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Abstract. A key step in assessing the global carbon budget is the determination of the partial pressure of CO2 in seawater 

(pCO2 (sw)). Spatially complete observational fields of pCO2 (sw) are routinely produced for regional and global ocean carbon 

budget assessments by extrapolating sparse in situ measurements of pCO2 (sw) using satellite observations. Within these 

schemes, satellite chlorophyll a (Chl a) is often used as a proxy for the biological drawdown or release of CO2. Chl a does 10 

not however quantify carbon fixed through photosynthesis and then respired, which is determined by net community 

production (NCP).  

In this study, pCO2 (sw) over the South Atlantic Ocean is estimated using a feed forward neural network (FNN) scheme and 

either satellite derived NCP, net primary production (NPP) or Chl a to compare which biological proxy is the most accurate. 

Estimates of pCO2 (sw) using NCP, NPP or Chl a were similar, but NCP was more accurate for the Amazon Plume and 15 

upwelling regions, which were not fully reproduced when using Chl a or NPP. Reducing the uncertainties in the satellite 

biological parameters to estimate pCO2 (sw), illustrated further improvement and greater differences for NCP compared to 

NPP or Chl a. Using NCP to estimate pCO2 (sw) showed that the South Atlantic Ocean is a CO2 source, whereas if no 

biological parameters are used in the FNN (following existing annual carbon assessments), this region becomes a sink for 

CO2. These results highlight that using NCP improved the accuracy of estimating pCO2 (sw), and changes the South Atlantic 20 

Ocean from a CO2 sink to a source. Reducing the uncertainties in NCP derived from satellite parameters will further improve 

our ability to quantify the global ocean CO2 sink. 

 

1. Introduction 

Since the industrial revolution, anthropogenic CO2 emissions have resulted in an increase in atmospheric CO2 concentrations 25 

(Friedlingstein et al., 2020; IPCC, 2013). By acting as a sink for CO2, the oceans have buffered the increase in anthropogenic 

atmospheric CO2, without which the atmospheric concentration would be 42-44 % higher (DeVries, 2014). The long-term 

absorption of CO2 by the oceans is altering the marine carbonate chemistry of the ocean, resulting in a lowering of pH; a 

process known as ocean acidification (Raven et al., 2005). Observational fields of the partial pressure of CO2 in seawater 
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(pCO2 (sw)) are one of the key datasets needed to routinely assess the strength of the oceanic CO2 sink (Friedlingstein et al., 30 

2020; Landschützer et al., 2014, 2020; Rödenbeck et al., 2015; Watson et al., 2020b). These methods are reliant on the 

extrapolation of sparse in situ observations of pCO2 (sw) using satellite observations of parameters which account for the 

variability of, and the controls on, pCO2 (sw) (Shutler et al., 2020). These parameters include sea surface temperature (SST; 

e.g. Landschützer et al., 2013; Stephens et al., 1995), salinity and Chl a (Rödenbeck et al., 2015). SST and salinity control 

pCO2 (sw) by changing the solubility of CO2 in seawater (Weiss, 1974), whilst biological processes such as photosynthesis 35 

and respiration contribute by modulating its concentration. 

Chl a is routinely used as a proxy for this biological activity (Rödenbeck et al., 2015), but it does not distinguish between 

carbon fixation through photosynthesis and the carbon respired by the plankton community. Net primary production (the net 

carbon fixation rate; NPP) is determined by the standing stock of phytoplankton, for which the Chl a concentration is used as 

a proxy, and modified by the photosynthetic rate and the available light in the water column (Behrenfeld et al., 2016). 40 

Photosynthetic rates are, in turn, modified by ambient nutrient and temperature conditions (Behrenfeld and Falkowski, 1997; 

Marañón et al., 2003). Elevated Chl a does not always equate to elevated NPP (Poulton et al., 2006), and for the same Chl a 

concentrations, NPP can vary depending on the health and metabolic state of the plankton community. All of these controls 

are captured by the net community production (NCP), which is the metabolic balance of the plankton community resulting 

from the carbon fixed through photosynthesis and that lost through respiration. When NCP is positive the plankton 45 

community is autotrophic which implies that there is a drawdown of CO2 from seawater (since the plankton reduce the CO2 

in the water column), and when it is negative the community is heterotrophic implying a release of CO2 into the ocean (as the 

plankton produce or release CO2) which can then be released into the atmosphere (Jiang et al., 2019; Schloss et al., 2007). 

Using NCP to estimate pCO2 (sw) compared to Chl a should therefore theoretically lead to an improvement in the derivation 

of pCO2 (sw). 50 

Many studies have used satellite Chl a to estimate pCO2 (sw) at both regional (Benallal et al., 2017; Chierici et al., 2012; 

Moussa et al., 2016), and global scales (Landschützer et al., 2014; Liu and Xie, 2017). Chierici et al. (2012) attempted to use 

satellite NPP to estimate pCO2 (sw) in the southern Pacific Ocean, but there was no significant improvement over using 

satellite Chl a. This is not surprising as NPP captures more of the biological signal, but still lacks any inclusion of respiration 

which results in the release of CO2 into the water column. To our knowledge the use of satellite NCP to estimate pCO2 (sw) 55 

has not been attempted before and could be a means of improving estimates of pCO2 (sw) as long as satellite NCP 

observations are accurate (Ford et al., 2021; Tilstone et al., 2015a). These satellite measurements may improve the 

estimation of pCO2 (sw) as NCP includes the full biological control on pCO2 (sw), which could be important in regions of sparse 

in situ pCO2 (sw) observations where interpolation and neural network techniques are likely to struggle (Watson et al., 2020b). 

The objective of this paper is therefore to compare the estimation of pCO2 (sw) using either NCP, NPP or Chl a to determine 60 

which biological descriptor is the most accurate. A 16 year time series of pCO2 (sw) was generated for the South Atlantic 

Ocean using satellite NCP, NPP or Chl a, as the biological input, alongside a baseline approach with no biological 

parameters as input. Regional differences in the generated pCO2 (sw) fields are assessed. The seasonal and interannual 
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variability in pCO2 (sw) estimated from NCP, NPP, Chl a and the baseline approach were also compared. A perturbation 

analysis was conducted to evaluate the potential reduction in the uncertainty in the pCO2 (sw) fields when estimated from 65 

NCP, NPP or Chl a. This is discussed in the context of reducing uncertainties in these input variables for future 

improvements in producing spatially complete fields of pCO2 (sw), and the effect on estimates of the oceanic carbon sink. 

