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15 Abstract. The Ullafelsen at 1869 m a.s.l. in the Tyrolean Stubai Alps next to Innsbruck is an important (geo-)archaeological
reference site for the Mesolithic period. Buried fireplaces on the Ullafelsen plateau were dated at €0.9°=9.5 cal. kyrs BP and
demonstrate together with thousands of flint stone artifacts the presence of hunter-gatherers during the Early Holocene.
Grazing livestock has been a predominant anthropozoological impact in the Fotsch Valley presumably Since the Bronze Age

(4.2-2.8 kyrs BP). ™ i i

contributing-te-a-better-understanding-of pedogenes is-and-andscape¢ vetution: In order to study the human and/or livestock

provide motivation for

faeces input at this relevant-geoarchaeotogieat-site, we carried out steroid analyses on 2 modern ruminant faeces sampkes as adequate
reference (can be said

from cattle and sheep, 37 soil samples from seven soil profiles on the Ullafelsen and 9 soil samples from five (EleiSHoeISol" o)

(rGTilESHfomEREIEGEERNVENER The dominance of 5B-stigmastanol and deoxycholic acid in modern cattle and sheep faeces

can be used as markers for the input of ruminant faeces in soils. The OAh horizons, which have accumulated and developed

25 since the Mesolithic, revealed high contents of steroids (sterols, stanols, stanones and bile acids), the E (LL) horizon

coinciding with the Mesolithic living floor is characterized by medium contents of steroids. By contrast, the subsoil horizons

:1good that you can
ow it, but |

Bh, Bs and BvCv contain low contents of faecal biomarkers indicati
wouldn’t mention

not-an-important-factor. High content of 5p-stigmastanol and deoxycholic acid in all soil samples give evidence for stroRg detail in the
abstract as it is not
faeces input of ruminants. The steroid patterns and ratios indicate a negligible input of human faeces on the Ullafelsen. Byour focus

30 Sitosterat as plant-aerived stercia has ais a strong influence on the fascal biomarker pattern in our scils. Root input into the
SRy pesitostcromoontenta® | n conclusion, our results reflect a strong faeces input by livestock, rather
than by humans as found for other Anthrosols such as Amazonian Dark Earths. Further studies need to focus on the question

of the exact timing of faeces deposition.

It's completely confusing to me to speak about the plant sterols. They are in every topsoil and don’t have an inflcuence an faecal steroids. To keep the focus | suggets to delete this
from the abstract. The abstract is quite long and would benefit from a focus on the faeces.
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1 Introduction

Archaeological research in high mountain regions received increasing attention during the last decades. Based on the finding
of the copper age mummy called "Otzi" at the Tisenjoch in the Otztaler Alps in 1991, archaeological research projects were
also launched in the Central Alps (Schéfer, 2011b). Mesolithic hunter-gatherers lived in the Alpine regions since the
beginning of the Holocene (Fontana et al., 2016). For instance, Schéfer et al. (2016) and Cornelissen and Reitmaier (2016)
provided evidence for the presence of Mesolithic people at the upper subalpine or alpine zones in the central and south-
eastern Swiss Alps.

Concerning the Tyrolean Alps, the Mesolithic site of Ullafelsen (1869 m a.s.l.) in the Fotsch Valley was discovered by the
archaeologist Dieter Schéfer in 1994 and became an important archaeological reference site (Schafer, 2011a; 2011b) (Figs. 1
and 2). At this site, thousands of archaeological artifacts and many buried fireplaces were found. This provides clear
evidence for the presence and the human environment interaction of our ancestors (Schéfer, 2011a; 2011b). Previous
archaeological research demonstrates that the Ullafelsen and its surrounding was used as a summer camp for hunting by
Mesolithic hunter-gatherers during the Preboreal and Boreal from around 10.9 to 9.5 kyrs BP (Schéfer, 2011a). The soils on
the Ullafelsen are strongly influenced by this Mesolithic impact and latest since the Bronze Age alpine pastoralism changed
the vegetation of the Fotsch Valley dramatically (Schéfer, 2011a; Zech et al., 2021).

- Figure 1 -

From a pedological point of view, a striking and frequently occurring light layer (LL) below the topsoils was described for
the Ullafelsen and was a focus of previous investigations (Geitner and Schéfer, 2010; Geitner et al., 2011; Geitner et al.,
2014). Similar light horizons are typical for soils developed in the subalpine zone of the Central Alps and are usually
interpreted as eluvial horizons (E) horizons of podzols (Zech and Wilke, 1977; Egli et al., 2008), or as eventual loess deposit
(Geitner et al., 2011; Schafer, 2011a). At the Ullafelsen, most artifacts and Mesolithic fire places were found within and
directly on the top of the E (LL) horizon (Schéfer, 2011a). Therefore, the E (LL) horizon is regarded as Mesolithic living
floor, the humic-rich subsoil below the E (LL) horizon was considered as Late Glacial buried former topsoil (2Ahb horizon)
(Geitner et al., 2011; Schéfer, 2011a).

Most recently, Zech et al. (2021) demonstrated the great potential of n-alkane and black carbon biomarkers for contributing
to a better understanding of pedogenesis and landscape evolution. Black carbon results based on benzene polycarboxylic

acid (BPCA) analyses corroborated fire-induced human impact on the E (LL) horizon. The absence of leaf wax-derived n-
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alkane biomarkers in the subsoils together with the absence of Late Glacial radiocarbon ages challenge the existence of a
Late Glacial buried topsoil (2Ahb horizon) and rather point to a humus-enriched podzolic Bh horizon (Zech et al., 2021).

In the context of alpine pastoralism (grazing, dairying) since the Neolithic period in different parts of the Alps,
(cattle)husbandry and agriculture became increasingly important for human society (Reitmaier et al., 2018; Gilck and

Poschlod, 2019). Grazing livestock such as cattle and sheep have been a predominant anthropozoological impact for the

maybe soften this to ,as suggested by

Ullafelsen and its surrounding presumably since the Bronze Age (4.2-2.8 kyrs. BP) (Zech-etal2021). previous analyses® (Zech...).

Faecal biomarker analyses have become an attractive tool in palaeoenvironmental and archaeological research during the last
decades (Baeten et al., 2012; Glaser and Birk, 2012; Prost et al., 2017). The respective molecules are considered as
diagnostic markers for detecting ancient faecal inputs in soils (Bull et al., 1999b), whereby steroids (A5-sterols, 5a-stanols,
5B-stanols, epi-5p-stanols, stanones and bile acids) are the relevant compound classes (Bull et al., 2005). These provide
insights into ancient agricultural practices and the former presence of animals or humans (Prost et al., 2017).

Previous studies prove the specific steroids signal for various animals (Bull et al., 2005; Birk et al., 2011; Prost et al., 2017,
Haurrault et al., 2019). Accordingly, faecal biomarker analyses allow to distinguish between faeces of herbivores/ruminants,
pigs and humans. Based on their specific steroids signal, origin of faeces input can be detected in soils and sediments (von
der Luhe et al., 2013; Haurrault et al., 2019). However, plants show also a specific steroids signal, which has to be
considered during interpretations (Evershed et al., 1997; Hartmann, 1998). A finer differentiation between faeces of different
livestock can be achieved by the combination of several steroids (A%-sterols, Sa-stanols, 5B-stanols, epi-5p-stanols, stanones
and bile acids) (Prost et al., 2017).

