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Abstract  24 

The flow of carbon through terrestrial ecosystems and the response to climate is a critical but highly uncertain 25 

process in the global carbon cycle.  However, with a rapidly expanding array of in situ and satellite data, there is an 26 

opportunity to improve our mechanistic understanding of the carbon (C) cycle’s response to land use and climate 27 

change. Uncertainty in temperature limitation on productivity pose a significant challenge to predicting the response 28 

of ecosystem carbon fluxes to a changing climate.  Here we diagnose and quantitatively resolve environmental 29 

limitations on growing season onset of gross primary production (GPP) using nearly two decades of meteorological 30 

and C flux data (2000-2018) at a subalpine evergreen forest in Colorado USA. We implement the CARDAMOM 31 

model-data fusion network to resolve the temperature sensitivity of spring GPP. To capture a GPP temperature 32 

limitation—a critical component of integrated sensitivity of GPP to temperature—we introduced a cold temperature 33 

scaling function in CARDAMOM to regulate photosynthetic productivity.  We found that GPP was gradually 34 

inhibited at temperature below 6.0 C ( 2.6 C) and completely inhibited below -7.1 C ( 1.1 C).  The addition of 35 

this scaling factor improved the model’s ability to replicate spring GPP at interannual and decadal time scales (r = 36 

0.88), relative to the nominal CARDAMOM configuration (r = 0.47), and improved spring GPP model predictability 37 

outside of the data assimilation training period (r = 0.88) . While cold temperature limitation has an important 38 

influence on spring GPP, it does not have a significant impact on integrated growing season GPP, revealing that 39 

other environmental controls, such as precipitation, play a more important role in annual productivity. This study 40 
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highlights growing season onset temperature as a key limiting factor for spring growth in winter-dormant evergreen 41 

forests, which is critical in understanding future responses to climate change. 42 

1. Introduction 43 

Northern hemisphere evergreen forests contribute significantly to terrestrial carbon (C) storage and exchange 44 

(Beer et al., 2010; Thurner et al., 2014). High-elevation evergreen forests show increasing gross primary 45 

productivity (GPP) with increasing temperature driven in large part by earlier growing seasons (Myneni et al., 1997; 46 

Randerson et al., 1999; Forkel et al., 2016; Winchell et al., 2016, Lin et al., 2017). However, the response of gross 47 

and net C fluxes to warming remains uncertain, especially in subalpine temperate forests, which can experience 48 

freezing temperature while still absorbing large amounts of sunlight; both these factors ultimately influence the 49 

timing and magnitude of GPP (Bowling et al. 2018). In particular, warmer springs can also lead to earlier snowmelt, 50 

which can reduce spring C uptake through increased surface exposure to colder ablation-period air temperatures 51 

(Winchell et al., 2016), and can reduce summer C uptake via drought (Hu et al., 2010). Many subalpine forests in 52 

western North America are also highly water limited, with warming and earlier snow melt creating accumulated 53 

water deficits, increased drought stress, and growing season C uptake losses (Wolf et al., 2016; Sippel et al., 2017; 54 

Buermann et al., 2018, Goulden and Bales, 2019); these factors ultimately make subalpine forest ecosystems 55 

sensitive to the direct and indirect effects of climate change and other disturbances, including the effects of droughts, 56 

fires and insect infestations (Frank et al., 2014; Knowles et al., 2015). The uncertainty in the temperature sensitivity 57 

of springtime GPP, increasing vulnerability to disturbance, and GPP modeling challenges (Anav et al., 2015) create 58 

urgency to improve our ability to observe and model these ecosystems to understand how C exchange will be altered 59 

in a warming climate.  60 

Fortunately, availability of long term ecosystem observations is improving. The expansion of international 61 

flux tower networks over the last three decades (e.g. AmeriFlux, FLUXNET, ChinaFLUX, ICOS) has greatly 62 

improved C flux sampling across global ecosystems at 1 km scale (Baldocchi 2008; Baldocchi et al., 2018), and the 63 

number of spaceborne sensors continues to grow, allowing global estimation of gross primary production (GPP) and 64 

net ecosystem C exchange (NEE) over the last decade (e.g. Stavros et al., 2017; Sun et al., 2017; Schimel et al., 65 

2019). While uncertainties in estimating C fluxes from in situ and satellite data remain a challenge, the expanding 66 

observational record offers a great opportunity to study the temperature sensitivity of subalpine forests at multiple 67 

temporal scales.  68 

The range of modeling tools available to quantify and study major C pools under ever growing 69 

observational constraints is also increasing. Process-based models, in general terms, use explicit mathematical 70 

relationships to mechanistically describe bio-physical processes (Korzukhin et al., 1996; Huxman et al., 2003; 71 

Keenan et al., 2012).  In contrast, model-data fusion (MDF) is a relatively new tool that alters model parameters to 72 

statistically reduce mismatches between observations and model predictions (Raupach et al., 2005; Wang et al., 73 

2009; Keenan et al., 2012).  MDF methods can be used to statistically represent the terrestrial C balance by 74 

generating optimized state and process variable parameterizations, with uncertainties, which best match the signal 75 

and noise in observations (Bloom et al., 2020).   76 
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Models of varying complexity and assimilation capabilities have been used to study how C exchange varies 77 

with temperature in subalpine evergreen ecosystems (e.g., Moore et al., 2008; Scott-Denton et al., 2013; Knowles et 78 

al., 2018). Moore et al. (2008) used a simplified ecosystem function model and assimilated C flux data from the 79 

Niwot Ridge (US-NR1) subalpine evergreen forest AmeriFlux tower in Colorado to show the importance of accurate 80 

meteorological forcing for parameter optimization and the usefulness of assimilating C flux data for determining 81 

connections between the C and water cycles.  Scott-Denton et al. (2013) integrated meteorological and flux data 82 

from 1999-2008 from the same site with an ensemble of more sophisticated Earth System Models (ESM) and 83 

showed higher rates of C uptake by the end of the 21st century associated with warming and lengthening growing 84 

seasons, and driven by greater increases of spring GPP relative to late season respiration.  85 

Interestingly, model and empirical studies of the C flux response to climate at US-NR1 focus on the 2000-86 

2011 period, which saw increasing summer drought coupled with sustained declines in spring temperature and GPP. 87 

US-NR1 has since experienced a gradual recovery of spring GPP with increased spring warming throughout 2011-88 

2018 (Figure 1), which begs the question: what is the temperature sensitivity of spring GPP over multiple decades of 89 

spring cooling and warming at US-NR1, and how well can data-constrained models reproduce long term variability? 90 