 

Fig. 1: Map of the 8 static biogeochemical provinces in the South Atlantic Ocean. Markers and letters indicate the locations of 

timeseries extracted in Fig. 3. 70 
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2. Methods 

2.1. Surface Ocean Carbon Atlas (SOCAT) pCO2 (sw) and atmospheric CO2 

SOCATv2020 (Bakker et al., 2016; Pfeil et al., 2013) individual fugacity of CO2 in seawater (fCO2 (sw)) observations were 

downloaded from https://www.socat.info/index.php/data-access/. Data were extracted from 2002 to 2018 for the South 75 

Atlantic Ocean (10º N-60º S, 25º E–80º W; Fig. 1). The individual cruise observations were collected from different depths, 

and are not representative of the fCO2 (sw) in the top ~100 μm of the ocean, where gas exchange occurs (Goddijn-Murphy et 

al., 2015; Woolf et al., 2016). Therefore, the SOCAT observations were re-analysed to a standard temperature dataset and 

depth (Reynolds et al., 2002) that is considered representative of the bottom of the mass boundary layer (Woolf et al., 2016). 

This was achieved using the ‘fe_reanalyse_socat’ utility in the open source FluxEngine toolbox (Holding et al., 2019; 80 

Shutler et al., 2016), which follows the methodology described in Goddijn-Murphy et al. (2015). The reanalysed fCO2 (sw) 

observations were converted to pCO2 (sw), and gridded onto 1º monthly grids following SOCAT protocols (Sabine et al., 

2013). The uncertainties in the in situ data were taken as the standard deviation of the observations in each grid cell, or 

where a single observation exists were set as 5 μatm following Bakker et al. (2016). 

Monthly 1º grids of atmospheric pCO2 (pCO2 (atm)) were extracted from v5.5 of the global estimates of pCO2 (sw) dataset 85 

(Landschützer et al., 2016, 2017). pCO2 (atm) was estimated using the dry mixing ratio of CO2 from the NOAA-ESRL marine 

boundary layer reference (https://www.esrl.noaa.gov/gmd/ccgg/mbl/), Optimum Interpolated SST (Reynolds et al., 2002) 

and sea level pressure following Dickson et al. (2007).  

 

2.2. Moderate Resolution Spectroradiometer on Aqua (MODIS-A) satellite observations 90 

4 km resolution monthly mean Chl a were calculated from MODIS-A Level 1 granules, retrieved from National Aeronautics 

and Space Administration (NASA) Ocean Colour website (https://oceancolor.gsfc.nasa.gov/) using SeaDAS v7.5, and 

applying the standard OC3-CI Chl a algorithm (https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/). In addition, monthly mean 

MODIS-A SST and photosynthetically active radiation (PAR) were also downloaded from the NASA Ocean Colour website. 

Mean monthly NPP were generated from MODIS-A Chl a, SST and PAR using the Wavelength Resolving Model (Morel, 95 

1991) with the look up table described in Smyth et al. (2005). Coincident mean monthly NCP using the algorithm NCP-D 

described in Tilstone et al. (2015a) were generated using the MODIS-A NPP and SST data. Further details of the satellite 

algorithms are given in O’Reilly et al. (1998; 2019), Hu et al. (2012) for Chl a, Smyth et al. (2005), Tilstone et al. (2005, 

2009) for NPP and Tilstone et al. (2015a) for NCP. All monthly mean data were generated between July 2002 and December 

2018 and were re-gridded onto the same 1º grid as the pCO2 (sw) observations. The assessed uncertainties from the literature 100 

for each of the input parameters used are given in Table 1. 
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Table 1: Uncertainties in the input parameters of the Feed Forward Neural Network used in Monte Carlo uncertainty propagation 

and perturbation analysis. 

Parameter Algorithm Uncertainty Reference 

Chlorophyll a 0.15 log10(mg m-3) Ford, et al (2021) 

Net Primary Production 0.20 log10(mg C m-2 d-1) Ford, et al (2021) 

Net Community Production 45 mmol O2 m
-2 d-1 Ford, et al (2021) 

SST 0.41 ºC Ford, et al (2021) 

pCO2 (atm) 1 μatm  

 105 

2.3. Feed forward neural network scheme 

The South Atlantic Ocean was partitioned into 8 biogeochemical provinces (Fig. 1), following Longhurst et al. (1995). The 

pCO2 (sw) observations in the eastern Equatorial Atlantic were sparse, and therefore the Equatorial region was merged into 1 

province. In each province the available monthly pCO2 (sw) observations were matched to temporally and spatially coincident 

pCO2 (atm), MODIS-A, NCP and SST, to provide training data for the feed forward neural network (FNN). Observations in 110 

coastal regions (< 200 m water depth) were removed from the analysis, due to the increased uncertainty in ocean colour 

observations in these areas (e.g. Lavender et al., 2004). Due to constraints on the coverage of ocean colour data, no data were 

available in austral winter below ~50º S. 

The coincident observations in each province were randomly split into 3 datasets: 1.) A training dataset (50 % of the 

observations) used to train the FNNs; 2.) A validation dataset (30 % of the observations) used to assess the performance of 115 

the FNN and to prevent the networks from overfitting; 3.) An independent test dataset (20 % of the observations) to assess 

the final performance of the FNN, with observations that are independent of the network training. The optimal split (ropt) 

method of Amari et al. (1997) was used to partition the data into these three sets, as follows: 

 𝑟𝑜𝑝𝑡 = 1 −
1

√2𝑚
                                                                                      (1) 

where m is number of input parameters. For our three input parameters, a split of 60 % training to 40 % validation datasets 120 

would occur, where we removed 10 % from each dataset to provide a further independent test dataset. A pre-training step 

was used to determine the optimum number of hidden neurons in the FNN (Benallal et al., 2017; Landschützer et al., 2013; 

Moussa et al., 2016), to provide the best fit for the observations, whilst preventing over fitting (Demuth et al., 2008).  

The FNN was trained using the optimum number of hidden neurons, in an iterative process until the Root Mean Square 

Difference (RMSD) remained unchanged for 6 iterations. The best performing FNN, with the lowest RMSD was then used 125 

to estimate pCO2 (sw). The uncertainties in the input parameters were propagated through the FNN, using a Monte Carlo 

uncertainty propagation, where 1000 calculations were made perturbing the input parameters, using random noise for their 

uncertainty (Table 1). The output from the 8 province FNNs were then combined and weighted statistics, which account for 
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both the satellite and in situ uncertainty, were used to assess the overall performance of the FNN (as used within Ford et al., 

2021). The combined 8 FNNs approach will hereafter be referred to as SA-FNN.  130 

The approach to training the FNNs was repeated replacing NCP with Chl a or NPP sequentially, to determine if there was an 

improvement by using NCP. A baseline SA-FNN with no biological parameters as input was trained using pCO2 (atm), 

MODIS-A SST, alongside sea surface salinity and mixed layer depth from the Copernicus Marine Environment Modelling 

Service (https://resources.marine.copernicus.eu/) global ocean physics reanalysis product (GLORYS12V1). This parameter 

combination has recently been included within a neural network scheme to estimate global fields of pCO2 (sw) (Watson et al., 135 

2020b). 

