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Abstract. Dimethyl sulfide (DMS) is a volatile biogenic gas with the potential to influence regional climate as a 8 

source of atmospheric aerosols and cloud condensation nuclei (CCN). The complexity of the oceanic DMS cycle 9 

presents a challenge in accurately predicting sea-surface concentrations and sea-air fluxes of this gas. In this study, 10 

we applied machine learning methods to model the distribution of DMS in the NE Subarctic Pacific (NESAP), a 11 

global DMS hot-spot. Using nearly two decades of ship-based DMS observations, combined with satellite-derived 12 

oceanographic data, we constructed ensembles of 1000 machine-learning models using two techniques, random 13 

forest regression (RFR) and artificial neural networks (ANN). Our models dramatically improve upon existing 14 

statistical DMS models, capturing up to 62% of observed DMS variability in the NESAP and 15 

demonstratedemonstrating notable regional patterns that are associated with mesoscale oceanographic variability. 16 

In particular, our results indicate a strong coherence between DMS concentrations, sea surface nitrate (SSN) 17 

concentrations, photosynthetically active radiation (PAR) and sea surface height anomalies (SSHA), suggesting 18 

that NESAP DMS cycling is primarily influenced by heterogenous nutrient availability, light-dependent processes 19 

and physical mixing. Based on our model output, we derive summertime, sea-air flux estimates ranging between 20 

0.5-2.0of 1.16±1.22 Tg S yr-1 in the NESAP. Our work demonstrates a new approach to capturing spatial and 21 

temporal patterns in DMS variability, which is likely applicable to other oceanic regions. 22 

1 Introduction 23 

 Dimethyl sulfide (DMS), a volatile biogenic gas, is an important component of the marine sulfur cycle. 24 

This molecule contributesThis molecule is an important substrate for specific methylotrophic bacteria (Vila‐Costa 25 

et al., 2006; Lidbury et al., 2016; Green et al., 2011; Hatton et al., 2012), with a recognized importance to marine 26 

microbial metabolism (Vila‐Costa et al., 2006) and food web interactions (Nevitt, 2008). Moreover, DMS 27 

constitutes the largest fraction of bulk non-sea salt (NSS) sulfate emissions to the atmosphere (Bates et al., 28 

1992)(Bates et al., 1992; Ksionzek et al., 2016), where it is rapidly oxidized to form aerosols that act as cloud 29 

condensation nuclei (CCN; Charlson et al., 1987; Hegg et al., 1991; Korhonen et al., 2008), potentially influencing 30 

regional albedo and climate (Charlson et al., 1987; Ayers and Cainey, 2007). Given its potential role in climate 31 

regulation, and recognized importance to marine microbial metabolism (Vila‐Costa et al., 2006) and food web 32 

interactions (Nevitt, 2008), substantial research has focused on characterizing DMS dynamics in seawater.Given 33 

the ecological roles of DMS and its potential influence on global climate, substantial research has focused on 34 

characterizing the dynamics of this compound in seawater. This work has revealed considerable complexity in the 35 
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oceanic DMS cycle, which has limited the development of simple predictive algorithms describing its spatial and 36 

temporal DMS distributionsvariability. 37 

Oceanic DMS production and loss are tightly linked with the biological cycling of the related metabolites 38 

dimethyl sulfoniopropionate (DMSP) and dimethyl sulfoxide (DMSO). DMS is believed to be primarily derived 39 

from the cleavage of DMSP (Kiene and Linn, 2000), but it can also be cycled through biological DMSO reduction 40 

(Spiese et al., 2009) and oxidation (Lidbury et al., 2016), and abiotically by light-dependent reactions (del Valle et 41 

al., 2007; Royer et al., 2016). DMS cycling is influenced by a suite of environmental and ecological factors, 42 

including release from phytoplankton cells into the dissolved pool via grazing (Dacey and Wakeham, 1986), viral 43 

lysis (Malin et al., 1998), or exudation. Oxidative stress generated by other variables such as temperature (Kirst et 44 

al., 1991), salinity (Dickson and Kirst, 1987), UV radiation (Kinsey et al., 2016), and nutrient limitation (Bucciarelli 45 

et al., 2013; Spiese & Tatarkov, 2014) may also enhance the cycling of DMSP and DMSO, which may regulate 46 

DMS concentrations through cascading oxidative pathways (Sunda et al., 2002). Finally, variability in surface wind 47 

fields can modulate the rates of DMS sea-air exchange, providing a significant source of heterogeneity in surface 48 

water DMS concentrations (Royer et al., 2016). These examples illustrate the complex non-linearity of the oceanic 49 

DMS cycle. 50 

Over the past two decades, a number of approaches have been developed to model DMS distributions at 51 

both global (Bock et al., 2021; Galí et al., 2018; Simó and Dachs, 2002; Vallina and Simó, 2007) and regional 52 

(Watanabe et al., 2007) scales. These models have been largely based on linear regression techniques to 53 

estimateestimating DMS concentrations using one or two predictors. To date, these studies have focused on a 54 

number of variables, including ratio of chlorophyll a (Chl-a) to mixed layer depth (MLD) (Simó and Dachs, 2002), 55 

sea surface temperature (SST) and nitrate (SSN) (Watanabe et al., 2007), solar radiation dose (SRD) (Vallina and 56 

Simó, 2007), photosynthetically active radiation (PAR) and modelled DMSP concentrations (Galí et al., 2018). 57 

Some of these models have demonstrated reasonably good performance at global scales, but their predictive power 58 

is generally diminished at regional scales (Herr et al., 2019), failing to accurately resolve important smaller-scale 59 

features (Belviso et al., 2003; Nemcek et al., 2008; Royer et al., 2015; Tortell, 2005b). 60 

In recent years, machine-learning algorithms have been increasingly used to derive predictions for non-61 

linear oceanic systems. For example, these methods have been successfully applied to describe the spatial and 62 

temporal patterns of global methane flux (Weber et al., 2019) and carbon export (Roshan and DeVries, 2017)., 63 

nitrous oxide dynamics (Yang et al., 2020), and carbon export (Roshan and DeVries, 2017). To our knowledge, 64 

only two studies have thus far applied machine-learning to describe DMS distributions, with one study focused on 65 

the Arctic (Humphries et al., 2012) and the other exploring a global domain (Wang et al., 2020). Despite producing 66 

Formatted ...

Formatted ...

Formatted ...

Formatted ...



 

4 

 

algorithms with reasonable predictive skill, these two studies found limited success in resolving the underlying 67 

relationships driving DMS variability. This was partially due to a reliance on indirect sensitivity tests assessing the 68 

importance of predictor variables, and also, potentially, from the large-scale averaging applied to the underlying 69 

data fields (1x1o; 111 km2). Analyses at higher spatial resolution may reveal mesoscale (roughly 20-200 km) and 70 

sub-mesoscale (roughly 1-20 km) patterns that would otherwise be obscured, thereby increasing predictive strength.  71 

Machine learning algorithms require large datasets for the training and testing process. Traditionally, DMS 72 

measurements were based on time-consuming ship-board analysis of discrete samples, resulting in sparse data 73 

coverage over much of the oceans. More recently, the development of several automated DMS measurement 74 

systems (Royer et al., 2014; Saltzman et al., 2009; Tortell, 2005a) has provided marine DMS observations at a 75 

significantly higher resolution, yielding greater spatial and temporal data coverage. These new datasets potentially 76 

enable new insights into small-scale and regional patterns in oceanic DMS distributions, as well as the 77 

characterization of oceanic DMS ‘hot-spots’. One such global DMS hotspot is the northeast subarctic Pacific 78 

(NESAP) (Asher et al., 2017; Herr et al., 2019; Lana et al., 2011), a region encompassing both highly productive 79 

coastal upwelling regimes, and off-shore, iron-limited waters (Martin and Fitzwater, 1988).The northeast subarctic 80 

