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Derivation of seawater pCO. from net community production
identifies the South Atlantic Ocean as a C@source
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Abstract. A key step in assessing the global carbon buidgtte determination of the partial pressure of, @Oseawater

(pPCO; sw). Spatially complete observational fieldspO: sw)are routinely produced for regional and global ocean carbon
budget assessments by extrapolating sparsigu measurements @CO; w) using satellite observationgfithin-As part of

this process satellite chlorophylk (Chl a) is often used as a proXgr the biological drawdown or release of £@hla

does not however quantify carbon fixed through photosynthesis and then respired, which is determined by net community
production (NCP).

In this study pCO:; sw) Over the South Atlantic Ocean is estiediusing a feed forward neural network (FNf¢dhemeand

either satellite derived NCP, net primary production (NPP) ora@hlcompare which biological proxgproduceshe most

accuratdields of pCO; ) Estimates opCO; sw)using NCP, NPP or Cla were similar, but NCP was more accurate for the [ Formatted: Font: Italic

Amazon Plume and upwelling regions, which were not fully reproduced when usirsgoEINPP.A perturbation analysis
assessethe potentialmaximum reduction ipCO; sw) uncertaintis that could bechievedby reducing the uncertainties in
the satellite biological parametefghis illustrated further improvementsinger NCP compared to NPP or Cal Using
NCP to estimat@CO; sw) showed that the South Atlantic Ocean is a;G@urce,whereas if no biological parameters are
used in the FNN (following existing annual carbon assessments), this tegiomesappears to ba sink for CQ. These
results highlight that using NCP improved the accuracy of estima@@y swy and changes the South Atlantic Ocean from a
CO; sink to a source. Reducing the uncertainties in NCP derived from satellite parametérghwillultimately improve

our ability-te-gquantifunderstanding ancbnfidence in quantification dhe global oceans aCO; sink.

1. Introduction

Since the industrial revolution, anthropoge@i©, emissionsave resulted in an increase in atmospherig €@@centrations
(Friedlingstein et al., 2020; IPCC, 2018} acting as a sink for GOthe oceans have buffered the increase in anthropogenic
atmospheriaCO,, without which the atmspheric concentration would be-42 % higher(DeVries, 2014) The longterm
absorption of C@by the oceans is altering the marine carbonate chemistry of the ocean, resulting in a Idwgting o
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process known as ocean acidificatigtaven et al., 20050bservational fields of the pattipressure of C®in seawater
(pCO: sw) are one of the key datasets needed to routinely assess the strength of the ocesink (Edlingstein et al.,
2020; Landschutzer et al., 2014, 2020; Rédenbeck et al., 2015; Watson et al., Z028B) methods are reliant on the
extrapolaibn of sparsdn situ observations 0pCO; (sw) Using satellite observations of parameters which account for the
variability of, and the controls opCO:z sw) (Shutler et al., 2020)These parameters include sea surface temperature (SST;
e.g.Landschitzer et al., 2013; Stephens et al., 1988nity andchlorophylla (Chl a) (Rédenbeck et al., 2015$ST and
salinity controlpCO; sw) by changing the solubility of CQOn seawate(Weiss, 1974)whilst biological processes such as
photosynthesis anespiration contribute by modulating its concentration.

Chl ais routinely used as a proxy foreth biological activity(Rédenbeck et al., 201,5ut it does not gtinguish between
carbon fixation through photosynthesis and the carbon respired by the plankton community. Net primary production (the net
carbon fixation rate; NPP) is determined by the standing stock of phytoplankton, for which theoBbéntrations used as

a proxy, and maodified by the photosynthetic rate and the available light in the water d@ehrenfeld et al., 2016)
Photosynthetic rates are, in turn, modified by ambient nutrient and temperature co@etuesnfeld and Falkowski, 1997;
Marafién et al., 2003Elevated Chh does not always equate to elevated NIPGulton et al., 2006}nd for the same Chl
concentrations, NPP can vary depending on the health and metabolic state of the ptamktomity. All of these controls

are captured by the net community production (NCP), which is the metabolic balance of the plankton community resulting
from the carbon fixed through photosynthesis and that lost through respiratienssWNCP is positive the plankton
community is autotrophic which implies that there is a drawdown off@@ seawater (since the plankton reduce the CO
in the water column)Where NCHs negative the community is heterotrophic implying a release ofi@®the ocean (as

the plankton produce or release $@hich can then be released into the atmosptlaag et al., 2019; Schloss et al.,
2007) Using NCP to estimateCO; w)compared to Chh should theoretically lead to an improvement in the derivation of
PCO: (sw)

Many studies have usedtsllite Chl a to esimate pCO; (sw) at bothregional(Benallal et al., 2017; Chierici et al., 2012;
Moussa et al., 2016and global scale@d.andschitzer et al., 2014; Liu and Xie, 2Q1Chierici et al(2012)attempted to use
satellite NPP to estimatgCO; sw) in the southern Pacific Oean, butthere wasno significantimprovement over using
satelliteChl a. This is not surprising as NPP captures more of the biological signal, but still lacks any inclusion of respiration
which results irthe release ofCO;into the vatercolumn To our knowledge the use of satellite NCP to estin@@®; w)

has not been attempted before and could be a means of improving estima@®;qf.) as long as satellite NCP
observations are accuraeord et al., 2024; Tilstone et al., 201&. These sallite measurements may improve the
estimation ofpCQO; sw) as NCP includes the full biological control pE€O. w) This is particularlyimportant inregions
wherein situ pCO; sw) Observationgre sparse anahere interpolation and neural network techniquedteeforelikely to
struggle(Watson et al., 2020b)

The SouthAtlantic Oceans under sampledith limited pCO; sw)Observationge.g.Fay and McKinley, 2013; Watson et al.,
2020b) The region is varied and dynamic asn¢ludesthe seasonal Equatorial upwelling, high biological activity on the

2



65

70

75

80

85

southwesten (Dogliotti et al., 2014)and soutkeastern shelved.amont et al., 2014)as well as the propagation of the
Amazon Plumeinto the western Equatorial Atlantigbanhez et al., 2015)This dynamic biogeochemical vability in
conjunction with a comprehensive database of satellite obsenlzts®md data with associated uncertainfiesd et al.,
2021b)provides the potential to identify the improvemenp®@D; sw) estimates that could be made from using NCP

The objective othis paper ido compare the estimation p€O; (sw) using either NCP, NPP or Chlto determine which

biological descriptoproducess the most accuratend completepCO; ) fields. A 16 year time series @fCO; sw) was [Formaned; Font: Italic

generated for the South Atlantic Ocean using satellite NCP, NPP om,Gid the biological input, alongsidetwo
approackswith no biologicalinput parametersis-inpui Regional differences in thgeneratedesultingpCO; sw) fields are
assessed’he seasonal and interannual variabilityp®O; sw) estimated from NCP, NPP, Caland theapproachs with no
biological parameteraiere also compared. A perturbation analysis was conducted to evaluate the potential reduction in the
uncertainty in thedCO; () fields when estimated from NCP, NPP or @hIThis is discussed in the context of reducing
uncertainties in these input variables for future improvementsririucingspatially complete fields gfCO; sw)y and the

effect on estimates of the ocg@acarbon sink.