Following these methods, a monthly mean time-series of pCO2 (sw) was generated in the South Atlantic Ocean, applying the 

SA-FNN approach using NCP (SA-FNNNCP), NPP (SA-FNNNPP), Chl a (SA-FNNCHLA) or no biological parameters (SA-

FNNNO-BIO). The pCO2 (sw) fields were spatially averaged using a 3×3 pixel filter, but were not averaged temporally as in 

previous studies (Landschützer et al., 2014, 2016) because averaging temporally could mask features that occur within single 140 

months of the year. The uncertainties in the input parameters (Table 1) were propagated through the neural network on a per 

pixel basis, and combined in quadrature with the RMSD of the test dataset, to produce a combined uncertainty budget for 

each pixel, assuming all sources of uncertainty are independent and uncorrelated (BIPM, 2008; Taylor, 1997).  

2.4. Atlantic Meridional Transect in situ data 

To assess the accuracy of the SA-FNN, coincident in situ measurements of NCP, NPP, Chl a, SST, pCO2 (atm) and pCO2 (sw), 145 

with uncertainties, were provided by Atlantic Meridional Transects 20, 21, 22 and 23 in 2010, 2011, 2012 and 2013, 

respectively. All the Atlantic Meridional Transect data described in this section can be obtained from the British 

Oceanographic Data Centre (https://www.bodc.ac.uk/). Chl a was estimated following the methods of Brewin et al. (2016), 

using underway continuous spectrophotometric measurements, and uncertainties were estimated as ~0.06 log10(mg m-3) 

(Ford et al., 2021).  14C based NPP measurements were made based on dawn to dusk simulated in situ incubations, following 150 

the methods given in Tilstone et al. (2017), at 56 stations with a per station uncertainty. Uncertainties ranged between 8 and 

213 mg C m-2 d-1 and were on average 53 mg C m-2 d-1. NCP was estimated using in vitro changes in dissolved O2, following 

the methods of Gist et al. (2009) and Tilstone et al. (2015a) at 51 stations with a per station uncertainty calculated. 

Uncertainties ranged between 5 and 25 mmol O2 m-2 d-1 and were on average 14 mmol O2 m-2 d-1.  

Underway measurements of pCO2 (sw) and pCO2 (atm) were performed continuously, following the methods of Kitidis et al. 155 

(2017). SST was continuously measured alongside all observations (SeaBird SBE45), with a factory calibrated uncertainty of 

±0.01 °C. The mean of underway pCO2 (sw), pCO2 (atm), SST and Chl a were taken ±20 minutes around each station where 

NCP and NPP were measured.  
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2.5. Perturbation analysis 

Following the approach of Saba et al. (2011), a perturbation analysis was conducted, to evaluate the potential reduction in 160 

SA-FNN pCO2 (sw) RMSD that could be attributed to the input parameters. The analysis indicates the maximum reduction in 

RMSD that could be achieved if uncertainties in the input parameters were reduced to ~0.  Each of the input parameters; 

NCP, SST and pCO2 (atm) can have three possible values for each in situ pCO2 (sw) estimate (original value, original ± 

uncertainty; Table 1), enabling 27 perturbations of the input data. RMSD and bias were used to assess the performance of 

SA-FNN under different scenarios. For each in situ pCO2 (sw) observation, the 27 perturbations of SA-FNN pCO2 (sw) were 165 

examined, and the perturbation that produced the lowest RMSD and bias combination in two scenarios was selected; (1) 

uncertainty in individual input parameters (NCP, SST and pCO2 (atm)) and (2) uncertainty in all input parameters together. 

The approach was conducted on all three training datasets, and on the Atlantic Meridional Transect in situ data. The analysis 

was repeated sequentially replacing NCP with Chl a and NPP, to determine if there was a greater maximum reduction in 

RMSD using NCP. The analysis was also conducted allowing for a 10 % reduction in input parameter uncertainties, to 170 

indicate the short-term reduction in pCO2 (sw) RMSD that could be achieved by reducing the input parameter uncertainties. 

2.6. Comparison of the SA-FNNNCP with the SA-FNNNO-BIO, SA-FNNCHLA, SA-FNNNPP and ‘state of the art’ data for 

the South Atlantic 

The most comprehensive pCO2 (sw) fields to date are from Watson et al. (2020b, 2020a). The ‘standard method’ pCO2 (sw) 

fields within the Watson et al. (2020b, 2020a) data were produced by extrapolating the in situ reanalysed SOCATv2019 175 

pCO2 (sw) observations using a self-organising map feed forward neural network approach (Landschützer et al., 2016), and 

will be referred to as ‘W2020’. A time-series was extracted from the W2020 data, coincident to SA-FNNNCP, SA-FNNNPP, 

SA-FNNCHLA and SA-FNNNO-BIO. For the five methods, a monthly climatology referenced to the year 2010 was computed, 

assuming an atmospheric CO2 increase of 1.5 μatm yr-1 (Takahashi et al., 2009; Zeng et al., 2014). The climatology should 

be insensitive to the chosen atmospheric CO2 rise due to the reference year being central to the time series. The standard 180 

deviation of this climatology was also computed on a per pixel basis. 

For each station in Fig. 1, the monthly climatology of pCO2 (sw), representing the average seasonal cycle of pCO2 (sw), and the 

standard deviation of the climatology, as an indication of the interannual variability, were extracted from the five 

approaches. The pCO2 (sw) value for each station was the statistical mean of the four nearest data points weighted by their 

respective proximity to the station coordinate.  185 

The station climatologies for the SA-FNNNO-BIO, W2020, SA-FNNCHLA, and SA-FNNNPP were compared to the SA-FNNNCP, 

by testing for significant differences in the seasonal cycle and annual pCO2 (sw) (offset). The seasonal cycles were compared 

using a non-parametric Spearman’s correlation and deemed statistically different where the correlation was not significant (α 

< 0.05). A non-parametric Kruskal-Wallis tested for significant (α < 0.05) differences in the annual pCO2 (sw), indicating an 

offset between the two tested climatologies. The Southern Ocean station (station H) was excluded from the statistical 190 

analysis due to missing data in the SA-FNN. 

https://doi.org/10.5194/bg-2021-171
Preprint. Discussion started: 2 August 2021
c© Author(s) 2021. CC BY 4.0 License.



8 
 

2.7. Estimation of the bulk CO2 flux 

The flux of CO2 (F) between the atmosphere and ocean (air-sea) can be expressed in a bulk parameterisation as: 

𝐹 = 𝑘 (𝛼𝑊 𝑝𝐶𝑂2 (𝑠𝑤) − 𝛼𝑠  𝑝𝐶𝑂2 (𝑎𝑡𝑚))                                                                  (2) 

Where k is the gas transfer velocity, and αw and αs are the solubility of CO2 at the base and top of the mass boundary layer at 195 

the sea surface respectively (Woolf et al., 2016). k was estimated from ERA5 monthly reanalysis wind speed (downloaded 

from the Copernicus Climate Data Store; https://cds.climate.copernicus.eu/) following the parameterisation of Nightingale et 

al. (2000). αw was estimated as a function of SST and sea surface salinity (Weiss, 1974) using the monthly Optimum 

Interpolated SST (Reynolds et al., 2002) and sea surface salinity from the Copernicus Marine Environment Modelling 

Service global ocean physics reanalysis product (GLORYS12V1). αs was estimated using the same temperature and salinity 200 

datasets but included a gradient from the base to the top of mass boundary layer of -0.17 K (Donlon et al., 1999) and +0.1 

salinity units (Woolf et al., 2016). pCO2 (atm) was estimated using the dry mixing ratio of CO2 from the NOAA-ESRL marine 

boundary layer reference, Optimum Interpolated SST (Reynolds et al., 2002) applying a cool skin bias (0.17K; Donlon et al., 

1999) and sea level pressure following Dickson et al. (2007). Spatially and temporally complete pCO2 (sw) fields, which are 

representative of pCO2 (sw) at the base of the mass boundary layer, were extracted from the SA-FNNNCP, SA-FNNNPP, SA-205 

FNNCHLA, SA-FNNNO-BIO and W2020.  