Pacific (NESAP) is a region of notably high DMS concentrations (Lana et al., 2011), with localized DMS 81 

accumulation in both highly productive coastal upwelling regimes, and off-shore, iron-limited waters ((Herr et al., 82 

2019; Asher et al., 2017). Several factors have been proposed to account for the elevated DMS production in the 83 

NESAP, including increased primary productivity fromdriven by nutrient entrainment and upwelling along coastal 84 

fronts (Asher et al., 2017), a dominance of high-DMSP producing prymnesiophytes and dinoflagellates in offshore 85 

waters, elevated microbial degradation of DMSP to DMS (Steiner et al., 2012; Royer et al., 2010), and the 86 

stimulation of DMS production in response to oxidative stress in low iron waters (Sunda et al., 2002; Herr et al., 87 

2020). Although multiple studies have examined empirical relationships between DMS and various oceanographic 88 

factors in the NESAP (Watanabe et al., 2007; Herr et al., 2019; Asher et al., 2017, 2011), these have all reported 89 

low predictive skill based on simple linear correlation approaches. To date, machine-learning approaches have not 90 

been applied to describe DMS distributions specifically in this region. 91 

 Here, we present an approach to modelling summertime NESAP DMS concentrations and sea-air fluxes 92 

using ensemble random forest regression (RFR) and artificial neural network (ANN) machine-learning algorithms. 93 

Our statistical models leverage field observations of DMS collected across the NESAP between 1997 to 2017 to 94 

generate a summertime DMS climatology mapped at a higher spatial resolution than previous efforts (Simó and 95 

Dachs, 2002; Vallina and Simó, 2007; Galí et al., 2018; Watanabe et al., 2007; Humphries et al., 2012; Wang et 96 

al., 2020). This new modelling approach represents a significant improvement over previous methods, and predicts 97 
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regional DMS distributions that are coherent with underlying patterns of oceanographic variability. Most notably, 98 

the modelled DMS concentrations and sea-air fluxes can be explained, to a large extent, by regional and mesoscale 99 

patterns in nutrient supply and physical mixing dynamics. Based on the output of our models, we present 100 

summertime sea-air flux estimates in close agreement with previous studies (Herr et al., 2019; Lana et al., 2011), 101 

further highlighting the importance of the NESAP as a globally-significant sulfur source to the atmosphere. 102 

2 Methods 103 

2.1 Data 104 

 A combination of data sources was used in training our machine-learning models to build a summertime 105 

DMS climatology. For this study, we restricted DMS measurements to the months of June, July and August between 106 

1997 to 2017 in the NESAP (43-60oN, 147-122oW). A total of 26,201 data points were obtained from the NOAA 107 

PMEL repository (https://saga.pmel.noaa.gov/dms/; last accessed: February 3, 2021), including measurements 108 

derived from purge and trap gas chromatography and membrane inlet mass spectrometry. The DMS data were 109 

binned to a monthly resolution, regardless of year, and averaged into 0.25 x 0.25o grid cells. 110 

 Predictor data used to build our machine-learning models included the following variables derived from 111 

the NASA Aqua MODIS satellite at level L3 monthly 0.036o042o resolution: (R2018.0): sea surface temperature 112 

(SST), the ratio of normalized fluorescence line height to chlorophyll a (nFLH:Chl-a), instantaneous and daily 113 

observed photosynthetically active radiation (iPAR and PAR, respectively), particulate inorganic carbon (PIC), the 114 

absorption of gelbstof and detritus at 433 nm (acdm(443)), and diffuse attenuation coefficients at 490nm (Kd). 115 

Satellite-based PIC is considered as a proxy for the abundance of coccolithophores and other calcified 116 

phytoplankton (Franklin et al., 2010), whereas the acdm(443) product is considered a proxy for the distributions of 117 

chromophoric dissolved organic matter (CDOM) (Nelson & Siegel, 2013), which is thought to be an important 118 

photosensitizer of DMS (see Sect. 4.1). For observations prior to 2004, data were from either SeaWiFS (0.083o 119 

resolution) or Terra MODIS (0.042o resolution) when SeaWiFS data waswere unavailable (e.g. nFLH and iPAR). 120 

As described below, Kd and PIC were later excluded from the final models (see Sect. 2.6).2.6), as they didn’t 121 

improve predictive skill. 122 

The following predictor variables were also used: 6-day averaged sea surface height anomalies (SSHA) 123 

derived from the TOPEX/Poseidon satellites at 0.17o resolution; Level L4 ESA Sentinal-3 Copernicus monthly-124 

averaged 0.25o wind speeds; net primary productivity (NPP) from the Vertically-Generalized Production Model 125 

(VGPM; Behrenfeld & Falkowski, 1997) at monthly 0.25o resolution; sea surface nitrate from the 2018 World 126 
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Ocean Atlas at monthly 1o resolution (Garcia et al., 2019); and mixed-layer depth (MLD) and sea surface salinity 127 

(SSS) from the MIMOC climatology at 0.5o resolution (Schmidtko et al., 2013). Except for MIMOC data, all 128 

predictors were restricted in time to the corresponding years of DMS sampling (1997 to 2017). Net community 129 

productivity (NCP) was estimated from the algorithm of Li & Cassar, (2016; using NPP and SST). As with DMS 130 

observations, predictor data were interpolated to a 0.25 x 0.25o average monthly resolution using linear radial basis 131 

interpolation functions. Interpolation was constrained to the oceanic region by masking out land pixels using 132 

ETOPO2 bathymetric (0.033o resolution) binned at 0.25 x 0.25o resolution. We note that each of these data sources 133 

are likely to have inherent uncertainties associated with either their collection or processing. Data sources can be 134 

found in Table 1.  135 

 136 

Table 1. Data sources and spatial and temporal resolution of predictor variables used to develop the RFR and ANN algorithms. Data 137 
processing levels are indicated where relevant. All variables were used as predictors (excluding bathymetry) and post-processed to 138 
monthly-averaged, 0.25o resolution (see sections 2.1-2.2). 139 

          

Variable 
Spatial 

Resolution (o) 

Temporal 

Resolution 
Source Level 

Sea Surface Temperature 

(SST) 
0.036042 

6-Day 

Average 

SeaWiFS/AquaTERRA (1997-2003) 

or AquaMODIS(2004-2017): 

https://oceancolor.gsfc.nasa.gov/l3/ 

3 

Chlorophyll-Normalized 

Fluorescence (nFLH:Chl-

a) 

0.036042 Monthly 

SeaWiFS/AquaTERRA (1997-2003) 

or AquaMODIS (2004-2017): 

https://oceancolor.gsfc.nasa.gov/l3/ 

3 

Instantaneous 

Photosynthetically Active 

Radiation (iPAR) 

0.036042 Monthly 

SeaWiFS/AquaTERRA (1997-2003) 

or AquaMODIS (2004-2017): 

https://oceancolor.gsfc.nasa.gov/l3/ 

3 

Daily Photosynthetically 

Active Radiation (PAR) 
0.036042 Monthly 

SeaWiFS/AquaTERRA (1997-2003) 

or AquaMODIS (2004-2017): 

https://oceancolor.gsfc.nasa.gov/l3/ 

3 

Particulate Inorganic 

Carbon (Calcite; PIC) 
0.036042 Monthly 

SeaWiFS/AquaTERRA (1997-2003) 

or AquaMODIS (2004-2017): 

https://oceancolor.gsfc.nasa.gov/l3/ 

3 

AbsorbtionAbsorption of 

Gelbstof and Detritus at 

433 nm (acdm(443)) 

0.036042 Monthly 

SeaWiFS/AquaTERRA (1997-2003) 

or AquaMODIS (2004-2017): 

https://oceancolor.gsfc.nasa.gov/l3/ 

3 

Diffuse Attenuation 

CoeffiencentsCoefficients 

at 490 nm (Kd) 

