

1 Nitrogen restricts future treeline advance in the sub-arctic

2 Adrian Gustafson^{1, 2}, Paul A. Miller^{1, 2}, Robert G. Björk^{4, 5}, Stefan Olin¹, Benjamin Smith^{1, 3}

3 ¹Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, 223 62 Lund, Sweden

4 ²Center for Environmental and Climate Science, Lund University, Sölvegatan 37, 223 62, Lund, Sweden

5 ³Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia

6 ⁴Department of Earth Sciences, University of Gothenburg, P.O. Box 460, SE-40530 Gothenburg, Sweden

7 ⁵Gothenburg Global Biodiversity Centre, P.O. Box 461, SE-405 30 Gothenburg, Sweden

8 *Correspondence to:* adrian.gustafson@nateko.lu.se

9 **Abstract.** Arctic environmental change has induced shifts in high latitude plant community composition and stature
10 with implications for Arctic carbon cycling and energy exchange. Two major components of high latitude ecosystems
11 undergoing change is the advancement of trees into treeless tundra and the increased abundance and size of shrubs.
12 How future changes in key climatic and environmental drivers will affect distributions of major ecosystem types is an
13 active area of research. Dynamic Vegetation Models (DVMs) offer a way to investigate multiple and interacting drivers
14 of vegetation distribution and ecosystem function. We employed the LPJ-GUESS DVM over a subarctic landscape in
15 northern Sweden, Torneträsk. Using a highly resolved climate dataset we downscaled CMIP5 climate data from three
16 Global Climate Models and two 21st century future scenarios (RCP2.6 and RCP8.5) to investigate future impacts of
17 climate change on these ecosystems. We also performed three model experiments where we factorially varied drivers
18 (climate, nitrogen deposition and [CO₂]) to disentangle the effects of each on ecosystem properties and functions. We
19 found that treelines could advance by between 45 and 195 elevational meters in the landscape until the year 2100, de-
20 pending on the scenario. Temperature was a strong, but not the only, driver of vegetation change. Nitrogen availability
21 was identified as an important modulator of treeline advance. While increased CO₂ fertilisation drove productivity in-
22 creases it did not result in any range shifts of trees. Treeline advance was realistically simulated without any tempera-
23 ture dependence on growth, but biomass was overestimated. As nitrogen was identified as an important modulator of
24 treeline advance, we support the idea that accurately representing plant-soil interactions in models will be key to future
25 predictions of Arctic vegetation change.

26 **Keywords:** Ecosystem model, forest-tundra ecotone, treeline, sub-Arctic, climate change impacts, ecosystem stability,
27 LPJ-GUESS, biogeophysical feedbacks.

28 1. Introduction

29 In recent decades, the Arctic has been observed to become greener (Epstein et al., 2012; Bhatt et al., 2010). Causes
30 include an increased growth and abundance of shrubs (Myers-Smith et al., 2011; Elmendorf et al., 2012; Forbes et al.,
31 2010), increased vegetation stature associated with a longer growing season, and poleward advance of the Aarctic
32 treeline (Bjorkman et al., 2018). Shrubs protruding through the snow and treeline advance will alter surface albedo and
33 energy exchange with potential feedback to the climate system (Chapin et al., 2005; Sturm, 2005; Serreze and Barry,
34 2011; Zhang et al., 2013; Zhang et al., 2018). Warming and associated changes in high latitude ecosystems have impli-

35 cations for carbon cycling through increased plant productivity and species shifts (Chapin et al., 2005; Zhang et al.,
36 but also increased soil organic matter (SOM) decomposition with subsequent loss of carbon to the atmosphere.
37 Studies of the Arctic carbon balance have shown that the Arctic has been a weak sink in the past (Mcguire et al., 2009;
38 Mcguire et al., 2012; Bruhwiler et al., 2021; Virkkala et al., 2021), although uncertainty is substantial, and it is difficult
39 to determine accurately the strength of this sink. How climate and environmental changes will affect the relative bal-
40 ance between the carbon uptake, i.e. photosynthesis, and release processes, i.e., autotrophic and heterotrophic respira-
41 tion, will determine whether the Arctic will be a source or a sink of carbon in the future.

42 Forest-tundra ecotones constitute one of the largest transition zones where abrupt changes in ecosystem functioning
43 occur (Hofgaard et al., 2012). While no generally accepted theory of what drives treeline advance has been put forward,
44 several alternative explanations exist. Firstly, direct effects of rising temperatures have been thoroughly discussed (e.g.,
45 Rees et al., 2020; Hofgaard et al., 2019; Körner, 2015; Chapin, 1983). On the global scale, treelines have been found to
46 correlate well with a 6-7°C mean growing season ground temperature (Körner and Paulsen, 2004) and could thus be
47 expected to shift with rising temperatures. A global study of alpine treeline advance in response to warming since 1900
48 shows that 52% of treelines had advanced while the other half was stationary (47%), with only occasional instances of
49 retreat (1%) (Harsch et al., 2009). Similar patterns have been observed on the circumarctic scale, although latitudinal
50 treelines might be expected to shift more slowly than elevational treelines due to dispersal constraints (Rees et al.,
51 2020). As trees close to the treeline often show ample storage of non-structural carbohydrates (Hoch and Körner, 2012)
52 it has been suggested that a minimum temperature requirement for wood formation, rather than productivity, constrains
53 treeline position (Körner, 2003, 2015; Körner et al., 2016).

54 Secondly, it has been hypothesised that indirect effects of warming might be equally or more important than direct
55 effects (Sullivan et al., 2015; Chapin, 1983). For example, rising temperatures and subsequently soil temperatures might
56 induce increased nitrogen mineralisation and plant nitrogen uptake (Chapin, 1983). Increased nitrogen uptake could in
57 turn enhance plant productivity and growth (Dusenge et al., 2019). Increased nitrogen uptake as a consequence of in-
58 creased soil temperatures or nitrogen fertilisation have been shown to increase seedling winter survival among moun-
59 tain birch (*Betula pubescens* ssp. *tortuosa*) seedlings (Weih and Karlsson, 1999; Karlsson and Weih, 1996).

60 Thirdly, experiments of elevated CO₂ often show increased plant productivity and biomass increase, especially in trees
61 (Ainsworth and Long, 2005). Terrestrial biosphere models generally agree with this pattern (Hickler et al., 2008; Smith
62 et al., 2014; Piao et al., 2013). Although difficult to measure in field experiments, treeline position seems unresponsive
63 to increased [CO₂] alone (Holtmeier and Broll, 2007). Whether treelines are responsive to increased productivity
64 through CO₂ fertilisation might yield insights into whether treelines are limited by their productivity, i.e., photosynthe-
65 sis, or ability to utilise assimilated carbon, i.e., wood formation. However, to what extent increased [CO₂] drives long-
66 term tree and shrub encroachment and growth remains poorly studied.

67 For treeline migration to occur, it is not only the growth and increased stature of established trees that is important, but
68 also the recruitment and survival of new individuals beyond the existing treeline (Holtmeier and Broll, 2007). Seedlings
69 of treeline species are sometimes observed above the treeline, especially in sheltered microhabitats (Hofgaard et al.,
70 2009; Sundqvist et al., 2008). However, these individuals ~~are~~ often display a stunted growth and can be up to a few

71 decades old, although age declines with elevation (Hofgaard et al., 2009). The suitability of the tundra environment for
72 trees to establish and grow taller will thus be an important factor for the rate of treeline advance (Cairns and Moen,
73 2004). Interspecific competition and herbivory are known to be important modulators of range shifts of trees (Cairns
74 and Moen, 2004; Van Bogaert et al., 2011; Grau et al., 2012). For instance, the presence of shrubs has been shown to
75 limit tree seedling growth (Weih and Karlsson, 1999; Grau et al., 2012), likely as a consequence of competition with
76 tree seedlings for nitrogen. Comparisons of models incorporating only bioclimatic limits to species distributions and a
77 more ecologically complex model have also revealed interspecific plant competition to be important for range shifts of
78 trees (Scherrer et al., 2020; Epstein et al., 2007). Thus, as a fourth factor, shrub-tree interactions are likely to be im-
79 portant when predicting forest range shifts under future climates. Rising temperatures have been suggested as the domi-
80 nant driver of increased shrub growth, especially where soil moisture is not limiting (Myers-Smith et al., 2015; Myers-
81 Smith et al., 2018). Furthermore, a changed precipitation regime, especially increased winter snowfall, might promote
82 establishment of trees and shrubs through the insulating effects of snow cover with subsequent increases in seedling
83 winter survival (Hallinger et al., 2010).

84 A narrow focus on a single, e.g., summer temperature, or a few driving variables may lead to overestimations of treeline
85 advance in future projections (Hofgaard et al., 2019). Dynamic vegetation models (DVMs) offer a way to investigate
86 the influence of multiple and interacting drivers on vegetation and ecosystem processes. Model predictions may be
87 compared with observations of local treelines and ecotones to validate assumptions embedded in the models, and to
88 interpret causality in observed dynamics and patterns. DVMs also offer a way to extrapolate observable local phenome-
89 na to broader scales, such as that of circumarctic shifts in the forest-tundra ecotone and the responsible drivers. Here,
90 we examine a subarctic forest-tundra ecotone that has undergone spatial shifts over recent decades (Callaghan et al.,
91 2013), previously attributed to climate warming. Adopting a DVM incorporating a detailed description of vegetation
92 composition and stature and nitrogen cycle dynamics, we apply the model at high spatial resolution to compare ob-
93 served and predicted recent treeline dynamics, and project future vegetation change with implications for carbon bal-
94 ance and biogeophysical feedbacks. In addition, we conduct three model experiments to separate and interpret the im-
95 pact of driving factors (climate, nitrogen deposition, [CO₂]) on vegetation in a forest-tundra ecotone in Sweden's sub-
96 arctic north.

97 2. Materials and Methods

98 2.1 Abisko

99 Abisko Scientific Research station (ANS; 68°21' N, 18°49' E) has a long record of ecological and climate research. The
100 climate record dates back to 1913 and is still ongoing. The research station is situated in a rain shadow and is thus rela-
101 tively dry despite its proximity to the ocean (Callaghan et al., 2013). The research station is situated in the valley, close
102 to the lake Torneträsk. The forests in the lower parts of the valley consist mostly of mountain birch *Betula pubescens*
103 *ssp. czerepanovii* which is also dominant at the treeline. Treeline elevation in the Abisko valley range between 600-800
104 m above sea level (a.s.l.) (Callaghan et al., 2013). Other tree types in lower parts of the valley are *Sorbus aucuparia*,
105 and *Populus tremula*, along with small populations of *Pinus sylvestris* which are assumed to be refugia species from

106 warmer periods during the Holocene (Berglund et al., 1996). Soils are glaciofluvial till and sediments. A full summary
107 of previous studies and the environment around lake Torneträsk can be found in Callaghan et al. (2013).
108 Our study domain covers an area of approximately 85 km² and extends from Mount Njulla in the west to the mountain
109 Nissoncorru in the East (See Fig. 2). In the northern part of our study domain is the lake Torneträsk. The mean annual
110 temperature was -0.5 ± 0.9 °C for the 30-year period 1971-2000 (Fig. 1; Table 2) with January as the coldest month ($-$
111 10.2 ± 3.5 °C) and July as the warmest month (11.3 ± 1.4 °C). Mean annual precipitation was 323 ± 66 mm for the
112 same reference period. This reference period was chosen as it is the last one in the dataset by Yang et al. (2011).

113 **2.2 Ecosystem model**

114 We used the LPJ-GUESS DVM as the main tool for our study (Smith et al., 2001; Smith et al., 2014; Miller and Smith,
115 2012). LPJ-GUESS is one of the most ecologically detailed models of its class, suitable for regional and global-scale
116 studies of climate impacts on vegetation, employing an individual- and patch-based representation of vegetation com-
117 position and structure. It simulates the dynamics of plant populations and ecosystem carbon, nitrogen, and water ex-
118 changes in response to external climate forcing. Biogeophysical processes (e.g. soil hydrology and evapotranspiration)
119 and physiological processes (e.g. photosynthesis, respiration, carbon allocation) are both closely linked and represented
120 mechanistically. The model assumes the presence of seeds in grid cells, meaning that simulated PFTs can establish
121 once the climate is favourable, as defined by each PFT's predefined bioclimatic limits. The competition between neigh-
122 bouring plant individuals for light, water and nutrients, affecting individual establishment, growth, and mortality, is
123 modelled explicitly. Individuals of the same age co-occurring in a local neighbourhood or patch and belonging to the
124 same plant functional type (PFT; see below) are assumed identical to each other. Decomposition of plant litter and cy-
125 cling of soil nutrients are represented by a CENTURY-based soil biogeochemistry module, applied at patch scale
126 (Smith et al., 2014). Biological N fixation is represented by an empirical relationship between annual evapotranspiration
127 and nitrogen fixation (Cleveland et al., 1999) and occurs differently within each patch. Additional inputs of nitrogen to
128 the system occur through nitrogen deposition or fertilisation. Nitrogen is lost from the system through leaching, gaseous
129 emissions from soils and wildfires. For a full description of the nitrogen cycle in LPJ-GUESS, see Smith et al. (2014).