Fig. 1 (a) Map of the 8 static biogeochemical provinces in the South Atlantic Oceaffiollowing Longhurst et al. (1995) and
Longhurst (1998) Markers and letters indicate the locations of timeseries extracteffom Fig. 3. The four Atlantic Meridional
Transect (AMT) cruise tracks are alsooverlaid (b) Map showingthe spatial distribution of the SOCATv2020 dataset usedvhere
the data frequency isthe number of available months of data within each 2 pixel. The province areasacronymsare: WTRA is
Western Tropical Atlantic; ETRA is Eastern Equatorial Atlantic; SATL is South Atlantic Gyre; BRAZ is Brazilian current
coastal; BENG is Bengela Current coastal upwelling; FKLD is Southwest Atlantic shelves; SSTC is South Subtropical
Convergence; SANT is SutAntarctic and ANTA is Antarctic .
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2. Methods
2.1. Surface Ocean Carbon Atlas (SOCATPCO: swyand atmospheric CQ

SOCATV2020(Bakker et al., 2016; Pfeil et al., 20li8dividual fugacity of CQin seawaterfCOz sw) Observations were

downloaded fromhttps://www.socat.info/index.php/dasecess/ Data were extracted from 2002 to 2018 for the South

Atlantic Ocean (10N-60°S, 25%:i 80°W; Fig. 1b). The individual cruise observations were atiiéel from different depths,

and are not representative of i@, syyi N t he top ~100 em of t he(GodjeMumhyetwher e gas exchange occurs

al., 2015; Woolf et al., 2016) herefore, the SOCAT observations weranalysed to a standard temparatdataset and

depth(Reynolds et al., 20Q2hat is considered representative of the bottom of the mass boundarfiVapdf et al., 2016)

This was achieved using the o6fe_reanal ys@loldingetalt, @019t i |l ity in the open source
Shutler et al., 2016)which follows the methodology described in Goddjairphy et al.(2015) The reanalysetCO; (sw)

observations were convertéd pCO; sw), and gridded onto 1° monthly grids following SOCAT protoq@abine et al.,

2013) The uncertainties in thia situ data were taken as the standard deviation of the observations in each grid cell, or

where a single obser v pllowimgBakkexet a4(2086) wer e set as 5 egatm

and-converedtpCO; swy
Monthly 1° grids of atmospheripCO; (pCO: @m) Were extracted from v5.5 of the global estimatep®@®; (sw) dataset
(Landschitzer et al., 2016, 201BLO0; am)was estimated using the dry mixing ratio of G@m the NOAAESRL marine

boundary layer referencét{ps://www.esrl.noaa.gov/gmd/ccgg/mblOptimum Interpolated SS{Reynolds et al., 2002)

and sea level pressure following Dickson e{2007)

2.2.Moderate Resolution Spectroradiometer on Aqua (MODISA) satellite observations

4 km resolution monthly mean Chlwere calculated from MODI3 Level 1 granules, retrieved from National Aeronautics
and Space Administration (NASA) Ocean Colour websit#psé://oceancolor.gsfc.nasa.gowising SeaDAS v7.5, and

applying he standard OGRgI Chl a algorithm (https://oceancolor.gsfc.nasa.gov/atbd/chlor_la/ addition, monthly mean

MODIS-A SST and photosynthetically active radiation (PAR) were also downloadedtisoNASA Ocean Colour website.
Mean monthly NPP were generated from MORISThI a, SST and PAR using the Wavelength Resolving Mokliglr¢l,
1991)with the look up table described in Smyth et(aD05) Coincident mean monthly NCP using the algorithm NICP
described in Tilstone et a201%) were generated using the MODASNPP and SST data. Rhber details of the satellite
al gorithms are ¢g(l998 2019k HOsh & @012)foryChl @ Smyth et.al(2005)and Tilstoneet al
(2005, 2009¥or NPPand Tilstone et al201%) for NCP.These satellite algorithms wesgown to behe most accurate for
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the South Atlantic Ocean imalgorithm intercomparison which accotetting for the uncertainties in both situ, model
andinput data(Ford et al., 2021bAll monthly mean data were generated between July 2002 and December 2018 and were

120 re-gridded onto the same 1° grid as H&0O; «v) ObservationsThe assessed uncertainties from the literature for each of the
input parameters used are given in Table 1.



Table 1: Uncertainties in the input parameters of the Feed Forward Neural Network used in Monte Carlo uncertainty propagation
and perturbation analysis.

Parameter Algorithm Uncertainty Reference
Chlorophylla 0.15 logo(mg m®) Ford et al (2021b)
Net Primary Production 0.20 logo(mg C m? d?) Ford et al (2021b)
Net CommunityProduction 45 mmol Q m2d* Ford et al (2021b)
SST 0.41°C Ford et al (2021b)
pCO:z (atm) 1 eatm Takahashi et a(2009

125

2.3.Feedforward neural network scheme

The South Atlantic Ocean was partitioned into 8 biogeochemical provinces gFifpltbwing Longhurst et al(1995)and
Longhurst(1998) The pCO; (sw) Observations in the eastern Equatorial Atlantic weeerse, and therefore the Equatorial
region was merged into 1 province. In each province the available m@@@y ) observations were matched to
130 temporally and spatially coincidep€0; (aimy MODIS-A, NCP and SST, to provide training data for the feeediard neural
network (FNN). Observations in coastal regions (< 200 m water depth) were removed from the analysis, due to the increased
uncertainty in ocean colour observations in these deegd.avender et al., 2004Pue to constraints on the coverage of
ocean colour data, no data were available in austral winter belovs=~50°
The coincident obseations in each province were randomly split into 3 datasets: 1.) A training datasét ¢5Qhe
135 observations) used to train the FNNs; 2.) A validation datase¥(80the observations) used to assess the performance of
the FNN and to prevent the netwsrfrom overfitting; 3.) An independent test dataset¥®20f the observations) to assess
the final performance of the FNN, with observations that are independent of the network training. The optima})split (r
method of Amari et al1997)was used to partition theputdata into these three sets, as follows:

i P (1)

140 where m is number of input parameters. For our three input paranstemgtimal split of 60 % trainingdatato 40 %
validation data would occur, where we removedd @om each dataset to provide a further independent testedaf\ pre
training step was used to determine the optimum number of hidden neurons in ti{BdfdNal et al., 2017; &ndschutzer
et al., 2013; Moussa et al., 2016) provide the best fit for the observations, whilst preventing over fifihegnuth et al.,

2008)

145 The FNNs consis of 1 hidden layer with between 2 andr3fdes depending on the graining sepand 1 output layer. The
networks weretrained using the optimum number of hidden neurons, in an iterative process until the Root Mean Square
Difference (RMSD) remained unchanged for 6 iterations. The best perfoRhiNg with the lowest RMSD was then used
to estimatepCO; swy The uncertainties in the input parameters were propagated through the FNN, using a Monte Carlo

6



uncertainty propagation, where 1000 calculations were made perturbing the input parameterandsmgoise for their

150 uncertainty (Table 1). The output from the 8 province FNNs were then combined and weighted statistics, which account for
both the satellite anith situ uncertainty, were used to assess the overall performance of théaBBNousedwithin Ford et
al.,2021b). The combined 8 FNNs approach will hereaferéferred to as SANN.

