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Abstract. Dimethyl sulfide (DMS) is a volatile biogenic gas with the potential to influence regional climate as a 8 

source of atmospheric aerosols and cloud condensation nuclei (CCN). The complexity of the oceanic DMS cycle 9 

presents a challenge in accurately predicting sea-surface concentrations and sea-air fluxes of this gas. In this study, 10 

we applied machine learning methods to model the distribution of DMS in the NE Subarctic Pacific (NESAP), a 11 

global DMS hot-spot. Using nearly two decades of ship-based DMS observations, combined with satellite-derived 12 

oceanographic data, we constructed ensembles of 1000 machine-learning models using two techniques, random 13 

forest regression (RFR) and artificial neural networks (ANN). Our models dramatically improve upon existing 14 

statistical DMS models, capturing up to 62% of observed DMS variability in the NESAP and demonstrating notable 15 

regional patterns that are associated with mesoscale oceanographic variability. In particular, our results indicate a 16 

strong coherence between DMS concentrations, sea surface nitrate (SSN) concentrations, photosynthetically active 17 

radiation (PAR) and sea surface height anomalies (SSHA), suggesting that NESAP DMS cycling is primarily 18 

influenced by heterogenous nutrient availability, light-dependent processes and physical mixing. Based on our 19 

model output, we derive summertime, sea-air flux estimates of 1.16±1.22 Tg S in the NESAP. Our work 20 

demonstrates a new approach to capturing spatial and temporal patterns in DMS variability, which is likely 21 

applicable to other oceanic regions. 22 

1 Introduction 23 

 Dimethyl sulfide (DMS), a volatile biogenic gas, is an important component of the marine sulfur cycle. 24 

This molecule is an important substrate for specific methylotrophic bacteria (Vila‐Costa et al., 2006; Lidbury et al., 25 

2016; Green et al., 2011; Hatton et al., 2012), with a recognized importance to marine microbial metabolism (Vila‐26 

Costa et al., 2006) and food web interactions (Nevitt, 2008). Moreover, DMS constitutes the largest fraction of 27 

bulk non-sea salt (NSS) sulfate emissions to the atmosphere (Bates et al., 1992; Ksionzek et al., 2016), where it is 28 

rapidly oxidized to form aerosols that act as cloud condensation nuclei (CCN; Charlson et al., 1987; Hegg et al., 29 

1991; Korhonen et al., 2008), potentially influencing regional albedo and climate (Charlson et al., 1987; Ayers and 30 

Cainey, 2007). Given the ecological roles of DMS and its potential influence on global climate, substantial research 31 

has focused on characterizing the dynamics of this compound in seawater. This work has revealed considerable 32 

complexity in the oceanic DMS cycle, which has limited the development of simple predictive algorithms 33 

describing its spatial and temporal variability. 34 

Oceanic DMS production and loss are tightly linked with the biological cycling of the related metabolites 35 

dimethyl sulfoniopropionate (DMSP) and dimethyl sulfoxide (DMSO). DMS is believed to be primarily derived 36 
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from the cleavage of DMSP (Kiene and Linn, 2000), but it can also be cycled through biological DMSO reduction 37 

(Spiese et al., 2009) and oxidation (Lidbury et al., 2016), and abiotically by light-dependent reactions (del Valle et 38 

al., 2007; Royer et al., 2016). DMS cycling is influenced by a suite of environmental and ecological factors, 39 

including release from phytoplankton cells into the dissolved pool via grazing (Dacey and Wakeham, 1986), viral 40 

lysis (Malin et al., 1998), or exudation. Oxidative stress generated by other variables such as temperature (Kirst et 41 

al., 1991), salinity (Dickson and Kirst, 1987), UV radiation (Kinsey et al., 2016), and nutrient limitation (Bucciarelli 42 

et al., 2013; Spiese & Tatarkov, 2014) may also enhance the cycling of DMSP and DMSO, which may regulate 43 

DMS concentrations through cascading oxidative pathways (Sunda et al., 2002). Finally, variability in surface wind 44 

fields can modulate the rates of DMS sea-air exchange, providing a significant source of heterogeneity in surface 45 

water DMS concentrations (Royer et al., 2016). These examples illustrate the complex non-linearity of the oceanic 46 

DMS cycle. 47 

Over the past two decades, a number of approaches have been developed to model DMS distributions at 48 

both global (Bock et al., 2021; Galí et al., 2018; Simó and Dachs, 2002; Vallina and Simó, 2007) and regional 49 