130 For this study we employed LPJ-GUESS version 4.0 (Smith et al. 2014), enhanced with Arctic-specific features (Miller
131 and Smith, 2012; Wania et al., 2009). The combined model incorporates an updated set of arctic PFTs (described be-
132 low), improved soil physics and a multi-layered dynamic snow scheme, allowing for simulation of permafrost and fro-
133 zen ground.

134 Vegetation in the model is represented by cohorts of individuals interacting in local communities or patches and belong-
135 ing to a number of PFTs that are distinguished by growth form (tree, shrub, herbaceous), life history strategies (shade
136 tolerant or intolerant), and phenology class (evergreen/summergreen). Herbaceous PFTs are represented as a dynamic,
137 aggregate cover of ground layer vegetation in each patch. In this study 11 PFTs were implemented (See Table S2.1 in
138 supplementary material for a description of included PFTs; see Table S2.2 in supplementary material for parameter
139 values associated with each PFT). Out of these, three were tree PFTs, boreal needle-leaved evergreen trees (BNE),
140 boreal shade-intolerant evergreen tTree (BINE) and boreal shade-intolerant broad-leaved summergreen tree (IBS). Cor-
141 responding tree species present in the Torneträsk region include *Picea abies* (BNE), *Pinus sylvestris* (BINE), *Betula*

142 *pubescens* ssp. *czerepanovii*, *Populus tremula* and *Sorbus aucuparia* (IBS). Following Wolf et al. (2008), shrub PFTs
143 with different stature were implemented as follows: tall summergreen and evergreen shrubs, corresponding to *Salix* spp.
144 (HSS) and *Juniperus communis* (HSE) and low summergreen and evergreen shrubs. The two latter corresponding to
145 species such as *Betula nana* (LSS) and *Empetrum nigrum* (LSE). We also include two prostrate shrubs and two herba-
146 ceous PFTs.

147 Gridcell vegetation and biogeophysical properties are calculated by averaging over a number of replicate patches, each
148 subject to the same climate forcing. No assumptions are made about how the patches are distributed within a gridcell,
149 they are a statistical sample of equally possible disturbance/demographic histories across the landscape of a gridcell.
150 Within each patch, establishment, growth and mortality of individual tree or shrub cohorts are modelled annually
151 (Smith et al., 2001; Smith et al., 2014). Establishment and mortality have both an abiotic (bioclimatic) and biotic (com-
152 petition-mediated) component. Vegetation dynamics, i.e. changes in the distribution and abundance of different PFTs in
153 grid cells over time, are an emergent outcome of the competition for resources between PFTs within an overall climate
154 envelope determined by bioclimatic limits for establishment and survival. The bioclimatic envelope is a hard limit to
155 vegetation distribution, intended to represent the physiological niche of a PFT. Furthermore, the climate envelope is a
156 proxy for physiological processes such as meristem activity that may set species ranges, but also for climatic stressors
157 such as tissue freezing. Disturbance is accounted for by the occasional removal of all vegetation within a patch with
158 an annual probability of one per 300 years, representing random events such as storms, avalanches, insect outbreaks,
159 and wind-throw. The study used three replicate patches within each 50x50m gridcell.

160 For summergreen PFTs we slightly modified the assumption of a fixed growing degree day (GDD) requirement for
161 establishment, using thawing degree days (TDD; degree days with a 0 °C basis; see Table S2.2) instead.

162 **2.3 Forcing data**

163 **2.3.1 Historic period**

164 A highly resolved (50x50m) temperature and radiation dataset using field measurements and a digital elevation model
165 (DEM) by Yang et al. (2011) provided climate input to the model simulations for the historic period (1913-2000). The
166 field measurements were conducted in form of transects that captured mesoscale climatic variations, i.e., lapse rates. In
167 addition, the transects were placed to capture microclimatic effects of the nearby lake Torneträsk and variations in radi-
168 ation stemming from mountainside aspect. The temperature in the lower parts of the Abisko valley in the resulting
169 dataset was influenced by the lake with milder winters and less yearly variability. At higher elevation, the temperature
170 was more variable over the year and the local scale variations were more dependent on the different solar angles be-
171 tween seasons and mountainside aspect (Yang et al., 2011; Yang et al., 2012) (see Fig. S1.1; supplementary materials).
172 For a full description of how this dataset was constructed we refer to Yang et al. (2011) and Yang et al. (2012).

173 Monthly precipitation input was obtained from the Abisko Scientific Research Station weather records. Precipitation
174 was randomly distributed over each month using probabilities from the CRUNCEP v.7 dataset (Wei et al., 2014). We
175 assumed that local differences in precipitation can be neglected for our study domain and thus the raw station data was
176 used as input to LPJ-GUESS for the historic period. Nitrogen deposition data for the historic and future simulations

177 were extracted from gridcell including Abisko in the dataset produced by Lamarque et al. (2013). Nitrogen deposition
178 was assumed to be distributed equally over the study domain.

179 Data of soil texture was extracted from the WISE soil dataset (Batjes, 2005) for the Abisko area and assumed to be
180 uniform across the study domain. Callaghan et al (2013) reports that the soils around the Torneträsk areas are mainly
181 glaciofluvial till and sediments. Clay and silt fractions vary between 20-50% in the area (Josefsson, 1990) with higher
182 fractions of clay and silt in the birch forest and a larger sand content in the heaths. In the absence of spatial information
183 on particle size distributions, the soil was prescribed as a sandy loam soil with approximately 43% sand and approxi-
184 mately equal fractions of silt and clay.

185 **2.3.2 Future simulations**

186 Future estimates of vegetation change were simulated for one low (RCP2.6) and one high (RCP8.5) emission scenario.
187 For each emission scenario, climate change projections from three global climate models (GCMs) that had contributed
188 to the CMIP5 GCM ensemble (Taylor et al., 2012) were used to investigate climate effects on vegetation dynamics. The
189 GCMs (MIROC-ESM-CHEM, HadGEM2-AO, GFDL-ESM2M) were selected to represent the largest spread, i.e.,
190 highest, lowest and near average, in modelled mean annual temperature for the reference period 2071-2100. Only mod-
191 els that had contributed with simulations for both RCP2.6 and RCP8.5 were used in the selection. Monthly climate data
192 needed as input to LPJ-GUESS (temperature, total precipitation, and shortwave radiation) was extracted for the gridcell
193 including ANS for each GCM.

194 The historic climate dataset by Yang et al (2011) was extended into the projection period (2001-2100) using the delta
195 change approach, as follows. For each gridcell monthly differences were calculated between the projection climate and
196 the dataset by Yang et al. (2011) for the last 30-year reference period in our historic dataset (1971-2000). For tempera-
197 ture, the difference was derived, while for precipitation and incoming shortwave radiation relative differences between
198 the two datasets were derived. The calculated monthly differences were then either added (temperature) to the GCM
199 outputs, or used to multiply (precipitation, radiation) the GCM outputs from 2001-2100, for each of the climate scenari-
200 os used. Forcing data of atmospheric [CO₂] for the two scenarios were collected from the CMIP5 project.

201 **2.4 Model experiments**

202 To investigate the possible drivers of future vegetation change we performed three model experiments. The model was
203 forced with changes to one category of input (driver) variables (climate, [CO₂], nitrogen deposition) at a time for a
204 projection period between the years 2001-2100. A full list of simulations can be found in Table S3 (supplementary
205 materials).

206 A control scenario with no climate trend (and with [CO₂] and nitrogen deposition held at their respective year 2000
207 values) was also created. We estimated the effect of the transient climate change, [CO₂] or nitrogen deposition scenarios
208 by subtracting model results for the last decade (2090-2100) in the no-trend scenario from those for the last decade
209 (2090-2100) of the respective transient scenario. To estimate how sensitive the model was to different factors, we per-

210 formed a Spearman rank correlation for each PFT in 50 m elevational bands over the forest-tundra ecotone. We chose
211 Spearman rank over Pearson since not all correlations were linear.

212 **2.4.1 Climate change**

213 To estimate the sensitivity to climate change the same scenarios as for the future simulations (section 2.3.2) were used
214 while [CO₂] and nitrogen deposition were held constant at their year 2000 value.

215 Climate anomalies without any trend were created by randomly sampling full years in the last decade (1990-2000) from
216 the climate station data. The climate dataset was then extended using this data. The resulting climate scenario had the
217 same inter-annual variability as the historic dataset and no trend for the years 2001-2100. This scenario was used to
218 investigate any lag-effects on vegetation change. This scenario also provided climate input for the nitrogen and [CO₂]
219 tests described below.

220 **2.4.2 CO₂**

221 For our projection simulations we used five different [CO₂] scenarios from the CMIP5 project. High (RCP8.5), medium
222 (RCP6.0; RCP4.5) and low (RCP2.6) emission scenarios were used.

223 **2.4.3 Nitrogen deposition**

224 Scenarios of nitrogen deposition were collected from the Lamarque et al. (2013) dataset. Since this dataset assumes a
225 decrease of nitrogen deposition after year 2000 we also added four scenarios where nitrogen deposition increased with
226 2, 5, 7.5 and 10 times the nitrogen deposition relative to the year 2000. These four scenarios were created to test the
227 isolated effect of nitrogen increase without any climate or [CO₂] change. The resulting additional loads of nitrogen in
228 these scenarios were ~~0.3-8~~, ~~0.9-75~~, ~~1.4-63~~ and ~~1.8-9~~ kgN m⁻² yr⁻¹ respectively.

229 **2.5 Model evaluation**

230 We evaluated the model against a range of available observations in the Abisko area. Measurements of ecosystem
231 productivity from an eddy covariance (EC) tower were obtained for six non-consecutive years (Olsson et al., 2017).
232 Biomass and biomass change estimates were used to evaluate simulated biomass in the birch forest (Hedenås et al.,
233 2011). Surveys of historic vegetation change above the treeline were collected from Rundqvist et al. (2011). Leaf area
234 index (LAI) and evapotranspiration estimates were obtained from Ovhed and Holmgren (1996).

235 The two studies by Hedenås et al. (2011) and Rundqvist et al. (2011) documented evaluation measurements within our
236 projection period (year 2010). To compare biomass and vegetation change with these studies we extracted five year
237 multi-model averages around the year 2010 (2008-2012) from our projection simulations (section 2.3.2). These means
238 were used to calculate change in biomass and vegetation in our historic dataset.

239 To determine the local rates and heterogeneity of treeline migration ~~several a number of~~ transects were selected within
240 our study domain (Fig. S1.2; supplementary material). ~~These transects were chosen to represent a large spread in heter-~~
241 ~~ogeneity with regard to slope and aspect in the landscape. A subsample of the selected transects~~~~these~~ were placed close
242 to the transects used by Van Bogaert et al. (2011) ~~and used to evaluate model performance.~~ Results from the model
243 evaluation are summarised in Table 1 ~~and Table S1.1.~~

244 **2.6 Determination of domains in the forest-tundra ecotone**

245 In our analysis we distinguished between forest, treeline and shrub-tundra, defined as follows. Any gridcell containing
246 30% fractional projective cover or more of trees was classified as forest. This limit has been used by other studies in the
247 area (e.g., Van Bogaert et al., 2011) to determine the birch forest boundary. The treeline was then determined by first
248 selecting gridcells classified as forest. Any gridcell with 4 or more neighbours fulfilling the 30% cover condition crite-
249 ria was classified as belonging to the forest. The perimeter of the forest was then determined through sorting out
250 gridcells with 4 or 5 neighbours classified as forest. Gridcells with fewer or more neighbors were regarded as tundra or
251 forest, respectively. Gridcells below the treeline were classified as forest in the analysis and gridcells above the treeline
252 were classified as tundra.