To answer this question, we combine a mechanistic ecosystem C model (Data Assimilation Linked Ecosystem 91 

Carbon, DALEC2; Williams et al., 2005; Bloom et al., 2016) with the CARbon DAta-MOdel fraMework 92 

(CARDAMOM; Bloom and Williams, 2015; Bloom et al., 2020) driven by observed meteorological forcing and 93 

constrained against eddy covariance fluxes at US-NR1, to investigate the temperature sensitivity of this subalpine 94 

evergreen forest at seasonal and interannual timescales. We introduce a new cold temperature limitation function, 95 

trained on observed temperature, for more realistic simulation of spring GPP onset. The use of high quality and long 96 

term (2000-2018) meteorology and partitioned GPP data at US-NR1 to drive and constrain the model enables robust 97 

statistical analysis of interannual variability (IAV), and assessment of “model predictability” through training and 98 

validation against subsets of data. We also leverage a recent model intercomparison study (Parazoo et al., 2020), 99 

driven by site level meteorological data at US-NR1, to provide a model benchmark assessment, and extract any 100 

common environmental controls on modeled GPP. Finally, we examine whether decadal flux tower-derived GPP 101 

observations are sufficiently robust to match and predict seasonal to annual GPP.  Given the complexity of carbon-102 

water cycle interactions during the growing (summer) season in this highly water limited ecosystem, and the 103 

relatively weak correlation between tower-derived spring and summer GPP (r = -0.31, p = 0.20), we focus on spring 104 

GPP-temperature interactions, with the aim to resolve just one piece of the larger, complex problem of 105 

understanding changes in C uptake in a subalpine evergreen ecosystem.  106 

2. Materials & Methods 107 

2.1. Study Site: Niwot Ridge, CO., USA 108 

Our study focuses on an AmeriFlux (https://ameriflux.lbl.gov/) core site in Niwot Ridge, Colorado, USA 109 

(US-NR1, 401’58’’N; 10532’47’’ W), where a tower-based eddy covariance system has been continuously 110 

measuring the net ecosystem exchange (NEE) of carbon dioxide over a subalpine forest since November 1998. The 111 

https://doi.org/10.5194/bg-2021-152
Preprint. Discussion started: 17 June 2021
c© Author(s) 2021. CC BY 4.0 License.



 

4 

26 m tall tower is located in a high elevation (3050 m) subalpine site in the Rocky Mountains of Colorado (Monson 112 

et al., 2002).  Located in an evergreen needleleaf (ENF) ecosystem, the dominant tree species include lodgepole pine 113 

(Pinus contorta), subalpine fir (Abies lasiocarpa), and Engelmann spruce (Picea engelmannii) (Turnipseed et al., 114 

2002; Turnipseed et al., 2004).  Average annual precipitation is 800 mm, with a majority of precipitation falling in 115 

the winter as snow (Greenland, 1989; Knowles et al., 2015), which creates a persistent winter snowpack from 116 

November through early June (Bowling et al., 2018).   117 

2.2. Observations 118 

NEE measurements are screened for calm conditions using the standard ustar filtering, gap-filled, and 119 

partitioned into GPP and ecosystem respiration based on the relationship between nighttime NEE 120 

(photosynthetically active radiation, PAR < 50 mol m-2 s-1) and air temperature (Reichstein et al., 2005; Wulzler et 121 

al., 2018). Monthly averages of GPP based on nighttime partitioning show similar seasonal structure to results found 122 

using an alternative daytime partitioning algorithm (Lasslop et al., 2010), so only nighttime partitioned GPP data are 123 

reported here. All GPP estimates are processed as half hourly means, then averaged monthly. Details on the flux 124 

measurements, data processing and quality control are provided in Burns et al. (2015). 125 

2.3. The CARDAMOM Model-Data Fusion System 126 

The CARbon DAta-MOdel FraMework (CARDAMOM; Bloom et al., 2016; Yin et al., 2020; Exbrayat et 127 

al., 2018; Smallman et al., 2017; Quetin et al., 2020; Lopez-Blanco et al., 2017; Famiglietti et al., 2020; Bloom et 128 

al., 2020; amongst others) uses carbon cycle and meteorological observations to constrain carbon fluxes, states and 129 

process controls represented in the DALEC2 model of terrestrial C cycling (Williams et al., 2005; Bloom and 130 

Williams, 2015). Specifically, CARDAMOM uses a Bayesian model-data fusion approach to optimize DALEC2 131 

time-invariant parameters (such as leaf traits, allocation and turnover times) and the “initial” C and H2O conditions 132 

(namely biomass, soil and water states at the start of the model simulation period). 133 

The DALEC model (Williams et al., 2005; Rowland et al. 2014; Fox et al., 2009; Richardson et al., 2010; 134 

Famiglietti et al., 2020; Bloom & Williams, 2015; amongst others) is a box model of C pools connected via fluxes 135 

that has been used to evaluate terrestrial carbon cycle dynamics across a range of ecosystems and spatial scales.  In 136 

all site, regional, and global applications, DALEC parameters are subject to very broad, but physically realistic, prior 137 

distributions, and independently estimated and constrained by available observations at each grid point. Here we use 138 

DALEC version 2 (DALEC2; Yin et al., 2020; Quetin et al., 2020; Bloom et al., 2020); gross and net carbon fluxes 139 

are determined as a function of 33 parameters, which comprise of 26 time-invariant parameters relating to 140 

allocation, turnover times, plant traits, respiration climate sensitivities, water-use efficiency and GPP sensitivity to 141 

soil moisture, and 7 parameters describe the initial conditions of live biomass pools (live biomass C, dead organic C 142 

and plant-available H2O). Within DALEC2, GPP estimates are generated in the aggregated canopy model (ACM, 143 

Williams et al., 1997); the ACM is derived from simple functional relationships with environmental and plant 144 

structural and biochemical information (Williams et al., 1997), that are produced from a sensitivity analysis of GPP 145 

estimates from the more comprehensive SPA land surface model scheme (Williams et al., 1996, Williams et al., 146 
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2001). ACM GPP estimates are contingent on plant structural and biochemical variables (including LAI, foliar 147 

nitrogen and nitrogen-use efficiency) and meteorological forcings (total daily irradiance, maximum and minimum 148 

daily temperature, day length, atmospheric CO2 concentration). In DALEC2, water limitation on ACM is prescribed 149 

as a linear response to soil water deficit (Bloom et al., 2020). For more details on the model-data fusion 150 

methodology and CARD ensembles, we refer the reader to Appendix A.  For a comprehensive overview of 151 