(Watanabe et al., 2007) scales. These models have been largely based on linear regression techniques estimating 50 

DMS concentrations using one or two predictors. To date, these studies have focused on a number of variables, 51 

including ratio of chlorophyll a (Chl-a) to mixed layer depth (MLD) (Simó and Dachs, 2002), sea surface 52 

temperature (SST) and nitrate (SSN) (Watanabe et al., 2007), solar radiation dose (SRD) (Vallina and Simó, 2007), 53 

photosynthetically active radiation (PAR) and modelled DMSP concentrations (Galí et al., 2018). Some of these 54 

models have demonstrated reasonably good performance at global scales, but their predictive power is generally 55 

diminished at regional scales (Herr et al., 2019), failing to accurately resolve important smaller-scale features 56 

(Belviso et al., 2003; Nemcek et al., 2008; Royer et al., 2015; Tortell, 2005b). 57 

In recent years, machine-learning algorithms have been increasingly used to derive predictions for non-58 

linear oceanic systems. For example, these methods have been successfully applied to describe the spatial and 59 

temporal patterns of global methane flux (Weber et al., 2019), nitrous oxide dynamics (Yang et al., 2020), and 60 

carbon export (Roshan and DeVries, 2017). To our knowledge, only two studies have thus far applied machine-61 

learning to describe DMS distributions, with one study focused on the Arctic (Humphries et al., 2012) and the other 62 

exploring a global domain (Wang et al., 2020). Despite producing algorithms with reasonable predictive skill, these 63 

two studies found limited success in resolving the underlying relationships driving DMS variability. This was 64 

partially due to a reliance on indirect sensitivity tests assessing the importance of predictor variables, and also, 65 

potentially, from the large-scale averaging applied to the underlying data fields (1x1o; 111 km2). Analyses at higher 66 
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spatial resolution may reveal mesoscale (roughly 20-200 km) and sub-mesoscale (roughly 1-20 km) patterns that 67 

would otherwise be obscured, thereby increasing predictive strength.  68 

Machine learning algorithms require large datasets for the training and testing process. Traditionally, DMS 69 

measurements were based on time-consuming ship-board analysis of discrete samples, resulting in sparse data 70 

coverage over much of the oceans. More recently, the development of several automated DMS measurement 71 

systems (Royer et al., 2014; Saltzman et al., 2009; Tortell, 2005a) has provided marine DMS observations at a 72 

significantly higher resolution, yielding greater spatial and temporal data coverage. These new datasets potentially 73 

enable new insights into small-scale and regional patterns in oceanic DMS distributions, as well as the 74 

characterization of oceanic DMS ‘hot-spots’. The northeast subarctic Pacific (NESAP) is a region of notably high 75 

DMS concentrations (Lana et al., 2011), with localized DMS accumulation in both highly productive coastal 76 

upwelling regimes, and off-shore, iron-limited waters ((Herr et al., 2019; Asher et al., 2017). Several factors have 77 

been proposed to account for the elevated DMS production in the NESAP, including increased primary productivity 78 

driven by nutrient entrainment and upwelling along coastal fronts (Asher et al., 2017), a dominance of high-DMSP 79 

producing prymnesiophytes and dinoflagellates in offshore waters, elevated microbial degradation of DMSP to 80 

DMS (Steiner et al., 2012; Royer et al., 2010), and the stimulation of DMS production in response to oxidative 81 

stress in low iron waters (Sunda et al., 2002; Herr et al., 2020). Although multiple studies have examined empirical 82 

relationships between DMS and various oceanographic factors in the NESAP (Watanabe et al., 2007; Herr et al., 83 

2019; Asher et al., 2017, 2011), these have all reported low predictive skill based on simple linear correlation 84 

approaches. To date, machine-learning approaches have not been applied to describe DMS distributions specifically 85 

in this region. 86 

 Here, we present an approach to modelling summertime NESAP DMS concentrations and sea-air fluxes 87 

using ensemble random forest regression (RFR) and artificial neural network (ANN) machine-learning algorithms. 88 

Our statistical models leverage field observations of DMS collected across the NESAP between 1997 to 2017 to 89 

generate a summertime DMS climatology mapped at a higher spatial resolution than previous efforts (Simó and 90 