253 **2.7 Presentation of results**

254 We present seasonal values for soil and air temperature. These are averages of DJF, MAM, JJA, and SON, referred to
255 as winter, spring, summer and autumn below. For the RCPs average values are presented with the ranges of the differ-
256 ent scenarios within each RCP given in parenthesis. ~~We report values of both gross primary production (GPP), which~~
257 ~~we benchmark the model against, and net primary productivity (NPP) as this is of relevance for the carbon limitation~~
258 ~~discussion.~~

259 **3. Results**

260 **3.1 Historic vegetation shifts**

261 The dominating PFT in the forest and at the treeline was IBS which constituted 90% of the total LAI (Fig. 2a-3a). The
262 only other tree PFT present in the forest was BINE, which comprised a minor fraction of total LAI. However, in the
263 lower (warmer) parts of the landscape BINE comprised up to 20% of total LAI in a few gridcells. Forest understory was
264 mixed but consisted mostly of tall and low evergreen shrubs and grasses. Shrub tundra vegetation above the treeline
265 was more mixed but LSE dominated with 51% of total LAI. Grasses comprised an additional 25% of total LAI and IBS
266 was present close to the treeline where it comprised up to 5% of LAI in some gridcells. ~~NPP for IBS in the forest in-~~
267 ~~creased from 96 gC m⁻² yr⁻¹ to 180 gC m⁻² yr⁻¹ over our historic period (1913-2000). Corresponding values at the~~
268 ~~treeline did not increase but were stagnant at around 60 gC m⁻² yr⁻¹. Above the treeline, IBS showed very low NPP~~
269 ~~values (<15 gC m⁻² yr⁻¹), while NPP for the dominant shrub (LSE) doubled from 20 gC m⁻² yr⁻¹ to 40 gC m⁻² yr⁻¹.~~

270 Between the start and end of our historic (1913-2000) simulation the landscape scale treeline shifted upwards 67 eleva-
271 tional meters on average, corresponding to a rate of 0.83 m yr⁻¹. However, during the 20th century both a period (1913-

272 1940) with more rapid warming (0.8°C) and faster tree migration rate (1.23 m yr^{-1}) as well as a period (1940-1980) with
273 a cooling trend (-0.3°C) and stationary treeline occurred (Fig. 5). Between 1913-2000, the lower boundary of the
274 treeline shifted upwards 2 meters, while treeline upper boundaries shifted upwards 123 m. These shifts corresponded to
275 rates of 0.03 and 1.54 m yr^{-1} , respectively. Similar rates were also found in the transects established to test the heterogeneity
276 of treeline migration (Fig. S1.2; Table S1.1; supplementary materials) where the average migration rate was 0.87
277 ($0.54 - 1.25 \text{ m yr}^{-1}$).

278 During the 1913-2000 period, annual air temperature at the simulated treeline warmed from -2.0°C to -0.8°C . Warming
279 occurred throughout the year but was strongest in winter and spring where temperatures increased by 3.0°C and 1.4°C ,
280 respectively. In contrast, both summer and autumn temperatures warmed by only 0.6°C . The resulting winter, spring,
281 summer, and autumn air temperatures at the treeline in 1990-2000 were -8.7°C , 3.3°C , 8.8°C , and -0.1°C , respectively.
282 The increases in air temperatures were also reflected in soil temperature increases of a similar magnitude, by 2.1°C
283 from -0.8°C to 1.3°C . Winter soil temperature increased with 3.7°C from -5.6°C in 1913 to -1.9°C in 2000. The warmer
284 soil temperatures resulted in a 4.8% increase in annual net nitrogen mineralisation rate in the treeline soils over the
285 same period. In absolute numbers, nitrogen mineralisation increased from 1.29 gN m^{-2} to 1.36 gN m^{-2} . Combined with
286 an increased nitrogen deposition load from $0.065 \text{ kg-N mha}^{-2}$ in 1913 to $0.20 \text{ kg-N mha}^{-2}$ in 2000 and an increased
287 nitrogen fixation from $0.135 \text{ kg-N mha}^{-2}$ to $0.1876 \text{ kg-N mha}^{-2}$, plant available nitrogen increased by 15.9% . Simulated permafrost with an active layer thickness of <1.5 m was present at elevations down to 560 m a.s.l. in a few gridcells, but was always well above the treeline. More shallow permafrost (active layer thickness <1 m) was only present in gridcells at elevations of 940 m a.s.l. and above.

291 3.2 Projected vegetation shifts

292 During the 100 year projection period (2001-2100) treelines advanced between 45 (HadGEM2-AO-RCP2.6) and 195
293 (GFDL-ESM2M-RCP8.5) elevational meters in the different scenarios, corresponding to rates of 0.45 and 1.95 elevational
294 meters yr^{-1} . Total LAI increased in the entire ecotone in both RCP2.6 and RCP8.5 compared to the historic (1990-
295 2000) values (Fig. 3b-c). The increase was more pronounced in RCP8.5, which also saw a large increase in low ever-
296 green shrubs (LSE) at the end of the century (2090-2100). While the forest was still dominated by IBS, evergreen trees
297 (BNE and BINE) increased and together comprised approximately 15% of total LAI. The fraction of evergreen trees in
298 the forest correlated well with the degree of warming in each scenario. Forest productivity (GPP) was mainly driven by
299 tree PFTs and increased by 50% ($12\% - 99\%$) for RCP2.6 and 177% ($98\% - 270\%$) for RCP8.5. Above the treeline, low
300 shrubs (LSS and LSE) contributed most to annual GPP increases, which increased by 33% ($-12\% - 67\%$) and 239%
301 ($105\% - 370\%$) in RCP2.6 and RCP8.5, respectively. Forest NPP, wherein IBS was always dominant, increased from
302 $200 \text{ gC m}^{-2} \text{ yr}^{-1}$ in year 2000 to $300 (220 - 375) \text{ gC m}^{-2} \text{ yr}^{-1}$ and $490 (380 - 610) \text{ gC m}^{-2} \text{ yr}^{-1}$ for RCP 2.6 and RCP 8.5,
303 respectively, over the projection period. NPP for the same period for IBS at the treeline increased slightly from 60 gC
304 $\text{m}^{-2} \text{ yr}^{-1}$ to $80 (74 - 90) \text{ gC m}^{-2} \text{ yr}^{-1}$ and $104 (80 - 116) \text{ gC m}^{-2} \text{ yr}^{-1}$ for RCP2.6 and RCP8.5. Above the treeline NPP re-
305 mained low (< $25 \text{ gC m}^{-2} \text{ yr}^{-1}$) for IBS in all scenarios and always had a lower NPP than the most productive shrub PFT
306 (LSE). NPP for this shrub was $49 (24 - 64) \text{ gC m}^{-2} \text{ yr}^{-1}$ and $130 (81 - 180) \text{ gC m}^{-2} \text{ yr}^{-1}$. -The productivity increase trans-
307 lated into a biomass C increase of the same magnitude in both the forest and above the treeline.

308 The average summer air temperature at the treeline between the last decade in the historic and projection periods in-
309 creased by 0.3°C and 6.7°C for the coldest (GFDL-ESM2M-RCP2.6) and warmest (MIROC-ESM2M-RCP8.5) GCM
310 scenario, respectively. The advance of the 6°C JJA soil temperature isoline was more rapid than the treeline advance
311 (Fig. 4). In the two warmest scenarios (MIROC-ESM2M-RCP8.5 and HadGEM2-AO-RCP8.5) summer soil tempera-
312 tures exceeded 6°C in the whole study domain. Treeline elevations in these scenarios only reached 745 and 660 m a.s.l.,
313 respectively. Treelines advanced almost twice as fast in RCP8.5 compared to RCP2.6, 1.55 (1.10 - 1.96) m yr⁻¹ and 0.84
314 (0.44 - 1.16) m yr⁻¹, respectively.

315 **3.3 Model experiments**

316 A slight treeline advance at the end of the projection period (2090-2100) of approximately 11 elevational meters was
317 seen in the control simulation where all drivers were held constant. This revealed a lag from the historical period, likely
318 resulting from smaller trees that had established in the historic period that matured during the projection period.

319 **3.3.1 Climate change**

320 Treeline advance occurred in all climate change scenarios although the rate was not uniform throughout the projection
321 period (Fig. 5). When driven by climate change alone, migration rates were faster than the projection simulations where
322 nitrogen deposition and CO₂ were also changed (section 3.2). Treeline advance in climate change only scenarios ranged
323 between 60 elevational meters (HadGEM2-AO-RCP2.6) to 245 elevational meters (MIROC-ESM-CHEM-RCP8.5)
324 over the 100 year projection period.

325 Tree productivity was strongly enhanced by air temperature over the whole study domain (Fig. 6a). Other climate fac-
326 tors such as precipitation and net shortwave radiation also correlated with productivity, however, these correlations
327 were weaker (Fig. S1.5; S1.6; supplementary materials). Annual precipitation increased in all climate change scenarios
328 (Table 2). In the lower parts of the valley, the increased precipitation did not result in any increased soil moisture during
329 summer as losses through evapotranspiration driven by temperature exceeded the additional input. Spring and autumn
330 soil moisture increased in the forest, mainly because of earlier snowmelt and thawing ground in spring and a relatively
331 weaker evapotranspiration in autumn. Above the treeline, soil moisture increased as the lower temperatures and LAI did
332 not drive evapotranspiration as strongly as in the lower parts of the valley and the increased rain thus outweighed the
333 slightly increased evapotranspiration.

334 Increased tree productivity in the forest resulted in an increased LAI of 18-90%, which in absolute terms was equivalent
335 to an increased LAI of 0.3-1.5 m² m⁻². BNE appeared in the forest and dominated in a few gridcells. In most places
336 BNE constituted approximately 5% of total LAI. Tall shrub (HSE and HSS) productivity and LAI increased in the for-
337 est, however, the increase was negatively correlated with temperature, i.e., increase was highest in the coldest climate
338 change scenarios. Above the treeline, tall shrubs showed the opposite pattern, increasing by 8-50% to finally constitute
339 10-36% of total LAI.

340 Higher soil moisture content in spring and autumn favoured trees in the whole ecotone, while forest understory suffered
341 from earlier onset of the growing season with subsequent flushing of the leaf and light shading from taller competitors.

342 Although soil moisture in summers decreased in the forest, LAI and biomass carbon of summergreen shrubs were posi-
343 tively correlated with soil moisture. A higher soil moisture during summers in the wetter GCM scenarios~~GCMs~~ pro-
344 moted summergreen shrubs over evergreen shrubs in the whole ecotone. As an example, vegetation composition on the
345 tundra above the treeline differed between the two GCMs GFDL-ESM2M and MIROC-ESM-CHEM under RCP8.5,
346 where the warmer GCM showed a 52% biomass C increase in the tall evergreen shrub, HSE. The intermediately
347 warmed scenario (GFDL-ESM2M-RCP8.5) showed a more mixed increase of biomass carbon in HSE (20%) and HSS
348 (24%). While annual temperature differed with 3.9°C between the two scenarios, average annual precipitation only
349 differed by 6.2 mm, yielding a much (26%) lower JJA soil moisture in the warmest scenario (MIROC-ESM-CHEM-
350 RCP8.5) compared to the colder (GFDL-ESM2M-RCP8.5). A relatively higher soil moisture and subsequently lower
351 water stress allow for taller plants to establish.

352 Radiation correlated positively with the growth of tree PFTs, with spring and autumn radiation found to be especially
353 important for height and biomass increase (Fig. S1.7; supplementary materials). Increased radiation provided a competi-
354 tive advantage for taller trees and shrubs to shade out lower shrubs and grasses in the forest. Shrubs above the treeline
355 were also favoured by increased light.

356 Net nitrogen mineralisation, i.e., the difference between microbial nitrogen mineralisation and immobilisation, at the
357 treeline showed great variation between different climate change scenarios, ranging from a 4% decrease in one scenario
358 (GFDL-ESM2M-RCP8.5) to a 79% increase in the strongest warming scenario (MIROC-ESM-CHEM- RCP8.5). In
359 absolute terms, the latter increase corresponds to an increase from 1.35 gN m⁻² yr⁻¹ at the end of our historic period
360 (1990-2000) to 2.43 g N m⁻² yr⁻¹ at the end of the century (2090-2100). This is comparable to the nitrogen load in the
361 7.5x increased nitrogen deposition scenario. Interestingly, despite very different plant available nitrogen and warming,
362 the two scenarios displayed a similar resulting (2090-2100) treeline elevation (Fig. 5a).

363 Permafrost with an active layer thickness of <1.5m disappeared completely from our study domain in all scenarios
364 except the coldest (GFDL-ESM2M-RCP2.6) where it occurred in a few gridcells at elevations of approximately 600 m
365 a.s.l. However, the shallow permafrost (<1m) had disappeared also in this scenario.

366 3.3.2 CO₂

367 Productivity increase in most PFTs correlated well with a [CO₂] increase (Fig. 6b). Total GPP averaged over the forest
368 increased between 2-10% depending on the [CO₂] scenario, with the largest increase in RCP8.5 and smallest in RCP2.6.
369 The CO₂ fertilisation effect was not uniform within the landscape, but stronger towards the forest edge with increases
370 from 2% to 18% from the weakest to the strongest [CO₂] scenario. IBS NPP increased uniformly over the forest with
371 2.5-8.4% but decreased above the treeline. Thus, the productivity of the two dominant PFTs (IBS in the forest and LSE
372 above the treeline) was reinforced in their respective domains. The increased productivity translated into a 1-5% in-
373 crease in tree LAI in the forest while low shrub LAI increased with 24-77%. Likewise, increase in leaf area of low
374 shrubs was largest on the tundra under elevated [CO₂], which saw a 15-40% LAI increase in the low and high [CO₂]
375 scenario respectively. Above the treeline, the productivity of grasses and low shrubs responded strongly to the CO₂
376 fertilisation with a 350% increase in GPP for grasses and 150% increase for low shrubs. The additional litter fall pro-

377 duced by the increased leaf mass did not lead to any increase in N mineralisation. However, immobilisation of nitrogen
378 through increased uptake by microbes increased with 2-6% between the lowest and highest [CO₂] scenarios, yielding a
379 net reduction of plant available nitrogen. Furthermore, the productivity increase did not drive any range shift of the
380 forest, i.e., the treeline remained stationary in all [CO₂] scenarios (Fig. 5b).