DALEC2 model, we refer the reader to Bloom et al., (2020) and references therein. 152 

2.4. Experiment Design 153 

In order to develop model experiments that could reliably evaluate temperature-GPP interactions, we first 154 

examine the observed environmental controls on tower-derived GPP.  We focus on GPP during spring, defined here 155 

in the traditional sense as the period from March-May, which encompasses the climatological onset of GPP and 156 

transition from dormant winter conditions to peak summer conditions (Fig 1A). Mean spring GPP exhibits large 157 

interannual variability (IAV) with both a small decreasing trend from 2000-2010 (-0.02 g C m-2 day-1 per year) and 158 

increasing trend from 2010-2018 (0.04 g C m-2 day-1 per year) (Fig. 1B).  Comparison to tower observed 159 

temperature data (Fig. 1A and Fig. 2) shows that spring GPP is positively correlated to mean spring temperature 160 

(Pearson’s linear r = 0.88) and summer (June-September) temperature (r = 0.08).  Mean winter (December-161 

February) precipitation also has a positive correlation with spring GPP, (r = 0.07, p = 0.77), but it is much smaller 162 

than spring temperature. At interannual timescales, mean annual GPP shows a small increasing trend (0.0072 g C m-163 

2 day-1 per year) over the time period (Fig. S1), and largest correlation with winter (December – February) 164 

precipitation (Pearson’s linear r = 0.63, Fig. S2) and shortwave irradiance (r = -0.30).  In contrast, spring 165 

temperature shows little correlation with mean annual GPP (r = -0.03, p = 0.91).  It appears that winter precipitation 166 

and total irradiance are the dominant drivers in annual productivity, both of which are correlated, while spring 167 

temperatures show a first order effect in driving spring GPP.   168 

 169 

Figure 1. Time series of (a) mean monthly GPP (blue) and air temperature (orange) and (b) mean spring (March-May) GPP and 170 
air temperature at Niwot Ridge (US-NR1) from 2000-2018. GPP data are derived using a nighttime partitioning technique based 171 
on tower observations of NEE and air temperature.   172 
 173 
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 174 

 175 

Figure 2. Scatterplot of mean spring (March-May) GPP with mean spring air temperature with the color bar showing the 176 
corresponding year (2000-2018). ‘r’ is Pearson’s correlation coefficient.  177 
 178 

We also find that cold temperature has an important limitation on seasonal GPP at US-NR1.  The seasonal 179 

cycle of GPP shows peak productivity in early summer (~June) and falling to near-zero values by early winter 180 

(November), continuing through late winter (February-March).  Comparison of monthly GPP and minimum, 181 

maximum and mean monthly temperature shows an initiation of photosynthesis at monthly maximum temperature 182 

above 0 °C (Fig. 3a) and monthly minimum temperature above -5 °C (Fig. 3b).  The strong dependence of monthly 183 

GPP on temperature is consistent with previous findings that temperature is an important driver of spring onset and 184 

seasonal variability of GPP in evergreen forests (e.g., Pierrat et al., 2021; Parazoo et al., 2018; Euskirchen et al., 185 

2014; Arneth et al., 2006).  As temperature falls in winter dormant plants, productivity becomes negligible.  186 

Productivity is triggered again in spring when sufficient radiation is available for absorption by green needles, and 187 

air temperature becomes warm enough to thaw stems, trigger xylem flow and promote access to soil moisture (e.g., 188 

Pierrat et al., 2021; Bowling et al., 2018; Ishida et al., 2001).  Due to this observed dependence of GPP on 189 

temperature at US-NR1, we focus our analysis specifically on spring GPP, where we hypothesize that cold 190 

temperature is the dominant control on spring GPP variability.  191 

 192 
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 193 

Figure 3. Scatter plot of mean monthly GPP vs. a.) mean maximum air temperature, b.) mean minimum air temperature and c.) 194 
mean average air temperature for 2000-2018. Dots are colored with the corresponding month.  195 
  196 

In the baseline version of CARDAMOM, seasonal GPP in DALEC2 is limited primarily by incoming 197 

shortwave radiation. This light-focused limitation works well for deciduous forests where spring temperature and 198 

sunlight are correlated, as well as high latitude regions where sunlight is limited.  However, for reasons discussed 199 

above, this method fails in evergreen forests such as Niwot Ridge whose green canopies are exposed to high sunlight 200 

and below-freezing temperature in spring.  As such, we implement a cold temperature scaling factor (g) in DALEC2 201 

(1), to act as a thermostat that regulates evergreen needleleaf carbon uptake phenology.  This scaling factor is 202 

developed by analyzing the relationship between monthly minimum & maximum temperature with tower-derived 203 

monthly GPP, where 204 

𝐼𝑓:  𝑇𝑚𝑖𝑛 (𝑡) <  𝑇0  ∶  𝑔 =  0          (1) 205 

𝐼𝑓 ∶  𝑇𝑚𝑖𝑛  (𝑡) >  𝑇𝑔 ∶  𝑔 =  1  206 

𝐸𝑙𝑠𝑒: 𝑔(𝑡) =  
(𝑇𝑚𝑖𝑛(𝑡)−𝑇0 )

(𝑇𝑔−𝑇0)
   207 

GPPcold(t) =  GPP(t) ∗  g(t)  (2) 208 
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where GPP(t) is the nominal ACM-based DALEC2 GPP estimate (see section 2.3) and GPPcold is the corresponding 209 

cold temperature GPP estimate. The temperature thresholds for photosynthesis shutdown (referred to as T0) and 210 

initiation (referred to as Tg) are added as model parameters in DALEC, bringing the total number of parameters to 211 

35.  These 35 DALEC parameters are simultaneously optimized in CARDAMOM. The CARDAMOM Bayesian-212 

inference probability distributions (see Appendix A) for the T0 (-7.1  1.1 C) and Tg (6.0  2.6 C) parameters used 213 

to define the cold temperature limitation are plotted in Fig S3. We refer to the cold temperature constrained version 214 

of DALEC2 (within CARDAMOM) as DALEC2cold.  215 

The baseline (DALEC2) and cold temperature (DALEC2cold) versions of the model are run for the 2000-216 

2018 period using tower observed, gap-filled, monthly meteorological (MET) drivers (including minimum and 217 

maximum temperature, shortwave radiation, vapor pressure deficit, and precipitation).  We conduct four 218 

experiments, summarized in Table 1: experiments using DALEC2 and DALEC2cold within CARDAMOM, where 219 

