, and plant functional type (PFT). The experiment was 293 
designed primarily to evaluate simulations of solar induced fluorescence (SIF) and GPP, the latter of which we focus 294 
on here. We refer the reader to Parazoo et al. (2020) for a more complete description of models, within-model 295 
experiments, and between-model differences.  296 

The most important model differences worth noting here include the representation of stomatal conductance, 297 
canopy absorption of incoming radiation, and limiting factors for photosynthesis. We analyze a subset of the models 298 
which were run for multiple years, including SiB3 and SiB4 (Simple Biosphere model versions 3 and 4, respectively), 299 
ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems), BEPS (Boreal Ecosystems Productivity 300 
Simulator), and CLM4.5 and CLM5.0 (Community Land Model Versions 4.5 and 5.0, respectively). We also analyze 301 
within-model experiments in SiB3 and ORCHIDEE to isolate effects related to prescription of leaf area index (LAI; 302 
monthly varying in SiB3-exp1, fixed at 4.0 m2/m2 in SiB3-exp2), temperature and water stress (ORCHIDEE-exp1 303 
includes temperature stress; ORCHIDEE-exp2 accounts for temperature and water stress), and data assimilation 304 
(ORCHIDEE-exp3, in which a subset of model parameters controlling photosynthesis and phenology are optimized 305 
against global OCO-2 SIF data, Bacour et al., 2019).  Most of the TBM model experiments were run with default 306 
parameters (BEPS, CLM50, SiB3, SiB4, ORCHIDEE-exp1 and exp2). The other experiments were optimized in the 307 
following ways: either a) parameters were hand-tuned based on the US-NR1 data (CLM45) or b) the parameters were 308 
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optimized using OCO-2 SIF data (ORCHIDEE-exp3). For more details on the parameterization of the TBM-SIF 311 
experiments, we refer the reader to Parazoo et al. (2020). The use of these models provides insight into the spread in 312 
model structures and the use of their default parameters. Finally, we note that not all model simulations span the entire 313 
observed record (2000-2018). While our analysis focuses on the long-term record from 2000-2018, we provide 314 
multiple comparisons to ensure consistency of time period: (1) IAV from 2001-2018 for SiB3, SiB4, ORCHIDEE, 315 
and CLM4.5; (2) IAV from 2012-2018 for SiB3, SiB4, ORCHIDEE, CLM4.5, and CLM5.0, and (3) seasonal 316 
variability from 2015-2018 for all models. We refer to the ensemble of models and within model experiments 317 
collectively as TBM-MIP.  318 

3. Results & Discussion 319 

3.1. Evaluation of CARDAMOM 2000–2018 GPP 320 

When the 19 years of tower-derived GPP data are assimilated into both versions of the model, the mean 321 
seasonal cycle is accurately replicated (Fig. 4).  The  Pearson’s r values for CARD (Fig. 4a) and CARDcold (Fig. 4b) 322 
are almost equal (r = 1.0 and 0.99) with minimal increases in root mean square error (RMSE) and mean bias error 323 
(MBE) for CARDcold (RMSE = 0.24 g C m-2 day-1 and 0.23 g C m-2 day-1, MBE = 0.06 g C m-2 day-1 and 0.19 g C 324 
m-2 day-1 for CARD and CARDcold, respectively).  Assimilating only the first decade of GPP data (Half 325 
experiments) does not drastically alter model performance (Fig. S5), with only slight changes in RMSE and MBE 326 
(DRMSE = 0.008 g C m-2 day-1, DMBE =  0.03 g C m-2 day-1 for CARD-Half, DRMSE =  -0.003 g C m-2 day-1, 327 
DMBE =  0.02 g C m-2 day-1 for CARDcold-Half).  328 

 329 
Figure 4. Tower-derived average monthly GPP (black line) and modeled GPP seasonal cycles at US-NR1 for 2000-2018, for a.) 330 
CARD and b.) CARDcold experiments.  The half-assimilation experiments (CARD-Half and CARDcold-Half) can be found in 331 
the supplement (Fig S5). Model outputs include the median value of each experiment (bold color line) with the  25th-75th 332 
percentiles of the ensembles (shaded area). The median is plotted instead of the mean to avoid impact of outlier ensemble 333 
members (N = 4000).  Error bars = tower-derived GPP multiplied/divided by exp(sqrt(log(2)^2*n)/n), n=# of years in average (n 334 
= 19). ‘r’ is the Pearson’s coefficient.   335 
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 341 
The cold experiments exhibit an improved fit to the observed IAV in spring productivity (Fig. 5), relative to 342 