Faecal steroids as organic compounds/lipid molecules can accumulate and persist in sediments and soils for more than
thousands of years (Bull et al., 2001; Schroeter et al., 2020). These have a low water solubility and are thus usually neither
leached into deeper soil horizons (Bull et al., 2002) nor detectable in soil leachates (Lloyd et al., 2012). It remains to be
investigated whether this also holds true for very low soil pH values < 4 like in our study area, where organic substances can
become mobile via complexation with metal ions.

The 5pB-stanols coprostanol and 5p-stigmastanol are products of anaerobic microbial reduction of A%-sterols. In mammals,
this reduction is performed by gut bacteria and results in different ratios of 5f-stanols depending on food intake (Bull et al.,
1999a). The A’-sterol cholesterol is the precursor molecule of coprostanol, while the AS-sterols B-sitosterol and stigmasterol
are the precursor molecules of 5B-stigmastanol and epi-5B-stigmastanol. (Schroeter et al., 2020). Stanones are intermediate
products of the transformation of AS-sterols to 5B-stanols, epi-5B-stanols and Sa-stanols, occurs in the gut of animals and also
in the environment (Prost et al., 2017). Epimerization of 5f-stanols, which occurs in soils due to microbial and diagenetic
transformation, has to be considered when applying steroid ratios (Bull et al., 1999a; von der Liihe et al., 2018).

Up to now, analyses of livestock faeces show 5B-stigmastanol and deoxycholic acid (DCA) as the dominant steroid
compounds for ruminants (cattle and sheep), whereas coprostanol is a faecal marker for omnivores such as humans and pigs
(Glaser and Birk, 2012; Prost et al., 2017; Haurrault et al., 2019). In contrast, plants contain high amounts of B-sitosterol and

stigmasterol (AS-sterols) in roots and litter (Piironen et al., 2000; Verma and Gupta, 2013).
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Bile acids are formed from cholesterol in the liver and transformed via the bile into the gut of mammals as primary bile acids
(e.g. cholic acid (CA) or chenodeoxycholic acid (CDCA)). These primary bile acids are further mediated to secondary bile
acids (e.g. lithocholic acid (LCA) or deoxycholic acid (DCA)) in the intestine by microorganisms (Bull et al., 2002; Kuhajda
et al., 2006; Prost et al., 2017). Human faeces show high abundance of LCA, whereas ruminant faeces have a dominance of
DCA (Prost et al., 2017; Shillito et al., 2020). Hence, steroid compounds can be useful markers for reconstructing settlement
history of a site based on past faecal inputs.

Faecal biomarkers are currently used in various scientific disciplines all over the world. Glaser et al. (2001), Glaser and Birk
(2012) and Wiedner et al. (2015) investigated Anthropogenic Dark Earths, also known as terra preta de indio, in Central
Amazonia. By applying steroid markers, they provided evidence for settlement activities in this part of the tropical rainforest.
High nutrient contents induced by the deposition of human and livestock faeces clearly demonstrated the anthropogenic
origin of terra preta de indio (Birk et al., 2011; Birk et al., 2012; Glaser and Birk, 2012). Another study used steroids for
identification of temporary mass graves of concentration camp prisoners at the end of World War Il (von der Liihe et al.,
2020). Findings revealed elevated faecal steroid contents and thus corroborate the former input of human decomposition
products as well as faecal and tissue constituents of buried bodies (von der Liihe et al., 2020).

The aim of our here presented geoarchaeological study was to contribute to a better understanding of human and livestock
impact at the prehistorical encampment site of Ullafelsen with the use of faecal biomarkers. More specifically, the following
questions are addressed: (i) Do faecal biomarker patterns of modern ruminant faeces around the Ullafelsen reflect the steroid
patterns reported in literature and is a clear distinction from human faecal biomarker patterns possible? (ii) Do the steroid
contents and patterns of the soil profiles at the Ullafelsen allow discrimination between human and livestock faeces input?
(iif) Do the faecal steroid ratios of the soil profiles on the Ullafelsen allow the reconstruction of the faecal input history
during the Holocene? We hypothesize that human faeces input is detectable in the E horizon representing the Mesolithic
living floor (LL), whereas livestock faeces input dominates in the overlaying OAh horizon. (iv) Is there any evidence for

leaching of steroid biomarkers in soils with very low pH values such as in our study area?

2 Material and Methods
2.1 Study area: The Ullafelsen as prehistorical encampment site in the Fotsch Valley, Stubai Alps, Austria

The prehistorical encampment site of Ullafelsen, also called "Riegelschrofen”, is located in the Fotsch Valley at an altitude
of 1869 m above the sea level (a.s.l.). The 13 km long Fotsch Valley belongs to the Stubaier Alps southwest of Innsbruck,
the capital of the Austrian state Tyrol. The Ullafelsen is a round hump at the eastern site of the Fotsch Valley and is located
in the subalpine vegetation zone (Fig. 1). This rock ledge lies 40 m above the level of the adjacent creek, called
"Fotscherbach" (Schéfer, 2011a). The geographic coordinates of the archaeological excavation area at the Ullafelsen are N
47.14702°, E 11.21475° (WGS84).



135

140

145

150

155

160

As a part of the transition zone between the wetter Northern and the drier Central Alps, our study area is characterized by a
temperate climate with a mean annual temperature of 10°C in the summertime (July) and -3°C in the wintertime (January).
The mean annual precipitation is approx. 1500 mm (Schafer, 2011a; Schlosser, 2011).

The vegetation is predominated by swiss stone pine (Pinus cembra) and juniper (Juniperus communis ssp. alpina).
Furthermore, there are scattered larch (Larix decidua), norway spruce (Picea abies), green alder (Alnus viridis) and birch
(Betula pendula). alpine rose (Rhododendron ferrugineum), lingonberry (Vaccinium vitis-idaea), european blueberry
(Vaccinium myrtillus) and ling heather (Calluna vulgaris) are occurring as alpine dwarf shrubs. The vegetation cover also
consists of several herbs and grasses (Kemmer, 2011; Zech et al., 2021).

From a geological point of view, the Fotsch Valley represents a part of the "Oztal-Stubai-cristalline-complex". Typical rocks
for this study area are the metamorphic rocks mica slate and paragneiss. In addition, there also exist a variety of
unconsolidated quaternary sediments (Nittel, 2011). The basic material under the anthropogenically-influenced soils at the
Ullafelsen consists, amongst others, of weathered till (Nittel, 2011). Despite human influence, these soils were mainly
formed by podsolization during the Holocene (Zech et al., 2021). Typical soils in the alpine and subalpine zone of the Fotsch
Valley are Cambisols and Leptosols. Under alpine dwarf shrub vegetation, Podzols have frequently developed, whereas in

flatter valley floors and on some slope positions also Histosols can be found (Geitner et al., 2014).