0.036042 Monthly 

SeaWiFS/AquaTERRA (1997-2003) 

or AquaMODIS (2004-2017): 

https://oceancolor.gsfc.nasa.gov/l3/ 

3 
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Sea Surface Height 

Anomalies (SSHA) 
0.17 Monthly 

TOPEX/Poseidon: 

https://podaac.jpl.nasa.gov/dataset/SE

A_SURFACE_HEIGHT_ALT_GRID

S_L4_2SATS_5DAY_6THDEG_V_J

PL1812 

4 

Monthly Wind Speeds 0.25 Monthly 

ESA Sentinal-3 Copernicus: 

https://resources.marine.copernicus.eu/

?option=com_csw&view=details&pro

duct_id=WIND_GLO_PHY_CLIMAT

E_L4_REP_012_003 

N/A 

Net Primary Productivity 

(NPP) 
0.25 Monthly 

Vertically-Generalized Production 

Model (VGPM): 

http://www.science.oregonstate.edu/oc

ean.productivity/ 

N/A 

Sea Surface Nitrate (SSN) 1 Monthly 

World Ocean Atlas 2018 (WO18): 

https://www.ncei.noaa.gov/access/worl

d-ocean-atlas-2018/ 

N/A 

Mixed Layer Depth 

(MLD) 
0.5 Monthly 

MIMOC Climatology: 

https://www.pmel.noaa.gov/mimoc/ 
N/A 

Sea Surface Salinity 

(SSS) 
0.5 Monthly 

MIMOC Climatology: 

https://www.pmel.noaa.gov/mimoc/ 
N/A 

Bathymetry 0.033 N/A 
ETOPO2: 

https://rda.ucar.edu/datasets/ds759.3/ 
N/A 

  140 
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 141 

2.2 Machine-learning models 142 

 We compared the performance of random forest regression (RFR) and artificial neural network (ANN) 143 

models at the regional scale. The RFR algorithm is built upon decision tree models, which operate by iteratively 144 

generating decision rule nodes that dictate which branch the tree will progress through in the next iteration. The 145 

RFR model builds an ensemble, or “forest”, of these trees, where each tree is trained on a bootstrapped (i.e. 146 

randomly subsampled) set of predictors, and the resulting predictions are averaged among the trees to reduce 147 

overfitting to noise (Brieman, 2001). In contrast, the ANN model is built as a fully connected network of nodes, or 148 

“neurons”, in which each neuron consists of an activation function and is connected to other neurons by iteratively-149 

determined weights (Gardner and Dorling, 1998). Both algorithms are advantageous because they make no prior 150 

assumptions on the data distributions and can fit non-linear data (Brieman, 2001; Gardner and Dorling, 1998). 151 

In both cases, the models were built as an ensemble of either 1000 individual decision trees or individual 152 

networks to minimize bias in predictions. The input data were randomly divided for use in model training (80%) 153 

and external testing (20%). Although RFR is not sensitive to large differences in predictor variance, predictor data 154 

were standardized in both models by normalization to their respective mean and standard deviation. Additionally, 155 

we applied an inverse hyperbolic sine (IHS) transformation to the DMS data prior to training. Testing results 156 

indicated that IHS yielded slightly better performance than the more traditional logarithmic transformations for 157 

both of our models. 158 

Both our ANN and RFR models followed a similar design to Weber et al. (2019). Our ANNs were built 159 

using a feed-forward framework consisting of a single input node, two hidden layers each consisting of 30 neurons 160 

(using a sigmoidal activation function), and a single output layer (using a linear activation function). A Bayesian 161 

L2 (Ridge) regularization parameter was tuned to minimize overfitting. Each individual decision tree within the 162 

RFR was trained using the standard CART algorithmA Bayesian L2 (Ridge) regularization parameter was tuned to 163 

minimize overfitting and the L-BFGS algorithm was used to solve for weights (Byrd et al., 1995). Each individual 164 

decision tree within the RFR was trained using the standard CART algorithm (Brieman, 2001) and constrained to 165 

a max depth of 25 decision splits, the simplest configuration determined to perform well and minimize overfitting. 166 

These models were built using the Scikit-Learn (v0.24.2) implementation of the ANN (“MLPRegressor”) and RFR 167 

(“RandomForestRegressor”) algorithms in Python 3.8 (see Code Availability). 168 

In both cases, the models were built as an ensemble of either 1000 individual decision trees or individual 169 

networks to minimize bias in predictions. The input data were randomly divided for use in model training (80%) 170 
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and external testing (20%). Although RFR is not sensitive to large differences in predictor variance, predictor data 171 

were standardized in both models by normalization to their respective mean and standard deviation. Additionally, 172 

we applied an inverse hyperbolic sine (IHS) transformation to the DMS data prior to training (Weber et al., 2019). 173 

Testing results indicated that IHS yielded slightly better performance than the more traditional logarithmic 174 

transformations for both of our models. 175 

2.3 Sea-to-air fluxes 176 

Sea-air DMS fluxes (FDMS, µmol m-2 d-1) were calculated from the monthly-averaged observed and 177 

modelled DMS values for June, July and August. FDMS was calculated using the gas transfer velocity (k, cm3cm hr-178 

1) following the modified approach of Webb et al. (2019): 179 

𝐹𝐷𝑀𝑆 = 𝑘(𝐷𝑀𝑆)(0.24)           (1) 180 

where the factor of 0.24 converts to the values to daily fluxes. Since our fluxes were calculated from our monthly 181 

averaged models, the gas transfer velocity was calculated using the approach from Simó & Dachs (2002), as 182 

modified by (Nightingale et al., 2000). This approach is necessary to correct for differences due to the non-linear 183 

relationship between DMS and wind speed (Livingstone and Imboden, 1993) when using monthly-averaged, 184 

satellite-derived wind speeds. Assuming a Rayleigh distribution (ξ =2), k can be defined asThe gas transfer velocity 185 

has typically been calculated using a non-linear parameterization (Nightingale et al., 2000), but recent work has 186 

suggested a linear parameterization is more appropriate for DMS (Bell et al., 2013; Blomquist et al., 2017; Zavarsky 187 

et al., 2018). Since satellite-derived predictors are used to build our models, we calculated the gas transfer velocity 188 

using the linear Goddijn-Murphy et al. (2012) k parameterization, which is both derived from satellite altimeter 189 

data and normalized to a Schmidt number of 660: 190 

𝑘 = [5.88𝜂𝛤(1 +
2

𝜉
) + 1.49𝜂𝛤(𝑠)]𝑆𝑐𝐷𝑀𝑆

−0.5
        (2) 191 

where η is the quotient of the wind speed (m s-1) by the gamma function  Γ(s) (using 𝑠 = 1 +
1

ξ
), and ScDMS is the 192 

DMS-specific Schmidt number (cm3 hr-1) as defined by Saltzman et al. (1993): 193 

𝑆𝑐𝐷𝑀𝑆 = 2674 − 147.12(𝑆𝑆𝑇) + 3.72(𝑆𝑆𝑇2) − 0.038(𝑆𝑆𝑇3)      (3) 194 

𝑘𝑤,660 = 2.1𝑈10 − 2.8            (2) 195 

Where U10 is the wind speed (m s-1) at 10 m above sea surface. 196 

Regional summertime fluxes (�̅�𝐷𝑀𝑆, Tg) were calculated as the average (±SD) quantity of DMS-sulfur 197 

emitted over 92 days (June, July and August) through the area of the mapped study region (1.28x107 km2 or 85.0% 198 

of the total bounded area). 199 
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2.4 Comparison against existing algorithms  200 

Simple linear regression (LR) and multiple linear regression (MLR) models were built for comparison 201 

against the machine-learning algorithms. We also tested the performance of our RFR and ANN models against the 202 

published algorithms of Simó & Dachs (2002), Watanabe et al. (2007), Vallina & Simó, (2007), and Galí et al. 203 