CARD, (r = 0.47, std = 0.03 g C m-2 day-1 for CARD; r = 0.88, std = 0.27 g C m-2 day-1 for CARDcold).  CARDcold 343 
also has slightly reduced RMSE (-0.01 g C m-2 day-1) and larger MBE (0.13 g C m-2 day-1).  Similar to the seasonal 344 
cycle analysis, the assimilation of only the first decade of GPP data (Half experiments) has minimal impact on 345 
model performance (DRMSE = 0.007 g C m-2 day-1, DMBE =  0.06 g C m-2 day-1 for CARD-Half, and DRMSE =  346 
0.02 g C m-2 day-1, DMBE =  0.02 g C m-2 day-1 for CARDcold-Half). We find less agreement between modeled and 347 
tower-derived GPP IAV in summer for both CARD and CARDcold (CARD r = 0.32, std = 0.11 g C m-2 day-1; 348 
CARDcold r = 0.05, std = 0.10 g C m-2 day-1; Fig. S6).  While there is little variation in RMSE between the half and 349 
full-assimilation experiments, RMSE is larger for summer than spring GPP (average RMSE = 0.23 g C m-2 day-1 for 350 
spring model outputs, average RMSE = 0.35 g C m-2 day-1 for summer model outputs).  Model agreement is further 351 
reduced when considering annual average GPP (Fig. S7, Table S2). Although the cold temperature limitation 352 
improves IAV slightly, it is still small compared to observed variability (mean annual std = 0.14 g C m-2 day-1).  353 
Correlations to tower-derived GPP at the annual scale are small for both CARD and CARDcold (r = 0.19 and r = 354 
0.22, Fig. S7a-b).  Overall, the cold temperature limitation substantially improves agreement between the model and 355 
tower-derived spring GPP, with slight reductions in performance for summer and annual GPP.  356 

 357 

 358 
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Figure 5. Tower-derived (black line) mean spring (March-May) GPP with model interquartile range (shaded area) and median 364 
(bold color line) spring GPP outputs for a.) CARD, b.) CARDcold, c.) CARD-Half,  and d.) CARDcold-Half experiments. The 365 
grey regions indicate no data assimilation (i.e. testing window). Model experiments are the same as in Figure 4. Uncertainty = 366 
exp(sqrt(log(2)^2*n)/n), n=# of months in average (n = 3). 367 

 368 
The standard deviation in tower-derived mean spring GPP (March-May) is approximately 0.25 g C m-2 day-369 

1.  The addition of the cold temperature limitation improves the model’s ability to match the IAV of mean spring 370 
GPP (Fig. 6a-b).  An examination of all modeled scenarios for CARD and CARDcold (i.e. all 4000 DALEC2 371 
simulations), shows that the cold temperature limitation produces spring IAV values much closer to what is 372 
observed in the tower-derived GPP data.  Only 0.3% of CARD ensembles produces mean spring IAV values within 373 
20% of the tower-derived spring GPP standard deviation (0.25 ± 0.05 g C m-2 day-1), whereas 69% of CARDcold 374 
ensembles have standard deviation values within the same range.  Interestingly, assimilating only the first ten years 375 
of GPP data (Half experiments, Fig. 6b) slightly increases the number of ensemble members with standard 376 
deviations within the mentioned range for both CARD-Half (2.4%) and CARDcold-Half (70%).   It is promising to 377 
see that despite not assimilating the 2010-2018 GPP data into the model, CARDcold-Half is still able to match 378 
average spring IAV of the full data record.   379 

