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Abstract 

Accurate Earth system model simulations of the terrestrial carbon cycle and its feedbacks to climate critically 

depend on algorithms representing the decomposition of litter and soil organic matter.  Litter bag studies, in which 30 

specific types of plant litter are subject to varying environmental conditions in the field and decomposition is 

measured, serve as valuable benchmarks for model performance.  Here we test the Energy Exascale Earth System 

land model (ELM), which has two different structural representations of decomposition, using observations from 

the Long-term Intersite Decomposition Experiment (LIDET) over six different biomes and six different leaf litter 

types.  We find that seasonal patterns in soil conditions and nutrient availability have large effects on decomposition 35 

rates, and that it is critical to include this in the simulation design.  Despite widely differing base decomposition 

rates between the two different model structures, the models produce similar temporal patterns of decomposition 

when nitrogen is limiting.  Both models overpredict the fraction of original nitrogen present as a function of carbon 

remaining when using default parameterizations.  A parameter sensitivity analysis indicates strong dependence of 

model outputs on nitrogen limitation, carbon use efficiency and decomposition rates.  A large spread in model 40 

predictions when considering an ensemble of possible parameter combinations strongly suggests parameter 

uncertainty may be more influential than model structural uncertainty, and that new measurement and modelling 

approaches may be necessary to constrain these uncertainties. 
 

 45 
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1 Introduction 
 

Litter and soil organic matter (SOM) decomposition play critically important roles in carbon and nutrient cycling 50 

within terrestrial ecosystems.  Environmental factors that drive this decomposition are likely to change in the 

future.  This will impact both heterotrophic respiration, a large source of CO2 to the atmosphere, and vegetation 

productivity through climate-carbon-nutrient feedbacks (Thornton et al., 2009). Developing a predictive 

understanding of these processes is critical to determining terrestrial carbon-climate feedbacks that play a key role 

in the evolution of Earth’s climate system.  Although most coupled Earth system models do include an explicit 55 

representation of litter inputs, soil carbon stocks and decomposition, large uncertainties still exist in model 

predictions of carbon cycle feedbacks (Friedlingstein et al, 2014). These uncertainties can be attributed in part to 

large differences in the magnitudes and rates of soil carbon turnover, including litter decomposition processes 

(Todd-Brown et al., 2013; Tian et al, 2015).  These differences stem from variations among models in specified 

turnover rates for different pools, and from disagreement among models on how climate change-driven shifts in 60 

vegetation productivity affect the distribution of litter and SOM inputs (Koven et al., 2015).  In general, current 

Earth system models may be underestimating soil carbon turnover times and are not able to accurately reproduce 

the inferred spatial patterns in turnover times from remote sensing and data synthesis studies, underscoring the need 

for more model development and analysis in this area (Wu et al., 2018). 

Litter and soil carbon stocks and decomposition rates depend on many factors, such as soil environmental 65 

conditions (temperature and moisture), soil texture and mineralogy, litter input rates from vegetation, litter 

chemistry, microbial populations and nutrient availability.  Earth System models generally represent litter and soil 

organic carbon as multiple pools, with transfer between pools represented by first-order kinetic functions (Luo et 

al, 2016).  Box–model representations have been shown to reproduce patterns of observed long-term decomposition 

(e.g. Adair et al., 2008).  In these types of models, multiple litter pools are generally used to represent different 70 

tissue chemistries (e.g. labile, cellulose and lignin), and can have different decomposition rates that may be 

modified by environmental factors.   These litter pools then decompose into soil organic matter (SOM) carbon 

pools.  Some carbon is released to the atmosphere as CO2 during this decomposition step, while nitrogen or 

phosphorus may be immobilized or mineralized depending on the size of the respiration flux, the assumed microbial 

carbon use efficiency, and differences in carbon to nutrient ratios between the litter and SOM pools (Thornton and 75 

Rosenbloom 2005). While the general structures of these models are similar, large uncertainties remains in the 

conceptualization and parameterization of pools and fluxes due to lack of constraint by field observations.     
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Extensive observations of litter decomposition exist over a wide range of litter types, biomes and environmental 

conditions.  For example, the Long-term Intersite Decomposition Experiment Team (LIDET) examined litter 

decomposition rates for 10 years over 27 sites and 9 different litter types, providing a comprehensive dataset for 80 

testing global-scale models (Harmon et al., 2009).  Analysis of observed variations led to quantification of the 

effects of climate, litter type and chemistry on decomposition in tropical systems (Cusack et al., 2009).  Nitrogen 

release was found to depend strongly on the initial nitrogen concentration across different climates and biomes, 

suggesting global applicability of LIDET data to modelling frameworks (Parton et al., 2007).   A number of 

modelling groups used LIDET data as an important benchmark for evaluating models of carbon and nitrogen 85 

cycling.  Adair et al. (2008) found that a simple 3-pool model performed well in simulating the observed 

decomposition rates in the LIDET data.  Bonan et al. (2013) found that the decomposition model in CLM4.0, the 

converging trophic cascade (CTC) which first appeared in Biome-BGC (Thornton et al., 2002), apparently 

overestimated both the carbon turnover rate and immobilization of nitrogen, and that the DAYCENT modelling 

framework provided a more accurate prediction across the sites and litter types in the LIDET experiment.  However, 90 

DAYCENT did not predict improved SOM carbon stocks compared to CLM4.0 without additional changes to the 

model parameterization (Wieder et al., 2014).  Furthermore, by isolating the decomposition model and driving it 

with constant environmental conditions, the Bonan et al. (2013) study did not account for changes in nutrient 

availability over time, which can have strong effects on litter decomposition rates (Carrerio et al., 2000).    

One potential reason for large differences among Earth System models in soil carbon stocks and decomposition 95 

rates is design differences in model validation experiments, for example the choice of whether or not nutrient 

interactions are considered in evaluating the decomposition model as in Bonan et al. (2013).  These choices 

potentially lead to different interpretations of model bias and different model parameterizations.  Here, our primary 

objective is to evaluate an Earth system model using a framework in which the model experiment is most consistent 

with the LIDET experiment.  Our model of interest is the Energy Exascale Earth System model (E3SM) land 100 

component (ELM), which includes both the CTC decomposition model and a CENTURY scheme (CNT).  We 

develop a modelling protocol that we believe best replicates the experimental conditions, including multiple 

relevant spatial scales over which processes are assumed to occur, and appropriate feedbacks within the simulation.  

To this end, we implement decomposition model “functional units” to represent the decomposition processes in the 

experimental system (the litter bag, as described below) that are driven by evolving soil physical and 105 

biogeochemical conditions from an ecosystem-scale ELM simulation.  We use this modelling framework to address 

the following science questions: 
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1)  How do different decomposition base rates in two different decomposition models affect litter turnover 

times as compared to LIDET observations? 