(2018) (hereafter referred to as SD02, W07, VS07, and G18, respectively). Solar radiation dose, SRD is, used in 204 

the VS07 algorithm was calculated here using MLD as described by Vallina & Simó (2007): 205 

𝑆𝑅𝐷 =
𝑃𝐴𝑅

𝐾𝑑×𝑀𝐿𝐷
× (1 − 𝑒−𝐾𝑑×𝑀𝐿𝐷)         (4) 206 

Each of the four algorithms was assessed using both their original coefficients and coefficients tuned to 207 

our NESAP dataset using nonlinear least-squares optimization. at both 0.25o and 1o spatial resolution (Table 2). In 208 

each case, the algorithms were run using the same monthly-averaged predictors used to develop the RFR and ANN 209 

ensembles (see Sec. 2.1). Predictors were spatially matched to either the full DMS dataset (i.e. all monthly averaged 210 

DMS observations) or to only the Testing partitioned dataset (see Sec. 2.2) for direct comparison with the RFR and 211 

ANN ensemble performance (Fig. 2, Table 2). 212 

2.5 Controls on DMS variability 213 

 Principal component analysis (PCA) was applied to assess the relationships between DMS and the nine 214 

predictors used to build the RFR and ANN ensembles. Additionally, non-parametric spearmanSpearman rank 215 

correlations were calculated between each variable and both the modelled and observed DMS concentrations. 216 

Correlation analysis was also extended to assess the role of taxonomy on predicted DMS concentrations, using the 217 

outputs of a chlorophyll-a based taxonomic algorithm by Hirata et al. (2011) with NESAP-tuned coefficients (Zeng 218 

et al., 2018). 219 

2.6 Sensitivity Tests and Predictor Selection 220 

 To inform our selection of grid size, we assessed the performance of both the RFR and ANN models using 221 

grid cells ranging from 0.25 to 5o (Fig. 1). From this analysis, we found that model accuracy was highest at 0.25o 222 

resolution (see Sect. 3.1). Smaller grid sizes would presumably further improve model accuracy, but at a 223 

significantly higher computational cost.  224 

We also tested the influence of other biological predictor variables on the performance of the RFR and 225 

ANN models, using either NCP, NPP, Chl-a, or PIC. These sensitivity tests indicated no significant difference 226 

between the various biological predictor variables, although accuracy was slightly reduced when PIC was used. 227 
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We therefore selected NCP as the biological predictor variable within our model framework. We also removed Kd 228 

as a predictor variable after further sensitivity testing indicated that its exclusion slightly improved results. 229 

The inclusion of nFLH:Chl-a represents a proxy for iron limitation (see Sect. 4.1). However, fluorescence 230 

yields corrected for non-photochemical quenching (NPQ) have been suggested to yield a better iron limitation 231 

proxy than nFLH:Chl-a (Behrenfeld et al., 2009). We therefore calculated NPQ-corrected fluorescence yields (φf) 232 

by: 233 

φ𝑓 =
𝑛𝐹𝐿𝐻

𝐶ℎ𝑙−𝑎×𝛼×𝑆
×

𝑖𝑃𝐴𝑅

𝑖𝑃𝐴𝑅
            (5) 234 

where 𝛼 = 0.0147 × 𝐶ℎ𝑙 − 𝑎−0.316 and S = 100 mW cm-2 µm-1 sr1 m as described by Behrenfeld et al. (2009). Our 235 

tests indicated nFLH:Chl-a yielded slightly improved performance overall, whereas φf decreased both models’ 236 

performance. We therefore retained nFLH:Chl-a and excluded φf in our final model design. 237 

 238 

 239 

 240 
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 241 

Fig. 1. Sensitivity of RFR and ANN models to grid size resolution. DMS fluxes (greenblack) and R2 values (red) derived from 242 
sensitivity tests of (a) RFR and (b) ANN models to pixels resolutions of 0.25-5o. The negative R2 values observed at the lowest 243 
resolution (largest grid cells) indicate that the predicted values explain less variance than the overall mean of the dataset. 244 

3 Results 245 

3.1 Model evaluation 246 

 To benchmark the performance of our RFR and ANN models, we first evaluated the predictive skill of four 247 

existing empirical DMS algorithms (SD02, W07, VS07, & G18), in addition to simple and multiple linear 248 

regression models. Previous studies have demonstrated that these empirical algorithms show strong predictive skill 249 

(R2=0.53-0.84) over large scales and in some oceanic regions (Simó and Dachs, 2002; Galí et al., 2018; Watanabe 250 

et al., 2007), but significantly poorer performance in the NESAP (Herr et al., 2019). Consistent with these results, 251 

we found that the SD02, W07, VS07, and G18 did not accurately predict NESAP DMS distributions, even with 252 

regionally tuned coefficients improving performance (Fig. 2, R2=0-0.01). at 0.25x0.25o; Table 2, r=-0.15-0.36). We 253 

also found that simple and multiple linear regressions performed poorly (R2=0-0.05; Fig. 2, 3),, yielding virtually 254 

no explanatory power for surface water DMS distributions in the NESAP (R2≤=0-0.05). ; Fig. 2, 3).  255 

 256 

Table 2. Performance of statistical DMS algorithms on NESAP DMS observations binned to monthly 1o and 257 

0.25o resolution. Pearson correlation coefficients (r) and root mean square error (nM) are obtained from the 258 
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SD02, VS07, W07 and G18 algorithms (see 2.4) using either their original published coefficients or 259 

coefficients derived from non-linear least squares optimization. Algorithm performance is evaluated using 260 

either the full monthly-binned observational dataset or using the Testing partitioned dataset (see Sec. 2.2). 261 

 SD02 VS07 W07 G18 

Original Optimized Original Optimized Original Optimized Original Optimized 

1o 

All data 

r = -0.09 

RMSE = 18.03 

r = 0.17 

RMSE = 4.82 

r = -0.03 

RMSE = 6.67 

r = 0.03 

RMSE = 4.96 

r = -0.10 

RMSE = 11.74 

r = 0.07 

RMSE = 4.83 

r = 0.02 

RMSE = 6.77 

r = 0.16 

RMSE = 4.84 

1o 

Testing 

dataset 

r = -0.22 

RMSE = 19.09 

r = 0.36 

RMSE = 3.34 

r = 0.11 

RMSE = 5.36 

r = 0.20 

RMSE = 3.47 

r = -0.03 

RMSE = 10.46 

r = 0.02 

RMSE = 3.47 

r = -0.15 

RMSE = 6.19 

r = 0.30 

RMSE = 3.40 

0.25o 

All data 

r = -0.05 

RMSE = 11.02 

r = 0.12 

RMSE = 7.84 

r = -0.09 

RMSE = 9.57 

r = 0.11 

RMSE = 7.88 

r = -0.09 

RMSE = 13.02 

r = 0.04 

RMSE = 7.80 

r = 0.06 

RMSE = 8.42 

r = 0.09 

RMSE = 7.88 

0.25o  

Testing 

dataset 

r = -0.03 

RMSE = 9.79 

r = 0.07 

RMSE = 6.79 

r = -0.09 

RMSE = 8.60 

r = 0.10 

RMSE = 6.79 

r = -0.06 

RMSE = 12.02 

r = 0.04 

RMSE = 6.78 

r = 0.04 

RMSE = 7.47 

r = 0.08 

RMSE = 6.80 
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 263 

Fig. 2. Taylor Diagram showing comparative performance metrics of each individual Random Forest Regression (RFR) 264 
and Artificial Neural Network (ANN) model (1000-model ensembles) against multiple linear regression (MLR) and 265 
other statistical DMS models (See sections 2.1 and 2.4). The Pearson correlation coefficients (“Correlation”; outer 266 
radius), root mean squared error (“RMSE”; red radial contours), and standard deviations (SDs; grey radial contours 267 
from origin) are all computed with respect to the observed DMS samples after inverse hyperbolic sine (IHS) 268 
transformation. The reference of a perfect model fit is shown with a gold star. SDs of the model outputs are normalized 269 
to the SDs of the DMS observations. RMSE represents a normalized trigonometric derivation from both the correlation 270 
coefficients and normalized SDs. Performance of the SDO2, W07, VS07, and G18 algorithms reported here are 271 
calculated using regionally tuned coefficients to the NESAP derived from non-linear least-squares optimization (see 272 
section 2.4). 273 