19 years of GPP data are assimilated (referred to as CARD and CARDcold), and a corresponding pair of 220 

experiments where only the first decade of data (2000-2009) is assimilated (referred to as CARD-Half and 221 

CARDcold-Half) and the second decade of data (2010-2019) is withheld for validation, as a train-test scenario.  All 222 

months of GPP data are assimilated into the model, however our analysis focuses on the constraints on spring 223 

(March-May) GPP. These four experiments serve to evaluate the sensitivity of modelled GPP at Niwot Ridge to cold 224 

temperature limitation, parameter optimization, and data assimilation. Specifically, the objective of experiments 225 

“CARD” and “CARDcold” is to determine whether the cold temperature scaling factor improves the representation 226 

of spring GPP variability across the 2000-2018 period; the objective of experiments “CARD-Half” and “CARDcold-227 

Half” is to cross-validate the predictive skill of CARDcold by assessing whether the addition of a cold temperature 228 

scaling factor, informed by a subset of GPP data, can improve prediction of a withheld subset of GPP data. 229 

 230 

Table 1. Summary of CARDAMOM modeling experiments to determine sensitivity of seasonal and interannual spring GPP 231 
variability to cold temperature limitation (CARD vs CARDCold) and ability to perform outside training window (Half).   232 

Experiment Name Met. Drivers Time Period 

GPP 

assimilation 

Time period 

considered in 

assimilation 

Uncertainties in 

GPP 

Cold Temp. 

Limitation 

CARD yes 2000-2018 yes 2000-2018 20% No 

CARD-Half yes 2000-2018 yes 2000-2009 20% No 

CARDCold yes 2000-2018 yes 2000-2018 20% Yes 

CARDCold-Half yes 2000-2018 yes 2000-2009 20% Yes 

 233 
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2.5. Comparison to Terrestrial Biosphere Model Ensemble 234 

A recent model intercomparison study provides an ideal benchmark for evaluating CARDAMOM 235 

simulations (section 2.4). Parazoo et al. (2020) conducted an experiment in which an ensemble of state-of-the-art 236 

terrestrial biosphere models (TBMs) were forced by the same observed meteorology at Niwot Ridge from 2000-2018, 237 

but with differences in spin-up, land surface characteristics, and parameter tuning. The TBMs are designed to simulate 238 

the exchanges of carbon, water, and energy between the biosphere and atmosphere, from global to local scales 239 

depending on inputs from meteorological forcing, soil texture, and plant functional type. The experiment is designed 240 

primarily to evaluate simulations of solar induced fluorescence (SIF) and GPP, the latter of which we focus on here. 241 

We refer the reader to Parazoo et al. (2020) for a more complete description of models, within-model experiments, 242 

and between-model differences.  243 

The most important model differences worth noting here include the representation of stomatal-conductance, 244 

canopy absorption of incoming radiation, and limiting factors for photosynthesis. We analyze a subset of the models 245 

which were run for multiple years, including SiB3 and SiB4 (Simple Biosphere model versions 3 and 4, respectively), 246 

ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecoystems), BEPS (Boreal Ecosystems Productivity 247 

Simulator), and CLM4.5 and CLM5.0 (Community Land Model Versions 4.5 and 5.0, respectively). We also analyze 248 

within-model experiments in SiB3 and ORCHIDEE to isolate effects related to prescription of leaf area index (LAI; 249 

monthly varying in SiB3-exp1, fixed at 4.0 m2/m2 in SiB3-exp2), temperature and water stress (ORCHIDEE-exp1 250 

includes temperature stress; ORCHIDEE-exp2 accounts for temperature and water stress), and data assimilation 251 

(ORCHIDEE-exp3, in which a subset of model parameters controlling photosynthesis and phenology are optimized 252 

against global OCO-2 SIF data, Bacour et al., 2019). Finally, we note that not all model simulations span the entire 253 

observed record (2000-2018). While our analysis focuses on the long term record from 2000-2018, we provide 254 

multiple comparison to ensure consistency of time period: (1) IAV from 2001-2018 for SiB3, SiB4, ORCHIDEE, and 255 

CLM4.5; (2) IAV from 2012-2018 for SiB3, SiB4, ORCHIDEE, CLM4.5, and CLM5.0, (3) Seasonal variability from 256 

2015-2018 for all models. We refer to the ensemble of models and within model experiments collectively as TBM-257 

MIP.  258 

3. Results & Discussion 259 

3.1. Evaluation of CARDAMOM 2000–2018 GPP 260 

When the 19 years of tower-derived GPP data are assimilated into both versions of the model, the mean 261 

seasonal cycle is accurately replicated (Fig. 4).  The  Pearson’s r values for CARD (Fig. 4a) and CARDcold (Fig. 4b) 262 

are almost equal (r = 1.0 and 0.99) with minimal increases in root mean square error (RMSE) and mean bias error 263 

(MBE) for CARDcold (RMSE = 0.24 g C m-2 day-1 and 0.23 g C m-2 day-1, MBE = 0.06 g C m-2 day-1 and 0.19 g C 264 

m-2 day-1 for CARD and CARDcold, respectively).  Assimilating only the first decade of GPP data (Half 265 

experiments) does not drastically alter model performance (Fig. S4), with only slight changes in RMSE and MBE 266 
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(RMSE = 0.008 g C m-2 day-1, MBE =  0.03 g C m-2 day-1 for CARD-Half, RMSE =  -0.003 g C m-2 day-1, 267 

MBE =  0.02 g C m-2 day-1 for CARDcold-Half).  268 

 269 

Figure 4. Tower-derived average monthly GPP (black line) and modeled GPP seasonal cycles at US-NR1, averaged for 2000-270 
2018, for a.) CARD and b.) CARDcold experiments.  The half-assimilation experiments (CARD-Half and CARDcold-Half) can 271 
be found in the supplement (Fig S4). Model outputs include the median value of each experiment (bold color line) with the  25th-272 
75th percentiles of the ensembles (shaded area). The median is plotted instead of the mean to avoid impact of outlier ensemble 273 
members (N = 4000).  Error bars = tower-derived GPP multiplied/divided by exp(sqrt(log(2)^2*n)/n), n=# of years in average (n 274 
= 19). ‘r’ is the Pearson’s coefficient.   275 
 276 

The cold experiments exhibit an improved fit to the observed IAV in spring productivity (Fig. 5), relative to 277 