2.2 Sampling of modern faeces, archaeological and reference soil profiles

As part of fieldwork in July and August 2017/2018, we collected 37 soil samples from seven profile walls of soil profiles on
the Ullafelsen, 9 soil samples from five reference soil profiles from the Fotsch Valley and 2 faeces samples from cattle and
sheep (Table 1). Four profile walls are directly from the archaeological excavation area (1.1 C4w, 1.1 B5s, 1.1 B5w, 1.1
G5n). Three profile walls are from a close-by trench (1.9 NW, 1.9 NE, 1.9 SW) (Fig. 2). The latter is located two meters
below the archaeological excavation area at an altitude of approximately 1867 m a.s.l. Samples from reference soils were
collected from the soil profiles 4.4, 4.11, 4.12, 5.5 and 5.6w. Sampling was conducted by soil horizons, which were
classified according to the WRB (IUSS Working Group WRB, 2015).

Samples of cattle faeces were collected on the Ullafelsen, while samples of sheep faeces were collected from the Fotsch
Valley above 2000 m a.s.l. We chose these sampling sites for collecting faeces samples depending on a high density of
grazing livestock mainly consisting of sheep. The food of grazing livestock from the Ullafelsen and surroundings consists of
local vegetation, mostly grasses and alpine dwarf shrubs. After drying and grinding our faeces samples, we stored these
separately in snap cap vials.

Please add information about the reference soils. Where have they been sampled? Why do you expect these soils to be free of faecal or being useful as a reference?

- Figure 2 -

For data evaluation, soil samples from soil profiles on the Ullafelsen were sorted by horizons (n=37): OAh1 (n=6), OAh2
(n=4), OAh3 (n=3), E (LL) (n=8), Bh (n=6), Bs (n=5), BvCv (n=5). The here investigated samples from reference soil

5


Eva Lehndorff
Please add information about the reference soils. Where have they been sampled? Why do you expect these soils to be free of faecal or being useful as a reference?


165

170

175

180

185

190

195

profiles were from the OAh (n=5) and Bh (n=4) horizons (Table 1). Zech et al. (2021) carried out Total organic carbon
(TOC) and TOC/N analyses for all these 46 soil samples. Figure 3 illustrates the soil profile 1.9 NW with the horizons
OAh1-OAh2-OAh3-E(LL)-Bh-Bs-BvCv. All other investigated soil profiles have a similar sequence of horizons. Results of
grain size analyses for the soil profiles at the Ullafelsen show a dominance of sand (Geitner et al., 2011). In comparison to

the other soil horizons, the E (LL) horizon is characterized by remarkably higher amounts of silt (Geitner et al., 2011).

- Figure 3 -

TOC values of soil samples from archaeological soil profiles on the Ullafelsen ranged from 0.3 to 28.8 % (Table 1). The
maximum TOC content was observed in the OAh3 horizon, being in accordance with darker color and higher density of
charcoal particles. Total nitrogen contents of the investigated soil profiles ranged from 0.0 to 1.2 %. The TOC/N ratios
ranged from 12.4 to 37.2 with the highest ratios in the OAh3 horizon coinciding with charcoal particles in this soil horizon,
related to former fireplaces, and high amounts of other organic material (Zech et al., 2021). High TOC/N ratios in the Bh
horizons reflect podsolization processes (Glaser and Birk, 2012; Zech et al., 2014). TOC and TN values of soil samples from
reference soil profiles from the Fotsch Valley ranged from 4.9 to 29.4 % and 0.3 to 2.2 %, respectively. The highest TOC
and TN values were measured in the OAh horizons (Table 1).

Radiocarbon-dated Mesolithic charcoal yielded **C ages ranging from 10.9 to 9.5 cal. kyrs BP (Schafer, 2011a). More
recently, Zech et al. (2021) yielded C ages for bulk n-alkanes ranging from 8.2 to 4.9 cal. kyrs BP. This discrepancy
suggests that a n-alkane producing vegetation cover, consisting of herbs, grasses and alpine dwarf-shrubs, did not
predominate immediately after the Mesolithic abandonment. Rather, it must be assumed that non-n-alkane producing
conifers, such as Pinus cembra or Picea abies, predominated the vegetation cover after the Mesolithic life on the Ullafelsen
(Zech et al., 2021).

In addition to the 37 soil samples at the archaeological site on the Ullafelsen and the 9 soil samples from reference soil
profiles from the Fotsch Valley, we analyzed 2 mixed faeces samples from cattle and sheep, which belong to the typical

livestock at the Ullafelsen and surroundings. TOC contents of cattle and sheep ranged from 42.6 to 43.5 % (Table 1).

-Table1 -

2.3 Faecal biomarker analyses

Firstly, all 46 soil and 2 faeces samples were air-dried, sieved (< 2 mm) and finely ground. Using an elemental analyzer
coupled to an isotope ratio mass spectrometer (EA-IRMS), total carbon (TC) and total nitrogen (TN) of soils samples were
determined by Zech et al. (2021). Due to the non-carbonate parent rock material as well as the low pH values (< 4 in CaCl,)
of the soils and sediments on the Ullafelsen (Geitner et al., 2011), the measured TC values can be considered as TOC values.

From these data, the TOC/N ratio was calculated.
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Steroid (sterol, stanol, stanone and bile acid) analyses were performed according to Birk et al. (2012), Wiedner et al. (2015)
and von der Lihe et al. (2020). The weight of sample depended on the TOC content of the sample and ranged for the 46
analyzed soil samples from 1.0 to 5.0 g of finely ground material. For faeces, it is necessary to use a much smaller weight
due to the higher TOC contents. In case of our two faeces (cattle and sheep), the weight of sample taken was ~60 mg. Prior
to extraction, 100 pg of a-preganol and 100 ug of iso-deoxycholic acid were added to each sample as recovery standard
(internal standard 1, 1S1) for sterol/stanol and bile acid fractions, respectively. We used no internal standard for the stanone
fractions. Regarding to data analysis and interpretation, we consider no stanones in our calculated ratios. The total lipid
extract (TLE) was obtained by soxhlet extraction for 36 hours using a solvent mixture of dichloromethane/methanol (2:1,
vlv, 180 ml).

After extraction, the solvent was removed using rotary evaporator and the TLES were saponified using 3.5 ml of 0.7 M KOH
in methanol at room temperature overnight for approx. 12 hours. Neutral lipids (sterols, stanols, stanones) as well as acidic
lipids (bile acids, fatty acids) were separated by sequential liquid-liquid extraction. To obtain the neutral lipid fraction, the
extracts were spiked with 10 ml H,O and afterwards separated from the aqueous phase with 3 x 15 ml chloroform. For
gaining the acidic lipid fraction, the aqueous solution was acidified with 6 M HCI (pH < 3-4) and the bile acids were
extracted with 3 x 15 ml chloroform. Both fractions were separately collected in flasks and evaporated under nitrogen.