Table 2: The input parameters of the neural network variants described in section 2.3. and 2X8C0, is the atmospheric mixing
155 ratio of CO..

Neural Network Variant Input parameters < ( Formatted  Table
SA-FNNwcp PCO, (amy SST and NCP

SA-FNNnpp PCO, (atmy SST and NPP

SA-FNNchia PCO; (amy SST and Chh

SA-FNNwosio1 pPCO, @mand SST

SA-FNNno-gio-2 PCO; (amy SST salinity,and mixed layer depth

W2020(Watson et al., 2020a] XCO; (amy SST,salinity, and mixed layer depth

The approach to training the FNNs was repeated replacingvitBRChl a or NPP sequentialljTable 2) to determine if
there was an improvement by using NCRIl a and NPP estimates were letransformed before input into the FNN, due to
their respective uncertaintibgingdetermined in log space(Table12). A baseline SAFNN with no biological parameters
160 as input was trained usim@E O, amandMODIS-A SST (SA-FNNyo.sio-1; Table 3. A second SAFNN with no biological
parameterg¢SA-FNNno-sio-2; Table J was trained with the addition ska surface salinitynd mixed layer depth from the

Copernicus Marine Environment Modelling Servicétts://resources.marine.copernicus.eglobal ocean physics

reanalysis product (GLORYS12V1). This parameter combingp@0O; @my SST, salinity and mixed layer depti)as
recently been included within a neural network scheme to estimate global field®nfw) (Watson et al., 2020b)

165 Following these methods, a monthly mean tiseeies ofpCO: sw)was generated in the South Atlantic Ocean, applying the
SA-FNN approach using NCP (SANNncp), NPP (SAFNNwpp), Chl a (SA-FNNchia) or no biological parameters (SA
FNNno-sio-1 and SAFNNno-sio-2). The pCO; (sw) fields were spatially averaged using a 3x3 pixel filter, but were not
averaged temporally as in previous studiesndschitzer et al., 2014, 2016gcause averaging temporally could mask
features that occur within single months of the year. The uncertainties in the input parameters (Table 1) were propagated

170 through the neutanetwork on a per pixel basis, and combined in quadrature with the RMSD of the test dataset, to produce a
combined uncertainty budget for each pixel, assuming all sources of uncertainty are independent and un@iR&ated
2008; Taylor, 1997)


https://resources.marine.copernicus.eu/

175

180

185

190

195

200

2-52.4. Atlantic Meridional Transect in situ data

To assess the accuracy of the-BXN, coincidentin situmeasurements of NCP, NPP, @hISST,pCO; am)andpCO; (sw)y

with uncertainties, were provided by Atlantic Meridional Transects 20, 21, 22 and 23 in 2010, 2011, 2012 and 2013,
respectively. All the Atlantic Meridional Transect data described in this section can be obtained from the British
Oceanographic Data Centiettps://www.bodc.ac.ul/ Chla wascomputediollowing the methods of Brew et al.(2016)

using underway continuous spectrophotometric measurerfientsAMT 22, and uncertainties were estimated as ~0.06
logio(mg m®) (Ford et al.,2021b). **C based NPP measurements were made based on dawn to dusk simusitied
incubations, following the methods given in Tilstone ef2017) at 56 stations with a per station uncertainty. Uncertainties
ranged between 8 and 213 mg € dt and were on average 53 mg € mit. NCP was estimated usifg vitro changes in
dissolved @ following the methods of &t et al. (2009) and Tilstone et al(201%) at 51 stations with a per station
uncertainty calculated. Uncertainties ranged between 5 and 25 mmol @ and were on average 14 mmal @2 d*.
Underwaymeasurements g@CO; sw) and pCO; @m) Were performed continuously, following the methods of Kitidis et al.
(2017) SST was continuously measured alongside all observations (S&&#®b), with a factory calibrated uncertainty of
+0.01 °C. The mean of underw@ZO; swy PCOz @my SST and Chh were taken +20 minutes around each station where
NCP and NPP were measurdthesepCOsyo bser vat i ons ( Na200) ATe2020 datagsetsoth& d from t he

the Atlantic Meridional Transect data remediindependent from the training and validation datasets

2:62.5. Perturbation analysis

Following the approach of Saba et @011) a perturbation analysis was conducted, to evaluate the potential reduction in
SA-FNN pCO; swy RMSD that could be atbuted to the input parameters. The analysis indicates the maximum reduction in
RMSD that could be achieved if uncertainties in the input parameters were reduced to ~0. Each of the input parameters;
NCP, SST an@CO; am) can have three possible values eachin situ pCO; (sw) observation(original value, original
uncertainty; Table 1), enabling 27 perturbations of the input aatimput to the SANN. For eachin situ pCO; (sw)
observation, the 27 perturbations of-EAN pCO; swy were examined, and the perturbation that produced the lowest RMSD
and bias combinatiowas selected. The RMSD and biasre calculated betweeddl the in situ pCO; w) and the selected
perturbations The percentagadifference between this RMSD and the origiR¥ISD when training the SANN was
calculatedo indicate the maximum achievable reducti®his approactwas conducted fdwo scenarios; (1) uncertainty in
individual input parameters (NCP, SSidgpCO; @m) and (2) uncertainty in all input parameters togetfiee approach

was conducted on all three training datasets, and oAtlduetic Meridional Transedn situdata. The analysis was repeated
sequentially replacing NCP with Chland NPP,d determine if there was a greater maximum reduction in RMSD using
NCP. The analysis was also conducted allowing for a 10 % reduction in input parameter uncertainties, to indicate the short
term reduction ipCO; swy RMSD that could be achieved by redgtie input parameter uncertainties.