 Relative to other published modelling approaches, both the RFR and ANN models dramatically improved 274 

the representation of NESAP DMS variability, achieving significantly higher predictive accuracy (Fig. 2, 3). The 275 

collective ensembles of both the RFR and ANN models yielded strong performance, explaining up to 62% of the 276 

observed DMS variability (R2=0.61-0.62; Fig. 3). For individual models within the ensembles, the AANANN 277 
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method provided slightly better results (R2=0.16-0.50), compared to the individual RFR models (R2=0.16-0.43). 278 

As observed forHowever, predicted DMS concentrations, the models showed lower predictive power for and sea-279 

air DMS fluxes at coarser derived from the ANN ensembles were more sensitive to the spatial resolution used, 280 

although the predictive accuracy of both models degraded significantly with coarser resolutions (Fig. 1).  281 

 282 

 283 

 284 

Fig. 3. Performance of three modelling approaches in predicting observed DMS distributions; (A) multiple linear 285 
regression (MLR) (B) ensemble of Artificial Neural Networks (ANN) and (C) ensemble of Random Forest Regression 286 
(RFR). For consistency, all predictions are partitioned by the Training and Testing datasets used to build the ensembles 287 
(see section 2.2). Model performance (R2) is computed only for the Testing dataset predictions. The dashed line 288 
demonstrates a 1:1 relationship. Modelled DMS concentrations depicted range from 0.4-84.3 (RFR, nM) and 0.3-74.6 289 
(ANN, nM). 290 

3.2 DMS distributions and sea-air fluxes 291 

TheIn both the RFR and ANN methods, the predicted spatial distribution of DMS was generally consistent 292 

betweenwith observations and the RFR and ANN methods (Fig. 4a,c,d). The average model derived DMS 293 

concentrations was 4.0 ± 2.1 nM and 4.7 ± 3.0 nM (mean ± SD) for the RFR and ANN ensemble models, 294 

respectively, with a similar range from 0.3 to 84.3 nM.  In both models, the highest DMS concentrations were 295 
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largely constrained to coastlines and within the Alaska Gyre adjacent to the Aleutian Islands (Fig. 4b-c, 8C). The 296 

greatest discrepancy between DMS concentrations from the two models was observed in these regional ‘hotspots’, 297 

where the ANN models emphasize high DMS within the Alaska gyre, while the RFR models emphasize elevated 298 

coastal DMS concentrations (Fig. 4b). TheOn average, the models deviated on averagefrom each other by 0.49 nM, 299 

with the greatest offsets observed in an area of particularly sparse DMS observations in the Alaska Gyre (Fig. 4a,b). 300 

Future observational data in this region should help improve model performanceagreement. 301 

 302 

 303 

 304 
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 305 

Fig. 4. Predicted maps of sea surface DMS concentrations and sea-air fluxes. (a) Ship-based observations of mean summertime 306 
(June-August) DMS concentrations used to construct the predictive models. (b) Differences between the (c) Random Forest 307 
Regression (RFR) and (d) Artificial Neural Network (ANN) ensemble predicted DMS concentrations. (e,f) DMS sea-air fluxes 308 
derived from the predicted DMS concentrations. Colormap ranges are restricted to illustrate trends, with <1% of DMS data 309 
exceeding the colorbar limits. The inset map in (b) shows the NESAP study region as a shaded green patch in a global orthographic 310 
projection. 311 

 312 

Sea-air DMS fluxes (Fig. 4e,f) derived from ANN predictions were 18% higher, on average, than RFR 313 

predictions, largely due to higher predicted values in the Alaska Gyre (Fig. 4d-e, Table 2). The distribution of ANN 314 

sea-air fluxes was also closer to ship-based observations (Fig. 5). Predicted regional fluxes ranged from 0.7 to 107 315 

µmol m-2 d-1 between the two models (Fig. 4e,f, 5), with the highest predicted DMS emissions in August, when 316 

derived sea-air fluxes were approximately 1.5-fold greater than in June and July (Table 2). Our models yielded a 317 

summertime integrated sea-air flux of 0.31±0.19 Tg DMS-derived sulfur (equivalent to 0.5 to 2.0 Tg S yr-1; Table 318 

2), in good agreement with recent estimates based on compiled ship-based observations (0.3 Tg; Herr et al., 2019) 319 

and existing climatological estimates (Table 2; Lana et al., 2011). This summertime mean value is equivalent to 320 

~4-8% of total global DMS sea-air emissions annually, assuming an uncertainty ranging between 15 to 28 Tg S yr-321 

1 in global estimates (Bock et al., 2021). This result further emphasizes the NESAP as a globally significant DMS 322 

source to the atmosphere.3). The distribution of ANN sea-air fluxes was also closer to ship-based observations 323 
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(Fig. 5). Predicted regional fluxes ranged from 0.8 to 167 µmol m-2 d-1 between the two models (Fig. 4e,f, 5), with 324 

the highest predicted DMS emissions in August, when derived sea-air fluxes were approximately 1.6 to 2-fold 325 

greater than in June and July (Table 3). Our models yielded a summertime integrated sea-air flux of 1.16±1.22 Tg 326 

DMS-derived sulfur, which is consistent with the Lana et al. (2011) climatological estimate of 1.64 ± 0.51 Tg  327 

(Table 3).  328 

Table 23. Monthly and mean summertime NESAP sea-air DMS fluxes. Fluxes (Total cumulative fluxes of DMS-derived sulfur 329 

(Tg, mean ± SD) are calculated from the Random Forest Regression (RFR) and Artificial Neural Network (ANN) model 330 

predictions (based on an ensemble of 2000 models). Total cumulative NESAP sea-air flux derived from the Lana et al. (2011) 331 

climatology is shown for comparative purposes. 332 

 333 

 

 

AnnualSummertime Sulfur 

Emissions 

RFR ANN This Study 
Lana et al. 

(2011) 

µmol m-2 d-1 µmol m-2 d-1 Tg S Tg S 

June 
8.0 ± 5.9 ± 

3.7 

68.0 ± 

3.95.5 

0.2229 ± 

0.1319 
0.4459 ± 0.2024 

July 
6.58.2 ± 

3.05 

9.7.7 ± 3.8 

± 4.6 

0.2633 ± 

0.1214 
0.3341 ± 0.1716 

August 
10.812.7 ± 

3.05 

14.0 ± 

3.816.5 ± 

4.6 

0.4554 ± 

0.2125 
0.5465 ± 0.2125 

June-August 79.7 ± 2.48 
9.2 ± 311.4 

± 4.0 

1.16 ± 0.31 ± 

0.1935 

1.64 ± 0.44 ± 

0.2151 

 334 
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Fig. 5. Histograms of DMS sea-air flux distributions derived from the 1000-model ensemble random forest regression (RFR) and 339 
artificial neural network (ANN) predictions as well as cruise observations (Obs.). The sample sizes of both models are equivalent 340 
(n= 49,632) and are significantly higher than the observational dataset (n=2063). Note that the distribution is restricted to show 341 
trends, with a maximum flux of 238 nM (Obs.). The upper tail (>50 nM) consists of only 2.9% (Obs.) and <0.1% (both RFR and 342 
ANN) of the values. Note that the ANN better predicts the upper tail of DMS observations greater than 20 nM.   343 