CARD, (r = 0.47, std = 0.03 g C m-2 day-1 for CARD; r = 0.88, std = 0.27 g C m-2 day-1 for CARDcold).  CARDcold 278 

also has slightly reduced RMSE (-0.01 g C m-2 day-1) and larger MBE (0.13 g C m-2 day-1).  Similar to the seasonal 279 

cycle analysis, the assimilation of only the first decade of GPP data (Half experiments) has minimal impact on 280 

model performance (RMSE = 0.007 g C m-2 day-1, MBE =  0.06 g C m-2 day-1 for CARD-Half, and RMSE =  281 

0.02 g C m-2 day-1, MBE =  0.02 g C m-2 day-1 for CARDcold-Half). We find less agreement between modelled and 282 

tower-derived GPP IAV in summer for both CARD and CARDcold (CARD r = 0.32, std = 0.11 g C m-2 day-1; 283 

CARDcold r = 0.05, std = 0.10 g C m-2 day-1; Fig. S5).  While there is little variation in RMSE between the half and 284 

full-assimilation experiments, RMSE is larger for summer than spring GPP (average RMSE = 0.23 g C m-2 day-1 for 285 

spring model outputs, average RMSE = 0.35 g C m-2 day-1 for summer model outputs).  Model agreement is further 286 

reduced when considering annual average GPP (Fig. S6, Table S2). Although the cold temperature limitation 287 

improves IAV slightly, it is still small compared to observed variability (std = 0.14 g C m-2 day-1).  Correlations to 288 

tower-derived GPP at the annual scale are small for both CARD and CARDcold (r = 0.19 and r = 0.22, Fig. S6a-b).  289 

Overall, the cold temperature limitation substantially improves agreement between the model and tower-derived 290 

spring GPP, with slight reductions in performance for summer and annual GPP..   291 

 292 
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 293 

Figure 5. Tower-derived (black line) mean spring (March-May) GPP with model interquartile range (shaded area) and median 294 
(bold color line) spring GPP outputs for a.) CARD, b.) CARDcold, c.) CARD-Half,  and d.) CARDcold-Half experiments. The 295 
grey regions indicate no data assimilation (i.e. testing window). Model experiments are the same as in Figure 4. Uncertainty = 296 
exp(sqrt(log(2)^2*n)/n), n=# of months in average (n = 3). 297 

 298 

The standard deviation in tower-derived mean spring GPP (March-May) is approximately 0.25 g C m-2 day-299 

1.  The addition of the cold temperature limitation improves the model’s ability to match the IAV of mean spring 300 

GPP (Fig. 6a-b).  An examination of all modeled scenarios for CARD and CARDcold (i.e. all 4000 DALEC2 301 

simulations), shows that the cold temperature limitation produces spring IAV values much closer to what is 302 

observed in the tower-derived GPP data.  Only 0.3% of CARD ensembles produces mean spring IAV values within 303 

20% of the tower-derived spring GPP standard deviation (0.25  0.05 g C m-2 day-1), whereas 69% of CARDcold 304 

ensembles have standard deviation values within the same range.  Interestingly, assimilating only the first ten years 305 

of GPP data (Half experiments, Fig. 6b) slightly increases the number of ensemble members with standard 306 

deviations within the mentioned range for both CARD-Half (2.4%) and CARDcold-Half (70%).   It is promising to 307 

see that despite not assimilating the 2010-2018 GPP data into the model, CARDcold-Half is still able to match 308 

average spring IAV of the full data record.   309 

We also consider the IAV in spring GPP for just the second half of the data record (2010-2018).  IAV of 310 

tower-derived spring GPP increases slightly in 2010-2018 (0.32 g C m-2 day-1).  Once again, the cold temperature 311 

limitation enables CARDAMOM to match spring GPP IAV (Fig. 6c-d).  0.03% of CARD ensembles produce mean 312 
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spring IAV values within 20% of the tower-derived spring GPP standard deviation for the 2010-2018 period (0.32  313 

0.06 g C m-2 day-1), whereas 76% of CARDcold ensembles have standard deviation values within the same range. 314 

For the Half experiments, 0.6% of CARD and 75% of CARDcold ensembles have IAV values within 20% of the 315 

standard deviation for 2010-2018. Overall, CARDcold produces a less biased distribution of IAV values (relative to 316 

both assimilated and withheld observations), whereas CARD is more skewed towards smaller IAVs, which indicates 317 

that the cold temperature limitation enables a mechanistic and statistical improvement in capturing the interannual 318 

variability of spring GPP.   319 

 320 

 321 

Figure 6. Histograms comparing standard deviation in mean spring GPP across all ensembles (N=4000) for CARD (red bars) and 322 
CARDcold (blue bars) experiments with a.) full assimilation, b.) half assimilation, c.) full assimilation for the second decade 323 
(2010-2018), and d.) half assimilation for the second decade (2010-2018). Black line indicates standard deviation in tower-324 
derived mean spring GPP (std = 0.25 gC m-2 day-1 for full period, std = 0.32 gC m-2 day-1 for 2010-2018).   325 

 326 

3.2. Temperature controls on springtime GPP 327 

 The added value of the DALEC2 cold temperature limitation for modelling mean spring (March-May) GPP 328 

is logically due to large fluctuations in spring temperature at Niwot Ridge.  The cold temperature limitation allows 329 

DALEC2-CARDAMOM to match the IAV of spring tower-derived GPP closely.  Furthermore, the cold temperature 330 

limitation enables the model to match tower spring IAV in the second half of the time period (2010-2018) when only 331 

the first ten years of GPP data are assimilated (2000-2009).  This indicates that the cold temperature limitation is 332 

able to estimate spring GPP outside of its training window and could be useful at other sites where data availability 333 
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is limited.  Future work will include evaluating the cold temperature limitation at other sites to ensure that it is 334 

applicable beyond Niwot Ridge, for example using forecast skill metrics proposed by Famiglietti et al. (2020).  335 

 Temperature-induced spring onset of GPP is driven by two general processes (1) initiation of bud burst and 336 

leaf expansion leading to increasing LAI, and/or (2) initiation of photosynthetic activity (photosynthetic efficiency 337 

i.e. GPP per unit LAI) due to temperature-induced changes in plant hydraulics (Ishida et al., 2001; Pierrat et al., 338 