Before purification by solid phase extraction (SPE), acidic fraction were methylated by adding 1 ml of 1.25 M HCI in
methanol and heating at 80°C for 2 hours. Bile acids and fatty acid methyl esters were extracted with 1 ml H,O and 3 x 1 ml
n-hexane. SPE was performed using glass columns (g 11 mm) containing 1.5 cm activated silica gel (Mesh: 70-230; pore
size: 100 A; type: Merck) in n-hexane. After pre-conditioning with 5 ml dichloromethane/n-hexane (2:1, v/v), the extracts
were transferred with dichloromethane/n-hexane (2:1, v/v) on the silica-column. After elution of the fatty acid methyl esters
to waste with 5 ml dichloromethane/n-hexane (2:1, v/v), bile acid methyl esters were eluted with 5 ml of
dichloromethane/methanol (2:1, v/v) and collected in reactivials. The dried bile acid methyl esters were redisolved in 50 pl
toluene and silylated with 98 ul BSTFA (N,O-Bis-(trimethylsilyl)-trifluoracetamid; puriss; Sigma-Aldrich) and 2 pl TSIM
(1-(Trimethylsilyl)imidazol; puriss; Sigma-Aldrich) at 80°C for 1 hour. After cooling, 50 ul 5a-cholestane (10 ng pl? in
toluene) were added as internal standard 2 (1S2). All substances were transferred into GC-vials afterwards.

For the SPE of the neutral lipid fractions, activated silica gel (Mesh: 70-230; pore size: 100 A; type: Merck) was deactivated
with 5 % H,O. The neutral lipid extract was transferred with n-hexane to the SPE glass columns (¢ 11 mm) containing 1.5
cm deactivated silica gel. Preconditioning was carried out with 5 ml n-hexane. By adding 5 ml n-hexane, aromatic and
aliphatic fractions were eluted, but not used for further analyses. The sterol, stanol and stanone-containing fraction was
eluted with 3 ml dichloromethane and 2 ml dichloromethane/acetone (2:1, v/v). The eluates were collected in reactivials
before drying under nitrogen (N2). Subsequently, the fraction of sterols, stanols and stanones were silylated by adding 100 pl
Sylon HTP (a mixture of HMDS+TMCS+Pyridine (3:1:9, v:v:v); puriss; Supelco) and derivatized at 70°C for 1 hour. The
eluates were dried with N, after cooling. 50 ul of Sa-cholestane (10 ng pl™ in toluene) as internal standard 2 (IS2) and 100 ul

of toluene were added to the dried eluates and transferred into GC-vials.

7
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For external calibration, six concentrations from a stock solution (10 ng pl** in hexane) containing all target sterols, stanols
and stanones as well as the recovery standard (IS1) were prepared ranging from 50 to 2500 ng per vial. After derivatization
500 ng of 5o-cholestane (dissolved in dry toluene, 50 pl, 10 ng plt) were added as internal standard 2 (1S2). Peak areas of
the analytes were divided by the peak area of 1S2 and calibration curves for each substance were calculated using these
ratios. Calibration curves for the bile acids were prepared accordingly. All calibration curves had coefficient of
determination (R?) > 0.98. Limit of detection was defined as signal-to-noise ratio of 3:1 and varied for the analytes between
0.6 ng g* soil for all AS-sterols, stanols and stanones and 4 ng g* soil for all bile acids. At last, recoveries of the first internal
standard (1S1) were calculated for all samples. Recovery of I1S1 of all soil samples ranged between 51-116% for sterols,
stanols and stanones as well as 50-122% for bile acids. All results for the samples were corrected for the losses during
extraction and purification with those individually calculated recoveries.

Quantification of all steroid substances took place using gas chromatography-mass spectrometry (GC-MS) with a 5971A
quadrupole mass spectrometer connected to a HP5090 gas chromatograph (both made from Hewlett Packard) with a DB-5
MS 30 m fused silica column (25 mm ID and 0.25 um film thickness, Agilent Technologies).

All measurements of steroids were conducted with the following settings for GC-MS: injection volume: 1 pl, carrier gas:
helium (purity of 5), injector temperature: 290°C, injection in splitless mode, interface temperature: isotherm at 280°C. The
column temperature program of the gas chromatography was held at 80°C for 1.5 min and then raised at 12°C min to
265°C. Further steps are the increase of the temperature at 0.8°C min! to 288°C and at 10°C min™ to 300°C afterwards,

whereas it was kept for 12 min.

2.4 Data analysis

For a detailed interpretation of the measured results in terms of degradation effects and distinguishing between omnivore-,

herbivore- or plant-derived faecal biomarkers, the following ratios were calculated and plotted as box plot diagrams:

Coprostanol+Epicoprostanol

Ratio 1 = : (Bull et al., 1999a)
Coprostanol+Epicoprostanol+5a—cholestanol
. C t l+Epi t 1 .
Ratio 2 = D D opTos T2 ((Prost et al., 2017), edited by Lerch, M.)
58 -Stigmastanol+Epi—5B—-Stigmastanol
. B—Sitosterol
Ratio 3 = , , , .
[—Sitosterol+5B—Stigmastanol+Epi—5f—Stigmastanol
Ratio 4 = 5B—-Stigmastanol

Epi—5B—-Stigmastanol
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According to Bull et al. (1999a) and Schroeter et al. (2020), we used ratio 1 to estimate microbial degradation of steroids
(5B-stanoals, epi-5p-stanols and 5a-stanols) and to identify human faeces input (Wiedner et al., 2015). It is known that soil
microorganisms contribute to degradation of steroids in soils (Bull et al., 2001). 5a-cholestanol is a degradation product of
the AS-sterol precursor cholesterol, transformed by soil microorganisms, and occurs naturally in the environment (Prost et al.,
2017). This ratio considers the input and preservation of stanols. High values for ratio 1 (0.7-1) indicate an increased faeces
deposition, while values < 0.7 indicate low faeces input in soils (Bull et al., 1999a; Schroeter et al., 2020).

For distinguishing between human and herbivore faeces, ratio 2 can be applied. A dominant 58-stanol marker in omnivore
facces such as humans or pigs is coprostanol, whereas 5B-stigmastanol is a typical 5B-stanol marker for herbivore faeces. To
account for ongoing epimerization of 5B-stanols in soils, both epimers are included in this ratio. Major input of human faeces
results in values > 1, whereas values < 1 indicate an input of herbivore faeces (Ossendorf et al., 2019).

Ratio 3 was calculated for differentiation between plant-derived steroids and livestock-derived steroids. According to Prost
et al. (2017), B-sitosterol belongs to the typical AS-sterols, which are characteristic for plant biomass and thus normally occur
at high abundance in soils. Values between 0 and 0.5 suggest low input of B-sitosterol and values between 0.5 and 1 point at
a high occurrence of this plant A%-sterol. It has to be considered that faeces of ruminants can also contain high amounts of -
sitosterol due to their plant-dominated diet (Haurrault et al., 2019; Schroeter et al., 2020).

Ratio 4 was calculated for all soil samples and can be used as proxy for degradation of 5B-stigmastanol. Epi-5p-stigmastanol
is a transformation product (epimer) of 5(-stigmastanol and is often found in anaerobic environments and soils (von der

Lihe et al., 2018). With increasing degradation, ratio 4 gets lower due to the higher proportion of epi-5p-stigmastanol.