SOoC
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205 2.:72.6.Comparison of the SAFNNncp with the SA-FNNno-sio, SA-FNNcHia, SAFNNnepand 6st at e of the artodéo dat a
for the South Atlantic
The most comprehensieCO; (sw) fields to date are from Watson et €020b, 2020a) The 6st ap@Dasyhyd met hod?d
fields within the Watson et al2Q20b, 2020pdata were produced by extrapolating thesitu reanalysedSOCATv2019
pCO: sw) Observations using a sealfganising map feed forward neural network apprdaemdschitzer et al., 2016}n4d
210 will-behereafter e f er r ed t otimeserie®Wa? éxteatell fromAhe W2020 data, coincidightSA-FNNycp, SA-
FNNnpe, SA-FNNcHa andthe two SA-FNNno-sio variants For thesix methods, a monthly climatology referenced to the
year 2010 was computed, assuming an atmospherdinC@ase oll . 5 ¢ “a(Takahaghi et al., 2009; Zeng et al., 2014)
The climatology should be insensitive to tiesumed rise intmospheric C@due to the reference year being central to the
time series. The standard deviation of this climatology was also computed on a per pixel basis.
215 The stations (Fig. 1gre representative of locatiofiem previous literaturéhatanalysed theariability of in situ pCO; sw)in
the South Atlantic Oceaifror each station, the monthly climatologyp&O; sw) representing the average seasonal cycle of
pCO:z swy and the standard deviation of the climatology, as an indicatithreahterannual variability, were extracted from
the six approaches. TheCO:; sw) value for each station was the statistical mean of the four nearest data points weighted by
their respective proximity to the station coordindtesitu pCO; (sw) Observatns fromthe SOCATV2020 Flag E dasatwere
220 also extracted for stations A and(Big. 1a), and a climatology was generated. Thelservatios represent data from the
Prediction and Research Moored Array in the Atlantic (PIRABAQysat these location®Bourlés et al., 2008)
The station climatologies for the SANNno-gio-1, SA-FNNNo-sio-2, W2020, SAFNNchHLa, and SAFNNnep were compared
to the SAFNNncp, by testing for significant differences in the seasonal cycle and ap@@lsw) (offset). The seasonal
cycles(seasonalitywere compared usinganpnar amet ri ¢ Spearmandés correlation and deemed statisticall
225 the correlation was n oparaneirigkiiskiWatisawag used t test faynif0i5c)a ntA (nlon< 0. 05)
differences in the annu@CO:; w, indicating an offset between the two tested climatologies. The Southern Ocean station
(station H) was excluded from the statistical analysis due to missing data in-feNEA

2-82.7. Estimation of the bulk COz flux

The flux of CQ (F) between the atmosphere and ocearsga) can be expressed in a bulk parameterisation as:

230 O Q /do | N6 o )
Where kisthegasr ansf er wa h darelthe goubility ofdCOdlthe base and top of the mass boundary layer at
the sea surface respectivély/oolf et al., 2016)k was estimated from ERA5 monthly reanalysis wind speed (dowedoad
from the Copernicus Climate Data Stonéps://cds.climate.copernicus.gtdllowing the parameterisation of Nightingale et

al. (2000) The parametet), was estimated as a function of SST and sea surface s@ifgs, 1974)sing the monthly
235 Optimum Interpolated SSTReynolds et al., 2002and sea surface salinity from the Copernicus Marine Environment

Modelling Service global ocean physics reanalysis product (GLORYS12¥&)L parametewas estimated using the same

temperature and salinity datasets but included a gradient from the base to the top of mass boundai).15%/&(Dobnlon

9
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et al., 1999pnd +0.1 salinity unitéWoolf et al., 2016)pCO, @m) wasestimated using the dry mixing ratio of £ffom the

NOAA-ESRL marine boundary layer reference, Optimum Interpolated(8&jnolds et al., 2003pplying a cool skin bias

(0.17K; Donlon et al., 1999 nd sea level pressure following Dickson e{2007) Spatially and temporally complgt€O,

sw) fields which are representative p€O; sw) at the base of the mass boundary layer, were extracted from tHieNSAcr,

SA-FNNnpp, SA-FNNcHLa, SA-FNNno-sio-1, SA-FNNno-sio2 and W2020.

The monthly CQflux was calculated using the open source FluxEngine toddolding et al., 2019; Shutler et al., 2016)

between 2003 and 2018 for tix pCO; sw)i NP Ut s, ust man ¢ theer té6or agpp pdr o Woothetali, on (descri bed
2016) The net annual flux was determined for the South Atlantic Ocean Ni®4° S; 25° E-70° W) using the

6f e_cal c _ hiitydvithim FlexEngigedwithuthe supplied area and land percentage masks. The mean net annual flux

was calculated as the mean of the 15 year net annual fluxes. Positive net fluxes indicate a net source to the atmosphere, and

negative net fluxeszpresena sink.

Table 32: The percentage reduction inpCO2 swy RMSD by reducing NCP, NPP and Chl a uncertainties to ~0 as described in
Section 2.5 The full results can be found in Appendix Table Al.

Parameter Training Validation Independent Tes| AMT in situ
NCP 32% 40 % 36 % 25 %
NPP 31% 37 % 36 % 13 %
Chla 17 % 21 % 20 % 7%

10
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Fig. 2: Scatter plots showing the combined performance of th 8 feed forward neural networks trained using NCP for each
biogeochemical province (Fig. 1) using 4eparate training and validation datasets; (a) Training, (b) Validation, (c) Independent

Test and (d) Atlantic Meridional Transect (AMT) in situ. The data points are highlighted in red to distinguish them from the error
bars in blue. The blue dashed lines the Type Il regression and the black dashed line is the 1:1 line. Horizontal errdsars indicate
the uncertainty of the SOCATv2020 pCO:2 (sw). Vertical error bars indicate the uncertainty attributed to the input parameter

uncertainty propagated through the feed forward neural networks. The statistics within each plot are; Root Mean Square

Difference (RMSD), Slope and Intercept of the Type Il regression, Coeffice nt of

Coefficient (R), Bias and number of samples (N).

Table43: The percentage reduction ipCO; swyRMSD by reducing NCP, net primary production and chlorophgllncertainties by 10

% as described iBection2.5.

Determinati on

Parameter Training Validation Independent Tes| AMT in situ
NCP 7% 8 % 8% 3%
NPP 5% 6 % 5% 15%
Chla 2% 2% 2% 0.5%
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3. Results
3.1. SA-FNN performance andperturbation analysis

The performance of the SBNN trained usingpCO; @amy SST and NCP for the three training datasets given in Fig. 2.

The SAFNNncp had an accuracy (RMSD) @fl68¢ atamd a preci sion (bias) of 0.87 ¢a
the independent teslata (N = 1300). Training the SANN using Chla or NPP instead of NCP, resulted in a similar
performance (Appendix A Fig. A1, Fig. A2). The aRMW8D for t
gatm), NPP (20. 48 catng anchias mearderoNCP (21 . 6 8

The reduction irpCO; sw) RMSD that could be achieved if input parameter uncertainties were reduced to ~0 was assessed

t m, whi ch was

he independent

deter

test

using theperturbation analysis (Tabk®2, Appendix A Table A1)This showed that a reduction @0, ssw) RMSD of 36% [Formatted: Font: Italic
was achieved by eliminating satellite NCP uncertainties, 34% by eliminating satellite NPP_uncertainties, and 19%[Formatted: Subscript
eliminating satellite Chha uncertaintie¥hi A [FOfmattedi Subscript

[Formatted: Font: Italic

(D D

bias remained near zero for all parameters indicating good precision of tRéli$Aapproach (not shown). Applying the
Atlantic Meridional Transedh situdata as input to the SBNN andusing theperturbation analysis, a decreas@@0; (sw)

RMSD 0f25% for NCP, 13% for NPP and % for Chlawas observed.