381 **3.3.3 Nitrogen deposition**

382 Productivity of woody PFTs was in general positively correlated with nitrogen concentration in the different nitrogen
383 deposition scenarios. In contrast, productivity of grasses was negatively correlated (Fig. 6c) as they suffered in the light
384 competition with the trees. Annual GPP of trees (especially IBS) was positively correlated throughout the whole eco-
385 tone, however, the increase in GPP was larger towards the forest boundaries than in the lower parts the forest when
386 nitrogen was added. Nitrogen stressed plants in the model allocate more carbon to their roots at the expense of foliar
387 cover when they suffer a productivity reduction. In the two scenarios with decreasing nitrogen deposition (RCP2.6;
388 RCP8.5) there was an overall reduction in LAI in both the tundra and the forest of a magnitude 6-10%. The largest
389 reduction was seen in tree PFTs, which have the largest biomass and consequently could be assumed to have the highest
390 nitrogen demand, followed by tall shrubs. Low shrubs and grasses did however increase their LAI in the forest when
391 nitrogen input decreased resulting from a decreased light competition from trees. Above the treeline, LAI of low shrubs
392 and grasses PFTs also decreased with less nitrogen input.

393 In all scenarios with increasing nitrogen deposition there was an advancement of the treeline in the order of 10-85 ele-
394 vational meters with smallest (2x nitrogen deposition) having the smallest change in treeline elevation and vice versa
395 for largest input (10x nitrogen deposition) scenario (Fig. 5c). In the scenarios where nitrogen input was constant or
396 decreasing, the treeline remained stationary.

397 **4. Discussion**

398 In our simulations, rates of treeline advance were faster under climate change-only scenarios than when all drivers were
399 changing. This revealed nitrogen as a modulating environmental variable, as nitrogen deposition was prescribed to
400 decrease in both the RCP2.6 and RCP8.5 scenarios. In contrast to previous modelling studies of treeline advance (e.g.,
401 Paulsen and Körner, 2014), we include not only temperature dependence on vegetation change, but also the full nitro-
402 gen cycle and CO₂ fertilisation effects (Smith et al., 2014). Increased nitrogen deposition induced treeline advance,
403 further illustrating the importance of nitrogen dynamics in our results. In the elevated [CO₂] scenarios, higher produc-
404 tivity in all plants was induced, but productivity enhancements alone did not lead to significant treeline advance.
405 Furthermore, although NPP for IBS was lower at the treeline than in the forest, it was never close to zero. Such a pat-
406 tern, which was seen above the treeline, would have indicated a stagnant growth, and that the productivity and carbon
407 costs of maintaining a larger biomass would have cancelled each other out. However, enhancement of productivity in
408 combination with an allocation shift to the plant canopies, enabled by a greater nitrogen uptake, favoured taller plants
409 over their shorter neighbours in the competition for light within the model. Field experiments with nitrogen fertilisation
410 have shown that mountain birch at the treeline displays additional growth after nitrogen additions (Sveinbjörnsson et al.,
411 1992). Furthermore, fertilisation with nitrogen improved birch seedling survival above the treeline (Grau et al., 2012),

412 and is thus likely important for establishment and growth of new individuals to form a new treeline. ~~This pattern is in~~
413 ~~line with the hypothesis that productivity increase alone does not drive range shifts of trees (Körner, 2015).~~ As has also
414 been pointed out by others (Hofgaard et al., 2019; Van Bogaert et al., 2011), considering climate change or temperature
415 alone in projections of treeline advance could potentially result in overestimations of vegetation change. Our results
416 clearly indicate the importance of nitrogen cycling when predicting future Arctic vegetation shifts.

417 The treelines in our projection simulations advanced at similar rates to those experienced during the historic period,
418 resulting in a displacement of 45-195 elevational meters over the 100 year projection period. Some estimates based on
419 lake sediments in the Torneträsk region from the Holocene thermal maximum, when summer temperatures could have
420 been about 2.5°C warmer than present (Kullman and Kjällgren, 2006), indicate potential treeline elevations approxi-
421 mately 500m above present in the area in a warmer climate, although these elevations are likely overestimated
422 (Kullman, 2010). Macrofossil records from lakes in the area indicate that birch was present 300-400 meters above the
423 current treeline (Barnekow, 1999). Furthermore, pine might have occurred approximately 100-150 meters above its
424 present distribution (Berglund et al., 1996). IBS emerged as the dominant forest and treeline PFT in both our historic
425 and projection simulations, but with larger fractions of evergreen trees (BNE and BINE) at the end of the century
426 (2090-2100). Mountain birch, represented by IBS in our model, has historically dominated this area, even during warm-
427 er periods of the Holocene (Berglund et al., 1996), but with larger populations of pine (BINE) and spruce (BNE) than
428 present. Both pine and spruce have been found in high elevation lake pollen sediments, and can thus be assumed to have
429 grown in higher parts of the ecotone during warmer periods (Kullman, 2010). Treeline advance for the historic period in
430 our simulations is broadly consistent with observational studies from the Abisko region (Van Bogaert et al., 2011).
431 Temperature was a strong driver of tree productivity and growth in the whole ecotone. During our historic period rates
432 of treeline advance followed periods of stronger warming. However, other factors such as precipitation indirectly influ-
433 enced treeline advance through changes in vegetation composition and nitrogen mineralisation. This was illustrated by
434 the comparison of the GCMs GFDL-ESM2M and MIROC-ESM-CHEM under RCP8.5, where the more intermediately
435 warmed but wetter scenario had very similar resulting treeline elevation as the warmer scenario. While simulated
436 treeline position was too low compared to the treeline elevation reported by Callaghan et al. (2013), the correlation with
437 the globally observed 6-7°C ground temperature isoline (Körner and Paulsen, 2004) throughout the historic period gives
438 confidence in the model results. However, during our projection period the correlation between the treeline position and
439 the 6-7°C isoline weakened, revealing a fading or potential lag of the treeline-climate equilibrium that became stronger
440 with increased warming.

441 IBS at the treeline had a positive carbon balance (NPP) and was thus not directly limited by its productivity in our simu-
442 lations. This is consistent with observations of ample carbon storage in treeline trees globally (Hoch and Körner, 2012).
443 The modelled treeline is thus not set by productivity directly but rather by competition, as other PFTs become more
444 productive above the treeline. Whether the treeline is set by productivity constraints or by cold temperature limits on
445 wood formation and meristematic activity has been a subject of some discussion (Körner, 2015, 2003; Körner et al.,
446 2016; Fatici et al., 2019; Pugh et al., 2016). DVMs have traditionally assumed photosynthesis to be constraining for
447 growth, and thus species distributions. On the other hand, trees close to the treeline have not shown any shortage of
448 carbon for growth (Hoch and Körner, 2012). Furthermore, enhancement of photosynthesis through added CO₂ has also
449 not always resulted in increased tree growth close to the treelines (Dawes et al., 2013), and wood formation is slow

450 around 5°C, leading to a hypothesis of reversed control of plant productivity and range distributions of trees (Körner,
451 2015). Lately, ecological interactions as a component in the control of treeline position, rather than just considering
452 hard limits to species distributions, has been a subject of more attention in modelling studies (See for ex., Scherrer et
453 al., 2020). These studies add an extra dimension to the discussion as they do not only consider plant physiology but also
454 broadly accepted ecological concepts such as realised versus fundamental niches.

455 The model overestimated biomass carbon densities in the forest but captured historic rates of biomass carbon increase.
456 The overestimation was more severe closer to the forest boundaries as the model showed a weaker negative correlation
457 between biomass carbon and elevation than observed by Hedenås et al. (2011). The mean annual biomass carbon in-
458 crease in the same dataset is, although highly variable, on average 2.5 gC m⁻² yr⁻¹ between 1997 and 2010. As simulated
459 GPP and LAI were within the range of observations in the area (Rundqvist et al., 2011; Ovhed and Holmgren, 1996;
460 Olsson et al., 2017), this indicates a coupling between photosynthesis and growth in the model that is stronger than
461 observed. Terrestrial biosphere models often overestimate biomass in high latitudes (Pugh et al., 2016; Leuzinger et al.,
462 2013) and potentially lack processes that likely limit growth close to low temperature boundaries. Examples of such
463 processes are carbon costs of nitrogen acquisition (Shi et al., 2016), including costs for mycorrhizal interactions
464 (Vowles et al., 2018), and temperature limits on growth increment (Friend et al., 2019), i.e., decoupling of growth and
465 photosynthesis. However, data on carbon allocation and its temperature dependence is scarce (Fatichi et al., 2019).
466 Additionally, the overestimation in our study can be partly attributed to lack of herbivory in the model. Outbreaks of the
467 moth *Epirrita autumnata* are known to limit productivity and reduce biomass of mountain birch in the area in certain
468 years (Olsson et al., 2017), however, this is likely not enough to explain our biomass carbon overestimation. Simulated
469 productivity and LAI were within the range of observations in the area (Rundqvist et al., 2011; Ovhed and Holmgren,
470 1996; Olsson et al., 2017). Since growth and biomass increment in the model do not include a direct temperature de-
471 pendence, nor any decoupling of growth and productivity, we do not regard these mechanisms as necessary to accurate-
472 ly predict treeline dynamics. However, they might be important to accurately predict forest biomass towards their low
473 temperature boundaries.

474 To assess the modelled heterogeneity of treeline advance, we established a number of transects close to observation
475 points in the landscape. Average treeline advance in the transects showed a somewhat faster and more homogenous
476 migration than reported (Van Bogaert et al., 2011). The model does not include historic anthropogenic disturbances,
477 topographic barriers, or insect herbivory, all of which have been documented as important for the heterogeneity of the
478 treeline advance rates and placement in the landscape (Van Bogaert et al., 2011; Emanuelsson, 1987). Furthermore, our
479 model does not include any wind related processes such as wind mediated snow transport or compaction. Thus, our
480 simulations result in a homogenous snowpack during the winter months with no differentiation in sheltering or frost
481 damage that may result from different snow and ice properties. Sheltered locations in the landscape are known to pro-
482 mote survival of tree saplings (Sundqvist et al., 2008). For N cycling this may also mean that suggested snow-shrub
483 feedbacks (Sturm et al., 2001; Sturm, 2005) are not possible to capture with the current version of our model. While
484 overall rates of advance were captured, local variations- arising from physical barriers such as steep slopes, stony patch-
485 es or anthropogenic disturbances were consequently not possible to capture as these processes are not implemented in
486 the model. High-resolution, local observations of vertically-resolved soil texture and soil organic matter content (see,
487 e.g. Hengl et al. (2017) for an example compiled using machine-learning) have the potential to improve the spatial

488 variability of modelled soil temperatures and nutrient cycling in our study domain. We will investigate this uncertainty
489 in future studies

490 A longer growing season favoured tree PFTs in the whole ecotone, which escaped early-season desiccation due to milder
491 winters and earlier spring thaw. Permafrost was only present at the highest elevations during the historic simulation
492 but had disappeared from the landscape at the end of the century for all except the coldest scenario (GFDL-ESM2M-
493 RCP2.6). The simulated permafrost was however always well above the treeline and did not have a significant impact
494 on the treeline advancement. While some aspects of ground freezing are accounted for in the model, soil vertical and
495 horizontal movement caused by frost, and amelioration of such effects in the warmer future climate are not. Such pro-
496 cesses could affect survival and competition among the plant functional types, especially in the seedling stage when
497 plants are most vulnerable to mechanical disturbance (Holtmeier and Broll, 2007). These effects could be relevant to
498 treeline dynamics at the high grid resolution of our study but are not accounted for by our model.

499 Higher summer soil moisture in the more precipitation rich climate scenarios shifted the ratio of summergreen to ever-
500 green shrubs in favour of the summergreen shrubs, in line with observations (Elmendorf et al., 2012). Conversely, drier
501 scenarios yielded an increased abundance of evergreen shrubs, similar to what has been observed in drier parts of the
502 tundra heath in the Abisko region (Scharn et al., 2021). Within RCP8.5, the warmest (MIROC-ESM-CHEM-RCP8.5)
503 and coldest (GFDL-ESM2M-RCP8.5) scenario gave rise to very similar treeline positions at the end of the projection
504 period (2090-2100). The colder scenario had both higher soil moisture and a greater abundance of summergreen shrubs.
505 Higher soil moisture promoted a larger carbon allocation to the canopy, and thus favoured the taller IBS tree PFT over
506 tall shrubs (HSS). Increased shrub abundance and nutrient cycling have been shown to have potentially non-linear ef-
507 fects on shrub growth and ecosystem carbon cycling (Buckeridge et al., 2009; Hicks et al., 2019), and some observa-
508 tions indicate that changes in the ratio of summergreen to evergreen shrubs, or an increased abundance of trees, might
509 have far-reaching consequences for soil carbon loss (Parker et al., 2018; Clemmensen et al., 2021). Thus, our results
510 indicate that any future change in soil moisture conditions could play an important role in the competitive outcome of
511 shrubs in the forest-tundra ecotone and for its carbon balance.