Dachs, 2002; Vallina and Simó, 2007; Galí et al., 2018; Watanabe et al., 2007; Humphries et al., 2012; Wang et 91 

al., 2020). This new modelling approach represents a significant improvement over previous methods, and predicts 92 

regional DMS distributions that are coherent with underlying patterns of oceanographic variability. Most notably, 93 

the modelled DMS concentrations and sea-air fluxes can be explained, to a large extent, by regional and mesoscale 94 

patterns in nutrient supply and physical mixing dynamics. Based on the output of our models, we present 95 

summertime sea-air flux estimates in close agreement with previous studies (Herr et al., 2019; Lana et al., 2011), 96 

further highlighting the importance of the NESAP as a globally-significant sulfur source to the atmosphere. 97 
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2 Methods 98 

2.1 Data 99 

 A combination of data sources was used in training our machine-learning models to build a summertime 100 

DMS climatology. For this study, we restricted DMS measurements to the months of June, July and August between 101 

1997 to 2017 in the NESAP (43-60oN, 147-122oW). A total of 26,201 data points were obtained from the NOAA 102 

PMEL repository (https://saga.pmel.noaa.gov/dms/; last accessed: February 3, 2021), including measurements 103 

derived from purge and trap gas chromatography and membrane inlet mass spectrometry. The DMS data were 104 

binned to a monthly resolution, regardless of year, and averaged into 0.25 x 0.25o grid cells. 105 

 Predictor data used to build our machine-learning models included the following variables derived from 106 

the NASA Aqua MODIS satellite at level L3 monthly 0.042o resolution (R2018.0): sea surface temperature (SST), 107 

the ratio of normalized fluorescence line height to chlorophyll a (nFLH:Chl-a), instantaneous and daily observed 108 

photosynthetically active radiation (iPAR and PAR, respectively), particulate inorganic carbon (PIC), the 109 

absorption of gelbstof and detritus at 433 nm (acdm(443)), and diffuse attenuation coefficients at 490nm (Kd). 110 

Satellite-based PIC is considered as a proxy for the abundance of coccolithophores and other calcified 111 

phytoplankton (Franklin et al., 2010), whereas the acdm(443) product is considered a proxy for chromophoric 112 

dissolved organic matter (CDOM) (Nelson & Siegel, 2013), which is thought to be an important photosensitizer of 113 

DMS (see Sect. 4.1). For observations prior to 2004, data were from either SeaWiFS (0.083o resolution) or Terra 114 

MODIS (0.042o resolution) when SeaWiFS data were unavailable (e.g. nFLH and iPAR). As described below, Kd 115 

and PIC were later excluded from the final models (see Sect. 2.6), as they didn’t improve predictive skill. 116 

The following predictor variables were also used: 6-day averaged sea surface height anomalies (SSHA) 117 

derived from the TOPEX/Poseidon satellites at 0.17o resolution; Level L4 ESA Sentinal-3 Copernicus monthly-118 

averaged 0.25o wind speeds; net primary productivity (NPP) from the Vertically-Generalized Production Model 119 

(VGPM; Behrenfeld & Falkowski, 1997) at monthly 0.25o resolution; sea surface nitrate from the 2018 World 120 

Ocean Atlas at monthly 1o resolution (Garcia et al., 2019); and mixed-layer depth (MLD) and sea surface salinity 121 

(SSS) from the MIMOC climatology at 0.5o resolution (Schmidtko et al., 2013). Except for MIMOC data, all 122 

predictors were restricted in time to the corresponding years of DMS sampling (1997 to 2017). Net community 123 

productivity (NCP) was estimated from the algorithm of Li & Cassar, (2016; using NPP and SST). As with DMS 124 

observations, predictor data were interpolated to a 0.25 x 0.25o average monthly resolution using linear radial basis 125 

interpolation functions. Interpolation was constrained to the oceanic region by masking out land pixels using 126 

ETOPO2 bathymetric (0.033o resolution) binned at 0.25 x 0.25o resolution. We note that each of these data sources 127 

https://saga.pmel.noaa.gov/dms/
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are likely to have inherent uncertainties associated with either their collection or processing. Data sources can be 128 

found in Table 1.  129 

 130 

Table 1. Data sources and spatial and temporal resolution of predictor variables used to develop the RFR and ANN algorithms. Data 131 
processing levels are indicated where relevant. All variables were used as predictors (excluding bathymetry) and post-processed to 132 
monthly-averaged, 0.25o resolution (see sections 2.1-2.2). 133 

          

Variable 
Spatial 

Resolution (o) 