 344 

3.4 Drivers of DMS variability 345 

In addition to modelling the spatial and temporal distribution of surface water DMS in the NESAP, we 346 

examined the influence of different oceanographic variables as model predictors. As expected based on previous 347 

work (Herr et al., 2019), no single predictor was found to exert a dominant control on modelled DMS distributions 348 

from either the RFR or ANN models (Fig. 6, 7). Rather, the relationship between DMS and other oceanographic 349 

variables exhibited significant region-specific patterns. One of the most compelling regional signatures was the 350 

apparent relationship between DMS and SSHA. In both models, we found significant positive correlations between 351 

DMS and SSHA (ρ=0.35, 0.4142 for RFR and ANN, respectively) across the full spatial domain, with a particularly 352 

notable relationship along the northern Alaskan coastline (Fig. 8, 9). Here, strong winds (Fig. 9j-l), coupled with 353 

the northeastern Alaska current flow, produce two characteristic oceanographic features in the NESAP: strong, 354 

semi-permanent mesoscale eddies collectively referred to as the Haida, Sitka and Yakutat eddies (Fig. 8a), and the 355 

formation of the high nutrient, low chlorophyll (HNLC) Alaska Gyre (Fig. 8c; Okkonen et al., 2001; Whitney et 356 

al., 2005). Both the monthly (Fig. 9a-i) and summertime-averaged (Fig. 8a,b) RFR and ANN-derived DMS 357 

concentrations are low where these downwelling eddies form. In contrast, elevated DMS concentrations were 358 

associated with the negative SSHA coastal upwelling areas (Fig. 8a,b), where phytoplankton productivity is 359 

stimulated by nutrient inputs into the mixed layer.  360 
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 361 

 362 

Fig. 6. Principal Component Analysis (PCA) showing the relationships between variables used to construct the 363 
predictive algorithms. Eigenvectors (arrows) are superimposed over the principal components (PCs; data points) for 364 
the first two significant modes obtained from PCA. PCs are normalized and clustered by month (June-August, see 365 
legend for colors), while the eigenvectors are grouped by ensemble model predictions (gold) and nine predictor 366 
variables (black). The percentage of variance explained by each mode is indicated along the axes. 367 
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 370 

Fig. 7. Heatmap of Spearman rank correlations (ρ). Top row: observed(a) Correlations of pooled data (June-August) 371 
for DMS concentrations; middle row:observations (Obs.), RFR modeland ANN predictions; bottom row: ANN model 372 
per variable. (b) Correlations per month for the RFR and ANN DMS predictions. All model correlations are computed 373 
on the 1000-model ensembles.  374 
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Modelled DMS concentrations also significantly correlated with hydrographic frontal patterns. We found 375 

significant correlations between DMS and SST (ρ=0.36, 0.3335 for RFR and ANN, respectively) which suggested 376 

the central Alaska Gyre is an areaand offshore of Vancouver Island are areas of elevated DMS variability. (Fig. 377 

8b). Both models predict high DMS levels in the northern frontal zone of the gyre (140oW-145oW) between the 378 

10.5 and 12oC isotherms and the southern frontal zone between (42oN-45oN) between the 13.5 and 15oC isotherms 379 

(Fig. 8b,c). By comparison, our models suggest that DMS concentrations are predominantly low in relation to high 380 

sea surface nitrate (SSN) concentrations within the HNLC gyre (Fig. 8, 9). As discussed below, the relationship 381 

between DMS and macronutrient concentrations in the HNLC waters of the central Gulf of Alaska could indicate 382 

an important role for iron limitation as a controlling factor in the DMS cycle. The presence of elevated summer 383 

nutrients in offshore waters is taken as a proxy for iron limitation, which increases over the course of the summer 384 

growing season.  385 
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 386 

Fig. 8. Physical drivers of summertime (June-August) NESAP DMS distributions. (a) Sea surface height anomalies 387 
(SSHA), (b) predicted DMS concentrations derived from the mean of all 2000 RFR and ANN machine learning models, 388 
(c) sea surface nitrate (SSN) and (d) photosynthetically active radiation (PAR). Contours in (b,c) show sea surface 389 
temperature (SST) isotherms. Coherent features of elevated sea-surface height indicate the presence of mesoscale 390 
eddies, whereas nearshore low SSHAs features reveal areas of upwelling. Colormaps ranges are restricted to illustrate 391 
trends with <1% of data exceeding the colorbar limits. 392 
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Other variables appear to exhibit a more localized or minimal influence on DMS cycling. For instance, 393 

both NCP and DMS are elevated in productive nearshore waters, but NCP generally correlates weakly with both 394 

RFR- and ANN-derived DMS concentrations (ρ=0.08, 0.09 for RFR and ANN, respectively). Similarly07 for RFR 395 

and ANN, respectively). It should be noted, however, the empirically-derived NCP estimates may carry more 396 

uncertainty than other predictors obtained from direct satellite observations (Li and Cassar, 2016). Similarly to 397 

NCP, modelled phytoplankton taxonomic composition (Hirata et al., 2011; Zeng et al., 2018) was not significantly 398 

correlated with predicted DMS concentrations (ρ<0.1). Although strong, persistent winds appear to sustain low 399 

DMS concentrations off the coast of Oregon and Vancouver Island (Fig. 9), wind speeds only weakly correlate 400 

with DMS overall for the region (ρ=-0.15 and -0.12 for RFR and ANN, respectively). Additionally, high PAR in 401 

these areas correspond with low DMS concentrations (Fig. 6d) and there is an overall negative correlation between 402 

PAR and DMS for the region (Fig. 6, 7; ρ=-0.21 and -0.2927 for RFR and ANN, respectively). Finally, despite 403 

hypothesized links between DMS cycling and iron limitation in the NESAP (Levasseur et al., 2006; Merzouk et 404 

al., 2006)(Levasseur et al., 2006; Merzouk et al., 2006; Royer et al., 2010), nFLH:Chl-a ratios (taken as a proxy for 405 

phytoplankton iron stress; Behrenfeld et al., 2009; Westberry et al., 2013) did not exhibit any coherent spatial 406 

patterns, and only weakly correlated to our modelled DMS concentrations (ρ=0.15 and  ρ=0.16 for both RFR and 407 

ANN, respectively).  408 

 409 
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 410 

Fig. 9. Predicted spatial and temporal (June-August) DMS distribution in relation to underlying oceanographic 411 
variables. DMS concentrations predicted from (a-c) the Random Forest Regression (RFR) and (d-f) the Artificial 412 
Neural Network (ANN) ensemble models are mapped alongside the monthly-averaged (g-i) sea surface height anomalies 413 
(SSHA), (j-l) wind speeds (Wind), and (m-o) sea surface nitrate (SSN) for each month. Colormap ranges are restricted 414 
to illustrate trends, with at most 1.5% of the data beyond the colorbar limits. 415 

4 Discussion 416 

The relative sparsity of DMS data in many oceanic regions and the complexity of DMS cycling have limited 417 

previous attempts to model oceanic distributions of this compound (Simó and Dachs, 2002; Vallina and Simó, 418 

2007; Galí et al., 2018; Watanabe et al., 2007; Herr et al., 2019). Taking advantage of expanding data resources, 419 

we employed a new approach to statistically describe DMS distributions in the NESAP. Our results show that both 420 

our RFR and ANN models substantially improved predictive strength over traditional empirical approaches (Fig. 421 

2, 3), while identifying several key DMS relationships and regional patterns across the NESAP (Fig. 8, 9). Although 422 

our statistical approach does not directly elucidate the underlying mechanisms driving these relationships, and not 423 

all variability in predictors may be captured at the single spatial scale used here, we can nonetheless make some 424 
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reasonable inductive inferences. These inferences are discussed below, along with the implications of the improved 425 

predictive performance observed here. 426 

4.1 Relationships with other oceanographic variables 427 

Among the more prominent spatial relationships we observed was the coherence between predicted DMS 428 

concentrations and SST, and the negative correlation between predicted DMS concentrations and sea surface nitrate 429 