512 LPJ-GUESS assumes the presence of seeds in all gridcells and PFTs may establish when the 20-year (running) average
513 climate is within PFT-specific bioclimatic limits for establishment. This assumption may overlook potential constraints
514 on plant migration rates such as seed dispersal and reproduction. On larger spatial scales, it is likely that lags in range
515 shifts would arise from these additional constraints (Rees et al., 2020; Brown et al., 2018). Models that account for
516 dispersal limitations generally predict slower latitudinal tree migration than models driven solely by climate (Epstein et
517 al., 2007). However, on smaller spatial scales, the same models predict competitive interactions to be more dominant in
518 determining species migration rates (Scherrer et al., 2020). In a seed transplant study from the Swiss alps, seed viability
519 could not be shown to decline towards the range limits of eight European broadleaved tree species (Kollas et al., 2012;
520 Körner et al., 2016). Similarly, gene flow above the treeline could not be shown to be limited to near-treeline trees in
521 the Abisko region (Truong et al., 2007). Furthermore, tree saplings have been reported to be common up to 100m
522 above the present treeline (Sundqvist et al., 2008; Hofgaard et al., 2009). As environmental conditions improve, these
523 individuals may form the new treeline. Thus, on the scales considered in this study, we do not regard dispersal limita-
524 tions as a major factor in limiting range shifts of trees.

525 Above the treeline low evergreen shrubs (LSE) dominated the vegetation in both our historic and projection simula-
526 tions. The productivity of shrubs and grasses was greatly enhanced by CO₂ fertilisation in our [CO₂] model experiment,
527 and a large proportion of tundra productivity increases in our projection simulations could be attributed to rising [CO₂].
528 Physiological effects of elevated CO₂ on Arctic and alpine tundra productivity and growth are understudied. Free Air
529 CO₂ Enrichment (FACE) experiments are generally considered the best method for quantifying long-term ecosystem
530 effects of elevated CO₂ but are extremely costly and therefore limited in number and distribution. A majority of FACE
531 experiments have been implemented in temperate forests and grasslands, yielding limited evidence of relevance to bo-
532 real and tundra ecosystems (Hickler et al., 2008). One FACE experiment situated in a forest-tundra ecotone in the Swiss
533 Alps showed differing responses to elevated CO₂ among shrub species where *Vaccinium myrtillus* showed 11% in-
534 creased shoot growth while *Empetrum nigrum* was unresponsive and the response of *V. gaultherioides* depended on the
535 forest type in which it was growing (Dawes et al., 2013). Our model results indicated that shrubs are carbon limited and
536 shrub productivity and growth consequently are responsive to CO₂ fertilisation.

537 5. Conclusions

538 In this study we identified nitrogen cycling and availability as an important modulator of treeline advance. Internal
539 cycling of nutrients in soils is the main source of nutrients for Arctic plants (Chapin, 1983). The model performed well
540 regarding rates of shrub increase and treeline advance but overestimated biomass carbon in the forest. Treeline migra-
541 tion rates were realistically simulated although the model did not represent temperature limitations on tree growth.
542 While a decoupling between productivity and growth in the model could potentially have improved estimates of bio-
543 mass carbon, it was not needed to correctly predict treeline elevation. Instead, our results point to the importance of
544 indirect effects of rising temperatures on tree range shifts, especially with regards to nutrient cycling. Furthermore, soil
545 moisture strongly influenced vegetation composition within the model with implications for treeline advance. How
546 models represent nutrient uptake and cycling, as well as a better empirical understanding of processes that determine
547 tree and shrub growth will be key to better predictions of Arctic vegetation change and carbon and nitrogen cycling.
548 Models are a valuable aid in judging the relevance of these processes on the pan-Arctic scale.

549 6. Author contributions

550 AG designed the experiments with contributions from PM and SO. AG also performed necessary model code develop-
551 ments and carried out model simulations and data analysis. [RGB and BS contributed greatly with comments on the](#)
552 [manuscript, scientific advice, and input throughout the study.](#) AG prepared the manuscript with contributions from all
553 co-authors.

554 7. Competing interests

555 The authors declare that they have no conflict of interest.

556 **8. Acknowledgements**

557 We acknowledge the Lund University Strategic Research Areas BECC and MERGE for their financial support. Abisko
558 Scientific Research Station generously shared the data used in preparation of the future climate projections. This re-
559 search was partly funded (Paul A. Miller, Robert G. Björk, Stefan Olin) by the project BioDiv-Support through the
560 2017-2018 Belmont Forum and BiodivERsA joint call for research proposals, under the BiodivScen ERA-Net CO-
561 FUND programme, and with the funding organisations AKA (Academy of Finland contract no 326328), ANR (ANR-
562 18-EBI4-0007), BMBF (KFZ: 01LC1810A), FORMAS (contract no:s 2018-02434, 2018-02436, 2018-02437, 2018-
563 02438) and MICINN (through APCIN: PCI2018-093149).

564 **References**

565 Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of free-air CO₂ enrichment (FACE)? A meta-
566 analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO₂, *New Phytol.*,
567 165, 351-371, 10.1111/j.1469-8137.2004.01224.x, 2005.

568 Barnekow, L.: Holocene tree-line dynamics and inferred climatic changes in the Abisko area, nothern Sweden, based on
569 macrofossil and pollen records, *The Holocene*, 9, 253-265, 1999.

570 Batjes, N. H.: ISRIC-WISE global data ser of derived soil properties on a 0.5 by 0.5 degree grid (version 3.0), ISRIC –
571 World Soil Information, Wageningen, 2005.

572 Berglund, B. E., Barnekow, L., Hammarlund, D., Sandgren, P., and Snowball, I. F.: Holocene forest dynamics and
573 climate changes in the Abisko area, northern Sweden - the Sonesson model of vegetation history reconsidered and
574 confirmed, *Ecological Bulletins*, 45, 15-30, 1996.

575 Bhatt, U. S., Walker, D. A., Raynolds, M. K., Comiso, J. C., Epstein, H. E., Jia, G., Gens, R., Pinzon, J. E., Tucker, C.
576 J., Tweedie, C. E., and Webber, P. J.: Circumpolar Arctic Tundra Vegetation Change Is Linked to Sea Ice Decline,
577 *Earth Interactions*, 14, 1-20, 10.1175/2010ei315.1, 2010.

578 Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Normand, S., Ruger, N., Beck, P. S. A., Blach-Overgaard, A.,
579 Blok, D., Cornelissen, J. H. C., Forbes, B. C., Georges, D., Goetz, S. J., Guay, K. C., Henry, G. H. R., HilleRisLambers,
580 J., Hollister, R. D., Karger, D. N., Kattge, J., Manning, P., Prevey, J. S., Rixen, C., Schaepman-Strub, G., Thomas, H. J.
581 D., Vellend, M., Wilmking, M., Wipf, S., Carbognani, M., Hermanutz, L., Levesque, E., Molau, U., Petraglia, A.,
582 Soudzilovskaia, N. A., Spasojevic, M. J., Tomaselli, M., Vowles, T., Alatalo, J. M., Alexander, H. D., Anadon-Rosell,
583 A., Angers-Blondin, S., Beest, M. T., Berner, L., Bjork, R. G., Buchwal, A., Buras, A., Christie, K., Cooper, E. J.,
584 Dullinger, S., Elberling, B., Eskelinen, A., Frei, E. R., Grau, O., Grogan, P., Hallinger, M., Harper, K. A., Heijmans,
585 M., Hudson, J., Hulber, K., Iturrate-Garcia, M., Iversen, C. M., Jaroszynska, F., Johnstone, J. F., Jorgensen, R. H.,
586 Kaarlejarvi, E., Klady, R., Kuleza, S., Kulonen, A., Lamarque, L. J., Lantz, T., Little, C. J., Speed, J. D. M., Michelsen,
587 A., Milbau, A., Nabe-Nielsen, J., Nielsen, S. S., Ninot, J. M., Oberbauer, S. F., Olofsson, J., Onipchenko, V. G., Rumpf,

588 S. B., Semenchuk, P., Shetti, R., Collier, L. S., Street, L. E., Suding, K. N., Tape, K. D., Trant, A., Treier, U. A.,
589 Tremblay, J. P., Tremblay, M., Venn, S., Weijers, S., Zamin, T., Boulanger-Lapointe, N., Gould, W. A., Hik, D. S.,
590 Hofgaard, A., Jonsdottir, I. S., Jorgenson, J., Klein, J., Magnusson, B., Tweedie, C., Wookey, P. A., Bahn, M., Blonder,
591 B., van Bodegom, P. M., Bond-Lamberty, B., Campetella, G., Cerabolini, B. E. L., Chapin, F. S., 3rd, Cornwell, W. K.,
592 Craine, J., Dainese, M., de Vries, F. T., Diaz, S., Enquist, B. J., Green, W., Milla, R., Niinemets, U., Onoda, Y.,
593 Ordonez, J. C., Ozinga, W. A., Penuelas, J., Poorter, H., Poschlod, P., Reich, P. B., Sandel, B., Schamp, B.,
594 Sheremetev, S., and Weiher, E.: Plant functional trait change across a warming tundra biome, *Nature*, 562, 57-62,
595 10.1038/s41586-018-0563-7, 2018.

596 Brown, C. D., Dufour - Tremblay, G., Jameson, R. G., Mamet, S. D., Trant, A. J., Walker, X. J., Boudreau, S., Harper,
597 K. A., Henry, G. H. R., Hermanutz, L., Hofgaard, A., Isaeva, L., Kershaw, G. P., and Johnstone, J. F.: Reproduction as
598 a bottleneck to treeline advance across the circumarctic forest tundra ecotone, *Ecography*, 42, 137-147,
599 10.1111/ecog.03733, 2018.

600 Bruhwiler, L., Parmentier, F.-J. W., Crill, P., Leonard, M., and Palmer, P. I.: The Arctic Carbon Cycle and Its Response
601 to Changing Climate, *Current Climate Change Reports*, 7, 14-34, 10.1007/s40641-020-00169-5, 2021.

602 Buckeridge, K. M., Zufelt, E., Chu, H., and Grogan, P.: Soil nitrogen cycling rates in low arctic shrub tundra are
603 enhanced by litter feedbacks, *Plant and Soil*, 330, 407-421, 10.1007/s11104-009-0214-8, 2009.

604 Cairns, D. and Moen, J.: Herbivory Influences Tree Lines, *Journal of Ecology*, 92, 1019-1024, 2004.

605 Callaghan, T. V., Jonasson, C., Thierfelder, T., Yang, Z., Hedenas, H., Johansson, M., Molau, U., Van Bogaert, R.,
606 Michelsen, A., Olofsson, J., Gwynn-Jones, D., Bokhorst, S., Phoenix, G., Bjerke, J. W., Tommervik, H., Christensen, T.
607 R., Hanna, E., Koller, E. K., and Sloan, V. L.: Ecosystem change and stability over multiple decades in the Swedish
608 subarctic: complex processes and multiple drivers, *Philos Trans R Soc Lond B Biol Sci*, 368, 20120488,
609 10.1098/rstb.2012.0488, 2013.

610 Chapin, F. S., 3rd, Sturm, M., Serreze, M. C., McFadden, J. P., Key, J. R., Lloyd, A. H., McGuire, A. D., Rupp, T. S.,
611 Lynch, A. H., Schimel, J. P., Beringer, J., Chapman, W. L., Epstein, H. E., Euskirchen, E. S., Hinzman, L. D., Jia, G.,
612 Ping, C. L., Tape, K. D., Thompson, C. D., Walker, D. A., and Welker, J. M.: Role of land-surface changes in arctic
613 summer warming, *Science*, 310, 657-660, 10.1126/science.1117368, 2005.

614 Chapin, F. S. I.: Direct and Indirect Effects of Temperature on Arctic Plants, *Polar Biology*, 2, 47-52, 1983.

615 Clemmensen, K. E., Durling, M. B., Michelsen, A., Hallin, S., Finlay, R. D., and Lindahl, B. D.: A tipping point in
616 carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen, *Ecol Lett*, 24, 1193-
617 1204, 10.1111/ele.13735, 2021.