2)  how are these turnover times affected by seasonal patterns in soil conditions and nitrogen limitation? 110 

3) Which parameters contribute the most to uncertainty in the predictions of carbon and nitrogen content 

over time? 

2 Methods 

2.1 LIDET experiment and sites 

LIDET (Long-term Inter-site Decomposition Experiment) was a long-term litter bag study designed to examine the 115 

effect of substrate quality and climate on carbon loss and nitrogen immobilization and mineralization during litter 

decomposition over a 10-year period (LIDET 1995; Gholz et al., 2000; Parton et al., 2007; Harmon et al., 2009; 

Currie et al., 2010). It involved transplanting 27 litter types with various litter quality at 28 sites across North 

America and Central America. Six core litter types were chosen to decompose at all sites.  Following Parton et al. 

(2007), we choose the core LIDET data, which includes decomposition of six core litter types at 18 upland sites. 120 

The 18 upland sites encompass a wide range of climate condition and biome type, including 2 tundra, 2 boreal 

forest, 5 conifer forest, 3 deciduous forest, 4 tropical forest and 2 humid grassland sites.  Dry grasslands were 

excluded from this analysis.  The sites range in climate from mean annual temperature between -8oC and 26oC, and 

from mean annual precipitation between 250 to over 4000 mm/yr (Table 1).  The six litter types have varying litter 

quality, with N concentration ranging from 0.38% to 1.97% and lignin content varying from 10.9% to 26.7%. 125 

(Table 2). 10g of leaf litter was confined in 10 by 10cm mesh bags and placed at the top of the native litter layer at 

each field site in September of 1990. Collections of bags occurred once per year, in Autumn for most sites, with 

more frequent collection at the tropical sites – up to 5 times per year - due to the faster decomposition at these sites. 
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 130 

Site Location PFT MAT (oC) MAP (mm/yr) 

ARC Alaska Tundra -8.45 285 

NWT Colorado Tundra 0.6 1172 

BNZ Alaska Boreal forest -4.40 257 

LVW Colorado Boreal forest 1.8 1120 

AND Oregon Conifer forest 8.3 2346 

BSF California Conifer forest 13.6 1515 

JUN Alaska Conifer forest 3.9 1478 

OLY Washington Conifer forest 10.2 3896 

UFL Florida Conifer forest 21.4 1197 

CWT North Carolina Deciduous forest 12.4 1938 

HBR New Hampshire Deciduous forest 6.0 1315 

HFR Massachusetts Deciduous forest 7.4 1136 

BCI Panama Tropical forest 26.2 2853 

LBS Costa Rica Tropical forest 25.4 4070 

LUQ Puerto Rico Tropical forest 23.9 2256 

MTV Costa Rica Tropical forest 25.9 4381 

CDR Minnesota Humid grassland 6.0 817 

KNZ Kansas Humid grassland 13.2 874 
Table 1. LIDET sites used in this analysis listed with plant functional type, mean annual temperature (MAT) and mean annual 

precipitation (MAP). 
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 135 

Litter type Species Common name C:N % labile % cellulose % lignin 

TRAE Triticum aestivum Wheat 133.3 10.6 73.2 16.2 

PIRE Pinus resinosa Red Pine 92.7 36.2 44.6 19.2 

THPL Thuja plicata Red cedar 83.1 37.4 35.9 26.7 

ACSA Acer saccharum Sugar maple 61.8 56.8 27.3 15.9 

QUPR Quercus prinus Chestnut oak 50.5 37.1 39.4 23.5 

DRGL Drypetes glauca Tropical broadleaf 24.2 49.3 39.8 10.9 
Table 2:  Litter chemistry of LIDET leaf types 

 

2.2 Model description and simulation procedure 

Here we use the Energy Exascale Earth System model (E3SM) land model version 0 (ELMv0), which is based on 

the Community Land Model version 4.5 (Oleson et al., 2013).  ELMv0, like CLM4.5, includes vertically resolved 140 

soil biogeochemistry over 10 soil layers, the explicit representation of ammonium and nitrate pools, and associated 

nitrification and denitrification flux of N (Koven et al., 2013).  CTC and CNT, the two decomposition submodels 

analyzed in this study, each have three litter pools that represent labile, cellulose, and lignin litter fractions.  New 

litter is allocated to these pools based on type of litter (live or dead wood, fine root, and leaf) and the plant functional 

type (PFT).  Each litter pool turns over to a separate soil organic matter (SOM) pool with a base rate that is modified 145 

by temperature, moisture, oxygen availability, depth and competition for available nitrogen among plants and other 

microbial immobilization pathways.  There are three SOM pools in CNT and four in CTC, which decompose either 

to other SOM pools or the atmosphere with base rates that are modified by temperature, moisture, oxygen 

availability and depth.  For each pool transition, there is a loss of carbon in the form of CO2 flux to the atmosphere, 

defined as a respiration fraction.  CTC parameters are based on measured values from a series of mesocosm 150 

experiments (Thornton and Rosenbloom, 2005), while CNT parameters derive from the CENTURY model (Parton 

et al., 1988).  Parameters for both decomposition models are given in Table 3. 
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 155 

Parameter Units Description CTC CNT 

k_lit1 days-1 Labile pool decomposition rate 0.83 19.7 

k_lit2 days-1 Cellulose pool decomposition rate 13.8 74.5 

k_lit3 days-1 Lignin pool decomposition rate 71.4 74.5 

k_som1 yr-1 SOM pool 1 decomposition rate 0.0378 0.137 

k_som2 yr-1 SOM pool 2 decomposition rate 0.196 5.0 

k_som3 yr-1 SOM pool 3 decomposition rate 1.96 222 

k_som4 yr-1 SOM pool 4 decomposition rate 27.4 N/A 

cn_som1 gC gN-1 SOM pool 1 C:N ratio 12 8 

cn_som2 gC gN-1 SOM pool 2 C:N ratio 12 10 

cn_som3 gC gN-1 SOM pool 3 C:N ratio 10 10 

cn_som4 gC gN-1 SOM pool 4 C:N ratio 10 N/A 

rf_l1s1  Respiration frac labile to SOM1 0.39 0.55 

rf_l2sx  Respiration frac cellulose to SOM1(2) 0.55 0.5 

rf_l3sx  Respiration frac lignin to SOM 2(3) 0.29 0.5 

rf_s1s2  Respiration frac from SOM1 to SOM2 0.28 0.28 

rf_s2s3  Respiration frac from SOM2 to SOM3 0.46 0.55 

rf_s3s4  Respiration frac from SOM3 to SOM4 0.55 N/A 

rf_s2s1  Respiration frac from SOM2 to SOM1 N/A 0.55 

rf_s3s1  Respiration frac from SOM3 to SOM1 N/A 0.55 
Table 3:  Default parameters in the CTC and CNT decomposition models used in the analysis. 