The reduction inpCO; swy RMSD from reducing input parameter uncertainties by 10 % was also assessed through the
perturbation analysis (Tab#&). This indicated a decreasep@0: sw)RMSD of 8% for NCP, 5% for NPP and 2o for Chl

a, again indicating that improving NCP uncertaintiasthe largest impact on improving the estimgt&D; w)fields.
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Fig. 3: Monthly climatologies of pCO: (s referenced to the year 2010 for the 8 stations marked in Fig.fiom the SA-FNNncp, SA-
FNNnpp, SA-FNNchLA, SA-FNNno-sio-1. SA-FNNuo-sio-2 and W2020(Watson et al., 2020h)Light blue lines in Fig. 3a, b indicate
the in situ pCO2 sw) Observations from PIRATA buoys.The atmospheric CQi ncr eas e

was steBlack dashedlines € at m yr
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290 indicates the atmosphericpCO, ( ~3 8 0 ¢ a t barp indic&e the@ standard deviation of the climatology (~95% interval),
where larger error barsindicate a larger interannual variability . Red circles indicate the literature values ofpCOz (sw) described in
‘ section4.2_Note the different y-axis limits in-Fig—3gand-Fig—3din each plot.

3.2. Comparison betweenSA-FNNnce and other methods

295 The monthly climatologsy of pCO; sw)generated using the SPNNycp and referenced to the year 2010 showed differences
with two published climatologies, especially in the Equatorial region (Appendix B)mdhénly climatology for 8 stations
(Fig. 1) were extracted from the SMNNncp, SA-FNNypp SA-FNNcHia, SA-FNNno-sio-1, SA-FNNyo-sio2 and the W2020,
to assess differences between H@0O, sw) estimates (Fig. 3). The SANNnce and SAFNNno-sio-1 showed sigificant
divergence in the Equatorial Atlantic (Bidb, f, g; Fig. 4). At the eastern equatorial station, the interannual variability in
300 pCO; (sw)from the SAFNNnce was high and a minimum occurred between January and April, ghacliallyincreased to a
maximum in September and October (Fig. 3b). TheFBnosio1 showedno seasonality in th@CO, swy and was
consistently below the SANNncp pCO: swy The Gulf of Guinea station showed a similar variability in the FBiNncp
pCO; sw) exceptthatthe maxima was lower at this station (Fig. 3f). The B¥N\yo.si0-1 indicatedpCO; (sw) below the SA
FNNwcp throughout the year. The greatest divergence occurred near the Amazon plume (Fig. 3g) WHENyGAHCO;,
305 (sw)was below or apCO; @am) for all months and there was a large interannual variabilitga@; swy The SAFNNno-sio-1
| displayedhigherpCQ; sw)-and a lower interannual variability (Fig. 3g).
The SAFNNnce and SAFNNno-sio-1 sShowed no significant difference in the seasonal patterp€©f sw) at stations south
of 20 °S (Figs. 3c, d, e; Fig. 4). There was, however, a significant offset at some stations wheré&hén&Agenerally
exhibited lowepCO; sw)in austral summer and a higher interannual variafibe. SAFNNyce was significantly different to
310 theW2020and SAFNNyo.sio-2 at similar stationso those at whichs-the SA-FNNno.sio-1 were differeniFig. 3, Fig. 4).
The SAFNNnce and SAFNNcHia showed significant differences pCO; sw) values in the South Bendaeand Amazon
| Plume. In the South Benguela (Fig. 3e; Fig. 4);F¥N\ncp hads -pCO; sw) maxima in austral summer, whereas the SA
FNNcHL maximum occus in austral winter. In the Amazon Plume there was significant offset between the two methods and
| the SAFNNcHL resulted inower pCO; sw) compared to the SANNncp(Fig. 3g; Fig. 4). The SANNncp and SAFNNypp
315 had a significant offset at the Easterruiprial station (Fig. 3c; Fig. 4), where the -BANwpp indicated lowempCO; (swy
For the other stations, no significant differences were observed.
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Fig. 4: Statistical comparison of the SAFNNncp with the W2020, SAFNNno-sio-1, SAFNNno-sio-2, SA-FNNcHia and SA-FNNypp 5
320 cli matol ogi es, where yellow blocks indicate a signifasonaint difference (U = 0.05). Sec:
cycle and offset indicates a difference between the mep80; (sw) of the climatologies.

4. Discussion
4.1. Assessrent of biological parameters to estimat@COz2 (sw)

In this paper, the differences in estimatp@O; sw) usingFFNs withsatellitederivedNCP, NPP or Chh were assessedhe

325 SA-FNNycp had an overall accurady 2 1 . 6 8Fige2ettiamis consistent with other approaches that have been developed
for the Atlantic(2 2 . 8 3 LandsthiMzer etal.,, 2013) and sl ightly | ower than the published gl obal resul t
(Landschutzer et al., 2014)raining the SAFNN using Chla or NPP showedcomparablebroadscale accracy to NCP
When the uncertainties in the input parameters were investigated however, differences in the estp@&es.pivere
apparent. The perturbation analysis indicated that up to% B86provement in estimatingCO; (sw) could be achieved if

330 NCP data uncertainties were redu¢@eble 32). A similar improvement could be obtained if the NPP uncertainties were
reduced(Table 32). Ford et al.(2021b) showed that up to 4@ of the uncertainty in satellite NCP is attributed to the
uncertainty in satellite NPP, which is an input te tiCP approach. This suggests that improvements in estimating NPP
from satellite data will lead to a further improvement in estimai@@: sw)from NCP. These improvements could be
achieved throughedvances—ipetter estimates che water column light éld (e.g. Sathyendranath et al., 202®etter

335 estimation-and the vertical variability of input parametess assignment of photosynthetic parameters (€ulk et al.,
2020, for example. For a discussion on improving satellite NPP estimates we refer the reader to (2@l&)al.
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To uncouple the Chh, NPP and NCP estimates and their uncertainties, the perturbation analysis was also conducted on
Atlantic Meridional Transecin situ observations. This showed that redudimgitu NCP uncertainties provided the greatest
reduction inpCO; w) RMSD, which was three times the reduction achievable usinga@hbble 32; Table 43). This

indicates that the optiah predictive power of Chh to estimatepCO: w) has been reached and to achieve further
improvements in estimates pEO; swyand reduction in its associated uncertainty, requires the use of NCP.

A reduction of input uncertainties to ~0 is near impossible, but a reduction %yctild be feasible (e.g. NCP uncertainty
reduced from 45 to 40.5 mmoL@? d*; Table 1). A perturation analysis conducted for this showed similar results, with
NCP producing the greatest reductiorp@®0; swy RMSD of 8% compared to % for Chla (Table43). Thus reducing NCP
uncertainties will provide a greater improvemenp@0; sw)compared tgeducing the uncertainties in Gl

These improvements in estimating NCP could be achieved through many components. F@62bashowedthat40 %

of satellite NCP uncertainties were attributedntsitu NCP uncertainties. Thie situ bottle incubation measurements could

be improved using the principles of Fiducial Reference Measurements; B&Ms et al., 2020)which aretraceable to
metrology standards, referenced to irtemparison exercises, with a fulhcertainty budgetThis becomes complicated
however,when considering the number of different methods to measure NCP and the large divergence between them
(Robinson et al., 2009A review of these methods has already been cond(Pieatte et al., 2013; Ducklow and Doney,

2013; Williams et al., 2013)The methods broadly fall into the following categories:im.yitro incubations of samples

under light/dark treatmen{$ist et al., 2009and b.)in situ observations of oxygen to argon,(@) ratios (Kaiser et al.,

2005) or the observed isotopic signature of oxygEnoopnick, 1980; Luz and Barkan, 200®Il of these methods are
subject to, but do not account for, the photochemical sink which may lead to underestimiaticitr@NCP by up to 226

(Kitidis et al., 2014) Independent ground measurements that use accepted protocolsifovithe method are currently

made on the Atlantic Meridional Transect, however a community consensus should consider a consistent mefttrodology
NCP. Increasing the number of such observations for the purpose of algorithm development, would further constrain the
NCP, but also provide observations across the lifetime of newly launched satellites. The uncertaintiesirovigach
measurementra assessed through replicate bottles which could be used to calculate a full uncertainty budget for each NCP
measurement when combined with analytical uncertainties.