The following equation was applied for calculating a bile acid ratio:

Deoxycholic acid (DCA)

Ratio 5 = : —
Lithocholic acid (LCA)

(Prost et al., 2017)

Based on the bile acids DCA and LCA, ratio 5 can be used for distinguishing ruminant from human faeces. Prost et al.
(2017) published reference values, which are characteristic for ruminant species and humans respectively. Human faeces
contain not only high amounts of coprostanol, but also of LCA. In contrast, ruminant faeces show a dominance of DCA
(Shillito et al., 2020). A small ratio 5 (3-5) indicates a dominance of human faeces, whereas high values (5-21) show a

dominance of ruminant faeces such as cattle or sheep (Prost et al., 2017).
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3 Results and Discussion
3.1 Biomarker patterns of modern livestock faeces

The total sterol, stanol and stanone contents of modern cattle and sheep faeces ranged from 2401.6 to 2671.6 pg g* and
2109.8 to 2421.9 ug gt respectively (Table S3). The total bile acid contents of modern cattle and sheep faeces ranged from
55.9t0 86.8 pg gt and 78.6 to 216.9 pg g, respectively (Table S4).

For checking the reproducibility of our results, we repeated the analyses of our faeces samples twice (Table S3; Table S4).
Laboratory replicate analyses show that the method of faecal biomarker analyses works correctly and our results are
reproducible. Figure 4 illustrates the steroid (sterols, stanols, stanones and bile acids) contents and their patterns in modern
cattle and sheep faeces. The following results refer to measurement 1 (Table S3; Table S4).

The predominating steroid in cattle faeces is 5B-stigmastanol (930.9 pg g1), whereas epi-5B-stigmastanol (666.5 pg g?)
shows a predominance in sheep faeces (Fig. 4). For comparison, Prost et al. (2017) did not find epi-5p-stigmastanol to
predominate in sheep faeces. It cannot be excluded, that the predominance of epi-5p-stigmastanol in our sample is induced
by strong epimerization, which is possibly influenced by long dry storage of the sample.

The coprostanol content in modern cattle faces is 1_25.7 ug g, whereas the coprostanol content of 173.4 pg g* was detected
in modern sheep faeces. These low contents of hg%gﬁh—m_?:é%cgl biomarkers in our modern ruminant faeces samples
have to be considered for the identification of faeces origin in our soil samples. The plant-derived steroid j-sitosterol shows
347.9 ng gt in modern cattle faeces and 255.9 pg g in modern sheep faeces (Fig. 4).

We calculated ratio 1, 2, 3 and 5 for our modern cattle and sheep faeces regarding to their steroid patterns to get reference
ratios for comparing of our analysed soil samples. Bull et al. (1999a) and Prost et al. (2017) introduced ratio 1 for the
identification of faeces input. Typical ratio 1 is ~ 0.8 for cattle and sheep, whereas ~ 1 is typical for human faeces. Our
results revealed a ratio 1 of 0.8 for both modern faeces samples. These results are in agreement to Prost et al. (2017). Ratio 2
can be used as proxy for the identification of faeces origin. Ratios > 1 are characteristic for human or other omnivore faeces,
whereas ratios < 1 represent herbivore/ruminant faeces. Our modern cattle and sheep faeces yielded ratio 2 of 0.1 and 0.2,
respectively. These results are also in agreement with data of Prost et al. (2017). Ratio 3 reflects the predominance of plant-
derived steroids (B-sitosterol) over livestock-derived steroids (5B-stigmastanol and epi-5B-stigmastanol). Ratios < 0.5
indicate dominance of B-sitosterol, whereas ratios > 0.5 show dominance of 5B-stigmastanol and epi-5p-stigmastanol. Our
modern faeces samples yielded ratio 3 of ~ 0.2 for cattle and sheep, which demonstrates a dominant content of livestock-
derived steroids over plant-derived steroids in our ruminant faeces.

The most dominant bile acid in our modern ruminant faeces is DCA (38.7 pg g and 55.0 pg g in cattle and sheep faeces,
respectively), being in agreement with literature data of Kuhajda et al. (2006) and Prost et al. (2017). LCA as marker for the
input of human faeces was found in modern ruminant faeces only at low amounts (4.2 ng g* and 2.9 pg g* in cattle and

sheep faeces, respectively (Fig. 4)). Unexpectedly, our results of modern cattle and sheep faeces show low contents of
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CDCA (2.6 ug g* and 2.4 ug g in cattle and sheep faeces, respectively). Prost et al. (2017) did not detect CDCA in cattle
and sheep faeces, but in goats, horses, geese and human faeces instead.
According to Prost et al. (2017), ratio 5 ranged from 5-21 and 8-12 for cattle and sheep faeces, respectively. Based on our
results, ratio 5 showed a ratio of 9.2 for cattle faeces and 18.8 for sheep faeces. For comparison, ratio 5 is typical for human
325 faeces when in a range from 3 to 4.5. Accordingly, ratio 5 is highly promising for distinguishing between ruminant versus
human faeces in soils. Unfortunately, steroid patterns of our analyzed ruminant faeces allow no differentiation between cattle
and sheep.
All three measurements yielded similar content for sterols, stanols and stanones. By contrast, measurement 1 showed higher
contents of the bile acid DCA but lower contents of oxolithocholic acid (OLCA) for both modern faeces samples (Table S4).
330 The latter can be synthesized by oxidation of the hydroxyl groups of DCA (Sakai et al., 1980; Kuhajda et al., 2006; Marion
etal., 2019).
Based on the steroid patterns of our modern cattle and sheep faeces from the Ullafelsen and surroundings, it is possible to
evaluate the faecal biomarker results of our soils samples. Calculated steroid ratios (Ratio 1, 2, 3 and 5) help us to identify
the sources of dominant faeces input in soils.
335
- Figure 4 -

3.2 Ancient faecal marker - contents and patterns in soils

The total sterol, stanol and stanone contents of the 37 soil samples from the Ullafelsen ranged from 1.2 to 198.1 pg g* (Fig.
5). The OAh1 and OAh3 horizons yielded maxima coinciding with TOC maxima. The lowest content was measured in the
340 Bh, Bs and BvCv horizons, whereas the content of the E (LL) horizon was intermediate (2.3 to 58.6 ug g*; Fig. 5). In
contrast, the sterol, stanol and stanone contents of the 9 soil samples from reference soil profiles from the Fotsch Valley

ranged from 3.3 to 106.3 pg g*. Maximum contents were measured in the OAh horizons (24.3 to 106.3 pg g1), whereas Bh

any idea why the steroids don’t show up in the Bh?
(just curious)

The total bile acid content of the 37 soil samples from the Ullafelsen ranged from 0 to 6.8 pg g* and show their maximum in

horizons yielded minimum contents (3.3 to 6.8 pg g*) of sterols, stanols and stanones (Fig. 5).