(SSN) within and surrounding the Alaska Gyre (Fig. 6-9). Notably, regional SSN, NCP and Chl-a distributions did 430 

not vary appreciably inside versus outside the gyre, and these variables were poorly correlated with DMS 431 

concentrations (r=-0.02, ρ=0.08 with NCP,  r=0.09, ρ=-0.12 with Chl-a). This suggests that the patterns in surface 432 

DMS across the Alaska Gyre were not simply driven by changes in phytoplankton biomass or productivity. The 433 

DMS-nitrate relationship may be partially explained by the so-called sulfur overflow hypothesis (Stefels, 2000), 434 

which suggests that nutrient-limited phytoplankton increase DMSP production and its subsequent cleavage to 435 

DMS, in order to regulate intracellular sulfur quotas when protein synthesis is limited (Hatton & Wilson, 2007; 436 

Kinsey et al., 2016; Simó & Vila-Costa, 2006; Spiese & Tatarkov, 2014; Stefels, 2000).  This pathwaymechanism 437 

may help explain the higher predicted DMS concentrations predicted at the northern extent of the Alaska Gyre, 438 

where SSN concentrations begin to decrease (Fig. 6). Nutrient-dependent effects may also be important in 439 

explaining seasonal variability, as the DMS-nitrate relationship becomes positive in August as phytoplankton 440 

growth becomes increasingly nutrient limited (Fig. 7b).  441 

The apparent relationship between DMS and nitrate could also result indirectly from the underlying effects of 442 

iron limitation. Excess summertime nitrate concentrations are taken as evidence for iron limitation in the NESAP 443 

(Boyd and Harrison, 1999; Boyd et al., 2004; Martin and Fitzwater, 1988; Whitney et al., 2005). Under iron-limiting 444 

conditions, DMS is thought to function, together with DMSP and DMSO, as part of an antioxidant response to 445 

oxidative stress (Sunda et al., 2002). This hypothesis suggests that iron limitation should stimulate net production 446 

of DMS and DMSP (Bucciarelli et al., 2013; Sunda et al., 2002), which is inconsistent with the overall negative 447 

dependence predicted between DMS and SSN (Fig. 8b,c). 448 

Satellite-based, chlorophyll-normalized fluorescence has been suggested as an additional proxy for iron 449 

limitation. Low iron conditions can lead to both a reduction in photosystem I relative to photosystem II (Strzepek 450 

and Harrison, 2004), and an apparent increase in energetically-decoupled light harvesting complexes (Allen et al., 451 

2008; Behrenfeld & Milligan, 2013), resulting in elevated fluorescence-to-chlorophyll a ratios (nFLH:Chl-a) 452 

(Westberry et al., 2013). To our knowledge, this proxy has not been widely investigated with respect to DMS 453 

cycling. In our analysis, we found that nFLH:Chl-a ratios, and the NPQ-corrected fluorescence yields (φf), exhibited 454 
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only weak positive correlations with the RFR and ANN predicted DMS concentrations (Fig. 6, 7). Moreover, 455 

neither of these metrics exhibited coherent spatial patterns with predicted DMS concentrations, suggesting a limited 456 

role for iron in driving spatial patterns of DMS cycling within the NESAP. However, it is important to note the 457 

potential temporal mismatch between our monthly DMS predictions and these more instantaneous metrics of iron 458 

limitation, which reflect short-term physiological changes (days to weeks; (Behrenfeld et al., 2009; Westberry et 459 

al., 2019)However, it is important to note the potential temporal mismatch between our monthly DMS predictions 460 

and these more instantaneous metrics of iron limitation, which reflect short-term physiological changes (days to 461 

weeks; Behrenfeld et al., 2009; Westberry et al., 2019) that depend on sporadic iron loading (e.g. aerosol deposition; 462 

Mahowald et al., 2009). Indeed, both natural and artificial iron-fertilization events have thus far been detected from 463 

satellite-derived nFLH:Chl-a at daily resolution (Westberry et al., 2013), in contrast to the monthly-averaged data 464 

used here. Therefore, modelling frameworks utilizing shorter temporal scales may find a clearer connection 465 

between DMS cycling and iron limitation using the chlorophyll-a fluorescence proxy.   466 

Beyond nutrient limitation effects, ambient light fields are believed to exert significant direct and indirect 467 

effects on DMS cycling (del Valle et al., 2007). At the community level, high irradiance may inhibit bacterial 468 

consumption of DMS (Slezak et al., 2001; Toole et al., 2006; Lizotte et al., 2012), while covarying changes in 469 

mixing and high irradiance can induce transient selectivity for high-light acclimated species and influence the 470 

proportion of  high DMS/P producers within assemblages (Galí et al., 2013; Vance et al., 2013). Ultraviolet 471 

radiation has been noted to induce high DMS production and turnover through a proposed cascading oxidation 472 

pathway, which acts to remove harmful reactive oxygen species (Sunda et al., 2002; Archer et al., 2010). In contrast, 473 

more recent evidence has indicated the potential for elevated DMS production in the NESAP from the reduction of 474 

DMSO due to light-induced oxidative stress over diurnal cycles (Herr et al., 2020). However,Although our 475 

modelled DMS concentrations exhibited aan overall negative correlation with PAR (Fig. 6, 7), suggesting7a), 476 

monthly correlations indicate a stronger positive correlation between DMS and PAR in June, where the summer 477 

solstice drives high irradiance. In contrast, July and August exhibit much weaker negative correlations as the 478 

summer bloom declines (Fig. 7b). These results provide indirect evidence that light-induced oxidative stress, 479 

possibly coupled with inhibition of microbial DMS consumption, may influence regional NESAP DMS 480 

distributions, particularly early in the summer.  481 

The overall negative association of DMS and incident light may predominantly drive(Fig. 6,7a) may also 482 

indicate a role for photolysis in DMS loss in the NESAP through photolysis (del Valle et al., 2007) on regional and 483 

longer-term scales.  484 
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. Since DMS does not have strong light absorption properties, the presence of photosensitisers is necessary for 485 

the abiotic photooxidation of DMS (Brimblecombe and Shooter, 1986). To account for this process, our models 486 

incorporated nitrate (SSN) and acdm(443) (as a proxy for CDOM; Nelson & Siegel, 2013), both of which are thought 487 

to be dominant photosensitisers of DMS in marine systems (Taalba et al., 2013; Bouillon and Miller, 2004, 2005; 488 

Galí et al., 2016). In the NESAP, nitrate appears to exert a stronger influence than CDOM on the apparent quantum 489 

yields (AQY) of DMS (Bouillon and Miller, 2004). In support of this, our results suggest a stronger negative 490 

dependence of predicted DMS concentrations on nitrate compared to CDOM within the NESAP, particularly in 491 

June when irradiance is high (Fig. 6, 7).  We noteacknowledge, however, that the DMS-nitrate relationship likely 492 

also reflects physiological impacts of nutrient limitation, as discussed above. Nonetheless, our results are consistent 493 

with elevated rates of DMS photo-oxidation in the nitrate-replete, low iron waters of the Alaska Gyre, where 494 

photolysis, coupled with potentially high DMS oxidation rates due to iron-induced oxidative stress (Sunda et al., 495 

2002), may explain the low predicted DMS concentrations (Fig. may drive strong DMS oxidation and explain the 496 

low predicted DMS concentrations (Fig. 8, 9). Further in situ work will be required to resolve the relative 497 

contributions of these biotic and abiotic processes to DMS cycling within these areas. 498 

Among all the statistical relationships we observed, perhaps the most striking was the association of DMS 499 

variability with SSHA, particularly along the Alaskan coast and in relation to mesoscale eddies (Okkonen et al., 500 

2001; Whitney et al., 2005; Fig. 8, 9). To our knowledge, only one other study has linked SSHA to DMS within 501 

the NESAP. Herr et al., (2019) demonstrated contrasting positive and negative correlations between DMS and 502 