2021) or kinetics of the photosynthetic machinery (e.g. Medlyn et al., 2002). In-situ LAI measurements suggest that 339 

the LAI at Niwot Ridge is relatively constant across the season, which is somewhat expected given the dominant 340 

tree species at the site.  Hence, the temperature-induced onset of GPP is likely due to the latter process, increased 341 

photosynthetic efficiency, as supported by the measurements (Fig. 2), although small changes in LAI are still 342 

feasible given uncertainties in the measurements. The inclusion of the cold-temperature limitation scaling factor in 343 

the model, a semi-empirical process, leads to a substantial improvement in model representation of GPP at the site. 344 

Further development may look to identify the relative roles of increased LAI and increased photosynthetic efficiency 345 

at Niwot Ridge and other evergreen needleleaf sites, as changes in GPP can lead to changes in carbon allocation to 346 

LAI, among other plant carbon pools. 347 

 With the inclusion of the cold-temperature limitation on GPP and its application in CARDAMOM we 348 

provide a data-constrained estimate of the climate-sensitivity of the Niwot Ridge forest to spring temperatures. 349 

Posterior estimates indicate that GPP is gradually inhibited below 6.0 °C ± 2.6 °C (Tg) and completely inhibited 350 

below -7.1 °C ± 1.1 °C (T0).  The gradual limitation of GPP by temperature has been observed on hourly and daily 351 

timescales in other cold-weather ecosystems, such as Alaskan conifers (Parazoo et al., 2018) and  Canadian spruce 352 

e(Pierret et al., 2020).  This has been connected to the triggering of transpiration and water flow from xylem into 353 

leaves (Ishida et al., 2001).  However, both biotic (carotenoid/chlorophyll ratios) and abiotic (canopy airspace) 354 

factors together regulate GPP response to meteorological forcings, and further process-oriented investigations are 355 

required to resolve the emergent response of GPP to temperature.  For now, this is a useful metric for climate-356 

sensitivity of spring GPP, at least in the absence of long-term adaptations. Furthermore, over the 19 year observation 357 

period investigated here the use of a temporally constant T0 and Tg yields significantly improved suggesting that 358 

much of the variability can be attributed to climate-driven changes, not interannual variation in vegetation 359 

parameters.  As temperature continues to increase due to climate change (particularly in the early growing season), 360 

productivity at US-NR1 could increase as a result and therefore increase carbon uptake, with productivity peaking 361 

earlier in the year (e.g., Xu et al., 2016). However,  these spring gains in GPP have been shown to not offset the 362 

losses of carbon due to summer droughts (e.g., Buermann et al., 2013; Knowles et al., 2018).  It is also unclear how 363 

the long-term stress of increased temperature could affect forest productivity directly.   364 

This study focuses on the relationship between temperature and GPP and its usefulness on model 365 

predictions of spring GPP, but an important component that cannot be ignored is the confounding effect of water 366 

availability on GPP.  Future changes in winter precipitation are more uncertain, therefore limiting our ability to 367 

analyze how precipitation changes will alter future productivity.  While precipitation observations are analyzed to 368 

discern any major connections between GPP and meteorological controls, an analysis of how precipitation affects 369 

model predictability is not included in this study.  The combined results, including the cold temperature limitation 370 
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and train-test data assimilation experiments, suggest that other factors besides spring temperature, most notably 371 

winter and summer precipitation (Fig. 2) and resulting soil water limitation, also have important impacts on summer 372 

GPP. We therefore highlight the need to jointly resolve spring-time temperature limitations in conjunction with 373 

water stress limitations in future efforts to understand the integrated role of environmental forcings on interannual 374 

GPP variability.  Furthermore, this analysis does not consider how winter precipitation as snowfall versus rainfall 375 

affected productivity, or how resulting changes to winter snowpack could alter productivity long-term.  Since annual 376 

average GPP appears to be more dependent on winter precipitation/snowpack, future work will include improving 377 

model predictability of late season productivity and quantifying temperature-water effects on carbon uptake. The 378 

definition of the seasons could also alter the connections drawn between seasonal temperature, precipitation and 379 

productivity.   380 

3.3. Model intercomparison and implications for GPP models 381 

Here, we evaluate DALEC2-CARDAMOM against mean spring GPP estimates from TBM-MIP models 382 

(Section 2.5 and Parazoo et al. 2020). It is important to remind the reader that the CARDAMOM runs have a 383 

significant advantage over the TBM-MIP models in this analysis, as CARDAMOM is trained on US-NR1 GPP data. 384 

While TBM-MIP models use tower-observed meteorological inputs, prescribe tower-specific and time-invariant 385 

structural properties such as LAI observed at US-NR1 (SiB3-exp2 & CLM4.5), and use data assimilation of global 386 

remote sensing data to constrain globally-representative plant functional types (ORCHIDEE-exp3), they are not 387 

directly constrained by time-varying carbon fluxes at the tower.  As such, we emphasize that our model comparison 388 

is not a competition, but rather an attempt to discern common environmental controls in model performance of 389 

simulating the magnitude and seasonal-to-interannual variability of spring GPP at an evergreen needleleaf site.   390 

There is a wide range in performance of TBM-MIPs in representing the magnitude and IAV or tower-391 

derived spring GPP (Figure 7a).  Pearson’s r correlations range from 0.25 to 0.82 (mean r = 0.6, Table 2) from 2001-392 

2018, with the same models showing slightly improved performance over the second decade (mean r = 0.73 from 393 

2012-2018). ORCHIDEE-exp1 and CLM4.5 show consistently high performance over all three periods analyzed, 394 

with CLM5.0 excelling from 2012-2018, and BEPS from 2015-2018 (Table S1). CLM4.5 also shows smallest mean 395 

bias of the TBM-MIP models (RMSE ~ 0.35), and high agreement in the magnitude of spring GPP variability (1-396 

sigma standard deviation =  0.21 g C m-2 day-1  for CLM4.5, vs 0.25 g C m-2 day-1 observed). While acknowledging 397 

the advantage of data assimilation, it is promising to see that CARDAMOM (with the addition of the cold 398 

temperature limitation) is able to perform comparably to the TBM-MIP models. In particular, CARDcold is well 399 

correlated in the direction (r = 0.88) and magnitude (1-sigma ~0.26) of interannual variability, as well as overall 400 

magnitude of spring GPP (low RMSE and MBE). 401 

The range of performance across within-model experiments reveals important processes, and uncertainty of 402 

process representation, in driving the magnitude and variability of spring GPP. For example, the ORCHIDEE data 403 

assimilation experiment (exp3) shows consistently and substantially lower overall correlation (e.g., r = 0.59 from 404 