Serret et al(2015)indicated that NCP is controlled by both the heterogeneity in NPP and respiration. The satellite NCP
algorithm applied in this study accounts for some of the heterogeneity in respiration, through an empirical SST to NCP
relationship(Tilstone et al., 2014. Quantifying the variability in respiration could further improve NCP estimates when
coupled with NPP rates from satellite ebstions.

4.2. Accuracy of SAFNNncp pCO2 sw)at seasonal and interannual scales

The seasonal and interannual variabilityp@iO; sw) estimated using the SANNycpwas compared with the SENNno-sio,
W2020 (Watson et al., 2020p)SA-FNNcH and SAFNNep at 8 stations. The stations (Fig. 1) represent locations of
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previous studies intm situ pCO; (sw) variability allowing comparisons with literature values. Significant differences between
370 the SAFNNnceand SAFNNvo.sio Were observed at four stations (Fig. 4), especially in the Equatorial Atlantic.

At 8° N 38°W (Fig. 3a),Lefevreet al.(2020) reportedpCO; syt © be st abl e at ~400 eatm, bet ween June and August
and to decrease in September to ~360 egatm, whi ch is attributed to the Amaz
Equatorial Atlantio(Coles et al., 2013Bruto et al.(2017)indicated however, that elevatp@O; sma t ~ 4 3e@istivesa t m

obseved in September fdrem 2008 to 2011The errorbars on th®IRATA buoy pCO; sw) ObservationgFig. 3a)clearly
375 highlight thedifferencesbetweenthese-yeatefevreet al.(2020)and Bruto et al(2017) ;-but there ardess than years of

monthly observationavailable ardwhich do not resolve the full seasartycle. For the station in the Amazon Plume at 4°

N 50°W (Fig. 3g), where the effects of the plume exteadhwest towards the Caribbeg@oles et al., 2013; Varona et al.,

2019) Lefevreet al.(2017)indicated that this region acts as a sink forL Q0 sw) < pPCO: @am), especially between May
to July, coincident with maximum discharge from the Amazon R{2&i and Trenberth, 2002)/alerio et al.(2021)
380 indicatedpCO; sw) variedatand belowpCO; amyat 4°N 50° W consistent with the SANNwcp. The interannual variability
of pCO; sw) has been shown to be high in this regiomllmonths(Leféevre et al., 2017)The SAFNNnce provided a better
representation of the seasonal amérannual variability induced by the Amazon River discharge and associated plume at
these two stations compared to the-EXNno.eio, although differences were small atN838°W.
The station in the Eastern Tropical Atlantic at$°10°W (Fig. 3b), isunder the influence of the equatorial upwelling
385 (Lefevre, Guillot, Beaumont, & Danguy, 2008}hichis associated witthe upwelling of CQ rich waters between June and
SeptemberLeféevreet al.(2008)indicated that peagpCO, syo f ~440 e€eat m was observed in September, and remained
unt il December, before decr ea(Parandget a.,201@) eféweat al.i(2@16)shbwed- 36 0 e€at m i n May
however, that the influence of the equatorial upwelling does not reach the buoy in all years, and in some ygi®©Jjower
sw) IS observedThe PIRATA buoyobservations (Fig. 3b) clearly show this seasonality but also highlight the interannual
390 variability in in situ pCO. sw). Further north at 4N 10°W (Fig. 3f), Koffi et al.(2010)suggested that this region follows a
similar seasonal cycle as the station aB&0°W, but thapCO, swyi s ~ 3 0 e(Hoffimt all, B0y The interannual
variability in SAFNNnce pCO; sw) clearly shows the influence of the equatorial upwelling at these stations, with latitudinal
gradients inpCQ; sw) during the upwelling perio¢Lefévre et al., 2016putstruggleso identify elevatedpCO; sw) between
December to Aprilshownby the PIRATA buoy observationg=ig. 3b) By contrast, the SANNyo.so-1 indicated little
395 influence fran the equatorial upwellingind a depressesCO; sw)during the upwelling season.
The two methods converge on the seasonal cycle at the remaining stations although significant offsets in the mean annual
pCO: sw) remain. The station at 3% 18°W (Fig. ) has consistently been implied as a sink fop.&@ncinaAvila et al.
(2016) showed theegion to have8 4 0 GOt (¥ and to be a sink for Glbetween October to December. Similarly,
Kitidis et al.(2017)implied that the region is a sink for @8uring March to April. The region has depresp&; sw) due
400 to high biological activity thabriginates from the Patagonian shelf and the South Subtropical Convergence Zone. The
station at 45S 50°W (Fig. 3d), has also been implied as a strong, but highly variable sink, p@@&sgw can be between
~280 eatm and ~380 gatanduirs ngomutsamil at p KBidistet ak,2007n duri ng austral aut umn
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The SAFNNnce and SAFNNnosio1 methods reproduced the seasonal variability inpB€, ) at these two stations
accurately, but only the SANNncp captures the magnitude of the depress€;, wat 45° S.
Within the southern Benguela upwelling systg80; sw) at station 33°S 17°E (Fig. 3e) is influenced bgradients in the

seasonal upwellingHutchings efal., 2009) SantaneCasiano et a2009) showed thapCO; swv ar i es from ~310 eatm i

July to ~340 eatm i n De c sinkilraugh the yeaGorzaeeDavilaeeal.(2009sugyested s a CO
however, that this Cink is highly variable during upwelling events, and that recently upwelled waters act as a source
(PCO; sw)> PCO2 (am) Of CO; to the atmosphergregor and Monteiro, 2013)\rnone et al(2017)indicatedelevatedoCO;

sw) during austral pring and autumrat the stationwith a~40 ¢ at m ydeaamgitndeThe SAFNNyce and SA
FNNno-sio-1 Were able to reproduce the seasonal cycle, although thENBRce correctly represented the seasonal
magnituden pCO; swyas reported bgantanaCasiano et a(2009)and Arnone et a(2017)

In summary, for these stationthe SA-FNNycp better represeathe seasonality and the interannual variabilityp@O; (sw)

in the South Atlantic Oceanompared to the SANNno-sio-1, €specially in the Equatorial Atlantithe SAFNNyo-sio-2 also
displayed significant differenseto SA-FNNncp, indicating thatthe variability in pCO; w) has a strong biological
contribution which $ not fully represented and explained the additional physical parameteirscluded in the FNNThe
SA-FNNno-sio-2 and W2020 both displayed significant differenceths SAFNNycp at specificstations (Fig. 4)There are
methodological differences between sbeapproacheshowever. TheSA-FNN method uses onlyn situ pCO; (sw)
observations from the South Atlantic Ocean to train the FNNs. The W2020 usesrgkihgbCO; sw) Observations to train

FNNs for 16 provinces with similar seasonal cydleandschitzer et al., 2014; Watson et al., 202Tbe W2020 will
therefore be weighted tpCO, @w) variability in regions of relatively abundarni situ observations (i.e. Northern
Hemisphere) and may not be fully representative of the South Atlantic Ocean. This would explairRRiN&IaAI0-2 and

W2020 differences, when driven using the same input variables.