 

Competition for nitrogen between plants and microbes is resolved at each half-hourly model timestep using a 

relative demand approach (Thornton et al., 2007).  Plant nitrogen demand is driven by the portion of carbon uptake 

that is allocated to structural pools and associated stoichiometry given fixed carbon to nitrogen ratios for those 160 

pools.  Microbial demand is driven by immobilization requirements when litter decomposes into SOM given the 
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differences in carbon to nitrogen ratios between these pools and the respiration fraction.  The potential litter 

decomposition, which drives the microbial nitrogen demand, is a function of litter chemistry, pool size, soil 

moisture and temperature.  If the total demand for nitrogen is greater than the available soil mineral nitrogen, plant 

and microbial uptake are then scaled down by multiplying their fractions of total demand by the total available 165 

mineral nitrogen.  In this way, both plant gross primary productivity (GPP) and litter decomposition are 

downregulated by nitrogen limitation.  Effectively, nitrogen limitation serves to modify the base litter turnover 

rates in the decomposition model along with temperature and moisture conditions.  Here we use the capability of 

ELMv0 to run with both the CTC and CENTURY-based (CNT) decomposition submodels with vertically resolved 

soil biogeochemistry described in Koven et al. (2013), referred to here as ELM-CTC and ELM-CNT respectively.  170 

The vertically resolved ELM-CTC configuration is also the default soil biogeochemistry parameterization for 

ELMv0 and later versions. 

For this study, we perform ELM-CTC and ELM-CNT simulations to calculate the environmental conditions in 

terms of the temperature and moisture scalars, as well as the background nutrient limitation conditions at each of 

the LIDET experiment sites.  The simulated LIDET experiment at each site then takes place in a model “functional 175 

unit”, which is a standalone representation of the decomposition model (section 2.3).  In ELM, each of the 18 

LIDET sites is represented as a single gridcell in a multi-site ensemble simulation, similar to the model setup in 

ELMv0 in Ricciuto et al. (2018).  Both ELM-CTC and ELM-CNT were run to steady state using pre-industrial 

carbon dioxide concentrations (constant year 1850), nitrogen deposition (constant year 1850) and climate forcing 

(cycling the years 1901-1920) from the Global Soil Wetness Project 3 (GSWP3; Dirmeyer et al., 2006).   The 180 

spinup procedure follows the accelerated decomposition and regular spinup techniques described by Thornton and 

Rosenbloom (2005).   Following achievement of steady-state carbon and nutrient pools, we begin the transient 

simulation in model year 1850 and continue through the year 2000 using historically varying CO2 concentrations 

and nitrogen deposition.  In the transient simulation, we continue to cycle the 1901-1920 GSWP3 climate data until 

the year 1921, when we switch to the historical forcing from GSWP3 for the years 1921-2000.  For each site, the 185 

GSWP3 climate forcing is adjusted such that its long-term mean annual temperature and precipitation matches the 

reported site average given by Adair et al. (2008).  ELM plant functional types are set to site-reported values 

following Bonan et al. (2013).  Land-use change is not considered in these simulations.  The LIDET experiment 

covers the period from October 1990 through the year 2000.  During this time, soil moisture and temperature scalars 

(Wscalar and Tscalar , respectively), and the fraction of potential immobilization (FPI) as simulated by ELM-CTC and 190 

ELM-CNT are saved for each model timestep.  These scalars represent a multiplicative factor applied to the base 
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rates for litter decomposition (defined at 25C and ideal moisture conditions), and serve as boundary condition 

inputs for the decomposition functional unit. 

2.3 Functional units and simulation procedure 

In ELM, it is not possible to represent the small scale of the litter bags (10x10cm) in a simulation that includes a 195 

big-leaf representation of vegetation at canopy scales.  One would have to assume the litter bag is covering a much 

larger spatial area, which may cause unrealistic feedbacks to vegetation (e.g. changes in plant nitrogen uptake due 

to the influence of the litter bag).  However, the decomposition submodel is not subject to canopy-scale 

assumptions.  Therefore, a functional representation of the ELM-CTC and ELM-CNT decomposition models is 

developed.  In this framework, the decomposition can proceed in the simulated litter bags using the environmental 200 

drivers provided by the canopy-scale ELM simulations without causing unrealistic feedbacks to the vegetation 

though changes in plant-available nitrogen.  Unlike Bonan et al. (2013), which also used a functional unit 

representation of the decomposition models, we use the canopy-scale ELM-CTC and ELM-CNT simulations to 

provide the changing environmental drivers (soil temperature, soil moisture and nitrogen availability) as boundary 

conditions at each timestep. This simulation configuration is intended to represent the implicit assumption of the 205 

LIDET experiment, that the introduction of the litter bag does not have an appreciable influence on the site-level 

ecosystem states and fluxes. 

A true functional testing platform allows for the testing of specific submodels using existing ELM output and the 

original model subroutine code, allowing new insights about the behaviour of these submodules (Wang et al., 

2015).  However, due to large memory and communication requirements, this platform is not computationally 210 

efficient to run over large combinations of sites and parameter values.  Therefore, we developed a python-based 

version of the decomposition model, which is tested against the decomposition functional unit that uses the original 

ELM code for fidelity (Yao et al., 2019).  The CTC and CNT versions of the functional unit submodel are referred 

to as CTCf  and CNTf  respectively.  The LIDET model experiments are then performed using these functional units 

with the site-level ELM simulations providing the soil environmental and nutrient conditions (Wscalar, Tscalar and FPI  215 

from the top soil layer) as inputs (Figure 1).  For each site and each leaf litter type, CTCf and CNTf are initialized 

with the leaf litter added to litter bags at the beginning of the experiment, divided into the 3 litter pools (labile, 

cellulose and lignin) according to the given litter chemistry (Table 2).  We assume the temperature and moisture 

conditions are the same in the litter bag as in the first soil layer in the canopy-scale ELM simulation.  As the 

simulations progress over a 10-year period, the litter decomposes into SOM, which also decomposes, releasing 220 

CO2 to the atmosphere and either immobilizing or mineralizing nitrogen depending on specific pool transitions. 
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That full chain of decomposition is assumed to occur within the litter bag. We allow for the possibility that mineral 

nitrogen can enter the functional unit system (the bag) over time, and this flux is assumed to originate from the 

adjacent native litter and soil system.    There is likely to be a local influence of processes in the litter bag on the 

available nitrogen and nitrogen limitation to decomposition.  Therefore, we also calculate an internal value of FPI, 225 

referred to as FPIlocal.  Plant demand is assumed to be zero in the litter bag, and FPIlocal is calculated in the following 

way at each model timestep:  

 

 
Figure 1:  Representation of the functional unit converging trophic cascade decomposition (CTCf) model structure (a), and the 230 

CENTURY-based CNTf model structure (b) within their respective ELM frameworks. 