2001-2018)  than corresponding free running experiments (exp 1 and 2, r = 0.78-0.82), but has reduced RMSE and 405 

MBE (RMSE = 0.63 g C m-2 day-1 vs 1-1.14 g C m-2 day-1). Likewise in SiB3, prescribing an empirically-based but 406 
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fixed-in-time LAI (exp2) reduces mean bias, but degrades variability (r = 0.25) compared to time-variable LAI 407 

(exp1) prescribed from satellite data (r = 0.50).  408 

 409 

 410 

 411 

 412 

Figure 7. Comparison of TBM-MIP models to CARD and CARDcold experiments for a.) mean spring GPP and  b.) monthly 413 
GPP. Note that fill values are ignored when calculating mean annual values for TBM-MIP experiments. Uncertainty = 414 
exp(sqrt(log(2)^2*n)/n), where n = # years in average (n = 19).  415 

 416 

 There is also large variability in the modeled seasonal cycle (Fig. 7b) and mean annual GPP (Fig. S7).  For 417 

mean annual GPP estimates, Pearson’s r values are reduced for all models (Table S2).  Once again, ORCHIDEE-418 

exp2 and ORCHIDEE-exp3 stand out with some of the higher correlations (r = 0.60 and r = 0.64) and p-values 419 

below 5% significance level.  Furthermore, ORCHIDEE-exp3 (temperature stress with SIF data assimilation) has 420 

the lowest RMSE and MBE of the model set.  SiB3-exp2 (fixed LAI) has a standard deviation closest to 421 

“observations” (0.14 gC m-2 day-1), and the smallest RMSE and MBE of the TBM models.   422 
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Most TBM-MIP models capture the shape of the seasonal cycle at Niwot Ridge. For the 2015-2018 period, 423 

all models have Pearson’s r values larger than 0.91, with p-values much smaller than a 5% significance level (Table 424 

S3).  With the help of data assimilation, CARDcold accurately captures the seasonal cycle at Niwot Ridge with 425 

reduced error (RMSE = 0.22 g C m-2 day-1, MBE = 0.07 g C m-2 day-1), and data assimilation experiments in 426 

ORCHIDEE-exp3 show reduced bias relative to free running experiments.  The cold temperature limitation has little 427 

impact on the modeled mean seasonal cycle or mean annual GPP estimates in CARDAMOM, and appears to be 428 

most valuable for improving spring GPP variability.   429 

 430 

Table 2. Pearson’s linear r, R-squared, p-value, standard deviation, root mean square error (RMSE), and mean bias error (MBE) 431 
for TBM-MIP and all CARDAMOM experiments to Niwot Ridge tower-derived mean spring (March-May) GPP. Open values 432 
reflect statistics for the 2001-2018 period, while values in parentheses represent the 2012-2018 period.  All relevant statistics are 433 
calculated at 5% significance level. *BEPs statistics are not included in this table as this model only has GPP estimates for 2015-434 
2018.  435 

model r-value R-squared  p-value ( = 

0.05) 

RMSE (gC 

m-2 d-1) 

MBE (gC 

m-2 d-1) 

standard 

deviation (gC 

m-2 d-1) 

CARD-Half 0.47 (0.55) 0.22 (0.30) 0.05 (0.20) 0.24 (0.26) -0.005 

(0.06) 

0.03 (0.04) 

CARD 0.45 (0.57) 0.20 (0.33)  0.06 (0.18)  0.24 (0.28)  0.05 (0.12)  0.03 (0.04)  

CARDcold-Half 0.88 (0.93) 0.77 (0.86) 0.00 (0.002) 0.21 (0.24) 0.17 (0.22) 0.26 (0.29) 

CARDcold 0.87 (0.93) 0.76 (0.87) 0.00 (0.00)  0.23 (0.26)  0.20 (0.24) 0.26 (0.28) 

SiB3-exp1 0.50 (0.81) 0.25 (0.66)  0.04 (0.03) 1.07 (1.23)  1.04 (1.21)  0.16 (0.13)  

SiB3-exp2 0.25 (0.41)  0.06 (0.17)  0.32 (0.36)  0.97 (1.15) 0.92 (1.13)  0.26 (0.10)  

SiB4 0.34 (0.91)  0.12 (0.83)  0.16 (0.00)  0.90 (1.04) 0.86 (1.02)  0.22 (0.09)  

ORCHIDEE-exp1 0.82 (0.82) 0.68 (0.67)  0.00 (0.02) 1.14 (1.24)  -1.08 (-1.16)  0.56 (0.67)  

ORCHIDEE-exp2 0.78 (0.79)  0.61 (0.63) 0.00 (0.03)  1.00 (1.20)  -0.95 (-1.12)  0.51 (0.64)  

ORCHIDEE-exp3 0.59 (0.55)  0.35 (0.31)  0.01 (0.20)  0.63 (0.81)  -0.57 (-0.76)  0.35 (0.36)  

BEPS* X X X X X X 

CLM4.5 0.82 (0.85)  0.68 (0.73)  0.00 (0.01)  0.34 (0.35)  -0.31 (-0.31)  0.21 (0.18)  

CLM5.0  (0.96)  (0.92)   (0.00)  (1.09)  (-1.08)   (0.42)  

 436 

In summary, TBM-MIP experiments reveal several key factors that can improve or degrade estimates of 437 

spring GPP at Niwot Ridge.  For example, adapting model parameters to needleleaf species based on hand-tuning to 438 

tower data and formal data assimilation methods (CLM4.5 and ORCHIDEE-exp3, respectively) improves the 439 

overall magnitude of spring GPP. Likewise, prescribing LAI to a constant value of 4.0 m2/m2 based on tower 440 

measurements (SiB3-exp1) improves spring GPP magnitude, while prescribing time variable LAI based on MODIS 441 

data improves year-to-year variability (SiB3-exp2). SIB4, which has prognostic rather than prescribed phenology, 442 

represents a compromise in magnitude and variability when looking at the entire record (2001-2018), but is one of 443 

the top performers across all TBM-MIP models over the most recent period (2012-2018).  444 

We did not directly consider changes in canopy structural or biophysical characteristics in our 445 

CARDAMOM experiments. In CARDAMOM, LAI is a prognostic quantity (a function of foliar C and leaf carbon 446 

mass per area). In the absence of LAI observational constraints, CARDAMOM LAI is indirectly informed by the 447 
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constraints of time-varying GPP on DALEC2 parameters (see section 2.3). Our results suggest that additional 448 

improvements are possible with careful consideration of in-situ measured vegetation parameters.  449 