SSHA in offshore and coastal waters, respectively, in general agreement with our results. Presently, the underlying 503 

mechanisms explaining the relationship between SSHA and DMS cycling remain unclear, yet it is likely that 504 

physical mixing processes are important. For example, enhanced biological production is known to be stimulated 505 

by eddy re-supply of iron and macronutrients via vertical advection and diffusion (Whitney et al., 2005; Bailey et 506 

al., 2008). These nutrient supply processes would also be expected to influence DMS cycling, as outlined above.  507 

Elevated abundances of high DMS-producers within anticyclonic eddies with positive sea surface height anomalies 508 

have been noted in the Sargasso Sea (Bailey et al., 2008), while eddy-induced vertical transport likely supplements 509 

nearshore, current-driven upwelling that can also resupply iron into the coastal waters of the NESAP (Cullen et al., 510 

2009; Freeland et al., 1984). In addition, eddy propagation can allow cross-shelf transport, distributing 511 

micronutrients to offshore waters (Fiechter and Moore, 2012), potentially contributing to the apparent elevated 512 

DMS concentrations in the outer Alaska gyre between the 10.5 and 12oC isotherms (Fig. 8). These mixing and 513 

transport mechanisms could partially explain the influence of elevated productivity in driving increased nearshore 514 
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and northern NESAP DMS concentrations (Fig. 4, 7-9), representing a novel source of DMS variability in this 515 

region.  516 

The taxonomic composition of plankton assemblages is also a likely source of variability influencing DMS 517 

cycling. Significant changes to DMS production and consumption rates within the NESAP are expected in response 518 

to variable microbial and phytoplankton taxonomy (Vila‐Costa et al., 2006; Lidbury et al., 2016; Sheehan and 519 

Petrou, 2020). Such taxonomic variability may, in turn, reflect transient community composition shifts in response 520 

to mixing (Bailey et al., 2008), nitrate (Bouillon and Miller, 2004), and iron availability (Levasseur et al., 2006; 521 

Merzouk et al., 2006). The monthly averaging used in our data processing removes autocorrelation associated with 522 

individual sampling expeditions (Wang et al., 2020), but it may preclude capturing these transient taxonomic 523 

responses. For instance, coccolithophores have long beenare believed to influence DMS cycling in the NESAP 524 

(Herr et al., 2019; Asher et al., 2011), yet monthly-averaged calcite distributions did not yield increased predictive 525 

strength for DMS concentrations in our analysis (see Sect. 2.6). Similarly2.6). However, as satellite PIC 526 

preferentially reflects the optical signature of detached coccoliths, monthly-averaged satellite PIC observations 527 

may represent the senescence of coccolithophore blooms, rather than active growth phases. Additionally, applying 528 

a chlorophyll-a based taxonomic algorithm (Hirata et al., 2011; Zeng et al., 2018) yielded no further explanation 529 

of the DMS variability predicted. The influence of taxonomic composition thus remains cryptic within our 530 

modelling framework.  531 

4.2 Implications of Improved Predictive Power 532 

 As noted above, both the RFR and ANN approaches demonstrate significantly improved accuracy over 533 

existing models, explaining up to 62% of observed DMS variability (Fig. 2, 3). This model performancepredictive 534 

skill is somewhat lower than that achieved in the prediction offor methane fluxes (Weber et al., 2019) and dissolved 535 

inorganic carbon dynamics (Roshan and DeVries, 2017), where R2 values ranging from 0.7 to 0.95 were obtained. 536 

Nonetheless, the dramatic accuracy improvement of our algorithms over traditional methods (Fig. 2, 3) encourages 537 

the further use of these techniques in modelling DMS distributions.  538 

Improved predictive accuracy provides opportunities to gain insight into the mechanisms driving DMS cycling. 539 

Our approach has yielded accurate DMS predictions at a 4 to 40-fold higher resolution then previous algorithms 540 

(Simó and Dachs, 2002; Vallina and Simó, 2007; Galí et al., 2018; Watanabe et al., 2007), enabling the description 541 

of mesoscale patterns and processes (Fig. 8). Extending these methods to sub-mesocalemesoscale resolution will 542 

enable investigations into the dependence of DMS on finer-scale hydrographic processes, particularly stratification 543 

and frontal dynamics, which have been increasingly linked to DMS cycling but remain unresolved mechanistically 544 
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(Royer et al., 2015; Asher et al., 2011). Moreover, coupling machine learning algorithms with biophysical and 545 

tracer export models holds promise to resolve the contributions of eddy dynamics and upwelling intensity on DMS 546 

variability, likely through nutrient availability and physiological mechanisms (Asher et al., 2011; Bailey et al., 547 

2008; Cullen et al., 2009). Recent work has also developed a new database of DMS apparent quantum yields (Galí 548 

et al., 2016). As the availability of these measurements increases, simultaneous mapping of both DMS quantum 549 

yields and concentrations will become feasible, enabling future studies to better parse out the contribution of 550 

photolysis, physical mixing, and biological drivers of DMS cycling.  551 

Although used in a diagnostic capacity here, our statistical models also hold potential for prognostic 552 

applications. Frameworks utilizing shorter time scales will likely be able to detect underlying mechanisms 553 

driving observed diel cycling (Galí et al., 2013; Royer et al., 2016), even if the underlying mechanisms are still 554 

unresolved. We note, however, that caution will need be exercised as machine learning models have a tendency 555 

to overfit noise (Weber et al., 2019; Roshan and DeVries, 2017; Wang et al., 2020), thus requiring appropriately 556 

large training datasets and the use of known “future” observations to validate predictive accuracy in this context. 557 

The significant variability in DMS cycling across oceanic regimes will likely also render predictions more 558 

successful at regional, rather than global, scales (Galí et al., 2018; Royer et al., 2015). Nonetheless, prognostic 559 

applications of these algorithms should be investigated to aid in the future development of improved mechanistic 560 

models.  561 

5 Conclusions 562 

We have presented a statistical approach tofor modelling DMS distributions, which provides significantly 563 

higher accuracypredictive skill than traditional methods (Simó and Dachs, 2002; Vallina and Simó, 2007; Galí et 564 

al., 2018; Watanabe et al., 2007; Lana et al., 2011), and yields estimates of the summertime NESAP DMS sea-air 565 

fluxes to 0.5-2.01.16±1.22 Tg S yr-1 in agreement with previous findings (Herr et al., 2019; Lana et al., 2011). Our 566 

results further underscore the importance of the NESAP to global DMS production and motivate further 567 

observations in traditionally under-sampled areas such as the Alaska Gyre and Aleutian Islands. Although we are 568 

unable to directly examine the mechanistic drivers of DMS variability, our findings suggest nutrient limitation, 569 

light-driven processes, and eddy-induced mixing are potentially key drivers of DMS cycling in the NESAP. Future 570 

studies will benefit from using such statistical algorithms, in conjunction with field-based process studies and 571 

mechanistic models, to better understand the underlying dynamics and driving factors in the oceanic DMS cycle. 572 
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Code availability. The analysis in this study makes extensive use of the Numpy, Matplotlib, & Scikit-Learn libraries 573 

in Python. The custom codes used can be downloaded at 574 

https://github.com/bjmcnabb/DMS_Climatology/tree/main/NESAP or are available upon request from the 575 

corresponding author. 576 

Data Availability. DMS observations and predictor datasets are described in the Methods with relevant links to 577 

repositories. Data from the Lana et al. (2011) climatology used for comparison in Table 23 are available via the 578 

SOLAs project (retrieved from www.bodc.ac.uk/solas_integration/implementation_products/group1/dms/), where 579 

the DMS sea-air fluxes were calculated as described in Sect. 2.3. The gridded climatologies produced from each 580 

algorithm in this study can be obtained at 581 

https://github.com/bjmcnabb/DMS_Climatology/tree/main/NESAP/Climatologies. 582 
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