 

a) 

b) 
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FPIlocal = min (fimmob / fsmin, 1.0)       (1) 

Where fimmob is the immobilization demand in the bag and fsmin is the mineral nitrogen originating from 

decomposition within the bag.  Mineralized nitrogen primarily comes from the decomposition of soil organic 235 

matter.  Therefore early in the experiment, when mainly litter is present instead of SOM, FPIlocal is near zero.  In 

this case, immobilization demand must be met by soil mineral N from the surrounding environment outside the 

litter bag.  The FPI used for litter decomposition in the functional unit, FPItotal, is a combination of FPI from the 

site simulation (FPIoutside) and FPIlocal, weighted by the density of litter in the bag vs. the density of surrounding litter 

as calculated from the site ELM simulations: 240 

 FPItotal = FPIlocal * litlocal / (litlocal + litsite) + FPIoutside * litsite / (litlocal + litsite)  (2) 

Where litlocal is the density of remaining litter (g m-3) in the litterbag as calculated by the model functional unit and 

assumed to be in the first soil layer, and litsite is the density of litter (g m-3) in the ELM site simulation in the first 

soil layer. 

A total of 108 simulations (18 sites * 6 litter types) are performed for each functional unit.  Daily output is saved 245 

from the CTCf and CNTf over the course of the 10-year simulated experiment, including all litter and SOM carbon 

and nitrogen pools.  These outputs are aggregated to produce the fraction of initial carbon mass remaining, and the 

fraction of original nitrogen present for comparison against observations.   

2.4 Sensitivity analysis 

We also use CTCf to investigate the impacts of parameter uncertainty in the decomposition model using a global 250 

sensitivity analysis (GSA).  GSA, also known as variance-based decomposition, can attribute variations in 

predictions to parameters and their interactions given ranges of possible values for the parameters. Following the 

techniques used in Sargsyan et al. (2014) and Ricciuto et al. (2018), we use Polynomial Chaos surrogate models 

via a Bayesian compressive sensing (BCS) approach to conduct the GSA.  A surrogate model is a functional 

representation of a model quantity of interest (QoI) that is constructed from an ensemble of simulations from the 255 

original model (in this case CTCf), and allows for further exploration of QoI responses over the multi-dimensional 

parameter space.  In this case the quantities of interest are the fraction of original carbon remaining over each of 

the ten years of the experimental period, as well as fraction of original nitrogen remaining over the same time 

period.  This surrogate modelling approach reduces computational cost, and BCS can learn the best possible 

surrogate model from a limited number of simulations.   260 

We use a total of 500 CTCf simulations to construct the surrogate model and run the GSA.  11 model parameters 

are varied over uniform distributions, including properties of the input litter, and parameters in the decomposition 
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model (table 4).  We use a simple Monte Carlo approach to randomly sample parameters within their acceptable 

ranges. Because including a larger number of parameters exponentially increases the number of required 

simulations for the sensitivity analysis, we do not consider decomposition rate parameters and respiration fraction 265 

parameters independently.  Instead, we consider a single multiplier parameter for all three litter pools which is 

applied to the default base decomposition rates.  Similarly, we consider a single parameter which serves as a 

multiplier to all the default respiration fraction values.  Parameter minimum and maximum values for litter 

chemistry are determined by the range of the six litter types used in the experiment.  Decomposition rate, respiration 

fraction, and soil organic matter parameters were chosen to capture differences in values between the CTC and 270 

CNT models.  Main effect and joint sensitivity indices are calculated for each parameter.  These sensitivity indices 

do not provide information about whether a parameter has a positive or negative effect on a quantity of interest.  

Therefore, using the same 500 model samples, we also calculate the linear correlation coefficient between each 

parameter and each quantity of interest to further understand the impacts of individual parameters.  The GSA is 

performed at three sites:  BCI, BNZ and HFR, representing tropical, boreal and deciduous forests respectively.   275 

 

Parameter Units Description Min Max Default 

litter_CN gC gN-1 Litter C:N ratio 24  133 Input 

litter_flab  Labile fraction 0.1 0.6 Input 

litter_flig  Lignin fraction 0.1 0.3 input 

k_lit_mult  Multiplier for all litter pools decomp base rate 0.2 2 1.0 

k_som123_mult  Multiplier for SOM pools 1-3 decomp base rate 0.2 2 1.0 

k_som4_mult  Multiplier for SOM pool 4 decomp base rate 0.1 2 1.0 

rf_mult  Multiplier for respiration fraction 0.8 1.2 1.0 

cn_som12 gC gN-1 C:N ratio for SOM pools 1 and 2 8 25 12 

cn_som3 gC gN-1 C:N ratio for SOM pool 3 8 25 10 

cn_som4 gC gN-1 C:N ratio for SOM pool 4 8 25 10 

FPI_outside  Background fraction of pot. Immob. 0.03 1.0 Input 
Table 4:  Parameter ranges used in the sensitivity analyses for the CTC model.  Minimum and maximum values for litter_CN, 

litter_flab and litter_flig are determined by the range of values over the different litter types; default vales for these parameters 

depend on the litter types.  For the sensitivity study, FPI_outside is held constant over the simulation.  However in the forward 

simulations, FPI_outside is calculated interally within ELM and varies over time. 280 

https://doi.org/10.5194/bg-2021-163
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.



14 
 

 

3 Results 

3.1 Comparison between CTCf and CNTf  default models 

When using default model parameters (table 3), both the CTCf and CNTf models generally reproduce the observed 

temporal patterns of carbon decomposition averaged over the six litter types (Figure 2).  The CTCf  model displays 285 

closer agreement with the observations for the tropical, conifer and deciduous PFT sites while the CNTf model 

agrees more closely for the tundra and boreal forest PFTs.  This is reflected in the lower root mean squared error 

(RMSE) and bias values averaged over all litter types for CTCf or CNTf for those corresponding PFTs (table 5). 

For the humid grasslands, although CNTf performs somewhat better than CTCf, both models decompose the litter 

too quickly compared to observations and are therefore biased low in their predicted carbon remaining by at least 290 

10%.  For all PFTs, CTCf shows faster decomposition rates compared to CNTf, reflecting the higher base 

decomposition rates in CTCf  for labile, cellulose and soil organic matter pools.  CTCf has a slightly lower base 

decomposition rate for lignin.  Base decomposition rates occur under ideal moisture conditions at 25oC, and without 

nitrogen limitation.   
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 295 
Figure 2:  Simulated (red) and observed (blue) percentage of carbon remaining for six plant functional types.  ELM functional 

unit results from the converging trophic cascade decomposition model (CTCf) are shown in the left column, while results from 

the CENTURY scheme (CNTf) shown in the right column.  Results are aggregated over the six litter types used in the LIDET 

study. 