The monthly CO2 flux was calculated using the open source FluxEngine toolbox (Holding et al., 2019; Shutler et al., 2016) 

between 2003 and 2018 for the five pCO2 (sw) inputs, using the ‘rapid transport’ approximation (described in Woolf et al., 

2016). The net annual flux was determined for the South Atlantic Ocean (10° N-44° S; 25° E-70° W) using the 

‘fe_calc_budgets.py’ utility within FluxEngine with the supplied area and land percentage masks. The mean net annual flux 210 

was calculated as the mean of the 15 year net annual fluxes. Positive net fluxes indicate a net source to the atmosphere, and 

negative net fluxes a sink. 

 

Table 2: The percentage reduction in pCO2 (sw) RMSD by reducing NCP, net primary production and chlorophyll a uncertainties 

to ~0 as described in Section 2.5. The full results can be found in Appendix Table A1. 215 

Parameter Training Validation Independent Test AMT in situ 

NCP 32 % 40 % 36 % 25 % 

Net Primary 

Production 
31 % 37 % 36 % 13 % 

Chlorophyll a 17 % 21 % 20 % 7 % 
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Fig. 2: Scatter plots showing the combined performance of the 8 feed forward neural networks trained using NCP for each 

biogeochemical province (Fig. 1) using 4 separate training and validation datasets; (a) Training, (b) Validation, (c) Independent 220 
Test and (d) Atlantic Meridional Transect (AMT) in situ. The blue dashed line is the Type II regression and the black dashed line 

is the 1:1 line. Horizontal errorbars indicate the uncertainty of the SOCATv2020 pCO2 (sw). Vertical errorbars indicate the 

uncertainty attributed to the input parameter uncertainty propagated through the feed forward neural networks. The statistics 

within each plot are; Root Mean Square Difference (RMSD), Slope and Intercept of the Type II regression, Coefficient of 

Determination (R2), Pearson’s Correlation Coefficient (R), Bias and number of samples (N). 225 

 

Table 3: The percentage reduction in pCO2 (sw) RMSD by reducing NCP, net primary production and chlorophyll a uncertainties by 10 

% as described in Section 2.5.  

Parameter Training Validation Independent Test AMT in situ 

NCP 7 % 8 %  8 %  3 % 

Net Primary 

Production 
5 % 6 % 5 % 1.5 % 

Chlorophyll a 2 % 2 % 2 % 0.5 % 
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3. Results 

3.1. SA-FNN performance and perturbation analysis 230 

The performance of the SA-FNN trained using pCO2 (atm), SST and NCP for the three training datasets is given in Fig. 2. The 

SA-FNNNCP had an accuracy (RMSD) of 21.67 μatm and a precision (bias) of 0.87 μatm, which was determined with the 

independent test data (N = 1300). Training the SA-FNN using Chl a or NPP instead of NCP, resulted in a similar 

performance (Appendix A Fig. A1, Fig. A2). The RMSD for the independent test data was within ~1.5 μatm for Chl a (19.88 

μatm), NPP (20.48 μatm) and NCP (21.68 μatm) and bias near zero.  235 

The reduction in pCO2 (sw) RMSD that could be achieved if input parameter uncertainties were reduced to ~0 was assessed 

using the previously described perturbation analysis (Table 2, Appendix A Table A1). This showed that satellite NCP 

uncertainties lead to an on average 36 % reduction in pCO2 (sw) RMSD, with NPP a 34 % reduction and Chl a a 19 % 

reduction, indicating that improving NCP uncertainties will have the largest impact on improving the estimated pCO2 (sw) 

fields. The bias remained near zero for all parameters indicating good precision of the SA-FNN approach (not shown). 240 

Applying the Atlantic Meridional Transect in situ data as input to the SA-FNN and resulting perturbation analysis, a 

decrease in pCO2 (sw) RMSD of 25 % for NCP, 13 % for NPP and 7 % for Chl a was observed.  

The reduction in pCO2 (sw) RMSD from reducing input parameter uncertainties by 10 % was also assessed through the 

perturbation analysis (Table 3). This indicated a decrease in pCO2 (sw) RMSD of 8 % for NCP, 5 % for NPP and 2 % for Chl 

a, again indicating that improving NCP uncertainties will have the largest impact on improving the estimated pCO2 (sw) fields. 245 
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Fig. 3: Monthly climatologies of pCO2 (sw) referenced to the year 2010 for the 8 stations marked in Fig. 1 from the SA-FNNNCP, SA-

FNNNPP, SA-FNNCHLA, SA-FNNNO-BIO and W2020 (Watson et al., 2020b). The atmospheric CO2 increase was set as 1.5 μatm yr-1. 

Black dashed line indicates the atmospheric pCO2 (~380 μatm). Errorbars indicate the standard deviation of the climatology, 

where larger errorbars indicate a larger interannual variability.  Note the different y-axis limits in Fig. 3g. 250 

 

3.2. Comparison of SA-FNNNCP with other methods 

The monthly climatology of pCO2 (sw) generated using the SA-FNNNCP and referenced to the year 2010 showed differences 

with two published climatologies, especially in the Equatorial region (Appendix B). The monthly climatology for 8 stations 

(Fig. 1) were extracted from the SA-FNNNCP, SA-FNNNPP, SA-FNNCHLA, SA-FNNNO-BIO and the W2020, to assess 255 

differences between the pCO2 (sw) estimates (Fig. 3). The SA-FNNNCP and SA-FNNNO-BIO showed significant divergences in 

the Equatorial Atlantic (Figs. 3b, f, g; Fig. 4). At the eastern equatorial station, the interannual variability in pCO2 (sw) from 

the SA-FNNNCP was high and a minimum occurred between January and April, which slowly increased to a maximum in 

September and October (Fig. 3b). The SA-FNNNO-BIO showed the opposite pattern, with a pCO2 (sw) minima between May to 

July and a maxima for the remaining months with little interannual variability. The Gulf of Guinea station showed a similar 260 

variability in the SA-FNNNCP pCO2 (sw) except the maxima was lower at this station (Fig. 3f). The SA-FNNNO-BIO indicated 

pCO2 (sw) below the SA-FNNNCP throughout the year. The greatest divergence occurred near the Amazon plume (Fig. 3g) 
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where SA-FNNNCP pCO2 (sw) was below or at pCO2 (atm) for all months and there was a large interannual variability in pCO2 

(sw). The SA-FNNNO-BIO displayed lower pCO2 (sw) between January and July and a lower interannual variability (Fig. 3g).  