345 the topsoil horizons OAh1 and OAh2 (Fig. 5). In comparison to the maximum sterol, stanol and stanone contents in the
OANh1 horizon, the maximum bile acid content of 6.8 pug g was detected in the OAh2 horizon. Similar to the sterol, stanol
and stanone contents, the bile acid contents are much higher in the topsoil horizons OAh1, OAh2, and OAh3 (0.5t0 6.8 ug g’
1) and lower in the subsoil horizons E (LL), Bh, Bs and BvCv (0 to 0.9 pg g?) (Fig. 5). The total bile acids content of the 9
soil samples from reference soil profiles from the Fotsch Valley ranged from 0.1 to 15.5 pg g™*. The OAh horizons yielded

350 maximum contents (1.3 to 15.5 pug g-1), whereas minimum contents of bile acids were measured in the Bh horizons (0.1 to
0.2 ug g%, Fig. 5).
Steroids in the subsoils can be induced by bioturbation and/or roots of plants (Piironen et al., 2000). The most detected

steroid in the subsoils is B-sitosterol, which is a plant-derived AS-sterol. Thomas and Hale (1983) as well as Verma and
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Gupta (2013) found that roots or root exudates contain also a significant content of p-sitosterol. We assume that the small
contents of steroids in the subsoil horizons at the Ullafelsen are mainly caused by the influence of B-sitosterol due to the
strong rooting of grasses and alpine dwarf shrubs in the soil matrix. There is no deformation of soil horizons, thus we

exclude the influence of bioturbation.

- Figure 5 -

The most abundant steroid in all soil samples from the Ullafelsen is p-sitosterol with a maximum content of 150.1 pg g*
measured in an OAh3 horizon (Fig. 6; Table S1). B-Sitosterol is a typical plant-derived A%-sterol compound in plant biomass
and reflects the predominating vegetation signal (Holtvoeth et al., 2010; Prost et al., 2017; von der Liihe et al., 2018). Due to
the plant diet, B-sitosterol is eaten by ruminants and can be detected in their faeces (Haurrault et al., 2019). Cholesterol as the
dominating A®-sterol in animal tissues has a maximum content of 6.2 ug g™ detected in an OAhL horizon (Fig.6; Table S1).
Due to microbial degradation in soils, Sa-stigmastanol and 5a-cholestanol (both are Sa-stanols), are partly produced from
their AS-sterol precursors B-sitosterol and cholesterol, respectively (Bjorkhem and Gustafsson, 1971). These Sa-stanols also
occur in small amounts in fresh plant material and animal tissue (Noda et al., 1988; Bull et al., 2002; Prost et al., 2017). The
maximum content of Sa-stigmastanol is 32.1 pug g* in an OAh3 horizon, whereas 1.4 pg g is the maximum content of 5a-
cholestanol detected in an OAh1 horizon (Fig. 6; Table S1).

The 5B-stanol compound coprostanol as marker for human faeces was detected at highest content of 0.2 ug g in an OAh1
and OAh2 horizon. Epi-coprostanol as transformation product of coprostanol due to microbial degradation (Bull et al.,
1999a; Lauer et al., 2014) was not detectable in our soils (Fig. 6; Table S1). 5B-stigmastanol and epi-5p-stigmastanol
(epimerization product of 5B-stigmastanol) as marker for ruminant faeces have their maximum content of 3.3 ug g* and 3.2
ug gt in an OAh1 horizon, respectively (Fig.6; Table S1).

The most abundant bile acid in the analysed soil samples from the Ullafelsen was DCA with a maximum content of 4.2 ug g
Lin an OAh1 and OAh2 horizon (Fig. 6; Table S1). It predominates in ruminants such as cattle and sheep (Kuhajda et al.,
2006; Prost et al., 2017). LCA as the dominating bile acid in human faeces (Shillito et al., 2020) showed a maximum content
of 0.5 pug gt in an OAh2 horizon (Fig.6; Table S1). Wiedner et al. (2015) reported similar DCA and LCA contents for
anthropogenic dark earths in northern Germany.

Furthermore, we found CDCA in the topsoil horizons OAhl, OAh2 and OAh3 as well as in the E (LL) horizon with a
maximum content of 0.6 g g, detected in an OAh2 horizon. Results of our modern cattle and sheep faeces showed also
low contents of CDCA. Therefore, we explain the detected CDCA in our soils by the input of ruminant faeces.

OLCA was also detected in our soil samples from the Ullafelsen and has a maximum content of 1.7 ug g? in an OAh1
horizon (Fig. 6; Table S1). As discussed in 3.1, ruminant faeces also containing OLCA at low abundance. However,
according to Marion et al. (2019), we cannot exclude that OLCA is formed by microorganisms in soils, such as Clostridium
scindens, due to transformation of DCA to OLCA.
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The most abundant sterol in the reference soils was B-sitosterol with the maximum content of 56.0 pg g* (Table S1).
Deoxycholic acid is the dominant bile acid in the reference soils with the maximum content of 10.0 ug g (Table S2). Both
steroids were detected in the OAh horizon of reference soil profile 5.6w. Maximum contents of 5p-stigmastanol and

deoxycholic acid as livestock-derived steroids were also found in this reference soil profile.
- Figure 6 -

Overall, our results indicate that a strong input of faeces from cattle and sheep into the soils on the Ullafelsen occurred. By
contrast, low LCA and coprostanol contribution point to a minor influence of human faeces. (NEIEXEINHEEISHKIRGIEEEES
input of wild animals due to the high density of ruminant species at the Ullafelsen and surroundings. ', "
According to Lloyd et al. (2012), our steroid results of the archaeological soils on the Ullafelsen and also gvfo%ﬁehatheeféjrc’gﬁcyé)U?
soils from the Fotsch Valley show no leaching or transport in deeper soil horizons due to the significant lower steroid
contents.

In comparison to the reference soils, the higher contents of total sterols, stanols and stanones in the OAh horizons of the
archaeological soils on the Ullafelsen confirm an enrichment at this site. Unexpectedly, the total bile acid contents in the
OANh horizons of the reference soils indicate a large range with partly higher contents compared to the archaeological soils
and show thus no increased bile acid contents at the Ullafelsen. The highest contents of livestock-derived steroids (5p-
stigmastanol, epi-5p-stigmastanol, deoxycholic acid) were detected in soil profile 5.6w of all reference soil profiles from the

Fotsch Valley. We explain these high contents by a strong input of sheep faeces into the soil of soil profile 5.6w. CIGINEVER

— | don’t get the message from this sentence

3.3 Identification of faeces origin on the Ullafelsen based on specific steroid ratios
For better understanding | suggest to begin the following sentences always with the fully written ratio. What about ratio 4, shouldn’t it be mentioned before ratio 5?

®EfiGM ranged from 0 to 0.3 (Fig. 7). Human faeces normally exhibit ratio 1 > 0.7 (Bull et al., 1999a; Prost et al., 2017).
Therefore, our results corroborate a very low input of human faecal markers such as coprostanol and suggest a negligible
input of human faeces into soils on the Ullafelsen. Furthermore, we exclude a strong degradation of coprostanol in the
topsoil horizons due to the non-detected epicoprostanol as transformation product of coprostanol in terms of epimerization
over time. Contents of Sa-cholestanol (< 1.4 pg g?) as transformation product of cholesterol (plant-derived) indicate also
low degradation in the topsoil horizons.

QEfiGM2 ranged from 0 to 0.4 (Fig. 7) and showed a maximum in the Bh horizon due to the higher content of epi-5p-
stigmastanol compared with the content of 5B-stigmastanol (Table S1). Our results confirm a predominance of 5B-
stigmastanol and epi-5p-stigmastanol, which indicate a strong input of ruminant faeces into soils at the Ullafelsen.