Comparing the SANNncp and SAFNNcHA there were two significant differences (Fig. 4). A difference in the seasonal
cycle in the southern Benguela (Fig. 3e) was observed. SaDtesiano et al(2009) showed that the minimpCO; (sw) in

July and maxima in Decerah consistent with the SEANNnce and SAFNNyee Whereas the SANNcH. estimated the
opposite scenario. Lamont et §014) reported Chla concentrations to remain consistent in Mad October, but NPP

rates were significantly higher in October, associated with increased surface PAR and enhanced.ufiveetiisgonnect
between Cha andNPPcan also be observed in the satellite observatidppgndix CFig. C1)limiting the abilityof Chla

to estimat@CO; sw), Which is highlighted by the failure of the SANNcH_a to identify the seasonplCO; sw)cycle.

A Chl a to NPP disconnechas also been reported in the Amazon Ply@mith and Demaster, 1998)here Chl a
concentrations can be similar but NPP rates significantly different due to light limitation caused by suspended sediments. A
significant offset betweethe SAFNNyce and SAFNNcHa was observedh this region(Fig. 3g; Fig. 4).Leféevre et al.
(2017)reportedpCQ; swyvalues rangip f rom 400 N ~10 gcatm in January to ~240
FNNncp January estimates are consistent, the May estimates are higher than titeseeasurementdhese observations

were made further north (&) where the turbidity withithe plume has decreased sufficiently for irradiance to elevate NPP
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rates (Smith and Demaster, 1996)hich decreaspCO;. swy Chl a remains relatively consistent across the plume (not
shown), suggesting a disconnect betweenaGid NPP at 4N 50°W which would lead to lowgpCO; sw) estimates by the
SA-FNNchia, where NPP rates are low due to light limitat{@hen et al., 2012; Smith and Demaster, 198&spiration

440 would be elevated from the decompositidrrigerine organic material reducing NCP furt@ooley et al., 2007; Jiang et
al., 2019; Lefevre et al., 2017} is noted that the Amazon Plume is a dynamic region with transient, localised biological and
pCO; sw) featureqCooley et al., 2007; Ibanhez et al., 2015; Lefévre et al., 2017; Valerio et al.,t@@hpybe masked by
the coarse resolution of estimates available using satellite data. TR&ISr however, agreed witin situ pCO; (sw)
observations at 4% 50° W wherepCO; sw)variedat or belowpCO, @my(Valerio et al., 2021)

445 Though the differences between the-BRNnce and SAFNNcia may appear small, the Amazon Plume and Benguela
Upwelling have a higher intensity in the €fux per unit area compared to the open ocean, illustrating a disproportionate
contribution to the overall global G@ink than their small areal coverage impliearuelle et al., 2014)The differences in
the pCO; (sw) eStimates result in a 22 Tg Chalteration in the annual G@lux for the South Atlantic Ocean (SANNncp =
+14 Tg C yrt; SA-FNNchwa = -9 Tg C yr; Fig. ). This unequivocally reinforcethe use of NCP to improve basin scale

450 estimates opCO:; swy especially in regions where Chl NPP and NCP become disconnected.

Recent assessments of the strength of the global oceapisiave been made usipGO: sw) fields estimated using no
biological parameters as inp(Watson et al., 2020bPur results indicate that the SANNncp more accurately represented
the pCO; sw) variability in the South Atlantic Ocean comparedthe SAFNNyo-sio-2, Which included additional physical
parametersEstimating the South Atlantic Ocean netGi0x with the SAFNNyce pCO; sw) produced a 14 Tg C yrsource

455 compared to a 10 Tg C ‘¥rsink indicated by the S&ANNwo-sio2 (Fig. ). The incremental inclusion of parameters to
account for the biological signal starting with Gh(-9 Tg C yr*) thenNPP (7 Tg C yr') thenNCP (+14 Tg C y#)
switched the South Atlantic Ocean from a Dk to a sourcewhich isdriven by differences in theCO; sw) estimates in
regions that are biologically controlle@his 21 Tg C yr* differencebetweenthe SAFNNncp and SA-FNNyep is dueto
additional outgassing in tHequatorialAtlantic provinces 6the WTRA and ETRAFig 1a;Fig.5f). Compared to thin situ

460 pCO:; sw)Observations ahe Equatorial stations (Fig. 3a, B)is likely that the outgassing is still underestimaigdhe SA-
FNNncp butdoesimprovethese estimatesithin theupwelling season (JurieSeptember).
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Fig. 5: Long term average annual mean CQ@flux for the South Atlantic Ocean, usingpCOz (sw) estimates from @) SA-FNNnce, (b)
W2020 (Watson, et al., 2028), (c) SAFNNno-sio-2, (d) SA-FNNcra and (e) SAFNNwep. (f) Bar chart displaying the mean annual
CO:; flux for different regions of the South Atlantic Oceanincluding 10° N to 44° S (Whole SouthAtlantic Ocean), 10° N to 20° S,
20° Sto 44 S, alongside the WTRA and ETRA biogeochemical provikes (Fig. 1a).

The W2020 identified the South Atlantic Ocean asarce for C@of 15 Tg C yr, which isconsistent with the SANNcp

(Fig. &). The SAFNNcr however, indicated the Equatorial Atlantic (10° N to 20° S) as a 20 T¢ €tiymger sourcand
south of 20°S (20°S to 44°S) as a 20 Tg C yrstronger sink. These differences indicate that biologically induced
variability in pCO; (sw) would not be captured by the W2020 amalld reduce the variability in the global ocean &ihk. A
further SAFNN trained withpCO, (amy SST, salinity, mixed layer depth and NCP indicated a similarg0Grceof 12 Tg C

yrl (data not shownpsthe SAFNNnce for the South Atlantic Ocean, highliing that additional physical parameters
cannot fully account for the biological contributiontte variability inpCO; sw) This further confirms the importance of
using NCP within estimates of the global ocean 66k

5. Conclusions

In this paper, weampareneural network models gfiCO; w) parameterised separately using either satellitea, NPP or [Formatted: Font: Italic

NCP as biological proxieso estimate complete fields giCO, v, The results suggest that using NCP improved the [Formaned: Font: Italic

estimation ofpCO: wy The differences between satellite Ghl NPP or NCP were initially small, but the use of a
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perturbation analysis tassesshe uncertainties in these parameters, showed that NCR beesate potential uncertainty
reductionof up to ~36% of the RMSD, compared to a ~29 for Chl a. These results were verified usiimy situ
observations from the Atlantic Meridional Transect, which resulted in% #&provement irpCO; sw) RMSD when hein

situ NCP uncertaintiesrerereducedo ~0, compared to % for Chlaand 13% for NPP.