The SA-FNNNCP and SA-FNNNO-BIO showed no significant difference in the seasonal patterns of pCO2 (sw) at stations south of 265 

20 °S (Figs. 3c, d, e; Fig. 4). There was, however, a significant offset at some stations where the SA-FNNNCP generally 

exhibited lower pCO2 (sw) in austral summer and a higher interannual variation. The SA-FNNNCP was significantly different to 

the W2020 at similar stations as the SA-FNNNO-BIO (Fig. 3, Fig. 4).   

The SA-FNNNCP and SA-FNNCHLA showed significant differences in pCO2 (sw) values in the South Benguela and Amazon 

Plume. In the South Benguela (Fig. 3e; Fig. 4), SA-FNNNCP gave a pCO2 (sw) maxima in austral summer, whereas the SA-270 

FNNCHL maximum occurred in austral winter. In the Amazon Plume there was significant offset between the two methods 

and the SA-FNNCHL gave lower pCO2 (sw) compared to the SA-FNNNCP (Fig. 3g; Fig. 4). The SA-FNNNCP and SA-FNNNPP 

had a significant offset at the Eastern Equatorial station (Fig. 3c; Fig. 4), where the SA-FNNNPP indicated lower pCO2 (sw). 

For the other stations, no significant differences were observed. 

 275 

 

Fig. 4: Statistical comparison of the SA-FNNNCP with the W2020, SA-FNNNO-BIO SA-FNNCHLA and SA-FNNNPP climatologies, 

where yellow blocks indicate a significant difference (α = 0.05). Seasonality indicates a difference in the seasonal cycle and offset 

indicates a difference between the mean pCO2 (sw) of the climatologies. 
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4. Discussion 280 

4.1. Assessment of biological parameters to estimate pCO2 (sw) 

In this paper, the differences in estimating pCO2 (sw) using satellite NCP, NPP or Chl a were assessed. The SA-FNNNCP had 

an overall accuracy that is consistent with other approaches that have been developed for the Atlantic (22.83 μatm; 

Landschützer et al., 2013), and slightly lower than the published global result of 25.95 μatm (Landschützer et al., 2014). 

Training the SA-FNN using Chl a, NPP or NCP, there was no overall improvement in the broad-scale accuracy of pCO2 (sw) 285 

compared to literature values in the South Atlantic. When the uncertainties in the input parameters were investigated 

however, differences in the estimates of pCO2 (sw) were apparent. The perturbation analysis indicated that up to a 36 % 

improvement in estimating pCO2 (sw) could be achieved if NCP data uncertainties were reduced. A similar improvement 

could be obtained if the NPP uncertainties were reduced. Ford et al. (2021) showed that up to 40 % of the uncertainty in 

satellite NCP is attributed to the uncertainty in satellite NPP, which is an input to the NCP approach. This suggests that 290 

improvements in estimating NPP from satellite data will lead to a further improvement in estimating pCO2 (sw) from NCP. 

These improvements could be achieved through advances in the water column light field (e.g. Sathyendranath et al., 2020) or 

assignment of photosynthetic parameters (e.g. Kulk et al., 2020), for example. For a discussion on improving satellite NPP 

estimates we refer the reader to Lee et al. (2015). 

Satellite NCP is reliant on NPP as input (Tilstone et al., 2015a; Ford et al., 2021), and NPP requires Chl a as the primary 295 

input (e.g. Lobanova et al., 2018; Platt et al., 1991; Tilstone et al., 2015b). To uncouple the Chl a, NPP and NCP estimates 

and their uncertainties, the perturbation analysis was also conducted on Atlantic Meridional Transect in situ observations. 

This showed that reducing in situ NCP uncertainties provided the greatest reduction in pCO2 (sw) RMSD, which was three 

times the reduction achievable using Chl a. This indicates that the optimal predictive power of Chl a to estimate pCO2 (sw) has 

been reached and to achieve further improvements in estimates of pCO2 (sw) and reduction in its associated uncertainty, 300 

requires the use of NCP.  

A reduction of input uncertainties to ~0 is near impossible, but a reduction by 10 % could be feasible (e.g. NCP uncertainty 

reduced from 45 to 40.5 mmol O2 m-2 d-1; Table 1). A perturbation analysis conducted for this showed similar results, with 

NCP producing the greatest reduction in pCO2 (sw) RMSD of 8 % compared to 2 % for Chl a. Thus reducing NCP 

uncertainties will provide a greater improvement in pCO2 (sw) compared to reducing the uncertainties in Chl a. 305 

These improvements in estimating NCP could be achieved through many components. Ford et al. (2021) showed 40 % of 

satellite NCP uncertainties were attributed to in situ NCP uncertainties. The in situ bottle incubation measurements could be 

improved using the principles of Fiducial Reference Measurements (FRM; Banks et al., 2020), which are traceable to 

metrology standards, referenced to inter-comparison exercises, with a full uncertainty budget. This however, becomes 

complicated when considering the number of different methods to measure NCP and the large divergence between them 310 

(Robinson et al., 2009). A review of these methods has already been conducted (Duarte et al., 2013; Ducklow and Doney, 

2013; Williams et al., 2013). The methods broadly fall into the following categories: a.) in vitro incubations of samples 
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under light/dark treatments (Gist et al., 2009) and b.) in situ observations of oxygen to argon (O2/Ar) ratios (Kaiser et al., 

2005) or the observed isotopic signature of oxygen (Kroopnick, 1980; Luz and Barkan, 2000). All of these methods are 

subject to, but do not account for, the photochemical sink which may lead to underestimation of in vitro NCP by up to 22 % 315 

(Kitidis et al., 2014). Independent ground measurements that use accepted protocols for the in vitro method are currently 

made on the Atlantic Meridional Transect, however a community consensus should consider a consistent methodology for 

NCP. Increasing the number of such observations for the purpose of algorithm development, would further constrain the 

NCP, but also provide observations across the lifetime of newly launched satellites. The uncertainties on each in vitro 

measurement are assessed through replicate bottles which could be used to calculate a full uncertainty budget for each NCP 320 

measurement when combined with analytical uncertainties.  

Serret et al. (2015) indicated that NCP is controlled by both the heterogeneity in NPP and respiration. The satellite NCP 

algorithm applied in this study accounts for some of the heterogeneity in respiration, through an empirical SST to NCP 

relationship (Tilstone et al., 2015a). Quantifying the variability in respiration could further improve NCP estimates when 

coupled with NPP rates from satellite observations. 325 

4.2. Accuracy of SA-FNNNCP pCO2 (sw) at seasonal and interannual scales 

The seasonal and interannual variability of pCO2 (sw) estimated using the SA-FNNNCP was compared with the SA-FNNNO-BIO, 

W2020 (Watson et al., 2020b), SA-FNNCHL and SA-FNNNPP at 8 stations. The stations (Fig. 1) represent locations of 

previous studies into in situ pCO2 (sw) variability in the South Atlantic Ocean and allow comparisons with literature values. 