  300 
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PFT RMSE (CTC) RMSE (CNT) Bias (CTC) Bias (CNT) 

Tropical 14.3 15.5 -1.47 7.18 

Deciduous 10.7 20.8 -3.68 17.89 

Confier  12.9 16.5 -1.42 7.51 

Boreal 22.8 15.3 -18.47 -3.51 

Tundra 23.9 14.2 -22.45 -10.38 

Humid grass 25.32 18.78 -20.45 -12.44 
Table 5:  Error statistics for carbon remaining (%) aggregated over all litter types by biome. 

 

The actual decomposition rates are heavily influenced by the nutrient and environmental scalars (Figure 3).  305 

Environmental scalars representing temperature and moisture effects on decomposition are similar between the two 

models, although slightly higher in CTCf for all PFTs.  Average annual scalar values range between 0.1 and 0.75 

in CTCf, reflecting over a sevenfold difference in litter and SOM turnover rates depending on soil conditions (Table 

6).  A similar range of scalar values is observed for CNTf.  The slightly lower values in CNTf reflect the use of an 

arctangent temperature function in CNTf rather than the Q10 function that is used in CTCf.  For all PFTs, the nitrogen 310 

scalar is lower in CTCf than in CNTf, indicating higher nutrient limitation in CTCf  for litter decomposition.  In 

ELM, plants and microbes compete for soil mineral nitrogen using a relative demand approach at every model 

timestep.  Potential litter decomposition rates are influenced by the environmental conditions but do not reflect 

nitrogen limitation.   Net primary productivity is similar between the two models, with differences within 5% at 14 

sites and within 10% at the remaining 4 sites (Table 6).  Therefore, litter inputs and plant demand are similar and 315 

the higher nitrogen limitation factor in CTCf results primarily from higher potential immobilization caused by the 

higher base decomposition rates.  This higher nitrogen limitation thus reduces the effective difference in actual 

decomposition rates between the two models.  
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Figure 3:  Simulated average seasonal cycles of the fraction of potential immobilization of nitrogen calculated by ELM 320 

(FPI_outside) and environmental scalars calculated by ELM that impact litter decomposition.  Lower values of FPIoutside 

indicate increased nitrogen limitation.  The environmental scalar includes both temperature and soil moisture effects.  Higher 

values indicate faster decomposition.  These ELM-calculated scalars are used as inputs to CTCf and CNTf. 
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 325 

 

 

Site PFT NPP 

(CTC) 

NPP 

(CNT) 

FPI 

(CTC) 

FPI 

(CNT) 

Scalar 

(CTC) 

Scalar 

(CNT) 

ARC Tundra 259 267 0.936 0.979 0.101 0.083 

NWT Tundra 301 309 0.313 0.439 0.206 0.168 

BNZ Boreal forest 174 174 0.571 0.664 0.113 0.093 

LVW Boreal forest 359 369 0.278 0.350 0.165 0.139 

AND Conifer forest 303 341 0.059 0.128 0.296 0.241 

BSF Conifer forest 319 348 0.339 0.420 0.275 0.225 

JUN Conifer forest 232 245 0.311 0.443 0.219 0.180 

OLY Conifer forest 1204 1232 0.056 0.115 0.335 0.274 

UFL Conifer forest 645 669 0.092 0.267 0.424 0.345 

CWT Deciduous forest 703 761 0.103 0.219 0.401 0.335 

HBR Deciduous forest 542 520 0.298 0.422 0.237 0.195 

HFR Deciduous forest 546 519 0.391 0.456 0.256 0.201 

BCI Tropical forest 1267 1294 0.402 0.706 0.724 0.594 

LBS Tropical forest 1313 1334 0.426 0.676 0.749 0.614 

LUQ Tropical forest 1367 1404 0.300 0.489 0.710 0.583 

MTV Tropical forest 1264 1292 0.401 0.682 0.762 0.624 

CDR Humid grassland 399 382 0.608 0.784 0.290 0.238 

KNZ Humid grassland 450 449 0.447 0.569 0.412 0.338 
 

Table 6:  Net primary productivity (NPP). Fraction of potential immobilization (FPI) and environmental scalars (representing 

temperature and moisture effects) for each site and model calculated by ELM.  Units of NPP are gC/m2/yr.  All values are 330 

averaged over the 10 year period of the experiment. 

 

https://doi.org/10.5194/bg-2021-163
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.



19 
 

The percentage of the original litter nitrogen is plotted as a function of the percentage of original carbon remaining 

(Figure 4).  While the percentage of carbon remaining is always declining over time, the percentage of nitrogen 

remaining may increase due to immobilization of soil mineral nitrogen from external sources outside of the litter 335 

bag.  This is most evident in the litter types with high carbon to nitrogen ratios, for example PIRE and THPL.  

These types incur higher immobilization demand when decomposing from litter to SOM.  In the functional unit 

representation, the litter bag is assumed to have no influence on its surrounding environment (i.e., it does not impact 

plant or immobilization demand outside of the bag).  Therefore, immobilization demand is assumed to be met by 

external sources of nitrogen but is limited according to the calculated value of FPI from ELM and locally within 340 

the bag (equation 2).  For both CTCf and CNTf, the models strongly overpredict the amount of nitrogen present in 

the litter bags for the PIRE, THPL, ACSA, and QUPR litter types.  For the DRGL type, the models better predict 

the behaviour because the carbon to nitrogen ratio is low and there is little immobilization.   Despite the different 

litter and SOM decomposition base rates, the models behave similarly because they have similar carbon to nitrogen 

ratios for SOM and similar respiration fractions (Table 3), meaning that the total immobilization demand integrated 345 

over time is similar. 
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Figure 4:  The modeled (blue) compared to observed (filled red circles) percentage of original nitrogen as a function of the 

percentage of original litter mass for 5 of the litter types.  CTCf results are shown in the left column, while CNTf results are 

shown in the right column.  Results are aggregated over all sites used in the LIDET study. 350 

 

3.2 Model sensitivity analysis 

We conducted a global sensitivity analysis of two model output variables to 11 CTCf parameters (Table 4).  For 

the fraction of carbon remaining, the sensitivities are plotted for each of the 10 years of the experiment (Figure 5).  