We also consider the IAV in spring GPP for just the second half of the data record (2010-2018).  IAV of 380 
tower-derived spring GPP increases slightly in 2010-2018 (0.32 g C m-2 day-1).  Once again, the cold temperature 381 
limitation enables CARDAMOM to match spring GPP IAV (Fig. 6c-d).  0.03% of CARD ensembles produce mean 382 
spring IAV values within 20% of the tower-derived spring GPP standard deviation for the 2010-2018 period (0.32 ± 383 
0.06 g C m-2 day-1), whereas 76% of CARDcold ensembles have standard deviation values within the same range. 384 
For the Half experiments, 0.6% of CARD and 75% of CARDcold ensembles have IAV values within 20% of the 385 
standard deviation for 2010-2018. This improvement in matching IAV is also observed when considering mean 386 
annual GPP (Fig. S8), but is much smaller than the improvements made for spring GPP. Overall, CARDcold 387 
produces a less biased distribution of IAV values (relative to both assimilated and withheld observations), whereas 388 
CARD is more skewed towards smaller IAVs, which indicates that the cold temperature limitation enables a 389 
mechanistic and statistical improvement in capturing the interannual variability of spring GPP.   390 

 391 
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 392 
Figure 6. Histograms comparing standard deviation in mean spring GPP across all ensembles (N=4000) for CARD (red bars) and 393 
CARDcold (blue bars) experiments with a.) full assimilation, b.) half assimilation, c.) full assimilation for the second decade 394 
(2010-2018), and d.) half assimilation for the second decade (2010-2018). Black line indicates standard deviation in tower-395 
derived mean spring GPP (std = 0.25 gC m-2 day-1 for full period (a-b), std = 0.32 gC m-2 day-1 for 2010-2018 (c-d)).   396 

 397 

3.2. Temperature controls on springtime GPP 398 

 The added value of the DALEC2 cold temperature limitation for modeling mean spring (March-May) GPP 399 
is logically due to large fluctuations in spring temperature at Niwot Ridge.  The cold temperature limitation allows 400 
DALEC2-CARDAMOM to match the IAV of spring tower-derived GPP closely.  Furthermore, the cold temperature 401 
limitation enables the model to match tower spring IAV in the second half of the time period (2010-2018) when only 402 
the first ten years of GPP data are assimilated (2000-2009).  This indicates that the cold temperature limitation is 403 
able to estimate spring GPP outside of its training window and could be useful at other sites where data availability 404 
is limited.  Future work will include evaluating the cold temperature limitation at other sites to ensure that it is 405 
applicable beyond Niwot Ridge, for example using forecast skill metrics proposed by Famiglietti et al. (2021).  406 
 Temperature-induced spring onset of GPP is driven by two general processes: (1) initiation of bud burst 407 
and leaf expansion leading to increasing LAI, and/or (2) initiation of photosynthetic activity (photosynthetic 408 
efficiency i.e., GPP per unit of LAI) due to temperature-induced changes in plant hydraulics (Ishida et al., 2001; 409 
Pierrat et al., 2021) or kinetics of the photosynthetic machinery (e.g., Medlyn et al., 2002). In situ LAI 410 
measurements suggest that the LAI at Niwot Ridge is relatively constant across the season, which is somewhat 411 
expected given the dominant tree species at the site.  Hence, the temperature-induced onset of GPP is likely due to 412 
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the latter process, increased photosynthetic efficiency, as supported by the measurements (Figs. 1-2), although small 415 
changes in LAI are still feasible given uncertainties in the measurements. The inclusion of the cold temperature 416 
limitation scaling factor in the model, a semi-empirical process, leads to a substantial improvement in model 417 
representation of GPP at the site. Further development may also look to identify the relative roles of increased LAI 418 
and increased photosynthetic efficiency at Niwot Ridge and other evergreen needleleaf sites, as changes in GPP can 419 
lead to changes in carbon allocation to LAI, among other plant carbon pools. 420 
 Temperature is important in both the reactivation of photosynthetic activity in the spring and the wind 421 
down of productivity in the fall (Flynn and Wolkovich, 2018; Stinziano and Way, 2017). Therefore, we anticipate 422 
that the cold temperature scaling function may also improve our ability to model fall productivity. However, other 423 
factors such as water availability and photoperiod must also be considered (Bauerle et al., 2012; Stinziano et al., 424 
2015). Future studies at Niwot Ridge and other sites should investigate the role of these factors (temperature, water, 425 
photoperiod) in regulating fall GPP and how we can represent these processes in CARDAMOM.  426 
 With the inclusion of the cold temperature limitation on GPP and its application in CARDAMOM, we 427 
provide a data-constrained estimate of the climate sensitivity of the Niwot Ridge forest to spring temperature. 428 
Posterior estimates indicate that GPP is gradually inhibited below 6.0 °C ± 2.6 °C (Tg) and completely inhibited 429 
below -7.1 °C ± 1.1 °C (T0).  The gradual limitation of GPP by temperature has been observed on hourly and daily 430 
timescales in other cold-weather ecosystems, such as Alaskan conifers (Parazoo et al., 2018) and Canadian spruce 431 
(Pierrat et al., 2021).  This has been connected to the triggering of transpiration and water flow from xylem into 432 
leaves (Ishida et al., 2001).  However, both biotic (e.g., carotenoid/chlorophyll ratios) and abiotic (e.g., openness of 433 
canopy) factors together regulate GPP response to meteorological forcings, and further process-oriented 434 
investigations are required to resolve the emergent response of GPP to temperature.  For now, this is a useful metric 435 
for climate-sensitivity of spring GPP, at least in the absence of long-term adaptations. Furthermore, over the 19 year 436 
observation period investigated here the use of a temporally constant T0 and Tg yields significantly improved GPP 437 
estimates, suggesting that much of the variability can be attributed to climate-driven changes, not interannual 438 
variation in vegetation parameters.  As temperature continues to increase due to climate change (particularly in the 439 
early growing season), productivity at US-NR1 could increase as a result and therefore increase carbon uptake, with 440 
productivity peaking earlier in the year (e.g., Xu et al., 2016). However, these spring gains in GPP have been shown 441 
to not offset the losses of carbon due to summer droughts (e.g., Buermann et al., 2013; Knowles et al., 2018).  It is 442 
also unclear how the long-term stress of increased temperature could affect forest productivity directly.   443 