Significant differences between the SA-FNNNCP and SA-FNNNO-BIO were observed at four stations (Fig. 4), especially in the 330 

Equatorial Atlantic.  

At 8° N 38° W (Fig. 3a), Lefèvre et al. (2020) reported pCO2 (sw) to be stable at ~400 μatm, between June and August 2013, 

and to decrease in September to ~360 μatm, which is attributed to the Amazon Plume propagating into the western 

Equatorial Atlantic (Coles et al., 2013). Bruto et al. (2017) indicated however, that elevated pCO2 (sw) at ~430 μatm exist 

throughout the year from 2008 to 2011. For the station in the Amazon Plume at 4° N 50° W (Fig. 3g), where the effects of 335 

the plume extend northwest towards the Caribbean (Coles et al., 2013; Varona et al., 2019), Lefèvre et al. (2017) indicated 

that this region acts as a sink for CO2 (pCO2 (sw) < pCO2 (atm)), especially between May to July, coincident with maximum 

discharge from the Amazon River (Dai and Trenberth, 2002). Valerio et al. (2021) indicated pCO2 (sw) varied above and 

below pCO2 (atm) at 4° N 50° W consistent with the SA-FNNNCP. The interannual variability of pCO2 (sw) has been shown to be 

high in this region in all months (Lefèvre et al., 2017). The SA-FNNNCP provided a better representation of the seasonal and 340 

interannual variability induced by the Amazon River discharge and associated plume at these two stations compared to the 

SA-FNNNO-BIO, although differences were small at 8° N 38° W. 

The station in the Eastern Tropical Atlantic at 6° S 10° W (Fig. 3b), is under the influence of the equatorial upwelling 

(Lefèvre, Guillot, Beaumont, & Danguy, 2008), which is associated with upwelling of CO2 rich waters between June and 

September. Lefèvre et al. (2008) indicated that peak pCO2 (sw) of ~440 μatm was observed in September, and remained stable 345 
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until December, before decreasing to a minima of ~360 μatm in May (Parard et al., 2010). Lefèvre et al. (2016) showed 

however, that the influence of the equatorial upwelling does not reach the buoy in all years, and in some years lower pCO2 

(sw) is observed. Further north at the station at 4° N 10° W (Fig. 3f), Koffi et al. (2010) suggested that this region follows a 

similar seasonal cycle as the station at 6° S 10° W, but that pCO2 (sw) is ~30 μatm lower (Koffi et al., 2016). The interannual 

variability in SA-FNNNCP pCO2 (sw) clearly shows the influence of the equatorial upwelling at these stations, with latitudinal 350 

gradients in pCO2 (sw) during the upwelling period (Lefèvre et al., 2016). By contrast, the SA-FNNNO-BIO indicated little 

influence from the equatorial upwelling, little interannual variability, and a depressed pCO2 (sw) during the upwelling season. 

The two methods converge on the seasonal cycle at the remaining stations although significant offsets in the mean annual 

pCO2 (sw) remain. The station at 35° S 18° W (Fig. 3c) has consistently been implied as a sink for CO2. Lencina-Avila et al. 

(2016) showed the region to have pCO2 (sw) at 340 μatm and to be a sink for CO2 between October to December. Similarly, 355 

Kitidis et al. (2017) implied that the region is a sink for CO2 during March to April. The region has depressed pCO2 (sw) due 

to high biological activity that originates from the Patagonian shelf and the South Subtropical Convergence Zone. The 

station at 45° S 50° W (Fig. 3d), has also been implied as a strong, but highly variable sink, where pCO2 (sw) can be between 

~280 μatm and ~380 μatm during austral spring, and is constant at ~310 μatm during austral autumn (Kitidis et al., 2017). 

The SA-FNNNCP and SA-FNNNO-BIO methods reproduced the seasonal variability in the pCO2 (sw) at these two stations 360 

accurately, but only the SA-FNNNCP captures the magnitude of the depressed pCO2 (sw) at 45° S. 

Within the southern Benguela upwelling system, pCO2 (sw) at the station 33° S 17° E (Fig. 3e) is influenced by gradients in 

the seasonal upwelling (Hutchings et al., 2009). Santana-Casiano et al. (2009) showed that pCO2 (sw) varies from ~310 μatm 

in July to ~340 μatm in December and that the region is a CO2 sink through the year. González-Dávila et al. (2009) 

suggested however, that this CO2 sink is highly variable during upwelling events, and that recently upwelled waters act as a 365 

source (pCO2 (sw) > pCO2 (atm)) of CO2 to the atmosphere (Gregor and Monteiro, 2013). The SA-FNNNCP and SA-FNNNO-BIO 

were able to reproduce the seasonal cycle, although the SA-FNNNCP correctly represented the seasonal differences in pCO2 

(sw) as reported by Santana-Casiano et al. (2009). 

Overall, compared to the SA-FNNNO-BIO at these stations, the SA-FNNNCP better represents the seasonality and the 

interannual variability of pCO2 (sw) in the South Atlantic Ocean, especially in the Equatorial Atlantic. The SA-FNNNO-BIO and 370 

W2020 both displayed significant differences to the SA-FNNNCP at similar stations (Fig. 4) although their pCO2 (sw) estimates 

were not always consistent. The SA-FNN method uses only in situ pCO2 (sw) observations from the South Atlantic Ocean to 

train the FNNs. The W2020 uses global in situ pCO2 (sw) observations to train FNNs for 16 provinces with similar seasonal 

cycles (Landschützer et al., 2014; Watson et al., 2020b). The W2020 will therefore be weighted to pCO2 (sw) variability in 

regions of relatively abundant in situ observations (i.e. Northern Hemisphere) and may not be fully representative of the 375 

South Atlantic Ocean. This would explain the SA-FNNNO-BIO and W2020 differences, when driven using the same input 

variables.  

Comparing the SA-FNNNCP and SA-FNNCHLA there were two significant differences (Fig. 4). A difference in the seasonal 

cycle in the southern Benguela (Fig. 3e) was observed. Santana-Casiano et al. (2009) showed that the minima pCO2 (sw) in 
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July and maxima in December, consistent with the SA-FNNNCP and SA-FNNNPP whereas the SA-FNNCHL estimated the 380 

opposite scenario. Lamont et al. (2014) reported Chl a concentrations to remain consistent in May and October, but NPP 

rates were significantly higher in October, associated with increased surface PAR and enhanced upwelling. The disconnect 

between Chl a, NPP and NCP limits the ability of Chl a to estimate pCO2 (sw), which is highlighted by the failure of the SA-

FNNCHLA to identify the seasonal pCO2 (sw) cycle. 

A Chl a to NPP disconnect, due to light limitation caused by suspended sediments, has also been reported in the Amazon 385 

Plume (Smith and Demaster, 1996), where a significant offset between the SA-FNNNCP and SA-FNNCHLA was observed (Fig. 