Monthly climatological estimates @CO; sw) at 8 stations in the South Atlantic Oceaalculated using satellite NCP were
compared withthe NPP and the Chd approaches antvo neural networkshat do not use biological parameters. The NCP
approach significantly improved oboth approachs with no biological parameterat 4 stations in recwtructing the
seasonal and interannual variability, compareid 8tu pCO; (sw)Observations. At the remaining 4 stations, differences were
also observed although these were not statistically signifibate eastern Equatorial Atlantic, in the uplng region, a
significant difference between the NCP and NPP approamhesred Significant differences between the NCP and &hl
approaches were also observed in the Benguela upwelling and Amazon Plumep@®degg) from Chl a suggested that
photosyithetic rates were not solely controlled by @hlUsing NCP to estimateCO; swthe South Atlantic Oceawas
characteriseds a net source of GQwvhereas methods that only include physical controls have inditateégionto be a
small sink for CQ. Sequentially using Chd to estimatepCO; sw) then NPP incrementally reduced the South Atlantie CO
sink and finally using NCRhe areaswitchedto beinga source of C® These results indicate that in regions where
biological activity is important in controlling the variability pCO: sw) the use of NCPwhich isavailable from satellite
data is important for quantifying the ocean carbon pump, and for providingidadaeas that are sparsely covered by
observations such as the Southern Ocean.
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500 Appendices

Appendix A - Feedforward neural network training and perturbation analysis

(a) Training (b) Validation
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Fig. Al: Scatter plots showing the combined performance of 8 feed forward neural retworks trained using chlorophyll a for 4
separate training and validation datasets; (a) Training, (b) Validation, (c) Independent Test and (d) Atlantic Meridional Trasect
505 (AMT) in situ. The blue dashed line is theType Il regression and the black dashedine is the 1:1 line. Horizontal error bars
indicate the uncertainty of the SOCATv2020 pCO: (sw). Vertical error bars indicate the uncertainty attributed to the input
parameter uncertainty propagated through thefeed forward neural networks. The statistics within each plot are; Root Mean
Square Difference (RMSD), Sl ope and I ntercept of the Type [ regression, Coeffici
Correlation Coefficient (R), Bias and number of samples (N).
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Fig. A2: Scatter plots showing thecombined performance of tke 8 feed forward neural networks trained using net primary
production for 4 separate training and validation datasets; (a) Training, (b) Validation, (c) Independent Test and (d) Atlaict
Meridional Transect (AMT) in situ. The blue dashed line is theType Il regression and the black dashed line is the 1:1 line.

515 Horizontal error bars indicate theuncertainty of the SOCATv2020pCO- ). Vertical error bars indicate the resulting uncertainty
attributed to the input parameter uncertainty propagated through the feed forward neural networks. The statistics within each
plot are; Root Mean Square Difference (RMSD), Slope and Intercept of the Type Il regression, Coefficient of Determination (R2
Pearsonb6s Correl at iandnunberefamplesiNgnt ( R), Bi as
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520 Fig. A3: Scatter plots showing the combined performance of th 8 feed forward neural networks trained using no biological
parameters (SAFNNnosio-1) for 3 separate training and validation datasets; (a) Training, (b) Validationand (c) Independent
Test. The blue dashed line is thélype Il regression and the black dashed line is the 1:1 linelorizontal error bars indicate the
uncertainty of the SOCATv2020pCO; sw). Vertical error bars indicate the resulting uncertainty attributed to the input parameter
uncertainty propagated through the feed forward neural networks. The statistics within each plot are; Root Mean Square
525 Di fference (RMSD), Sl ope and Intercept of t he TypEorrdationr egressi on, Coefficient

Coefficient (R), Bias and number of samples (N).
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Fig. A4: Scatter plots showing the combined performance of th 8 feed forward neural networks trained using no biological
parameters (SA-FNNno-sio-2) for 3 separate training and validation datasets; (a) Training, (b) Validation and (c) Independent
Test. The blue dashed line is thélype Il regression and the black dashed line is the 1:1 linklorizontal error bars indicate the
uncertainty of the SOCATv2020pCO:2 sw). Vertical error bars indicate the resulting uncertainty attributed to the input parameter
uncertainty propagated through the feed forward neural networks. The statistics within each plot are; Root Mean Square

Difference (RMSD), Slope and Iner c ep't of

535 Coefficient (R), Bias and number of samples (N).
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Table Al: The percentage reduction in Root Mean Square Difference (RMSD) attributable to the uncertainties in thiaput
parameter for each training and validation datasets determined from a perturbation analysis as described 8ect 2.5.

Parameter Training Validation Independent AMT in situ
Test

ALL 33% 42% 38% 28%
a SST 10% 12% 10% 0.5%
% Net CommunityProduction 32% 40% 36% 25%
PCO: (atm) 6% 7% 6% 9%
> c ALL 34% 40% 40% 17%
£ £ SST 9% 10% 10% 0.4%
§ é Net Primary Production 31% 37% 36% 13%
2o PCO2 (arm) 6% 6% 6% 9%
ALL 22% 26% 25% 29%
% SST 9% 10% 9% 0.4%
§ Chlorophylla 17% 21% 20% 7%
5 PCOz (atm) 8% 9% 9% 16%

540

Appendix B - Climatology comparison

A monthly climatology was generated from the -BRNnce monthly timeseries (Fig. B1), referenced to the year 2010,
assuming an atmospheric€Oncr e as e o {Takdhashi eteala 206D; Zeng et al., 20T4)e standard deviation of
545 the monthly climatology was computed, as an indication of the interannual variations in the climatology. The ability of the
SA-FNNncp to estimate the spatial distribution@£O, swywas compared to two methods.
Firstly, the SAFNNncp climatology was compared to the climatology from Woolf et(2019) produced following the
statistical 6ordinary b GoddinMlrphy & 81.4126186) using the BGCATv4 rdamadysed i b e d
data. The mhod provides an interpolation uncertainty where in regions of sparse data this becomes larger. Fig. B2 shows
550 the methods produce similar climatologip@lO; sw) values for the South Atlantic Ocean, with some clear differences along
the African coastlineand equatorial region.
Secondly, the S&NNncewas compared to a climatology calculated from the 6standard met hc
Feed Forward Neural Network presented in Watson g2@R0h W2020Q. Fig. B3 shows the methods produce similar
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climatologicalpCO; sw) values for the South Atlantic Ocean, however, clear differences in the Equatorial region occur across

555 all months. In the central South Atlantic Ocearefacts form the self organising map can be seen during January and

February.

Fig. BL Monthly climatologies of pCO: (sw) between July 2002 and December 2018 estimated by the -ENNncp approach
referenced to 2010. The atmospheric COi ncr ease was s°& {The ackur scale5is cenaréd ron tiier atmospheric

560 concentration f orRedxladeDaregsindicatd oversaturatdd regions, and blue shadeareas indicate under
saturated regions.Light green areas indicate whereno input data to computepCO: sw) are available.
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