Temporal 

Resolution 
Source Level 

Sea Surface Temperature 

(SST) 
0.042 

6-Day 

Average 

SeaWiFS/AquaTERRA (1997-2003) 

or AquaMODIS(2004-2017): 

https://oceancolor.gsfc.nasa.gov/l3/ 

3 

Chlorophyll-Normalized 

Fluorescence (nFLH:Chl-

a) 

0.042 Monthly 

SeaWiFS/AquaTERRA (1997-2003) 

or AquaMODIS (2004-2017): 

https://oceancolor.gsfc.nasa.gov/l3/ 

3 

Instantaneous 

Photosynthetically Active 

Radiation (iPAR) 

0.042 Monthly 

SeaWiFS/AquaTERRA (1997-2003) 

or AquaMODIS (2004-2017): 

https://oceancolor.gsfc.nasa.gov/l3/ 

3 

Daily Photosynthetically 

Active Radiation (PAR) 
0.042 Monthly 

SeaWiFS/AquaTERRA (1997-2003) 

or AquaMODIS (2004-2017): 

https://oceancolor.gsfc.nasa.gov/l3/ 

3 

Particulate Inorganic 

Carbon (Calcite; PIC) 
0.042 Monthly 

SeaWiFS/AquaTERRA (1997-2003) 

or AquaMODIS (2004-2017): 

https://oceancolor.gsfc.nasa.gov/l3/ 

3 

Absorption of Gelbstof 

and Detritus at 433 nm 

(acdm(443)) 

0.042 Monthly 

SeaWiFS/AquaTERRA (1997-2003) 

or AquaMODIS (2004-2017): 

https://oceancolor.gsfc.nasa.gov/l3/ 

3 

Diffuse Attenuation 

Coefficients at 490 nm 

(Kd) 

0.042 Monthly 

SeaWiFS/AquaTERRA (1997-2003) 

or AquaMODIS (2004-2017): 

https://oceancolor.gsfc.nasa.gov/l3/ 

3 

Sea Surface Height 

Anomalies (SSHA) 
0.17 Monthly 

TOPEX/Poseidon: 

https://podaac.jpl.nasa.gov/dataset/SE

A_SURFACE_HEIGHT_ALT_GRID

S_L4_2SATS_5DAY_6THDEG_V_J

PL1812 

4 

Monthly Wind Speeds 0.25 Monthly 

ESA Sentinal-3 Copernicus: 

https://resources.marine.copernicus.eu/

?option=com_csw&view=details&pro

duct_id=WIND_GLO_PHY_CLIMAT

E_L4_REP_012_003 

N/A 

https://oceancolor.gsfc.nasa.gov/l3/
https://oceancolor.gsfc.nasa.gov/l3/
https://oceancolor.gsfc.nasa.gov/l3/
https://oceancolor.gsfc.nasa.gov/l3/
https://oceancolor.gsfc.nasa.gov/l3/
https://oceancolor.gsfc.nasa.gov/l3/
https://oceancolor.gsfc.nasa.gov/l3/
https://podaac.jpl.nasa.gov/dataset/SEA_SURFACE_HEIGHT_ALT_GRIDS_L4_2SATS_5DAY_6THDEG_V_JPL1812
https://podaac.jpl.nasa.gov/dataset/SEA_SURFACE_HEIGHT_ALT_GRIDS_L4_2SATS_5DAY_6THDEG_V_JPL1812
https://podaac.jpl.nasa.gov/dataset/SEA_SURFACE_HEIGHT_ALT_GRIDS_L4_2SATS_5DAY_6THDEG_V_JPL1812
https://podaac.jpl.nasa.gov/dataset/SEA_SURFACE_HEIGHT_ALT_GRIDS_L4_2SATS_5DAY_6THDEG_V_JPL1812
https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=WIND_GLO_PHY_CLIMATE_L4_REP_012_003
https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=WIND_GLO_PHY_CLIMATE_L4_REP_012_003
https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=WIND_GLO_PHY_CLIMATE_L4_REP_012_003
https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=WIND_GLO_PHY_CLIMATE_L4_REP_012_003
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Net Primary Productivity 