This study focuses on the relationship between temperature and GPP and its usefulness on model 444 
predictions of spring GPP, but an important component that cannot be ignored is the confounding effect of water 445 
availability on GPP.  Future changes in winter precipitation are more uncertain, therefore limiting our ability to 446 
analyze how precipitation changes will alter future productivity.  While precipitation observations are analyzed to 447 
discern any major connections between GPP and meteorological controls, an analysis of how precipitation affects 448 
model predictability is not included in this study.  The combined results, including the cold temperature limitation 449 
and train-test data assimilation experiments, suggest that other factors besides spring temperature, most notably 450 
winter and summer precipitation (Fig. S3) and resulting soil water limitation, also have important impacts on 451 Deleted: 2452 



 

15 

summer GPP. We therefore highlight the need to jointly resolve springtime temperature limitation in conjunction 453 
with water stress limitations in future efforts to understand the integrated role of environmental forcings on 454 
interannual GPP variability.  Furthermore, this analysis does not consider how winter precipitation as snowfall 455 
versus rainfall affects productivity, or how resulting changes to winter snowpack could alter productivity long-term.  456 
Since annual average GPP appears to be more dependent on winter precipitation/snowpack (Pearson’s linear r = 457 
0.63, Fig. S3a), future work will include improving model predictability of late season productivity and quantifying 458 
temperature-water effects on carbon uptake. The definition of the seasons could also alter the connections drawn 459 
between seasonal temperature, precipitation and productivity.   460 

3.3. Model intercomparison and implications for GPP models 461 

Here, we evaluate DALEC2-CARDAMOM against mean spring GPP estimates from TBM-MIP models 462 
(Section 2.5 and Parazoo et al. 2020). It is important to remind the reader that the CARDAMOM runs have a 463 
significant advantage over the TBM-MIP models in this analysis, as CARDAMOM is trained on US-NR1 GPP data. 464 
While TBM-MIP models use tower-observed meteorological inputs, prescribe tower-specific and time-invariant 465 
structural properties such as LAI observed at US-NR1 (SiB3-exp2 and CLM4.5), and use data assimilation of global 466 
remote sensing data to constrain globally representative plant functional types (ORCHIDEE-exp3), they are not 467 
directly constrained by time-varying carbon fluxes at the tower.  As such, we emphasize that our model comparison 468 
is not a strict assessment of performance, but rather an attempt to learn how model simulation of GPP at an 469 
evergreen needleleaf site can be improved.   470 