 TBM-MIP experiments also offer insight on important environmental controls and process representation. 450 

Air temperature is an effective constraint of spring GPP onset (CLM4.5, ORCHIDEE-exp1), but which can be 451 

degraded when large scale data assimilation does not account for local- to regional- vegetation characteristics in 452 

parameter optimization (e.g., ORCHIDEE-exp3). Water availability appears to be a secondary but still important 453 

driver of spring GPP. While acknowledging the numerous differences between CLM4.5 and CLM5.0, we find it 454 

important to note that plant hydraulic water stress (CLM5.0) shows improved IAV performance (high correlation 455 

and reduced error) over simplified soil moisture stress functions (CLM4.5).  This result further supports efforts to 456 

closely analyze seasonal GPP to locate different environmental controls for future model improvements.  457 

While further experiments are needed, these results demonstrate the value of (1) site-level data assimilation 458 

for local scale prediction of GPP magnitude and variability, (2) global data assimilation for reducing magnitude 459 

biases, and (3) process formulation for accounting for sensitivity to temperature limitation and water stress. Overall, 460 

these results are encouraging for model-data fusion systems which have developed the capacity to bring together 461 

temporally and spatially resolved functional and structural vegetation components such as LAI, SIF, soil organic 462 

matter, and above- and below-ground biomass (e.g., Bacour et al., 2019; Smith et al., 2020; Bloom et al., 2020). 463 

Joint assimilation of these datasets, coupled with observed meteorological forcing, has potential to introduce more 464 

emergent constraints of vegetation change with respect to environmental change, thus improving overall estimates of 465 

productivity.  Future work will assess the joint impact of SIF, ET, LAI, and biomass data as effective constraints on 466 

light use and water use efficiency (Smith et al., 2019), which is expected to improve the ability of CARDAMOM to 467 

use light with respect to increasing biomass subject to longer growing seasons and heat and water stress.  468 

4. Conclusions 469 

Despite mechanistic advances in ecosystem modeling, it is still a challenge to simulate temporal variations 470 

in GPP.  In an attempt to dissect the environmental controls on GPP in an evergreen needleleaf ecosystem, we 471 

analyzed the impact of temperature on spring (March-May) productivity by implementing a cold temperature GPP 472 

limitation within a model-data fusion system (DALEC2-CARDAMOM).  The cold weather GPP limitation allows 473 

for improved model estimates of productivity at Niwot Ridge, specifically CARDAMOM’s ability to match the 474 

interannual variability observed in tower-derived mean spring GPP.   Furthermore, CARDAMOM is able to match 475 

spring interannual variability between model and tower data outside of the training period.  When compared to 476 

TBM-MIP models, controls that appear to impact model performance include the inclusion of water stress (e.g. soil 477 

moisture) and vegetation parameters (e.g. prescription of LAI). The fact that the cold temperature limitation does not 478 

improve CARDAMOM’s annual GPP estimates suggests that other controls (i.e. winter precipitation) drive GPP 479 

variability in other parts of the year, most likely summer (June-September).  The cold temperature limitation may 480 

prove useful in understanding future changes in spring productivity due to changes in temperature in important 481 

ecosystems, such as the Western U.S. 482 
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Appendices  483 

Appendix A: Model-Data Fusion Methodology  484 

The DALEC2 model parameter values and state variable initial conditions (henceforth x) are optimized 485 

using a Bayesian inference approach, where the posterior probability distribution of x given observations O, p(x|O), 486 

can be expressed as  487 

𝑝(𝒙|𝒐)  ∝ 𝑝(𝒙)𝐿(𝒙|𝑶)         (A1) 488 

Where p(x) is the prior probability distribution of x, and L(x|O) is the likelihood of the DALEC parameters 489 

and initial conditions given observations O. We define the likelihood function as 490 

𝐿(𝒙|𝒐) = e
−

1

2
∑ (

𝑚𝑖 
(𝒙)−𝑜𝑖
𝜎

)

2

𝑖 + e
−

1

2
∑ (

ma
′ (𝒙)−𝑜𝑎

′

𝜎′
)

2

𝑎  ,      (A2) 491 

 492 

where for monthly timestep i, 𝑚𝑖(x)  and 𝑜𝑖 represent monthly modelled GPP (based on parameters x) and 493 

flux-tower GPP observation, respectively. Following model-data fusion efforts with a spectrum of temporal modes 494 

of variability (Desai 2010, Quetin et al., 2020 and Bloom et al., 2020), we extend the cost function to include mean 495 

annual model and tower-derived GPP, 𝑚𝑎(𝒙) and 𝑜𝑎  respectively) for year = a, which allows the GPP cost function 496 

to be sensitive to both seasonal and inter-annual components of the flux tower GPP signal. We log-transform 497 

modelled and tower-derived GPP values (as done in Bloom & Williams, 2015 and Bloom et al., 2016), which is 498 

preferable for characterize model-data residuals between strictly positive quantities (such as GPP). For lack of better 499 

uncertainty estimates on monthly and annual flux tower GPP accuracy—including lack of knowledge on GPP error 500 

characteristics at monthly timescales, error covariance between individual GPP estimates, model structural error 501 

impacts on GPP —we conservatively prescribed uncertainty factor of σ = 2 for monthly values (roughly ~75%), and 502 

σ’ = 1.2 (~18%) for annual values; in general we found that these values led to robust agreements between flux 503 

tower and DALEC2 GPP variability (model-data mistmatch metrics are reported in section 3 of the manuscript).  504 

For all model experiments, we sample the probability of 𝑝(𝒙|𝒐), the posterior probability distribution of 505 

initial conditions x given observations o, we use four Metropolis-Hastings Markov Chain Monte Carlo (MHMCMC; 506 

Haarrio et al. 2001) for 108 iterations; we subsample 1000 parameter vectors x, from the latter 50% of each chain (in 507 

total 1000 samples x 4 chains = 4000 samples). We test for convergence in the MHMCMC estimates of x using a the 508 

Gelman-Rubin convergence diagnostic to measure convergence between the four chains. 509 

Data Availability 510 

The Ameriflux US-NR1 data was obtained from: https://ameriflux.lbl.gov/sites/siteinfo/US-NR1 (Blanken et al., 511 

2020).  The US-NR1 data used in this study, as well as the CARDAMOM and TBM-MIP outputs are publicly 512 

available and provided in .nc file format  at http://doi.org/10.5281/zenodo.4928097 . 513 
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