(NPP) 
0.25 Monthly 

Vertically-Generalized Production 

Model (VGPM): 

http://www.science.oregonstate.edu/oc

ean.productivity/ 

N/A 

Sea Surface Nitrate (SSN) 1 Monthly 

World Ocean Atlas 2018 (WO18): 

https://www.ncei.noaa.gov/access/worl

d-ocean-atlas-2018/ 

N/A 

Mixed Layer Depth 

(MLD) 
0.5 Monthly 

MIMOC Climatology: 

https://www.pmel.noaa.gov/mimoc/ 
N/A 

Sea Surface Salinity 

(SSS) 
0.5 Monthly 

MIMOC Climatology: 

https://www.pmel.noaa.gov/mimoc/ 
N/A 

Bathymetry 0.033 N/A 
ETOPO2: 

https://rda.ucar.edu/datasets/ds759.3/ 
N/A 

  134 

http://www.science.oregonstate.edu/ocean.productivity/
http://www.science.oregonstate.edu/ocean.productivity/
https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/
https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/
https://www.pmel.noaa.gov/mimoc/
https://www.pmel.noaa.gov/mimoc/
https://rda.ucar.edu/datasets/ds759.3/
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 135 

2.2 Machine-learning models 136 

 We compared the performance of random forest regression (RFR) and artificial neural network (ANN) 137 

models at the regional scale. The RFR algorithm is built upon decision tree models, which operate by iteratively 138 

generating decision rule nodes that dictate which branch the tree will progress through in the next iteration. The 139 

RFR model builds an ensemble, or “forest”, of these trees, where each tree is trained on a bootstrapped (i.e. 140 

randomly subsampled) set of predictors, and the resulting predictions are averaged among the trees to reduce 141 

overfitting to noise (Brieman, 2001). In contrast, the ANN model is built as a fully connected network of nodes, or 142 

“neurons”, in which each neuron consists of an activation function and is connected to other neurons by iteratively-143 

determined weights (Gardner and Dorling, 1998). Both algorithms are advantageous because they make no prior 144 

assumptions on the data distributions and can fit non-linear data (Brieman, 2001; Gardner and Dorling, 1998). 145 

Both our ANN and RFR models followed a similar design to Weber et al. (2019). Our ANNs were built 146 

using a feed-forward framework consisting of a single input node, two hidden layers each consisting of 30 neurons 147 

(using a sigmoidal activation function), and a single output layer (using a linear activation function). A Bayesian 148 

L2 (Ridge) regularization parameter was tuned to minimize overfitting and the L-BFGS algorithm was used to 149 

solve for weights (Byrd et al., 1995). Each individual decision tree within the RFR was trained using the standard 150 

CART algorithm (Brieman, 2001) and constrained to a max depth of 25 decision splits, the simplest configuration 151 

determined to perform well and minimize overfitting. These models were built using the Scikit-Learn (v0.24.2) 152 

implementation of the ANN (“MLPRegressor”) and RFR (“RandomForestRegressor”) algorithms in Python 3.8 153 

(see Code Availability). 154 

In both cases, the models were built as an ensemble of either 1000 individual decision trees or individual 155 

networks to minimize bias in predictions. The input data were randomly divided for use in model training (80%) 156 

and external testing (20%). Although RFR is not sensitive to large differences in predictor variance, predictor data 157 

were standardized in both models by normalization to their respective mean and standard deviation. Additionally, 158 

we applied an inverse hyperbolic sine (IHS) transformation to the DMS data prior to training (Weber et al., 2019). 159 

Testing results indicated that IHS yielded slightly better performance than the more traditional logarithmic 160 

transformations for both of our models. 161 
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2.3 Sea-to-air fluxes 162 

Sea-air DMS fluxes (FDMS, µmol m-2 d-1) were calculated from the monthly-averaged observed and 163 

modelled DMS values for June, July and August. FDMS was calculated using the gas transfer velocity (k, cm hr-1) 164 

following the modified approach of Webb et al. (2019): 165 

𝐹𝐷𝑀𝑆 = 𝑘(𝐷𝑀𝑆)(0.24)           (1) 166 

where the factor of 0.24 converts to the values to daily fluxes. The gas transfer velocity has typically been calculated 167 

using a non-linear parameterization (Nightingale et al., 2000), but recent work has suggested a linear 168 

parameterization is more appropriate for DMS (Bell et al., 2013; Blomquist et al., 2017; Zavarsky et al., 2018). 169 

Since satellite-derived predictors are used to build our models, we calculated the gas transfer velocity using the 170 

linear Goddijn-Murphy et al. (2012) k parameterization, which is both derived from satellite altimeter data and 171 

normalized to a Schmidt number of 660: 172 

𝑘𝑤,660 = 2.1𝑈10 − 2.8            (2) 173 

Where U10 is the wind speed (m s-1) at 10 m above sea surface. 174 

Regional summertime fluxes (𝐹̅𝐷𝑀𝑆, Tg) were calculated as the average (±SD) quantity of DMS-sulfur 175 

emitted over 92 days (June, July and August) through the area of the mapped study region (1.28x107 km2 or 85.0% 176 

of the total bounded area). 177 

2.4 Comparison against existing algorithms  178 

Simple linear regression (LR) and multiple linear regression (MLR) models were built for comparison 179 

against the machine-learning algorithms. We also tested the performance of our RFR and ANN models against the 180 

published algorithms of Simó & Dachs (2002), Watanabe et al. (2007), Vallina & Simó, (2007), and Galí et al. 181 