In the stacked bar plots, the height of each bar represents the main effect sensitivity index for a particular parameter.  355 

Within each stacked bar, if the sensitivity is greater than 0.05, a + or – symbol is included to show whether positive 
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perturbations of that parameter result in positive or negative effects on the output of interest (i.e, positive or negative 

correlations).  For the tropical site BCI (Figure 5a), the fraction of carbon remaining is sensitive in year 1 to five 

parameters:  the fraction of potential immobilization outside the litter bag (FPI_outside), the respiration fraction 

multiplier (rf_mult), the multiplier for SOM decomposition rates in pools 1-3 (k_som123_mult), the multiplier for 360 

litter decomposition rates (k_lit_mult) and the lignin fraction of input litter (litter_flig).  For the first four 

parameters, there are negative correlations with the output variable.  For example, higher values of FPI_outside 

indicate less nitrogen limitation and therefore faster decomposition of litter, decreasing the remaining carbon in 

year 1.  Higher values of k_som123_mult and k_lit_mult directly drive faster decomposition.  For rf_mult, a higher 

respiration fraction means that more carbon is lost to the atmosphere during litter decomposition instead of 365 

transitioning to SOM.  This directly reduces the carbon remaining in the system.  In addition, because there is less 

litter transitioning to SOM, higher rf_mult also reduces immobilization demand, results in less nitrogen limitation 

and therefore faster litter decomposition.  On the other hand, higher litter_flig means an increased proportion of 

litter with the slowest turnover rate out of the three litter pools.  This results in increased retention of carbon in the 

system. 370 

Over the 10 years of the simulations, significant changes occur in the parameter sensitivities.  At BCI, we see that 

the relative importance of FPI_outside decreases quickly and is no longer sensitive after three years.  At this stage, 

a large fraction of the litter has already transitioned to SOM.  Therefore, there is less immobilization demand, and 

additionally some of that demand may now be met by mineralization occurring within the bag.  Also because of 

litter transitioning to SOM, k_lit_mult becomes less sensitive while k_som123_mult become more sensitive.  375 

rf_mult becomes increasingly important during the first three years and remains sensitive through the simulation 

period.  The respiration fraction parameter continues to be important as it applies not only to litter to SOM 

transition, but cascading SOM transitions as well (e.g., SOM1 to SOM2 and SOM2 to SOM3).  Towards the end 

of the simulation, especially in the last year, the carbon remaining becomes marginally sensitive to k_som4_mult, 

which is the longest-lived SOM pool with a base turnover rate of 27 years.   380 
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Figure 5.  Sensitivity analysis for the fraction of carbon remaining for a) Barro Colorado Island (BCI); b). Bonanza Creek 

(BNZ), and c) Harvard Forest (HFR).  First-order sensitivity indices for each parameter are indicated by the height of the 

colored bar.  The “+“ or “-” symbols indicate whether a positive perturbation of the parameter results in a positive or negative 385 

deviation in the model output, respectively. 

 

Large differences in parameter sensitivities are also seen across sites.  The contrast in sensitivities between BCI 

(Figure 5a) and BNZ (Figure 5b) reflects the extreme difference in environmental conditions between the tropical 

and boreal sites.  FPI_outside is much more sensitive at BNZ and remains highly sensitive for a longer period of 390 

time.  Therefore, litter decomposition in boreal systems may be more sensitive to the conditions in the surrounding 

ecosystem.  There is also increased initial sensitivity to k_lit_mult, and a longer time to transition to higher 

sensitivity of k_som_mult, reflecting the slower decomposition rates at BNZ.  The fraction of litter that is labile 

(litter_flab) is also more sensitive initially at BNZ than at BCI.  The default base rate for the labile litter pool is 
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less than one day, so that at BCI after one year there is likely very little labile litter left.  However, at much colder 395 

and drier BNZ, some labile material may remain especially in simulations with low values of FPI_outside (as low 

as 0.03) and low k_lit_mult (as low as 0.2) that could combine to produce an effective decomposition rate 150 times 

slower than the default parameterization with no nutrient limitation.  While the magnitudes vary, the temporal 

patterns of sensitivity and correlations with the carbon remaining are similar between the two sites.  For the 

deciduous site HFR (Figure 5c), the sensitivities generally fall in between BNZ and BCI with similar correlations 400 

and temporal patterns. 

We also calculate the sensitivity of the fraction of nitrogen remaining as a function of time for the same three sites 

(Figure 6).  This quantity of interest is the most sensitive to the litter carbon to nitrogen ratio (litter_CN) for all 

sites and years.  This parameter is the most important in determining how much immobilization occurs over the 

simulation.  Higher carbon to nitrogen ratios lead to increased immobilization, and greater amounts of nitrogen 405 

remaining.  This high sensitivity is also reflected in the large differences across litter types seen in the default model 

(Figure 4).  At all three sites and years, rf_mult, k_som123_mult and cn_som3 are also sensitive parameters.  All 

three of these parameters are negatively correlated with the nitrogen remaining.  Higher values of rf_mult lead to 

more carbon leaving the system and lower immobilization demand.  Higher values of k_som123_mult lead to 

increased SOM decomposition and nitrogen mineralization, reducing the demand for external nitrogen.  Higher 410 

values of cn_som3 also lead to decreased immobilization demand.  At the boreal site, cn_som12 and FPI_outside 

are sensitive early in the simulation, reflecting the slower turnover times of the labile and cellulose pools and their 

associated SOM pools.  At the tropical site, cn_som4 is sensitive late in the simulation due to faster turnover and 

cascading through the SOM pools. 
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 415 
Fig 6.  Sensitivity analysis for the fraction of nitrogen remaining for a) Barro Colorado Island (BCI); b). Bonanza Creek (BNZ), 

and c) Harvard Forest (HFR).  First-order sensitivity indices for each parameter are indicated by the height of the colored bar.  

The “+“ or “-” symbols indicate whether a positive perturbation of the parameter results in a positive or negative deviation in 

the model output, respectively	

In addition to the sensitivity analysis, we also plot the range of predictions of the CTCf ensemble at the same three 420 

sites for three litter types (Figure 7).  In these simulations, the litter chemistry parameters were held constant at the 

values specified for the litter type of interest (table 2) while the other eight parameters were allowed to vary over 

their ranges (table 4).  The purpose of these simulations is to determine the relative contributions of parameter and 

model structural uncertainty to the predictions.  The combinations of parameters produce a wide range in the 

predictions of the fraction of carbon remaining.  The Pinus resinosa (PIRE) type, which has the highest C to N 425 

ratio of the three types shown, has the largest spread at all three types.  The predictions for the default CTCf and 

CNTf models are also shown for comparison.  For all cases except one, the uncertainty range of parameters in CTCf 
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leads to a range of predictions that encompasses the CNTf default. For the Acer saccharum (ACSA) at the deciduous 

site, CNTf retains more carbon than CTCf for any combination of CTCf parameters for the first four years of the 

simulation.  This may be due in part to the relatively high labile fraction of ACSA compared to the other litter types 430 

(table 2).  Because of the very fast turnover of labile litter, and the fast cascade through the SOM pools with carbon 

lost at each transition, this carbon is lost from the system quickly with any combination of the uncertain parameters.  

However, in CNTf, in addition to the slower turnover, there is a more complex set of transitions between SOM 

pools (Koven et al, 2013).  Some of the matter from the first soil organic matter (SOM1) pool transitions directly 

to the slowest pool (SOM3) rather than cascading to SOM2, meaning that a larger fraction of the originally labile 435 

pool may persist.  Similar behavior is seen at the boreal site BNZ; the range of uncertainty in CTCf only barely 

includes the CNTf prediction. 