There is a wide range in performance of TBM-MIPs in representing the magnitude and IAV of tower-471 
derived spring GPP (Figure 7a).  Pearson’s r correlations range from 0.25 to 0.82 (mean r = 0.6, Table 2) from 2001-472 
2018, with the same models showing slightly improved performance over the second decade (mean r = 0.73 from 473 
2012-2018). ORCHIDEE-exp1 and CLM4.5 show consistently high performance over all three periods analyzed, 474 
with CLM5.0 excelling from 2012-2018, and BEPS from 2015-2018 (Table S1). CLM4.5 also shows the smallest 475 
mean bias of the TBM-MIP models (RMSE ~ 0.35), and high agreement in the magnitude of spring GPP variability 476 
(1-sigma standard deviation =  0.21 g C m-2 day-1  for CLM4.5, vs 0.25 g C m-2 day-1 observed). While 477 
acknowledging the advantage of data assimilation, it is promising to see that CARDAMOM (with the addition of the 478 
cold temperature limitation) is able to perform comparably to the TBM-MIP models. In particular, CARDcold is 479 
well correlated in the direction (r = 0.88) and magnitude (1-sigma ~0.26) of interannual variability, as well as overall 480 
magnitude of spring GPP (low RMSE and MBE). 481 

The range of performance across within-model experiments reveals important processes, and uncertainty of 482 
process representation, in driving the magnitude and variability of spring GPP. For example, the ORCHIDEE data 483 
assimilation experiment (exp3) shows consistently and substantially lower overall correlation (e.g., r = 0.59 from 484 
2001-2018)  than corresponding free running experiments (exp 1 and 2, r = 0.78-0.82), but has reduced RMSE and 485 
MBE (RMSE = 0.63 g C m-2 day-1 vs 1-1.14 g C m-2 day-1). Likewise in SiB3, prescribing an empirically-based but 486 
fixed-in-time LAI of 4.0 m2/m2 (exp2) reduces mean bias, but degrades variability (r = 0.25) compared to time-487 
variable LAI (exp1) prescribed from satellite data (r = 0.50).  488 
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 498 
 499 

 500 
 501 
Figure 7. Comparison of TBM-MIP models to CARD and CARDcold experiments for a.) mean spring GPP for 2000-2018 and 502 
b.) monthly GPP from 2015-2018. Note that fill values are ignored when calculating mean annual values for TBM-MIP 503 
experiments. Uncertainty = exp(sqrt(log(2)^2*n)/n), where n = # years in average (n = 19).  504 

 505 
 There is also large variability in the modeled seasonal cycle (Fig. 7b) and mean annual GPP (Fig. S9).  For 506 
mean annual GPP estimates, Pearson’s r values are reduced for all models (Table S2).  Once again, ORCHIDEE-507 
exp2 and ORCHIDEE-exp3 stand out with some of the higher correlations (r = 0.60 and r = 0.64) and p-values 508 
below 5% significance level.  Furthermore, ORCHIDEE-exp3 (temperature stress with SIF data assimilation) has 509 
the lowest RMSE and MBE of the model set.  SiB3-exp2 (fixed LAI) has a standard deviation closest to 510 
“observations” (0.14 gC m-2 day-1), and the smallest RMSE and MBE of the TBM models.   511 

Most TBM-MIP models capture the shape of the seasonal cycle at Niwot Ridge. For the 2015-2018 period, 512 
all models have Pearson’s r values larger than 0.91, with p-values much smaller than a 5% significance level (Table 513 
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S3).  With the help of data assimilation, CARDcold accurately captures the seasonal cycle at Niwot Ridge with 516 
reduced error (RMSE = 0.22 g C m-2 day-1, MBE = 0.07 g C m-2 day-1), and data assimilation experiments in 517 
ORCHIDEE-exp3 show reduced bias relative to free running experiments.  The cold temperature limitation has little 518 
impact on the modeled mean seasonal cycle or mean annual GPP estimates in CARDAMOM, and appears to be 519 
most valuable for improving spring GPP variability.   520 

 521 
Table 2. Pearson’s linear r, R-squared, p-value, standard deviation, root mean square error (RMSE), and mean bias error (MBE) 522 
for TBM-MIP and all CARDAMOM experiments to Niwot Ridge tower-derived mean spring (March-May) GPP. Open values 523 
reflect statistics for the 2001-2018 period, while values in parentheses represent the 2012-2018 period.  All relevant statistics are 524 
calculated at 5% significance level. *BEPs statistics are not included in this table as this model only has GPP estimates for 2015-525 
2018.  526 

model r-value R-squared  p-value (a = 
0.05) 