618 Cleveland, C. C., Townsend, A. R., Schimel, D. S., Fisher, H., Howarth, R. W., Hedin, L. O., Perakis, S. S., Latty, E.
619 F., Von Fischer, J. C., Elseroad, A., and Wasson, M. F.: Global patterns of terrestrial biological nitrogen (N₂) fixation
620 in natural ecosystems, *Global Biogeochemical Cycles*, 13, 623-645, 10.1029/1999gb900014, 1999.

621 Dawes, M. A., Hagedorn, F., Handa, I. T., Streit, K., Ekblad, A., Rixen, C., Körner, C., and Hättenschwiler, S.: An
622 alpine treeline in a carbon dioxide-rich world: synthesis of a nine-year free-air carbon dioxide enrichment study,
623 *Oecologia*, 171, 623-637, 10.1007/s00442-012-2576-5, 2013.

624 Dusenge, M. E., Duarte, A. G., and Way, D. A.: Plant carbon metabolism and climate change: elevated CO₂ and
625 temperature impacts on photosynthesis, photorespiration and respiration, *New Phytol*, 221, 32-49, 10.1111/nph.15283,
626 2019.

627 Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Björk, R. G., Boulanger-Lapointe, N., Cooper, E. J., Cornelissen, J.
628 H. C., Day, T. A., Dorrepaal, E., Elumeeva, T. G., Gill, M., Gould, W. A., Harte, J., Hik, D. S., Hofgaard, A., Johnson,
629 D. R., Johnstone, J. F., Jónsdóttir, I. S., Jorgenson, J. C., Klanderud, K., Klein, J. A., Koh, S., Kudo, G., Lara, M.,
630 Lévesque, E., Magnússon, B., May, J. L., Mercado-Díaz, J. A., Michelsen, A., Molau, U., Myers-Smith, I. H.,
631 Oberbauer, S. F., Onipchenko, V. G., Rixen, C., Martin Schmidt, N., Shaver, G. R., Spasojevic, M. J., Pórhallsdóttir, P.
632 E., Tolvanen, A., Troxler, T., Tweedie, C. E., Villareal, S., Wahren, C.-H., Walker, X., Webber, P. J., Welker, J. M.,
633 and Wipf, S.: Plot-scale evidence of tundra vegetation change and links to recent summer warming, *Nature Climate
634 Change*, 2, 453-457, 10.1038/nclimate1465, 2012.

635 Emanuelsson, U.: Human Influence on Vegetation in the Torneträsk Area during the Last Three Centuries, *Ecological
636 Bulletins*, 38, 95-111, 1987.

637 Epstein, H. E., Kaplan, J. O., Lischke, H., and Yu, Q.: Simulating Future Changes in Arctic and Subarctic Vegetation,
638 Computing in Science & Engineering, 9, 12-23, 10.1109/mcse.2007.84, 2007.

639 Epstein, H. E., Raynolds, M. K., Walker, D. A., Bhatt, U. S., Tucker, C. J., and Pinzon, J. E.: Dynamics of aboveground
640 phytomass of the circumpolar Arctic tundra during the past three decades, *Environmental Research Letters*, 7,
641 10.1088/1748-9326/7/1/015506, 2012.

642 Fatici, S., Pappas, C., Zscheischler, J., and Leuzinger, S.: Modelling carbon sources and sinks in terrestrial vegetation,
643 *New Phytol*, 221, 652-668, 10.1111/nph.15451, 2019.

644 Forbes, B. C., Fauria, M. M., and Zetterberg, P.: Russian Arctic warming and ‘greening’ are closely tracked by tundra
645 shrub willows, *Global Change Biology*, 16, 1542-1554, 10.1111/j.1365-2486.2009.02047.x, 2010.

646 Friend, A. D., Eckes-Shephard, A. H., Fonti, P., Rademacher, T. T., Rathgeber, C. B. K., Richardson, A. D., and
647 Turton, R. H.: On the need to consider wood formation processes in global vegetation models and a suggested
648 approach, *Annals of Forest Science*, 76, 10.1007/s13595-019-0819-x, 2019.

649 Grau, O., Ninot, J. M., Blanco-Moreno, J. M., van Logtestijn, R. S. P., Cornelissen, J. H. C., and Callaghan, T. V.:
650 Shrub-tree interactions and environmental changes drive treeline dynamics in the Subarctic, *Oikos*, 121, 1680-1690,
651 10.1111/j.1600-0706.2011.20032.x, 2012.

652 Hallinger, M., Manthey, M., and Wilmking, M.: Establishing a missing link: warm summers and winter snow cover
653 promote shrub expansion into alpine tundra in Scandinavia, *New Phytologist*, 186, 890-899, 10.1111/j.1469-
654 8137.2010.0322, 2010.

655 Harsch, M. A., Hulme, P. E., McGlone, M. S., and Duncan, R. P.: Are treelines advancing? A global meta-analysis of
656 treeline response to climate warming, *Ecol Lett*, 12, 1040-1049, 10.1111/j.1461-0248.2009.01355.x, 2009.

657 Hedenås, H., Olsson, H., Jonasson, C., Bergstedt, J., Dahlberg, U., and Callaghan, T. V.: Changes in Tree Growth,
658 Biomass and Vegetation Over a 13-Year Period in the Swedish Sub-Arctic, *Ambio*, 40, 672-682, 10.1007/s13280-011-
659 0173-1, 2011.

660 Hengl, T., Mendes de Jesus, J., Heuvelink, G. B., Ruiperez Gonzalez, M., Kilibarda, M., Blagotic, A., Shangguan, W.,
661 Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H.,
662 Leenaars, J. G., Ribeiro, E., Wheeler, I., Mantel, S., and Kempen, B.: SoilGrids250m: Global gridded soil information
663 based on machine learning, *PLoS One*, 12, e0169748, 10.1371/journal.pone.0169748, 2017.

664 Hickler, T., Smith, B., Prentice, I. C., MjÖFors, K., Miller, P., Arneth, A., and Sykes, M. T.: CO₂ fertilization in
665 temperate FACE experiments not representative of boreal and tropical forests, *Global Change Biology*, 14, 1531-1542,
666 10.1111/j.1365-2486.2008.01598.x, 2008.

667 Hicks, L. C., Rousk, K., Rinnan, R., and Rousk, J.: Soil Microbial Responses to 28 Years of Nutrient Fertilization in a
668 Subarctic Heath, *Ecosystems*, 23, 1107-1119, 10.1007/s10021-019-00458-7, 2019.

669 Hoch, G. and Körner, C.: Global patterns of mobile carbon stores in trees at the high-elevation tree line, *Global Ecology
670 and Biogeography*, 21, 861-871, 10.1111/j.1466-8238.2011.00731.x, 2012.

671 Hofgaard, A., Dalen, L., and Hytteborn, H.: Tree recruitment above the treeline and potential for climate-driven treeline
672 change, *Journal of Vegetation Science*, 20, 1133-1144, 2009.

673 Hofgaard, A., Harper, K. A., and Golubeva, E.: The role of the circumarctic forest–tundra ecotone for Arctic
674 biodiversity, *Biodiversity*, 13, 174-181, 10.1080/14888386.2012.700560, 2012.

675 Hofgaard, A., Ols, C., Drobyshev, I., Kirchhefer, A. J., Sandberg, S., and Söderström, L.: Non-stationary Response of
676 Tree Growth to Climate Trends Along the Arctic Margin, *Ecosystems*, 22, 434-451, 10.1007/s10021-018-0279-4, 2019.

677 Holtmeier, F. K. and Broll, G. E.: Treeline advance - driving processes and adverse factors, *Landscape Online*, 1, 1-33,
678 10.3097/lo.200701, 2007.

679 Josefsson, M.: The Geoecology of Subalpine Heaths in the Abisko Valley, Northern Sweden. A study of periglacial
680 conditions., Department of Physical Geography, Uppsala University, Sweden, 180 pp., 1990.

681 Karlsson, P. S. and Weih, M.: Relationships between Nitrogen Economy and Performance in the Mountain Birch *Betula*
682 *pubescens* ssp. *tortuosa*, *Ecological Bulletins*, 71-78, 1996.

683 Kollas, C., Vitasse, Y., Randin, C. F., Hoch, G., and Körner, C.: Unrestricted quality of seeds in European broad-leaved
684 tree species growing at the cold boundary of their distribution, *Ann Bot*, 109, 473-480, 10.1093/aob/mcr299, 2012.

685 Kullman, L.: A richer, greener and smaller alpine world: review and projection of warming-induced plant cover change
686 in the Swedish Scandes, *Ambio*, 39, 159-169, 10.1007/s13280-010-0021-8, 2010.

687 Kullman, L. and KjÄllgren, L.: Holocene pine tree-line evolution in the Swedish Scandes: Recent tree-line rise and
688 climate change in a long-term perspective, *Boreas*, 35, 159-168, 10.1111/j.1502-3885.2006.tb01119.x, 2006.

689 Körner, C.: Carbon limitation in trees, *Journal of Ecology*, 91, 4-17, 2003.

690 Körner, C.: Paradigm shift in plant growth control, *Curr Opin Plant Biol*, 25, 107-114, 10.1016/j.pbi.2015.05.003, 2015.

691 Körner, C. and Paulsen, J.: A World-Wide Study of High Altitude Treeline Temperatures, *Journal of Biogeography*, 31,
692 713-732, 2004.

693 Körner, C., Basler, D., Hoch, G., Kollas, C., Lenz, A., Randin, C. F., Vitasse, Y., and Zimmermann, N. E.: Where, why
694 and how? Explaining the low-temperature range limits of temperate tree species, *Journal of Ecology*, 104, 1079-1088,
695 10.1111/1365-2745.12574, 2016.

696 Lamarque, J. F., Dentener, F., McConnell, J., Ro, C. U., Shaw, M., Vet, R., Bergmann, D., Cameron-Smith, P.,
697 Dalsoren, S., Doherty, R., Faluvegi, G., Ghan, S. J., Josse, B., Lee, Y. H., MacKenzie, I. A., Plummer, D., Shindell, D.,
698 Skeie, R. B., Stevenson, D. S., Strode, S., Zeng, G., Curran, M., Dahl-Jensen, D., Das, S., Fritzsche, D., and Nolan,
699 M.: Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model
700 Intercomparison Project (ACCMIP): evaluation of historical and projected future changes, *Atmospheric Chemistry and
701 Physics*, 13, 7997-8018, 10.5194/acp-13-7997-2013, 2013.

702 Leuzinger, S., Manusch, C., Bugmann, H., and Wolf, A.: A sink-limited growth model improves biomass estimation
703 along boreal and alpine tree lines, *Global Ecology and Biogeography*, 22, 924-932, 10.1111/geb.12047, 2013.

704 McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L., Hayes, D. J., Heimann, M., Lorenson, T.
705 D., Macdonald, R. W., and Roulet, N.: Sensitivity of the carbon cycle in the Arctic to climate change, *Ecological*
706 *Monographs*, 79, 523-555, 10.1890/08-2025.1, 2009.

707 McGuire, A. D., Christensen, T. R., Hayes, D., Heroult, A., Euskirchen, E., Kimball, J. S., Koven, C., Lafleur, P.,
708 Miller, P. A., Oechel, W., Peylin, P., Williams, M., and Yi, Y.: An assessment of the carbon balance of Arctic tundra:
709 comparisons among observations, process models, and atmospheric inversions, *Biogeosciences*, 9, 3185-3204,
710 10.5194/bg-9-3185-2012, 2012.

711 Miller, P. A. and Smith, B.: Modelling tundra vegetation response to recent arctic warming, *Ambio*, 41 Suppl 3, 281-
712 291, 10.1007/s13280-012-0306-1, 2012.

713 Myers-Smith, I. H., Hik, D. S., and Aerts, R.: Climate warming as a driver of tundra shrubline advance, *Journal of*
714 *Ecology*, 106, 547-560, 10.1111/1365-2745.12817, 2018.

715 Myers-Smith, I. H., Forbes, B. C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., Tape, K. D., Macias-Fauria, M.,
716 Sass-Klaassen, U., Lévesque, E., Boudreau, S., Ropars, P., Hermanutz, L., Trant, A., Collier, L. S., Weijers, S.,
717 Rozema, J., Rayback, S. A., Schmidt, N. M., Schaepman-Strub, G., Wipf, S., Rixen, C., Ménard, C. B., Venn, S.,
718 Goetz, S., Andreu-Hayles, L., Elmendorf, S., Ravalainen, V., Welker, J., Grogan, P., Epstein, H. E., and Hik, D. S.:
719 Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities, *Environmental Research Letters*, 6,
720 10.1088/1748-9326/6/4/045509, 2011.