3g; Fig. 4). Lefèvre et al. (2017) reported pCO2 (sw) values ranging from 400 ± ~10 μatm in January to ~240 ± ~70 μatm in 

May. Although, the SA-FNNNCP January estimates are consistent, the May estimates are higher than these in situ 

observations. These observations were made further north (6° N) where the turbidity within the plume has decreased 

sufficiently for irradiance to elevate NPP rates (Smith and Demaster, 1996), which decrease pCO2 (sw). Chl a remains 390 

relatively consistent across the plume (not shown), suggesting a disconnect between Chl a and NPP at 4° N 50° W which 

would lead to lower pCO2 (sw) estimates by the SA-FNNCHLA, where NPP rates are low due to light limitation (Chen et al., 

2012; Smith and Demaster, 1996). Respiration would be elevated from the decomposition of riverine organic material 

reducing NCP further (Cooley et al., 2007; Jiang et al., 2019; Lefèvre et al., 2017). It is noted that the Amazon Plume is a 

dynamic region with transient, localised biological and pCO2 (sw) features (Cooley et al., 2007; Ibánhez et al., 2015; Lefèvre 395 

et al., 2017; Valerio et al., 2021) that maybe masked by the coarse resolution of estimates available using satellite data. The 

SA-FNNNCP however, agreed with in situ pCO2 (sw) observations at 4° N 50° W where pCO2 (sw) varied above and below 

pCO2 (atm) (Valerio et al., 2021). 

Though the differences between the SA-FNNNCP and SA-FNNCHLA may appear small, the Amazon Plume and Benguela 

Upwelling have a higher intensity in the CO2 flux per unit area compared to the open ocean, illustrating a disproportionate 400 

contribution to the overall global CO2 sink than their small areal coverage implies (Laruelle et al., 2014). The differences in 

the pCO2 (sw) estimates result in a 22 Tg C yr-1 alteration in the annual CO2 flux for the South Atlantic Ocean (SA-FNNNCP = 

+14 Tg C yr-1; SA-FNNCHLA = -9 Tg C yr-1; Fig. 5). This unequivocally reinforces the use of NCP to improve basin scale 

estimates of pCO2 (sw), especially in regions where Chl a, NPP and NCP become disconnected.  

Recent assessments of the strength of the global oceanic CO2 sink have been made using pCO2 (sw) fields estimated using no 405 

biological parameters as input (Watson et al., 2020b). Our results indicate that the SA-FNNNCP more accurately represented 

the pCO2 (sw) variability in the South Atlantic Ocean compared to the SA-FNNNO-BIO. Estimating the South Atlantic Ocean 

net CO2 flux with the SA-FNNNCP pCO2 (sw) produced a 14 Tg C yr-1 source compared to a 10 Tg C yr-1 sink indicated by the 

SA-FNNNO-BIO (Fig. 5). The incremental inclusion of parameters to properly account for the biological signal starting with 

Chl a (-9 Tg C yr-1) to NPP (-7 Tg C yr-1) to NCP (+14 Tg C yr-1) switched the South Atlantic Ocean from a CO2 sink to a 410 

source, driven by differences in the pCO2 (sw) estimates in regions that are biologically controlled, such as the Equatorial 

Atlantic.  
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Fig. 5: Long term average annual mean CO2 flux for the South Atlantic Ocean, using pCO2 (sw) estimates from (a) SA-FNNNCP, (b) 415 
W2020 (Watson, et al., 2020a), (c) SA-FNNNOBIO, (d) SA-FNNCHLA and (e) SA-FNNNPP 

 

The W2020 identified the South Atlantic Ocean as a 15 Tg C yr-1 source for CO2 consistent with the SA-FNNNCP (Fig. 5). 

The SA-FNNNCP however, indicated the Equatorial Atlantic (10° N to 20° S) as a 20 Tg C yr-1 stronger source and south of 

20° S (20° S to 44° S) as a 20 Tg C yr-1 stronger sink. These differences indicate that biologically induced variability in 420 

pCO2 (sw) would not be captured by the W2020 and may reduce the variability in the global ocean CO2 sink reinforcing the 

improvement that NCP provides. 

5. Conclusions 

In this paper, we compare using three biological proxies, Chl a, NPP or NCP available from earth observation data to train a 

neural network scheme to estimate pCO2 (sw). The results suggest that using NCP improved the estimation of pCO2 (sw). The 425 

differences between satellite Chl a, NPP or NCP were initially small, but the use of a perturbation analysis to account for 

uncertainties in these parameters, showed that NCP has the greatest potential reduction in pCO2 (sw) uncertainty of up to ~36 

% of the RMSD, compared to a ~19 % reduction for Chl a. These results were verified using in situ observations from the 

Atlantic Meridional Transect, which resulted in a 25 % improvement in pCO2 (sw) RMSD when the in situ NCP uncertainties 
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are reduced, compared to 7 % for Chl a and 13 % for NPP. Practical approaches to reduce the uncertainties in both the in situ 430 

and satellite NCP observations are discussed.  

Monthly climatological estimates of pCO2 (sw) calculated using satellite NCP were compared with the NPP and the Chl a 

approaches and a baseline approach that does not use biological parameters, at 8 stations in the South Atlantic Ocean. The 

NCP approach significantly improved on the baseline approach at 4 stations in reconstructing the seasonal and interannual 

variability, compared to in situ pCO2 (sw) observations. At the remaining 4 stations, differences were also observed although 435 

these were not statistically significant. A significant difference between the NCP and NPP approaches occurred in the eastern 

Equatorial Atlantic, in the equatorial upwelling region. Significant differences between the NCP and Chl a approaches were 

also observed in the Benguela upwelling and Amazon Plume, where pCO2 (sw) from Chl a suggested that photosynthetic rates 

were not solely controlled by Chl a. Using pCO2 (sw) estimated from NCP identified the South Atlantic Ocean as a net source 

of CO2, whereas methods that only include physical controls have indicated it to be a small sink for CO2. Sequentially using 440 

firstly Chl a to estimate pCO2 (sw), then NPP incrementally reduced the South Atlantic CO2 sink and finally using NCP 

switched the area to a source of CO2. These results indicate that in regions where biological activity is important in 

controlling the variability in pCO2 (sw), the use of NCP available from satellite data is important for quantifying the ocean 

carbon pump, and for providing data in areas that are sparsely covered by observations such as the Southern Ocean. 