(2018) (hereafter referred to as SD02, W07, VS07, and G18, respectively). Solar radiation dose, SRD, used in the 182 

VS07 algorithm was calculated using MLD as described by Vallina & Simó (2007): 183 

𝑆𝑅𝐷 =
𝑃𝐴𝑅

𝐾𝑑×𝑀𝐿𝐷
× (1 − 𝑒−𝐾𝑑×𝑀𝐿𝐷)         (4) 184 

Each of the four algorithms was assessed using both their original coefficients and coefficients tuned to 185 

our NESAP dataset using nonlinear least-squares optimization at both 0.25o and 1o spatial resolution (Table 2). In 186 

each case, the algorithms were run using the same monthly-averaged predictors used to develop the RFR and ANN 187 

ensembles (see Sec. 2.1). Predictors were spatially matched to either the full DMS dataset (i.e. all monthly averaged 188 

DMS observations) or to only the Testing partitioned dataset (see Sec. 2.2) for direct comparison with the RFR and 189 

ANN ensemble performance (Fig. 2, Table 2). 190 
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2.5 Controls on DMS variability 191 

 Principal component analysis (PCA) was applied to assess the relationships between DMS and the nine 192 

predictors used to build the RFR and ANN ensembles. Additionally, non-parametric Spearman rank correlations 193 

were calculated between each variable and both the modelled and observed DMS concentrations. Correlation 194 

analysis was also extended to assess the role of taxonomy on predicted DMS concentrations, using the outputs of 195 

a chlorophyll-a based taxonomic algorithm by Hirata et al. (2011) with NESAP-tuned coefficients (Zeng et al., 196 

2018). 197 

2.6 Sensitivity Tests and Predictor Selection 198 

 To inform our selection of grid size, we assessed the performance of both the RFR and ANN models using 199 

grid cells ranging from 0.25 to 5o (Fig. 1). From this analysis, we found that model accuracy was highest at 0.25o 200 

resolution (see Sect. 3.1). Smaller grid sizes would presumably further improve model accuracy, but at a 201 

significantly higher computational cost.  202 

We also tested the influence of other biological predictor variables on the performance of the RFR and 203 

ANN models, using either NCP, NPP, Chl-a, or PIC. These sensitivity tests indicated no significant difference 204 

between the various biological predictor variables, although accuracy was slightly reduced when PIC was used. 205 

We therefore selected NCP as the biological predictor variable within our model framework. We also removed Kd 206 

as a predictor variable after further sensitivity testing indicated that its exclusion slightly improved results. 207 

The inclusion of nFLH:Chl-a represents a proxy for iron limitation (see Sect. 4.1). However, fluorescence 208 

yields corrected for non-photochemical quenching (NPQ) have been suggested to yield a better iron limitation 209 

proxy than nFLH:Chl-a (Behrenfeld et al., 2009). We therefore calculated NPQ-corrected fluorescence yields (φf) 210 

by: 211 

φ𝑓 =
𝑛𝐹𝐿𝐻

𝐶ℎ𝑙−𝑎×𝛼×𝑆
×

𝑖𝑃𝐴𝑅

𝑖𝑃𝐴𝑅
            (5) 212 

where 𝛼 = 0.0147 × 𝐶ℎ𝑙 − 𝑎−0.316 and S = 100 mW cm-2 µm-1 sr1 m as described by Behrenfeld et al. (2009). Our 213 

tests indicated nFLH:Chl-a yielded slightly improved performance overall, whereas φf decreased both models’ 214 

performance. We therefore retained nFLH:Chl-a and excluded φf in our final model design. 215 

 216 

 217 
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 218 

Fig. 1. Sensitivity of RFR and ANN models to grid size resolution. DMS fluxes (black) and R2 values (red) derived from sensitivity 219 
tests of (a) RFR and (b) ANN models to pixels resolutions of 0.25-5o. The negative R2 values observed at the lowest resolution (largest 220 
grid cells) indicate that the predicted values explain less variance than the overall mean of the dataset. 221 