721 Myers-Smith, I. H., Elmendorf, S. C., Beck, P. S. A., Wilmking, M., Hallinger, M., Blok, D., Tape, K. D., Rayback, S.,
722 A., Macias-Fauria, M., Forbes, B. C., Speed, J. D. M., Boulanger-Lapointe, N., Rixen, C., Lévesque, E., Schmidt, N.,
723 Baittinger, C., Trant, A. J., Hermanutz, L., Collier, L. S., Dawes, M. A., Lantz, T. C., Weijers, S., Jørgensen, R. H.,
724 Buchwal, A., Buras, A., Naito, A. T., Ravalainen, V., Schaepman-Strub, G., Wheeler, J. A., Wipf, S., Guay, K. C., Hik,
725 D. S., and Vellend, M.: Climate sensitivity of shrub growth across the tundra biome, *Nature Climate Change*, 5, 887-
726 891, 10.1038/nclimate2697, 2015.

727 Olsson, P.-O., Heliasz, M., Jin, H., and Eklundh, L.: Mapping the reduction in gross primary productivity in subarctic
728 birch forests due to insect outbreaks, *Biogeosciences*, 14, 1703-1719, 10.5194/bg-14-1703-2017, 2017.

729 Ovhed, M. and Holmgren, B.: Modelling and measuring evapotranspiration in a mountain birch forest, *Ecological*
730 *Bulletins*, 45, 31-44, 1996.

731 Parker, T. C., Sanderman, J., Holden, R. D., Blume-Werry, G., Sjogersten, S., Large, D., Castro-Diaz, M., Street, L. E.,
732 Subke, J. A., and Wookey, P. A.: Exploring drivers of litter decomposition in a greening Arctic: results from a
733 transplant experiment across a treeline, *Ecology*, 99, 2284-2294, 10.1002/ecy.2442, 2018.

734 Paulsen, J. and Körner, C.: A climate-based model to predict potential treeline position around the globe, *Alpine*
735 *Botany*, 124, 1-12, 10.1007/s00035-014-0124-0, 2014.

736 Piao, S., Sitch, S., Ciais, P., Friedlingstein, P., Peylin, P., Wang, X., Ahlstrom, A., Anav, A., Canadell, J. G., Cong, N.,
737 Huntingford, C., Jung, M., Levis, S., Levy, P. E., Li, J., Lin, X., Lomas, M. R., Lu, M., Luo, Y., Ma, Y., Myneni, R. B.,
738 Poulter, B., Sun, Z., Wang, T., Viovy, N., Zaehle, S., and Zeng, N.: Evaluation of terrestrial carbon cycle models for
739 their response to climate variability and to CO₂ trends, *Glob Chang Biol*, 19, 2117-2132, 10.1111/gcb.12187, 2013.

740 Pugh, T. A. M., Muller, C., Arneth, A., Haverd, V., and Smith, B.: Key knowledge and data gaps in modelling the
741 influence of CO₂ concentration on the terrestrial carbon sink, *J Plant Physiol*, 203, 3-15, 10.1016/j.jplph.2016.05.001,
742 2016.

743 Rees, W. G., Hofgaard, A., Boudreau, S., Cairns, D. M., Harper, K., Mamet, S., Mathisen, I., Swirad, Z., and
744 Tutubalina, O.: Is subarctic forest advance able to keep pace with climate change?, *Glob Chang Biol*, 26, 3965-3977,
745 10.1111/gcb.15113, 2020.

746 Rundqvist, S., Hedenås, H., Sandström, A., Emanuelsson, U., Eriksson, H., Jonasson, C., and Callaghan, T. V.: Tree
747 and Shrub Expansion Over the Past 34 Years at the Tree-Line Near Abisko, Sweden, *Ambio*, 40, 683-692,
748 10.1007/s13280-011-0174-0, 2011.

749 Scharn, R., Brachmann, C. G., Patchett, A., Reese, H., Bjorkman, A., Alatalo, J., Björk, R. G., Jägerbrand, A. K.,
750 Molau, U., and Björkman, M. P.: Vegetation responses to 26 years of warming at Latnjajaure Field Station, northern
751 Sweden, *Arctic Science*, 10.1139/as-2020-0042, 2021.

752 Scherrer, D., Vitasse, Y., Guisan, A., Wohlgemuth, T., Lischke, H., and Gomez Aparicio, L.: Competition and
753 demography rather than dispersal limitation slow down upward shifts of trees' upper elevation limits in the Alps,
754 *Journal of Ecology*, 108, 2416-2430, 10.1111/1365-2745.13451, 2020.

755 Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic amplification: A research synthesis, *Global and*
756 *Planetary Change*, 77, 85-96, 10.1016/j.gloplacha.2011.03.004, 2011.

757 Shi, M., Fisher, J. B., Brzostek, E. R., and Phillips, R. P.: Carbon cost of plant nitrogen acquisition: global carbon cycle
758 impact from an improved plant nitrogen cycle in the Community Land Model, *Glob Chang Biol*, 22, 1299-1314,
759 10.1111/gcb.13131, 2016.

760 Smith, B., Prentice, I. C., and Sykes, M. T.: Representation of vegetation dynamics in the modelling of terrestrial
761 ecosystems: comparing two contrasting approaches within European climate space, *Global Ecology and Biogeography*,
762 10, 621-637, 10.1046/j.1466-822X.2001.t01-1-00256.x, 2001.

763 Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., and Zaehle, S.: Implications of incorporating N
764 cycling and N limitations on primary production in an individual-based dynamic vegetation model, *Biogeosciences*, 11,
765 2027-2054, 10.5194/bg-11-2027-2014, 2014.

766 Sturm, M.: Changing snow and shrub conditions affect albedo with global implications, *Journal of Geophysical
767 Research*, 110, 10.1029/2005jg000013, 2005.

768 Sturm, M., Holmgren, J., McFadden, J. P., Liston, G. E., Chapin, F. S., and Racine, C. H.: Snow–Shrub Interactions in
769 Arctic Tundra: A Hypothesis with Climatic Implications, *Journal of Climate*, 14, 336-344, 10.1175/1520-
770 0442(2001)014<0336:Ssiat>2.0.Co;2, 2001.

771 Sullivan, P., Ellison, S., McNown, R., Brownlee, A., and Sveinbjörnsson, B.: Evidence of soil nutrient availability as
772 the proximate constraint on growth of treeline trees in northwest Alaska, *Ecology*, 96, 716-727, 2015.

773 Sundqvist, M. K., Björk, R. G., and Molau, U.: Establishment of boreal forest species in alpine dwarf-shrub heath in
774 subarctic Sweden, *Plant Ecology & Diversity*, 1, 67-75, 10.1080/17550870802273395, 2008.

775 Sveinbjörnsson, B., Nordell, O., and Kauhanen, H.: Nutrient relations of mountain birch growth at and below the
776 elevational tree-line in Swedish Lapland, *Functional Ecology*, 6, 213-220, 1992.

777 Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, *Bulletin of the
778 American Meteorological Society*, 93, 485-498, 10.1175/bams-d-11-00094.1, 2012.

779 Truong, C., Palme, A. E., and Felber, F.: Recent invasion of the mountain birch *Betula pubescens* ssp. *tortuosa* above
780 the treeline due to climate change: genetic and ecological study in northern Sweden, *J Evol Biol*, 20, 369-380,
781 10.1111/j.1420-9101.2006.01190.x, 2007.

782 Van Bogaert, R., Haneca, K., Hoogesteger, J., Jonasson, C., De Dapper, M., and Callaghan, T. V.: A century of tree line
783 changes in sub-Arctic Sweden shows local and regional variability and only a minor influence of 20th century climate
784 warming, *Journal of Biogeography*, 38, 907-921, 10.1111/j.1365-2699.2010.02453.x, 2011.

785 Virkkala, A. M., Aalto, J., Rogers, B. M., Tagesson, T., Treat, C. C., Natali, S. M., Watts, J. D., Potter, S., Lehtonen,
786 A., Mauritz, M., Schuur, E. A. G., Kochendorfer, J., Zona, D., Oechel, W., Kobayashi, H., Humphreys, E., Goeckede,
787 M., Iwata, H., Lafleur, P. M., Euskirchen, E. S., Bokhorst, S., Marushchak, M., Martikainen, P. J., Elberling, B., Voigt,
788 C., Biasi, C., Sonnentag, O., Parmentier, F. W., Ueyama, M., Celis, G., St Loius, V. L., Emmerton, C. A., Peichl, M.,
789 Chi, J., Jarveoja, J., Nilsson, M. B., Oberbauer, S. F., Torn, M. S., Park, S. J., Dolman, H., Mammarella, I., Chae, N.,
790 Poyatos, R., Lopez-Blanco, E., Rojle Christensen, T., Jung Kwon, M., Sachs, T., Holl, D., and Luoto, M.: Statistical
791 upscaling of ecosystem CO₂ fluxes across the terrestrial tundra and boreal domain: regional patterns and uncertainties,
792 *Glob Chang Biol*, 10.1111/gcb.15659, 2021.

793 Vowles, T., Lindwall, F., Ekblad, A., Bahram, M., Furneaux, B. R., Ryberg, M., and Bjork, R. G.: Complex effects of
794 mammalian grazing on extramatrical mycelial biomass in the Scandes forest-tundra ecotone, *Ecol Evol*, 8, 1019-1030,
795 10.1002/ece3.3657, 2018.

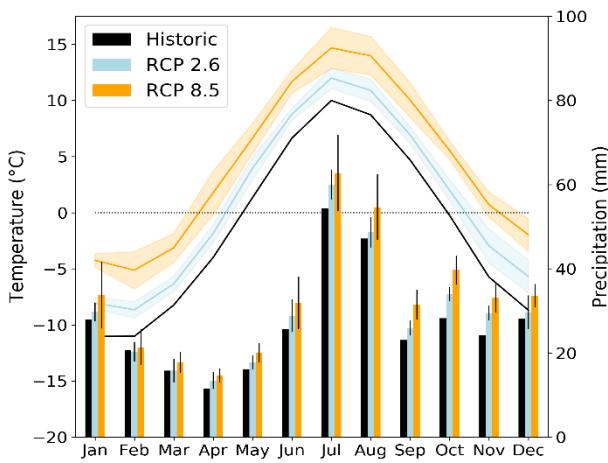
796 Wania, R., Ross, I., and Prentice, I. C.: Integrating peatlands and permafrost into a dynamic global vegetation model: 1.
797 Evaluation and sensitivity of physical land surface processes, *Global Biogeochemical Cycles*, 23, n/a-n/a,
798 10.1029/2008gb003412, 2009.

799 Wei, Y., Liu, S., Huntzinger, D. N., Michalak, A. M., Viovy, N., Post, W. M., Schwalm, C. R., Schaefer, K., Jacobson,
800 A. R., Lu, C., Tian, H., Ricciuto, D. M., Cook, R. B., Mao, J., and Shi, X.: The North American Carbon Program Multi-
801 scale Synthesis and Terrestrial Model Intercomparison Project – Part 2: Environmental driver data, *Geoscientific Model
802 Development*, 7, 2875-2893, 10.5194/gmd-7-2875-2014, 2014.

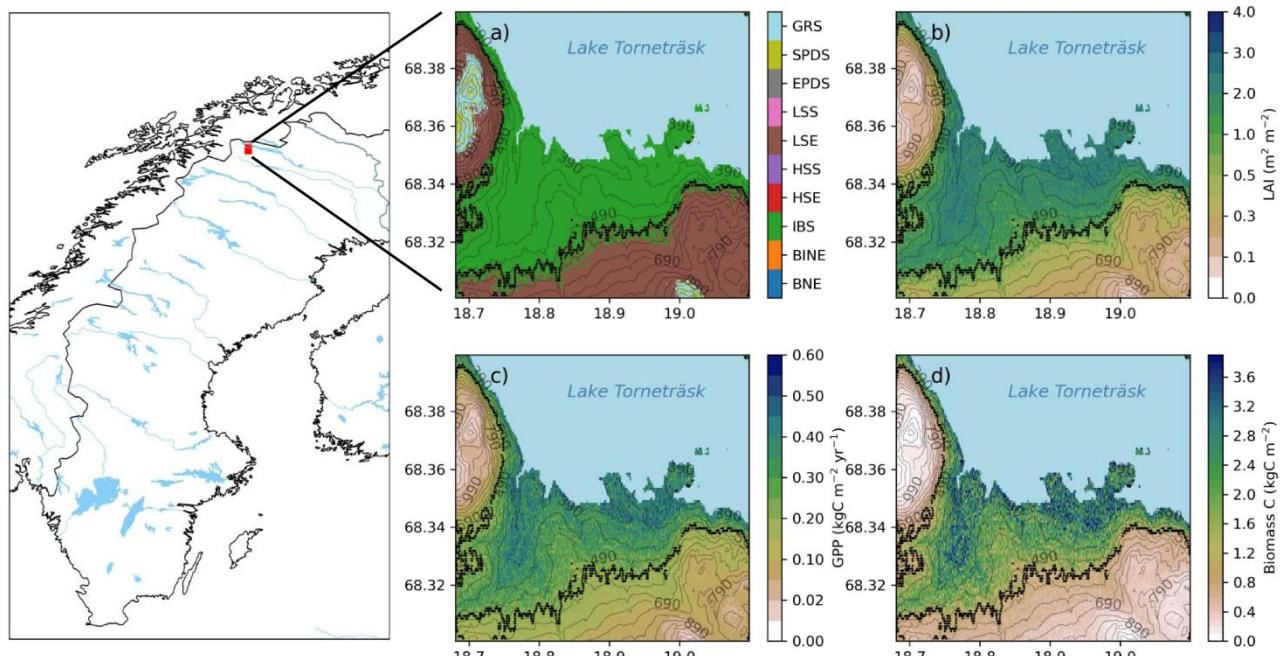
803 Weih, M. and Karlsson, S.: The nitrogen economy of mountain birch seedlings: implications for winter survival,
804 *Journal of Ecology*, 87, 211-219, 1999.