RMSE (gC 
m-2 d-1) 

MBE (gC 
m-2 d-1) 

standard 
deviation (gC 
m-2 d-1) 

CARD-Half 0.47 (0.55) 0.22 (0.30) 0.05 (0.20) 0.24 (0.26) -0.005 
(0.06) 

0.03 (0.04) 

CARD 0.45 (0.57) 0.20 (0.33)  0.06 (0.18)  0.24 (0.28)  0.05 (0.12)  0.03 (0.04)  
CARDcold-Half 0.88 (0.93) 0.77 (0.86) 0.00 (0.002) 0.21 (0.24) 0.17 (0.22) 0.26 (0.29) 
CARDcold 0.87 (0.93) 0.76 (0.87) 0.00 (0.00)  0.23 (0.26)  0.20 (0.24) 0.26 (0.28) 
SiB3-exp1 0.50 (0.81) 0.25 (0.66)  0.04 (0.03) 1.07 (1.23)  1.04 (1.21)  0.16 (0.13)  
SiB3-exp2 0.25 (0.41)  0.06 (0.17)  0.32 (0.36)  0.97 (1.15) 0.92 (1.13)  0.26 (0.10)  
SiB4 0.34 (0.91)  0.12 (0.83)  0.16 (0.00)  0.90 (1.04) 0.86 (1.02)  0.22 (0.09)  
ORCHIDEE-exp1 0.82 (0.82) 0.68 (0.67)  0.00 (0.02) 1.14 (1.24)  -1.08 (-1.16)  0.56 (0.67)  
ORCHIDEE-exp2 0.78 (0.79)  0.61 (0.63) 0.00 (0.03)  1.00 (1.20)  -0.95 (-1.12)  0.51 (0.64)  
ORCHIDEE-exp3 0.59 (0.55)  0.35 (0.31)  0.01 (0.20)  0.63 (0.81)  -0.57 (-0.76)  0.35 (0.36)  
BEPS* X X X X X X 
CLM4.5 0.82 (0.85)  0.68 (0.73)  0.00 (0.01)  0.34 (0.35)  -0.31 (-0.31)  0.21 (0.18)  
CLM5.0  (0.96)  (0.92)   (0.00)  (1.09)  (-1.08)   (0.42)  

 527 
In summary, TBM-MIP experiments reveal several key factors that can improve or degrade estimates of 528 

spring GPP at Niwot Ridge.  For example, adapting model parameters to needleleaf species based on hand-tuning to 529 
tower data and formal data assimilation methods (CLM4.5 and ORCHIDEE-exp3, respectively) improves the 530 
overall magnitude of spring GPP. Likewise, prescribing LAI to a constant value of 4.0 m2/m2 based on tower 531 
measurements (SiB3-exp2) improves year-to-year variability, while prescribing time variable LAI based on MODIS 532 
data improves spring GPP magnitude (SiB3-exp1). SiB4, which has prognostic rather than prescribed phenology, 533 
represents a compromise in magnitude and variability when looking at the entire record (2001-2018), but is one of 534 
the top performers across all TBM-MIP models over the most recent period (2012-2018).  535 