  445 
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Appendices 

Appendix A - Feed forward neural network training and perturbation analysis 

 

Fig. A1: Scatter plots showing the combined performance of the 8 feed forward neural networks trained using chlorophyll a for 4 

separate training and validation datasets; (a) Training, (b) Validation, (c) Independent Test and (d) Atlantic Meridional Transect 450 
(AMT) in situ. The blue dashed line is the Type II regression and the black dashed line is the 1:1 line. Horizontal errorbars 

indicate the uncertainty of the SOCATv2020 pCO2 (sw). Vertical errorbars indicate the uncertainty attributed to the input 

parameter uncertainty propagated through the feed forward neural networks. The statistics within each plot are; Root Mean 

Square Difference (RMSD), Slope and Intercept of the Type II regression, Coefficient of Determination (R2), Pearson’s 

Correlation Coefficient (R), Bias and number of samples (N). 455 
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Fig. A2: Scatter plots showing the combined performance of the 8 feed forward neural networks trained using net primary 

production for 4 separate training and validation datasets; (a) Training, (b) Validation, (c) Independent Test and (d) Atlantic 

Meridional Transect (AMT) in situ. The blue dashed line is the Type II regression and the black dashed line is the 1:1 line. 460 
Horizontal errorbars indicate the uncertainty of the SOCATv2020 pCO2 (sw). Vertical errorbars indicate the resulting uncertainty 

attributed to the input parameter uncertainty propagated through the feed forward neural networks. The statistics within each 

plot are; Root Mean Square Difference (RMSD), Slope and Intercept of the Type II regression, Coefficient of Determination (R2), 

Pearson’s Correlation Coefficient (R), Bias and number of samples (N). 
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 465 

Fig. A3: Scatter plots showing the combined performance of the 8 feed forward neural networks trained using no biological 

parameters for 3 separate training and validation datasets; (a) Training, (b) Validation and (c) Independent Test. The blue dashed 

line is the Type II regression and the black dashed line is the 1:1 line. Horizontal errorbars indicate the uncertainty of the 

SOCATv2020 pCO2 (sw). Vertical errorbars indicate the resulting uncertainty attributed to the input parameter uncertainty 

propagated through the feed forward neural networks. The statistics within each plot are; Root Mean Square Difference (RMSD), 470 
Slope and Intercept of the Type II regression, Coefficient of Determination (R2), Pearson’s Correlation Coefficient (R), Bias and 

number of samples (N). 
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Table A1: The percentage reduction in Root Mean Square Difference (RMSD) attributable to the uncertainties in the input 475 
parameter for each training and validation datasets determined from a perturbation analysis as described in Sect. 2.5. 

 

Parameter Training Validation Independent 

Test 

AMT in situ 

N
C

P
 

ALL 33 % 42 % 38 % 28 % 

SST 10 % 12 % 10 % 0.5 % 

Net Community Production 32 % 40 % 36 % 25 % 

pCO2 (atm) 6 % 7 % 6 % 9 % 

N
et

 P
ri

m
ar

y
 

P
ro

d
u
ct

io
n
 ALL 34 % 40 % 40 % 17 % 

SST 9 % 10 % 10 % 0.4 % 

Net Primary Production 31 % 37 % 36 % 13 % 

pCO2 (atm) 6 % 6 % 6 % 9 % 

C
h

lo
ro

p
h

y
ll

 a
 

ALL 22 % 26 % 25 % 29 % 

SST 9 % 10 % 9 % 0.4 % 

Chlorophyll a 17 % 21 % 20 % 7 % 

pCO2 (atm) 8 % 9 % 9 % 16 % 

 

 

Appendix B - Climatology comparison 

A monthly climatology was generated from the SA-FNNNCP monthly timeseries (Fig. B1), referenced to the year 2010, 480 

assuming an atmospheric CO2 increase of 1.5 μatm yr-1 (Takahashi et al., 2009; Zeng et al., 2014). The standard deviation of 

the monthly climatology was computed, as an indication of the interannual variations in the climatology. The ability of the 

SA-FNNNCP to estimate the spatial distribution of pCO2 (sw) was compared to two methods.  

Firstly, the SA-FNNNCP climatology was compared to the climatology from Woolf et al. (2019), produced following the 

statistical ‘ordinary block kriging’ approach described in Goddijn-Murphy et al. (2015), using the SOCATv4 reanalysed 485 

data. The method provides an interpolation uncertainty where in regions of sparse data this becomes larger. Fig. B2 shows 

the methods produce similar climatological pCO2 (sw) values for the South Atlantic Ocean, with some clear differences along 

the African coastline, and equatorial region. 

Secondly, the SA-FNNNCP was compared to a climatology calculated from the ‘standard method’, a Self Organising Map 

Feed Forward Neural Network presented in Watson et al. (2020b; W2020). Fig. B3 shows the methods produce similar 490 
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climatological pCO2 (sw) values for the South Atlantic Ocean, however, clear differences in the Equatorial region occur across 

all months. In the central South Atlantic Ocean, artefacts form the self organising map can be seen during January and 

February. 

 

Fig. B1: Monthly climatologies of pCO2 (sw) between July 2002 and December 2018 estimated by the SA-FNNNCP approach 495 
referenced to 2010. The atmospheric CO2 increase was set as 1.5 μatm yr-1. The colour scale is centred on the atmospheric 

concentration for 2010 (~380 μatm). Red shaded areas indicate oversaturated regions, and blue shaded areas indicate under 

saturated regions. Light green areas indicate where no input data to compute pCO2 (sw) are available.  
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Fig. B2: Monthly comparison between pCO2 (sw) climatology estimated by the SA-FNNNCP and Woolf et al (2019) climatology 500 
referenced to 2010 (SA-FNNNCP pCO2 – Woolf pCO2). Red (Blue) shades indicate regions where SA-FNN is greater (less) than the 

Woolf climatology. 
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Fig. B3: Monthly comparison between pCO2 (sw) climatologies estimated by the SA-FNNNCP and W2020 (Watson et al, 2020) 

climatology referenced to 2010 (SA-FNNNCP pCO2 – W2020 pCO2). Red (Blue) shades indicate regions where SA-FNNNCP is 505 
greater (less) than the W2020 climatology. 

 

Data Availability 

Moderate Resolution Imaging Spectroradiometer on Aqua (MODIS-A) estimates of chlorophyll-a, photosynthetically active 

radiation and sea surface temperature are available from the National Aeronautics Space Administration (NASA) ocean 510 

colour website (https://oceancolor.gsfc.nasa.gov/). Modelled sea surface salinity and mixed layer depth from the Copernicus 

Marine Environment Modelling Service global ocean physics reanalysis product (GLORYS12V1) are available from 

https://resources.marine.copernicus.eu/. ERA5 monthly reanalysis wind speeds are available from the Copernicus Climate 

Data Store (https://cds.climate.copernicus.eu/) pCO2 (atm) data are available from v5.5 of the global estimates of pCO2 (sw) 

dataset (Landschützer et al., 2016, 2017). In situ observations of fCO2 (sw) from v2020 of the Surface Ocean Carbon Atlas 515 

(SOCAT) are available from https://www.socat.info/index.php/data-access/. In situ Atlantic Meridional Transect data can be 

obtained from the British Oceanographic Data Centre (https://www.bodc.ac.uk/). pCO2 (sw) estimates from the W2020 are 
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available from Watson et al. (2020b). pCO2 (sw) estimates generated by the SA-FNNNCP, SA-FNNNPP, SA-FNNCHLA and SA-

FNNNO-BIO are available from Pangaea (Ford et al., submitted). 
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