805 Wolf, A., Callaghan, T. V., and Larson, K.: Future changes in vegetation and ecosystem function of the Barents Region,
806 *Climatic Change*, 87, 51-73, 10.1007/s10584-007-9342-4, 2008.

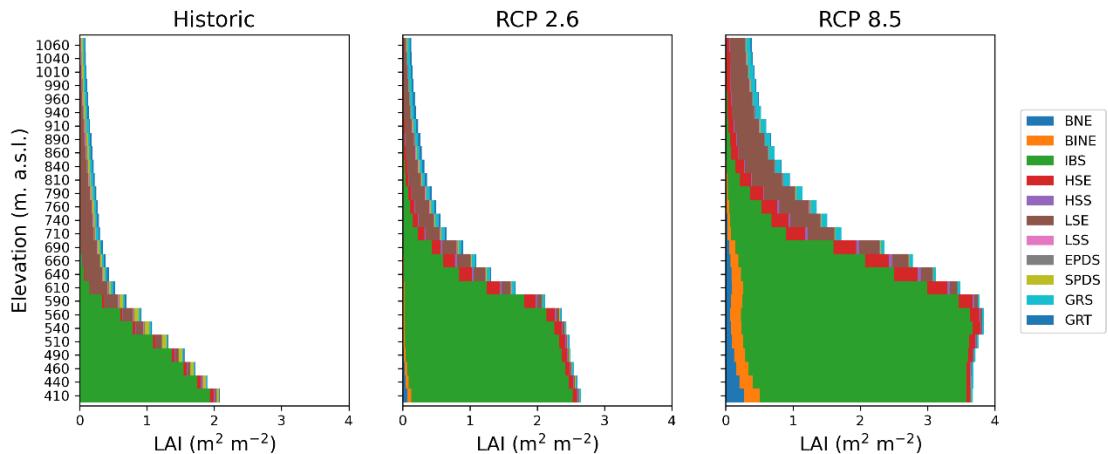
807 Yang, Z., Hanna, E., and Callaghan, T. V.: Modelling surface - air - temperature variation over complex terrain around
808 abisko, swedish lapland: uncertainties of measurements and models at different scales, *Geografiska Annaler: Series A,
809 Physical Geography*, 93, 89-112, 10.1111/j.1468-0459.2011.00005.x, 2011.


810 Yang, Z., Hanna, E., Callaghan, T. V., and Jonasson, C.: How can meteorological observations and microclimate
811 simulations improve understanding of 1913-2010 climate change around Abisko, Swedish Lapland?, *Meteorological
812 Applications*, 19, 454-463, 10.1002/met.276, 2012.

813 Zhang, W., Jansson, C., Miller, P. A., Smith, B., and Samuelsson, P.: Biogeophysical feedbacks enhance the Arctic
814 terrestrial carbon sink in regional Earth system dynamics, *Biogeosciences*, 11, 5503-5519, 10.5194/bg-11-5503-2014,
815 2014.


816 Zhang, W., Miller, P. A., Jansson, C., Samuelsson, P., Mao, J., and Smith, B.: Self-Amplifying Feedbacks Accelerate
817 Greening and Warming of the Arctic, *Geophysical Research Letters*, 45, 7102-7111, 10.1029/2018gl077830, 2018.

818 Zhang, W., Miller, P. A., Smith, B., Wania, R., Koenigk, T., and Döscher, R.: Tundra shrubification and tree-line
819 advance amplify arctic climate warming: results from an individual-based dynamic vegetation model, *Environmental
820 Research Letters*, 8, 10.1088/1748-9326/8/3/034023, 2013.


821

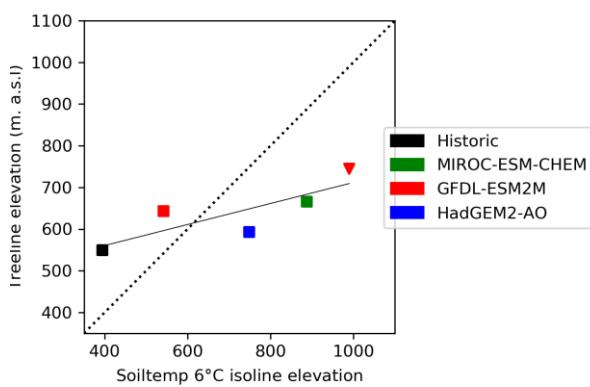

Figure 1. Historic (1971-2000) and projected (2071-2100) temperature (left) and precipitation (right) variability in Abisko. The shaded areas (temperature) and black bars (precipitation) mark ± 1 standard deviation uncertainty in the three CMIP5 multi-model mean for RCP2.6 and RCP8.5 respectively.

Figure 2. Map of Sweden and Scandinavia with a red square marking the study area. Panels on the right show the study area in more detail and the modelled forest-tundra ecotone for the historic period (1990-2000). a) Dominant PFT (BNE – Boreal needle leaved evergreen tree; BINE – Boreal shade-intolerant needle leaved tree; IBS – Boreal shade-intolerant broadleaved tree; HSE – Tall evergreen shrub; HSS – Tall summergreen shrub; LSE – Low evergreen shrub; LSS – Low summergreen shrub; EPDS – Evergreen prostrate dwarf shrub; SPDS – Summergreen prostrate dwarf shrub; GRS - grasses) in the ecotone and total ecosystem b) LAI ($\text{m}^2 \text{ m}^{-2}$) c) productivity (GPP; $\text{kgC m}^{-2} \text{ yr}^{-1}$) and d) plant biomass carbon density (kgC m^{-2}). The black line in panels a-d shows the modelled treeline position. Numbers on the contour lines mark elevation in meters above sea level. Data source for map: Natural Earth

Figure 3. Leaf area index (LAI) in the forest-tundra ecotone for a) historic (1990-2000) and at the end of the century (2090-2100) for b) RCP2.6 and c) RCP8.5 respectively. Each bar represents an approximate 50 elevational meter band in the ecotone.

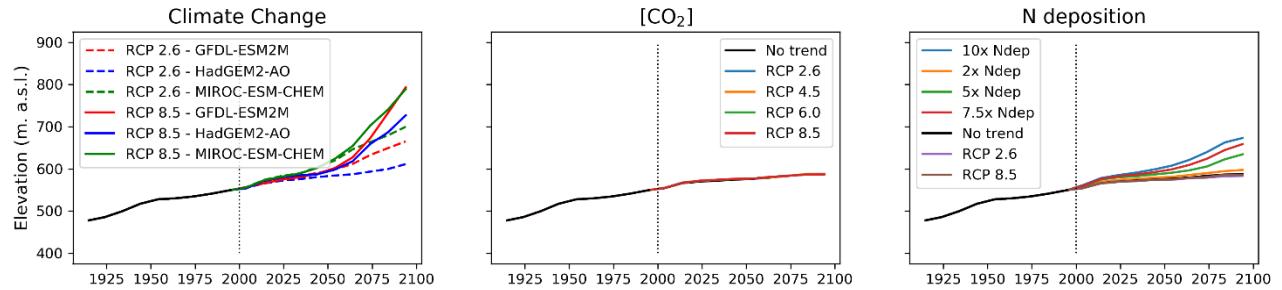

Figure 4. JJA 6°C soil temperature isoline correlation with average treeline elevation. Square markers represent RCP2.6 while triangles represent RCP8.5. In the two warmest scenarios (HadGEM2-AO-RCP8.5 and MIROC-ESM-CHEM-RCP8.5), the 6°C soil temperatures exceed 6°C in the whole landscape. The dotted line represents the 1:1 relationship between treeline and isoline placement while the full line displays the treeline-soil temperature regression.

Table 1. Model evaluation and benchmarking results.

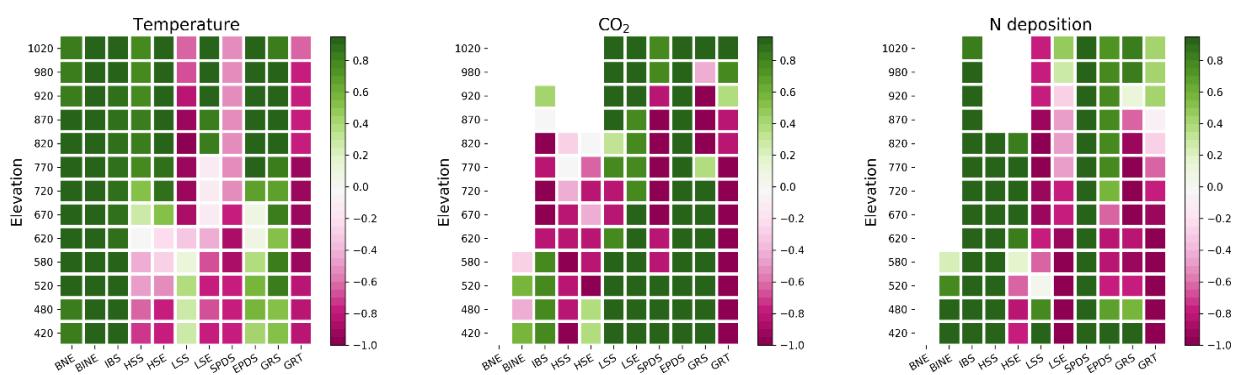

Parameter	Unit	Domain	Time Interval	Model value	Estimated value	Reference
GPP (Average)	gC m ⁻² yr ⁻¹	Birch forest	2007-2014	410 ± 64	440 ± 54	Olsson et al., 2017
Carbon density	tC ha ⁻¹	Birch forest	2010	21.8 ± 10	4.39 ± 3.46	Hedenås et al., 2011
Carbon density change	%	Birch forest	1997-2010	25	19	
LAI	m ² m ⁻²	Forest canopy	1988-1989	1.65 ± 0.66	~2.0	Ovhed & Holmgren, 1996
		Understory		0.17 ± 0.12	~0.5	
Densification	%	Shrub tundra	1976-2010	+87 ± 15	+50-80	Rundqvist et al., 2011
Treeline elevation (min)	m. a.s.l.	Treeline	2010	444	~600	Callaghan et al., 2013
Treeline elevation (mean)				564	-	
Treeline elevation (max)				723	~800	
Treeline elevation change (mean)	Elevational meters	Treeline	1912-2009	80	24	van Boogart et al., 2011
Treeline elevation change (max)				123	145	
Treeline migration rate (mean)	m yr ⁻¹	Treeline	1912-2009	+0.85	+0.6	van Boogart et al., 2011
Treeline migration rate (max)				+1.18	+1.1	

Table 2. Seasonal temperature and precipitation for historic and scenario simulations.

	Season	1971-2000			2071-2100		
		Yang et al., 2011		GFDL-ESM2M		HadGEM2-AO	
		Historic	RCP2.6	RCP8.5	RCP2.6	RCP8.5	RCP2.6
Temperature (°C)	Winter (DJF)	-9.8	-8.2	-5.4	-8.1	-4.4	-7.4
	Spring (MAM)	-2.1	-1.3	1.0	0.4	4.11	0.7
	Summer (JJA)	9.9	10.9	13.2	11.9	14.4	13.1
	Autumn (SON)	0.1	1.1	4.2	2.3	9.1	3.2
	Annual (mean)	-0.5	0.6	3.3	1.6	5.0	2.4
Precipitation (MM)	Winter (DJF)	75	80	85	75	80	70
	Spring (MAM)	45	40	45	40	45	50
	Summer (JJA)	125	130	130	130	150	135
	Autumn (SON)	75	90	95	85	95	95
	Annual (sum)	325	340	355	335	370	350

Figure 5. Shifts in average treeline elevation over the simulation period for the three experiments a) climate change b) CO₂ fertilisation and c) nitrogen deposition. Start of projection simulations are marked with a vertical dotted line in all panels. No-trend scenario in panel b-c represent a scenario where climate, CO₂ and nitrogen deposition are kept constant (without trend) relative to year 2000. Black line before year 2000 represents our historic simulation.

Figure 6. Correlation (Spearman rank) between annual GPP for each PFT and a) average end of century (2090-2100) temperature anomalies in the climate change experiment, b) CO₂ scenario and c) nitrogen deposition scenario. Each box represent a 50 elevational meter band in the ecotone for a given PFT.