We did not directly consider changes in canopy structural or biophysical characteristics in our 536 
CARDAMOM experiments. In CARDAMOM, LAI is a prognostic quantity (a function of foliar C and leaf carbon 537 
mass per area). In the absence of LAI observational constraints, CARDAMOM LAI is indirectly informed by the 538 
constraints of time-varying GPP on DALEC2 parameters (see section 2.3). Our results suggest that additional 539 
improvements are possible with careful consideration of in situ measured vegetation parameters.  540 
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 TBM-MIP experiments also offer insight on important environmental controls and process representation. 547 
Air temperature is an effective constraint of spring GPP onset (CLM4.5, ORCHIDEE-exp1, Figure 7 and Table 2), 548 
but which can be degraded when large scale data assimilation does not account for local- to regional- vegetation 549 
characteristics in parameter optimization (e.g., ORCHIDEE-exp3, Table 2). Water availability appears to be a 550 
secondary but still important driver of spring GPP. While acknowledging the numerous differences between 551 
CLM4.5 and CLM5.0, we find it important to note that plant hydraulic water stress (CLM5.0) shows improved IAV 552 
performance (high correlation, Table 2) over simplified soil moisture stress functions (CLM4.5).  This result further 553 
supports efforts to closely analyze seasonal GPP to locate different environmental controls for future model 554 
improvements.  555 
 Our study of the controls of cold temperature on GPP has important implications for modeling seasonal 556 
productivity.  First, future work must evaluate cold temperature limitation at other sites across an array of ecosystem 557 
types.  Additionally, it is important to determine if the temperature thresholds of photosynthesis initiation and 558 
cessation are similar across locations, or unique to ecosystem type and/or site.  Previous studies have had mixed 559 
results, supporting both the use of customized temperature threshold parameters dependent on the site (Tanja et al., 560 
2003; Chang et al., 2020) or for a general parameter across multiple sites or biome type (Bergeron et al., 2007).  561 
These differences could be due to variations in other variables (e.g., soil temperature, irradiance, etc.) and/or 562 
physiological differences in the vegetation species.  Identifying how photosynthesis temperature thresholds vary 563 
across space and ecosystem type would be beneficial in improving model performance in simulating productivity. 564 
Our model intercomparison study also provide insights on how we may improve our ability to model seasonal GPP.  565 
For example, in Fig. 7b, we see that the ORCHIDEE model growing season starts too early. In the photosynthesis 566 
module of ORCHIDEE, the temperature-dependency of parameters are described by Arrhenius or modified 567 
Arrhenius functions following Medlyn et al. (2002) and Kattge and Knorr (2007). In general, the functions are used 568 
to estimate the potential rates of Rubisco activity and electron transport based on temperature, as these rates are 569 
needed to determine photosynthetic capacity (Medlyn et al., 2002).  The lowest temperature for productivity 570 
mentioned in these studies are 5°C and 11°C, respectively. Additionally, there is a test at the start of the 571 
photosynthesis subroutine that prevents the computation of photosynthesis if the mean temperature over the last 20 572 
days falls below -4°C. For our study, the only ORCHIDEE experiment that uses specific data related to the plant 573 
functional type of this site (OCO-2 SIF data for US-NR1) is ORCHIDEE-exp3.  This experiment improves the 574 
general behavior of the modeled GPP seasonal cycle but does not improve ORCHIDEE’s ability to capture the start 575 
of the growing season. So with the future evaluation of cold temperature limitation at other sites and further study of 576 
the potential temperature-influenced bias in the model, then ORCHIDEE (and other process-based models) may 577 
need to improve its photosynthesis temperature-dependency for cold plant functional types. Therefore, we 578 
recommend implementing a cold temperature GPP limitation in a process-based model to confirm its ability to 579 
improve model performance. If we identify (1) how photosynthesis initiation and shutdown varies with temperature 580 
and location, and (2) apply a cold temperature limitation successfully in a process-based model, then we could 581 
expand our analyses to answer bigger Earth science questions. For example, we could use Earth System Model 582 
temperature trends to determine how changing temperature will impact GPP in the future. 583 
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While further experiments are needed, these results demonstrate the value of (1) site level data assimilation 585 
for local scale prediction of GPP magnitude and variability, (2) global data assimilation for reducing magnitude 586 
biases, and (3) process formulation for accounting for sensitivity to temperature limitation and water stress. Overall, 587 
these results are encouraging for model-data fusion systems which have developed the capacity to bring together 588 
temporally and spatially resolved functional and structural vegetation components such as LAI, SIF, soil organic 589 
matter, and above- and below-ground biomass (e.g., Bacour et al., 2019; Smith et al., 2020; Bloom et al., 2020). 590 
Joint assimilation of these datasets, coupled with observed meteorological forcing, has potential to introduce more 591 
emergent constraints of vegetation change with respect to environmental change, thus improving overall estimates of 592 
productivity.  Future work will assess the joint impact of SIF, ET, LAI, and biomass data as effective constraints on 593 
light use and water use efficiency (Smith et al., 2020), which is expected to improve the ability of CARDAMOM to 594 
use light with respect to increasing biomass subject to longer growing seasons and heat and water stress.  595 