3 Results 222 

3.1 Model evaluation 223 

 To benchmark the performance of our RFR and ANN models, we first evaluated the predictive skill of four 224 

existing empirical DMS algorithms (SD02, W07, VS07, & G18), in addition to simple and multiple linear 225 

regression models. Previous studies have demonstrated that these empirical algorithms show strong predictive skill 226 

(R2=0.53-0.84) over large scales and in some oceanic regions (Simó and Dachs, 2002; Galí et al., 2018; Watanabe 227 

et al., 2007), but significantly poorer performance in the NESAP (Herr et al., 2019). Consistent with these results, 228 

we found that the SD02, W07, VS07, and G18 did not accurately predict NESAP DMS distributions, even with 229 

regionally tuned coefficients improving performance (Fig. 2, R2=0-0.01 at 0.25x0.25o; Table 2, r=-0.15-0.36). We 230 

also found that simple and multiple linear regressions performed poorly, yielding virtually no explanatory power 231 

for surface water DMS distributions in the NESAP (R2=0-0.05; Fig. 2, 3).  232 

 233 

Table 2. Performance of statistical DMS algorithms on NESAP DMS observations binned to monthly 1o and 234 

0.25o resolution. Pearson correlation coefficients (r) and root mean square error (nM) are obtained from the 235 
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SD02, VS07, W07 and G18 algorithms (see 2.4) using either their original published coefficients or 236 

coefficients derived from non-linear least squares optimization. Algorithm performance is evaluated using 237 

either the full monthly-binned observational dataset or using the Testing partitioned dataset (see Sec. 2.2). 238 

 SD02 VS07 W07 G18 

Original Optimized Original Optimized Original Optimized Original Optimized 

1o 

All data 

r = -0.09 

RMSE = 18.03 

r = 0.17 

RMSE = 4.82 

r = -0.03 

RMSE = 6.67 

r = 0.03 

RMSE = 4.96 

r = -0.10 

RMSE = 11.74 

r = 0.07 

RMSE = 4.83 

r = 0.02 

RMSE = 6.77 

r = 0.16 

RMSE = 4.84 

1o 

Testing 

dataset 

r = -0.22 

RMSE = 19.09 

r = 0.36 

RMSE = 3.34 

r = 0.11 

RMSE = 5.36 

r = 0.20 

RMSE = 3.47 

r = -0.03 

RMSE = 10.46 

r = 0.02 

RMSE = 3.47 

r = -0.15 

RMSE = 6.19 

r = 0.30 

RMSE = 3.40 

0.25o 

All data 

r = -0.05 

RMSE = 11.02 

r = 0.12 

RMSE = 7.84 

r = -0.09 

RMSE = 9.57 

r = 0.11 

RMSE = 7.88 

r = -0.09 

RMSE = 13.02 

r = 0.04 

RMSE = 7.80 

r = 0.06 

RMSE = 8.42 

r = 0.09 

RMSE = 7.88 

0.25o  

Testing 

dataset 

r = -0.03 

RMSE = 9.79 

r = 0.07 

RMSE = 6.79 

r = -0.09 

RMSE = 8.60 

r = 0.10 

RMSE = 6.79 

r = -0.06 

RMSE = 12.02 

r = 0.04 

RMSE = 6.78 

r = 0.04 

RMSE = 7.47 

r = 0.08 

RMSE = 6.80 
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 240 

Fig. 2. Taylor Diagram showing comparative performance metrics of each individual Random Forest Regression (RFR) 241 
and Artificial Neural Network (ANN) model (1000-model ensembles) against multiple linear regression (MLR) and 242 
other statistical DMS models (See sections 2.1 and 2.4). The Pearson correlation coefficients (“Correlation”; outer 243 
radius), root mean squared error (“RMSE”; red radial contours), and standard deviations (SDs; grey radial contours 244 
from origin) are all computed with respect to the observed DMS samples after inverse hyperbolic sine (IHS) 245 
transformation. The reference of a perfect model fit is shown with a gold star. SDs of the model outputs are normalized 246 
to the SDs of the DMS observations. RMSE represents a normalized trigonometric derivation from both the correlation 247 
coefficients and normalized SDs. Performance of the SDO2, W07, VS07, and G18 algorithms reported here are 248 
calculated using regionally tuned coefficients to the NESAP derived from non-linear least-squares optimization (see 249 
section 2.4). 250 