 
Figure 7:  Spread in the predicted fraction of carbon remaining due to parameter uncertainty in CTCf, indicated by the gray 

envelope around the default prediction (red line).  The default CNFf simulation (blue line) is shown for comparison.  Parameter 440 

ranges are defined in Table 4, with the litter chemistry parameters held constant for the specific litter types.  Results are plotted 

for three litter types and three sites:  BCI (first row), BNZ (second row), and HFR (third row).	
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For the percentage of original nitrogen remaining as a function of carbon remaining, the range of uncertainty in 

CTCf always includes the CNTf prediction (Figure 8).  The predictions for the PIRE and ACSA litter types have 445 

large ranges of uncertainty for all sites:  For these two types, the peak amount of nitrogen is between 300% and 

400% of the original in the highest cases while in the lowest cases it is barely over 100%.  This large range reflects 

a high uncertainty in the total amount of immobilization, even when the litter chemistry parameters are specified 

for specific litter types.  Therefore, the rf_mult, cn_som and k_som_mult parameters are largely responsible (Figure 

6).  However, a substantial number of observations include values below 100% at the same levels of carbon 450 

remaining (Figure 4).  This may indicate structural errors in CTCf because even with the large range of parameter 

uncertainty, the model predictions do not encompass the observations.  A much smaller range of uncertainty is seen 

for the Drypetes glauca (DRGL) type, which has a carbon to nitrogen ratio of 24.2.  For most combinations of 

parameters, there is little or no immobilization of nitrogen required for this litter type. 

 455 
Figure 8:  Spread in the nitrogen remaining as a function of carbon remaining due to parameter uncertainty in CTCf, indicated 

by the gray envelope around the default prediction (red line).  The default CNTf simulation (blue line) is shown for comparison.  

Parameter ranges are defined in Table 4, with the litter chemistry parameters held constant for the specific litter types.  Results 

are plotted for three litter types and three sites:  BCI (first row), BNZ (second row), and HFR (third row). 
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 460 

4 Discussion 

We use LIDET observations to evaluate two different decomposition submodel structures within the E3SM 

framework.  We first apply the offline E3SM land-surface model (ELM) to spin up the vegetation and soil 

conditions for 18 sites using both decomposition submodels.  The predicted soil moisture, temperature, and nutrient 

limitation conditions are used as boundary conditions for our functional decomposition submodel units CTCf and 465 

CNTf.  The functional units are designed to replicate the unique conditions in the litter bag experiment.   In 

predicting the amount of original carbon remaining over time, CTCf outperforms CNTf in some ecosystems while 

CNTf outperform CTCf in others.  The two models behave similarly in predicting the percentage of original nitrogen 

remaining.  Sensitivity analyses of CTCf indicate 5-6 key parameters out of 11 drive uncertainty in the amount of 

carbon or nitrogen remaining, but which parameters are identified depend on the site, time and quantity of interest.  470 

Our results are substantially different from those reported in Bonan et al. (2013), which report that based on the 

comparison to LIDET, DAYCENT (the foundation for the CNTf model structure) is a superior decomposition 

model structure to CTCf.  We show that the results are inconclusive for predicting the mass remaining, that both 

models show significant biases in nitrogen cycling, and that parameter uncertainty is at least as important as 

structural differences between the two models.  There are several important differences in experimental design that 475 

contribute to these disparate conclusions.  First, we note that Bonan et al (2013) also uses a functional unit approach 

similar to CTCf and compares it to DAYCENT, a version of the CENTURY model (Parton et al., 1998).  However, 

they did not use the Community Land Model (CLM) or any other land surface models to supply the boundary 

conditions for soil temperature, moisture and nutrient limitation.  Instead, they applied constant environmental and 

nutrient scalars.  The climatic decomposition index (CDI) was used following Moorhead et al. (1999).  The CDI 480 

values used generally agree well with the environmental scalars calculated by ELM (Table 6), but do not account 

for seasonal variations in these factors as we do in ELM.  These seasonal variations may be quite large (Figure 3), 

and using constant values may result in missing important nonlinear interactions that occur between abiotic and 

biotic factors.   

Similarly, constant values are used for the fraction of potential immobilization (FPI) in Bonan et al. (2013).  They 485 

base the primary comparison on the assumption that N is not limiting, but they note that better agreement is obtained 

for CTCf when nitrogen is assumed to severely limit decomposition.  In fact, this assumption of high limitation 

(low FPI) is internally consistent with the predictions of ELM at most of the sites in this analysis, especially during 

the growing season when most decomposition is occurring (Figure 3).  Both ELM and CLM4.5 include vertically 
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resolved soil organic matter and litter decomposition (Koven et al., 2013), which was a subsequent model 490 

development not tested in the Bonan et al. (2013) analysis.  Due to the effects of higher inputs of litter into the top 

soil layers combined with the slow process of vertical diffusion that moves SOM to deeper layers, immobilization 

demand tends to be much higher than mineralization in these top layers.  Therefore, values of FPI are much lower 

in the first soil layer (that is used to provide the boundary condition for the LIDET experiment) than for a column-

level average.  It is also important to note that although representing soil carbon with a single layer led to low biases 495 

in global SOC with CTC in the CESM framework (Todd-Brown et al., 2013), using CTC in ELM and E3SM with 

vertically resolved SOC produces global SOC stocks more in line with observations (Burrows et al., accepted). 

Another discrepancy between our analysis and that of Bonan et al. (2013) is that our analysis of CNTf differs in a 

few key ways from DAYCENT.  First, CNTf differs from DAYCENT because it was adapted to better match the 

existing model structure in CLM4.5 and ELM.  Although the litter and SOM pool structures, flows and turnover 500 

times in CNTf closely match DAYCENT, the carbon to nitrogen ratios for SOM are fixed parameters in CNTf while 

in DAYCENT these ratios increase with low soil mineral nitrogen.  The specified values for these carbon to nitrogen 

ratios are on the low end of the ranges used in DAYCENT (Parton et al., 1998), and are similar to those used in 

CTCf (Table 3).  Although we did not test the parameter sensitivities of CNTf, we note that the carbon to nitrogen 

ratio and the respiration fraction are sensitive parameters for the fraction of nitrogen remaining in CTCf.  This may 505 

explain why CTCf and CNTf behave similarly for this variable (Figure 4), although DAYCENT performed 

significantly better than CTCf in Bonan et al (2013).  Adjusting these parameters or allowing them to be variable 

in time may improve the performance of both models.  Second, setting the FPI boundary conditions for the 

functional units with ELM simulations also causes important differences for the comparison between the two 

models.  Because of the difference in base turnover rates, immobilization demand is generally lower in CNTf than 510 