Q&GI8 ranged from 0.95 to 1 (Fig. 7), demonstrating a strong influence of plant-derived steroids (high B-sitosterol contents)
in soils at the Ullafelsen caused by the high contribution of B-sitosterol (Fig. 6). High ratio 3 in the Bh, Bs and BvCv
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horizons can be explained by decreasing 5B-stigmastanol and epi-5p-stigmastanol contents. Roots of plants contribute to an
input of B-sitosterol into subsoils (Piironen et al., 2000).
@EfiGIS ranged from 4.1 to 23.5 (Fig. 7), decreasing from top to bottom. A ratio < 5 indicates a dominance of human faeces,
whereas a ratio > 5 corroborates a dominance of ruminant faeces (Prost et al., 2017). No LCA was detected in the Bs and
425 BvCv horizons. Apart from the outlier of 4.1, our results showed a clear dominance of ruminant faeces input into soils at the
Ullafelsen due to the high content of DCA. The outlier of 4.1, detected in an E (LL) horizon, can be allocated to a close-by-
trench soil profile (1.9 NE E 1 (LL)), which is beyond the archaeological excavation area on the Ullafelsen. For this E (LL)
horizon, we cannot exclude the input of human faeces regarding ratio 5, being based on the content of DCA (0.3 ug g*) and
LCA (0.1 pg g%) (Table S2).
430
- Figure 7 -

REfiGMranged from 0 to 1.0 (Fig. 8), decreasing from the topsoils to the subsoils. As discussed in section 3.1, we observed a
degradation effect of 5B-stigmastanol in our soils. Our results corroborate a higher degradation in the E (LL), Bh, Bs and
435 BvCv horizons. We explain that with slightly higher epi-5p-stigmastanol contribution in this subsoil horizons (Fig. 8; Table
S1) due to epimerization (Bull et al., 1999a; Bull et al., 1999b; Bull et al., 2003; Prost et al., 2017). For a reliable

identification of faeces origin, we recommend to consider the degradation effect diGGNRCICEIERIESBSERGISHRNISEGIo

- (BuII et al,, 200_’]_)_ to follow this recommendation while reading the text, it would be better to fully give the ratio first (e.g. is an epi-5B-stanol included in ratio 4?)

440 - Figure 8 -

4 Conclusions and Outlook

This study presents the first results of faecal biomarker analyses carried out on the prehistorical encampment site of
Ullafelsen, Fotsch Valley, Austria. Steroid patterns of contemporary ruminants showed a dominance of 5B-stigmastanol,
whereas epi-5p-stigmastanol as degradation product of 5B-stigmastanol has to be considered for sheep. DCA was detected as
445 the dominant bile acid for cattle and sheep. These data together with data of Prost et al. (2017) were used for the
interpretation of the faecal biomarker results from the geoarchaeological soil samples.
The highest sterol, stanol, stanone and bile acid contents in archaeological soils on the Ullafelsen were found in the OAh3
and OA2 horizons, respectively. The dominant steroid in our soils is B-sitosterol as plant-derived A®-sterol compound. The
faecal markers for ruminants 5p-stigmastanol and DCA occurred in high contents in all topsoils corroborate actual grazing
450 by cattle and sheep, which can be associated to the alpine pastoralism in the Fotsch Valley. Human faeces could be detected
only to a minor extent. Calculated ratios (Ratio 1-5) confirmed the negligible input of human faeces and the dominant input

of ruminant faeces (cattle and sheep) at the Ullafelsen. Modern vegetation and ruminant faeces, associated with the plant-

14


Eva Lehndorff

Eva Lehndorff

Eva Lehndorff

Eva Lehndorff
to follow this recommendation while reading the text, it would be better to fully give the ratio first (e.g. is an epi-5ß-stanol included in ratio 4?)


455

460

465

470

475

480

based diet of cattle and sheep, could have induced the high input of plant-derived steroids in our soils. Reference soils from
the Fotsch Valley show lower contents of steroids except for bile acids and confirm the enrichment of sterols, stanols and
stanones in the soils on the Ullafelsen. We observed no leaching of steroids into subsoil horizons.
Bata—of-al-soit-samples—from-soil profiles on the Ullafelsen represent the modern signal of ruminant faeces and of plant-
derived steroids regarding-to-the-meaningful-faceal-biomarker—contents—in-the—topseils. Given the low contents of human-
derived faecal biomarkers combined with our evaluation of faecal biomarker ratios (Fig. 7), we see no evidence for a s@reeggmc
input of human faeces 'rﬁ—etfHeH—samﬁes—#emafhe Ullafelsen and surroundings. The archaeological site of Ullafelsen was

used for fireplaces and social living in the Mesolithic period. However, it cannot be excluded that human faeces markers will

be detected in higher content close-by the archaeological excavation area.

for me this is not part of this study.
—Future faecal biomarker analyses on further soil

profiles at the Ullafelsen aim at more specific insight in this hypothesis.

A robust age control for faecal biomarkers on the Ullafelsen is challenging because of lacking age chronology. This study
allows thus no reconstruction for the onset of alpine pastoralism. We assume the input of faecal steroids in the Holocene
since the beginning of the alpine pastoralism in the Neolithic and Bronze Age.

In order to chronologically identify the history of land use in the Fotsch Valley, we suggest to investigate faecal biomarkers
on mire archives in the Fotsch Valley. Previous studies of two subalpine mire archives in the near surroundings of the

prehistorical encampment site of Ullafelsen demonstrate the high potential for palaeoenvironmental reconstructions.

Supplementary Material

Table S1: Overview over all faecal biomarker soil samples from the prehistorical encampment site of Ullafelsen and
reference sites in the Fotsch Valley, Stubai Alps, Austria. Sterols, stanols and stanones content (in pg g* dry matter) as
well as ratios are presented.

Table S2: Overview over all faecal biomarker soil samples from the prehistorical encampment site of Ullafelsen and
reference sites in the Fotsch Valley, Stubai Alps, Austria. Bile acids content (in pg g* dry matter) as well as ratios are
presented.

Table S3: Sterols, stanols and stanones content (in pg g* dry matter) for 3 replication measurements of modern cattle and
sheep faeces from the prehistorical encampment site of Ullafelsen and reference sites in the Fotsch Valley, Stubai Alps,
Austria.

Table S4: Bile acids content (in pg g dry matter) for 3 replication measurements of modern cattle and sheep faeces from the

prehistorical encampment site of Ullafelsen and reference sites in the Fotsch Valley, Stubai Alps, Austria.
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Data availability

TOC; TN and TOC/N data are available from Zech et al. (2021). Faecal biomarker data of the archaeological soil profiles on

the Ullafelsen and reference soil profiles from the Fotsch Valley are available in the Supplement.
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Table 1: Overview over all soil profiles, soil and modern faeces samples from the prehistorical encampment site of Ullafelsen and
reference sites in the Fotsch Valley, Stubai Alps, Austria. Analytical results of TOC, TN and TOC/N are presented.