4. Conclusions 596 

Despite mechanistic advances in ecosystem modeling, it is still a challenge to simulate temporal variations 597 
in GPP.  In an attempt to dissect the environmental controls on GPP in an evergreen needleleaf ecosystem, we 598 
analyzed the impact of temperature on spring (March-May) productivity by implementing a cold temperature GPP 599 
limitation within a model-data fusion system (DALEC2-CARDAMOM).  The cold weather GPP limitation allows 600 
for improved model estimates of mean spring productivity at Niwot Ridge, specifically CARDAMOM’s ability to 601 
match the interannual variability observed in tower-derived mean spring GPP.   Furthermore, CARDAMOM is able 602 
to match spring interannual variability between model and tower data outside of the training period.  When 603 
compared to TBM-MIP models, controls that appear to impact model performance include the inclusion of water 604 
stress (e.g., soil moisture) and vegetation parameters (e.g., prescription of LAI). The fact that the cold temperature 605 
limitation does not improve CARDAMOM’s annual GPP estimates suggests that other controls (i.e. winter 606 
precipitation) drive GPP variability in other parts of the year, most likely summer (June-September).  The cold 607 
temperature limitation may prove useful in understanding future changes in spring productivity due to changes in 608 
temperature in other ecosystems as well. 609 

Appendices  610 

Appendix A: Model-Data Fusion Methodology  611 

The DALEC2 model parameter values and state variable initial conditions (henceforth x) are optimized 612 
using a Bayesian inference approach, where the posterior probability distribution of x given observations O, p(x|O), 613 
can be expressed as  614 

𝑝(𝒙|𝒐) 	∝ 𝑝(𝒙)𝐿(𝒙|𝑶)         (A1) 615 
Where p(x) is the prior probability distribution of x, and L(x|O) is the likelihood of the DALEC parameters 616 

and initial conditions given observations O. We define the likelihood function as 617 

Deleted: -618 

Deleted: e.g.619 

Deleted: important ecosystems, such as the Western U.S620 



 

20 

𝐿(𝒙|𝒐) = e*
&
'∑ 1

!"	(𝒙),-"
. 2

'
" + e*

&
'∑ 1

/01 (𝒙),-21

.1 2

'

2 	,      (A2) 621 
 622 
where for monthly timestep i, 𝑚"(x)  and 𝑜" represent monthly modeled GPP (based on parameters x) and 623 

flux-tower GPP observation, respectively. Following model-data fusion efforts with a spectrum of temporal modes 624 
of variability (Desai 2010, Quetin et al., 2020 and Bloom et al., 2020), we extend the cost function to include mean 625 
annual model and tower-derived GPP, 𝑚3(𝒙) and 𝑜3 respectively) for year = a, which allows the GPP cost function 626 
to be sensitive to both seasonal and inter-annual components of the flux tower GPP signal. We log-transform 627 
modeled and tower-derived GPP values (as done in Bloom & Williams, 2015 and Bloom et al., 2016), which is 628 
preferable for characterize model-data residuals between strictly positive quantities (such as GPP). For lack of better 629 
uncertainty estimates on monthly and annual flux tower GPP accuracy—including lack of knowledge on GPP error 630 
characteristics at monthly timescales, error covariance between individual GPP estimates, model structural error 631 
impacts on GPP —we conservatively prescribed uncertainty factor of σ = 2 for monthly values (roughly ~75%), and 632 
σ’ = 1.2 (~18%) for annual values; in general we found that these values led to robust agreements between flux 633 
tower and DALEC2 GPP variability (model-data mistmatch metrics are reported in section 3 of the manuscript).  634 

For all model experiments, we sample the probability of 𝑝(𝒙|𝒐), the posterior probability distribution of 635 
initial conditions x given observations o, we use four Metropolis-Hastings Markov Chain Monte Carlo (MHMCMC; 636 
Haarrio et al. 2001) for 108 iterations; we subsample 1000 parameter vectors x, from the latter 50% of each chain (in 637 
total 1000 samples x 4 chains = 4000 samples). We test for convergence in the MHMCMC estimates of x using a the 638 
Gelman-Rubin convergence diagnostic to measure convergence between the four chains. 639 

Data Availability 640 

The Ameriflux US-NR1 data were obtained from: https://ameriflux.lbl.gov/sites/siteinfo/US-NR1 (Blanken et al., 641 
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