CTCf, leading to higher FPI values in CNTf and effectively reducing the difference in actual litter turnover rates 

between the two models.  This suggests that nitrogen availability is a limiting factor on litter decomposition, which 

is consistent with experimental studies (Cleveland et al., 2006).  Therefore, under certain conditions, the model 

turnover rates and structure for litter decomposition is less important than how nitrogen mineralization and external 

nitrogen inputs are represented.  Finally, we attempt to more closely represent the unique environment within the 515 

litter bag.  Inside the bag at the beginning of the experiment, there is likely to be higher unmet immobilization 

demand because of the relatively high C:N ratios and lack of SOM.  Therefore, we believe the weighted FPI 

(equation 2) is a more realistic representation of the nitrogen limitation inside the litter bag.  Generally, this value 

of FPI is lower than the external FPI at the beginning of the experiment and contributes to slower decomposition.   
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A key parameter sensitivity in CTCf is the respiration fraction multiplier (rf_mult).  This parameter sets the carbon 520 

loss for the transitions between litter and SOM and between different SOM pools.  Therefore, for the LIDET 

simulation experiment it is an important control on the carbon remaining in the system over time and on the amount 

of immobilization demand caused by litter decomposition.  These respiration fraction parameters are closely linked 

(inversely) to carbon use efficiency (CUE), which describes the metabolic efficiency of microbes in the 

decomposition process.  While the respiration fractions for specific transitions are constant in CTCf and CNTf, 525 

there is strong evidence for the dependence of CUE on environmental and stoichiometric parameters (Manzoni et 

al., 2012; Sinsabaugh et al., 2013).  Some of this dependence can be captured by the variation in respiration fractions 

among different pool transitions, but the model is limited in its capability to represent CUE dynamics because it 

does not explicitly represent microbial biomass or communities.   In the absence of these mechanisms, we may 

consider CUE (and therefore respiration fraction) as uncertain parameters to be best fit for the observations of 530 

interest.  However, CUE may be positively or negatively impacted by different aspects of climate change (Manzoni 

et al., 2012), so that predictions of litter and soil carbon dynamics under climate change scenarios using fitted CUE 

parameters under present day conditions may be inaccurate. Including a more mechanistic representation of CUE 

in Earth system models has been increasingly recognized over the last several years an important goal. 

A number of model development efforts are underway to represent microbes explicitly in globally relevant 535 

modelling frameworks that are being or may eventually be included in Earth system models.  Such models may 

more accurately represent the dynamics of CUE and therefore also improve the representation of SOM.  For 

example, the microbial-enzyme-mediated decomposition model (MEND) explicitly represents microbial biomass 

carbon and two key enzymes in the decomposition process (Wang et al., 2013; Wang et al., 2014).  The MEND 

model includes physically measurable pools and dynamic CUE, which can change the sign of soil organic carbon 540 

response compared to the assumption of constant CUE in a warming scenario (Wang et al., 2013).  Globally, the 

temperature sensitivity of CUE may regulate the long-term response of soil carbon to warming (Li et al., 2014).  

Another SOC model, Carbon, Organisms, Rhizosphere, and Protection in the soil environment (CORPSE) can 

simulate root-microbe interactions (e.g., priming effects) and the formation of protected SOM pools that may occur 

under certain conditions (Sulman et al., 2014).  A global-scale comparison of CORPSE and the Microbial-545 

Mineralization carbon stabilization model (MIMICS) model (Wider et al., 2014), which both represent microbes 

explicitly, shows disagreement on the magnitude of soil carbon stocks and their long-term fate (Wieder et al., 2018).    

Oscillatory behaviour is also observed with many of these microbially explicit approaches (Wang et al., 2014b, Li 

et al., 2014).  More model-data integration may be necessary to constrain these increasingly mechanistic models to 

produce consistent and credible responses over long timescales.   MIMICs was also compared to selected LIDET 550 
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observations with favourable results (Wider et al., 2014). Unfortunately, the breadth of measurements made in the 

LIDET study is not comprehensive enough to constrain these complex models, therefore, a new LIDET type study 

that includes measurements of microbial biomass, communities and enzymes may be of great benefit to the 

community. 

In addition to the lack of explicit microbes in CTCf and CNTf, other structural shortcomings may contribute to 555 

biases seen in the models.  A large number of observations indicate the fraction of nitrogen remaining falling below 

100% for intermediate values of carbon mass remaining during which the CTCf predictions are always above 100% 

for any combination of parameters.  This may indicate a mechanism for nitrogen loss that is not currently 

represented in ELM.  Soil mineral nitrogen may be lost through denitrification and leaching, but these terms tend 

to be very small in the first several years of the simulations due to high immobilization demand.  Leaching of 560 

organic nitrogen may be an important loss pathway from the litter bags, although it is not usually considered in 

terrestrial nitrogen budgets (Neff et al., 2003).  Including this effect in the model may improve predictions.  The 

“home field” advantage effect may also cause biases in model predictions.  This effect refers to litter types that are 

introduced into ecosystem where they are native decomposing faster because the microbial communities are present 

that prefer these types of inputs, whereas non-native litter types may be less preferred.  This was found to be an 565 

important factor for DRGL in the LIDET experiment (Gholz et al., 2000).  Parton et al. (2007) also noted that the 

relationship between CDI and decomposition rates did not work well for arid grasslands as for other biomes in the 

LIDET study and hypothesized that ultraviolet radiation may accelerate decomposition in these systems.  This is 

supported by other studies in arid systems (e.g. Gallo et al., 2006, Brandt et al., 2007).  For this reason, we did not 

include the arid grassland biome in our study.  However, UV radiation may play a role in other ecosystems as well, 570 

including in mesic grasslands.  A litter decomposition study designed to measure the role of UV photodegradation 

(Brandt et al., 2010) reported significant UV effects at the Cedar Creek (CDR) site, a humid grassland system also 

used in the LIDET study.    

5 Conclusions 

To predict carbon cycle feedbacks to climate change, it is critically important to model the decomposition of litter 575 

and soil organic matter accurately.  A functional unit modelling approach was designed to simulate the LIDET 

decomposition study using two decomposition models in the ELM framework.  We found that the converging 

trophic cascade (CTC) decomposition model, which was parameterized with a series of mesocosm experiments, 

reproduces the observed patterns of decomposition in LIDET reasonably well when driven with values of soil 

moisture, temperature, and nutrient limitation that are internally consistent with ELM simulations.  The introduction 580 
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of vertically resolved SOM in CLM4.5 and later ELM helped to correct apparent biases related to previous single-

layer implementations of CTC that resulted in too rapid litter decomposition and underpredicted soil carbon stocks.  

When both decomposition models are implemented in ELM and tested against LIDET observations, CTC is not 

substantially different from the DAYCENT-based CNT model; the spread of predictions resulting from parameter 

uncertainty is equal to or greater than the differences caused by model structure.  Modelled outputs were highly 585 

sensitive to the respiration fraction, highlighting the importance of accurately simulating carbon use efficiency.  In 

the future, microbially explicit modelling frameworks currently under development in Earth system models would 

benefit from litter bag experiments coupled with observations of microbial population dynamics. 
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