Altitude
Soil profile [mas.l.] Soil profile coordinates  Sample no. Soil horizon  TOC [%] TN [%] TOC/N
1 OAh1 15.1 038 20.0
2 0Ah2 8.5 0.3 246
3 0Ah3 4.3 0.1 33.8
1.1 Caw 1869 N 47.14702° E 11.21475° 4 E (LL) 3.2 0.1 25.0
5 Bh 8.3 0.3 28.1
6 Bs 16 0.1 24.4
7 BvCv 0.8 0.0 17.9
8 OAN1 10.3 0.6 17.9
9 E (LL) 33 0.1 225
1.1 B5s 1869 N 47.14704° E 11.21474° 10 Bh 6.4 0.2 26.8
11 Bs 22 0.1 245
12 BvCv 0.3 0.0 12.4
S 13 OAh1 18.2 1.0 18.0
= 14 E(LL) 45 0.1 37.2
k5| 1.1 B5w 1869 N 47.14703° E 11.21474° 15 Bh 6.1 0.2 28.3
=) 16 Bs 2.3 0.1 27.2
3 17 BvCv 0.7 0.0 16.2
S 18 OANL 14.2 0.7 18.9
o 19 0OAh2 8.4 0.3 26.5
S 1.1 G5n 1869 N 47.14704° E 11.21482° 20 0Ah3 25.0 0.9 28.4
S 21 E (LL) 33 0.1 25.2
= 22 Bh 7.1 0.3 26.8
El 23 OAh1 19.3 1.2 16.7
e 24 0Ah2 12.5 0.7 18.6
g 25 OAh3 28.8 1.0 27.7
1.9 NW 1867 N 47.14698° E 11.21492° 26 E (LL) 25 0.1 19.5
27 Bh 4.8 0.2 24.9
28 Bs 25 0.1 27.1
29 BvCv 16 0.1 26.8
30 OAN1 13.6 0.7 18.5
31 0Ah2 11.9 05 21.7
32 E1(LL) 43 0.2 28.3
1.9 NE 1867 N 47.14699° E 11.21494° 33 Bh 55 0.2 23.1
34 Bs 36 0.1 27.8
35 E2(LL) 13 0.1 236
36 BvCv 2.1 0.1 27.1
1.9 SW 1867 N 47.14698° E 11.21493° 37 E (LL) 13 0.1 16.9
o . 38 OAh 21.9 1.2 18.4
é ~ 4.4 2171 N 47.15060° E 11.20075 b e a0 09 e
° > o o 40 OAh 11.9 0.8 15.2
iElE 411 2548 N 47.14373° E 11.17502 a1 Bh 129 07 186
o5 412 2455 N 47.14584° E 11.18304° 2 O 519 082 5
QO w0

s & T oo oe T

S = 55 2186 N 47.15025° E 11.19981° ' : :
3 45 Bh 49 0.3 18.5
5.6w 2186 N 47.14583° E 11.20402° 46 0OAh 29.4 2.2 13.1
Faeces | Cattle 47 435 3.0 145
Faeces Il Sheep 48 42.6 2.3 184
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Figure 1: The prehistorical encampment site of Ullafelsen in the Fotsch Valley, Stubai Alps, southwest of Innsbruck, Tyrol,

Austria. Northward view from the inner Fotsch Valley over the Ullafelsen (1869 m a.s.l.) to the Karwendel mountain range in the

Northern Limestone Alps (Photo: E. Husing, 2018).
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Figure 2: Left: NNW view over the Ullafelsen in the Fotsch Valley, Stubai Alps, Austria at the upper timberline. The

geoarchaeological excavation area on the Ullafelsen plateau with the reopened and sampled soil profiles 1.1 B5, 1.1 C4 and 1.1 G5
and the newly opened and sampled soil profile 1.9 several meters towards the southeast are shown. Right: Reopened

archaeological excavation area. View to the southwestern part of the sampled soil profiles (Zech et al., 2021).
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Figure 3: Left: Soil profile 1.9 NW, which represents a typical soil profile for the Ullafelsen in the Fotsch Valley, Stubai Alps,
Austria. Right: Schematic horizons of the soil profiles on the Ullafelsen. Note that the soil profiles reveal a high heterogeneity.
Nevertheless, the soil horizons OAh3 and Bh are characterized by a humus-enrichment. The E (LL) horizon ("'light layer') reveals
the highest relative artifact abundance (~41%6) and is overlain by several fireplaces on the Ullafelsen. This horizon is considered as
living floor of the Mesolithic hunter-gatherers (Geitner et al., 2011; Geitner et al., 2014). Due to TOC content partly > 15 %, we
adopted the soil horizon classification by Zech et al. (2021).

1000 — — 60
(] Cattie [ Cattle
[ 1sheep M [ Tsheep — L
o — 50
o 800 —
= -
el
" i
@
S M ] —40 =
o
S 600 — L i
b4 =
m Rd
T i ~ —30 2
(1] o ‘5
» B L S
o 400 —| o
c —_
8 —20 0O
) 4
& L
2 200
g — 10
| [ [ | [
0 | ol | rl_l P e L I 1 T T T T T 1 0
s & A S | > > > > > > S >
@oo & & & <\°° @0" y < '&,‘o .@‘o .@{\o & & & RS & o & &
CFF TSI LS T E & F & &
[ - - e T S - e Q,% & & & & & & & & &
- S ¥ L ° 5> ° & ) ) ) ) # <
Q P 5 ; & - ) o 9 o o
& K L S S R
& & & & © £ ot
L% 00 & QA 3

Figure 4: Biomarker patterns of modern faeces from predominating livestock at the prehistorical encampment site of Ullafelsen in
the Fotsch Valley, Stubai Alps, Austria and surroundings. Steroid (sterols, stanols, stanones and bile acids) contents of cattle and
sheep faeces are given in pg g** dry matter.
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Figure 5: Box plots illustrating the total steroid (sterols, stanols, stanones and bile acids) contents (in pg g* dry matter) of the
investigated soil profiles from the prehistorical encampment site of Ullafelsen and reference sites in the Fotsch Valley, Stubai Alps,
Austria, categorized by the soil horizons OAh1 (n=6), OAh2 (n=4), OAh3 (n=3), E (LL) (n=8), Bh (n=6), Bs (n=5) and BvCv (n=5).
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Figure 6: Box plots visualizing the content (in pg g™ dry matter) of steroid (sterols, stanols, stanones and bile acids) patterns for all
soil samples from the prehistorical encampment site of Ullafelsen in the Fotsch Valley, Stubai Alps, Austria. For a better overview,
the steroids stigmastanol, B-sitosterol and Sa-stigmastanol were plotted to a separate y-axis because of their high contents.
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Figure 7: Box plots indicating steroid ratios for estimating the origin of faecal matter. Ratio 1 describes the input of human faeces
in soils, whereas ratio 2 and ratio 5 determine the input of human vs. ruminant faeces. Thresholds ratio 1: ratios < 0.7 assume low
human faeces input, ratios > 0.7 show high human faeces input. Thresholds ratio 5: ratios < 5 point to a dominant human faeces
input, ratios > 5 represent a dominant ruminant faeces input. Ratio 3 considers the input of p-sitosterol as plant-derived steroid.
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Figure 8: Microbial transformation of 5f-stigmastanol to epi-5p-stigmastanol (Ratio 4). Epimerization of 5f-stanols (**Degradation
effect’) takes place over time due to microbial processes in soils (Bull et al., 2001; Prost et al., 2017).
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