 Relative to other published modelling approaches, both the RFR and ANN models dramatically improved 251 

the representation of NESAP DMS variability, achieving significantly higher predictive accuracy (Fig. 2, 3). The 252 

collective ensembles of both the RFR and ANN models yielded strong performance, explaining up to 62% of the 253 

observed DMS variability (R2=0.61-0.62; Fig. 3). For individual models within the ensembles, the ANN method 254 
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provided slightly better results (R2=0.16-0.50), compared to the individual RFR models (R2=0.16-0.43). However, 255 

predicted DMS concentrations and sea-air fluxes derived from the ANN ensembles were more sensitive to the 256 

spatial resolution used, although the predictive accuracy of both models degraded significantly with coarser 257 

resolutions (Fig. 1).  258 

 259 

 260 

Fig. 3. Performance of three modelling approaches in predicting observed DMS distributions; (A) multiple linear 261 
regression (MLR) (B) ensemble of Artificial Neural Networks (ANN) and (C) ensemble of Random Forest Regression 262 
(RFR). For consistency, all predictions are partitioned by the Training and Testing datasets used to build the ensembles 263 
(see section 2.2). Model performance (R2) is computed only for the Testing dataset predictions. The dashed line 264 
demonstrates a 1:1 relationship. Modelled DMS concentrations depicted range from 0.4-84.3 (RFR, nM) and 0.3-74.6 265 
(ANN, nM). 266 

3.2 DMS distributions and sea-air fluxes 267 

In both the RFR and ANN methods, the predicted spatial distribution of DMS was generally consistent with 268 

observations (Fig. 4a,c,d). The average model derived DMS concentrations was 4.0 ± 2.1 nM and 4.7 ± 3.0 nM 269 

(mean ± SD) for the RFR and ANN ensemble models, respectively, with a similar range from 0.3 to 84.3 nM.  In 270 

both models, the highest DMS concentrations were largely constrained to coastlines and within the Alaska Gyre 271 

adjacent to the Aleutian Islands (Fig. 4b-c, 8C). The greatest discrepancy between DMS concentrations from the 272 

two models was observed in these regional ‘hotspots’, where the ANN models emphasize high DMS within the 273 

Alaska gyre, while the RFR models emphasize elevated coastal DMS concentrations (Fig. 4b). On average, the 274 

models deviated from each other by 0.49 nM, with the greatest offsets observed in an area of particularly sparse 275 

DMS observations in the Alaska Gyre (Fig. 4a,b). Future observational data in this region should help improve 276 

model agreement. 277 

 278 

 279 
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 280 

Fig. 4. Predicted maps of sea surface DMS concentrations and sea-air fluxes. (a) Ship-based observations of mean summertime 281 
(June-August) DMS concentrations used to construct the predictive models. (b) Differences between the (c) Random Forest 282 
Regression (RFR) and (d) Artificial Neural Network (ANN) ensemble predicted DMS concentrations. (e,f) DMS sea-air fluxes 283 
derived from the predicted DMS concentrations. Colormap ranges are restricted to illustrate trends, with <1% of DMS data 284 
exceeding the colorbar limits. The inset map in (b) shows the NESAP study region as a shaded green patch in a global orthographic 285 
projection. 286 

 287 

Sea-air DMS fluxes (Fig. 4e,f) derived from ANN predictions were 18% higher, on average, than RFR 288 

predictions, largely due to higher predicted values in the Alaska Gyre (Fig. 4d-e, Table 3). The distribution of ANN 289 

sea-air fluxes was also closer to ship-based observations (Fig. 5). Predicted regional fluxes ranged from 0.8 to 167 290 

µmol m-2 d-1 between the two models (Fig. 4e,f, 5), with the highest predicted DMS emissions in August, when 291 

derived sea-air fluxes were approximately 1.6 to 2-fold greater than in June and July (Table 3). Our models yielded 292 

a summertime integrated sea-air flux of 1.16±1.22 Tg DMS-derived sulfur, which is consistent with the Lana et al. 293 

(2011) climatological estimate of 1.64 ± 0.51 Tg  (Table 3).  294 

Table 3. Monthly and mean summertime NESAP sea-air DMS fluxes. Total cumulative fluxes of DMS-derived sulfur (Tg, 295 

mean ± SD) are calculated from the Random Forest Regression (RFR) and Artificial Neural Network (ANN) model predictions 296 

(based on an ensemble of 2000 models). Total cumulative NESAP sea-air flux derived from the Lana et al. (2011) climatology 297 

is shown for comparative purposes. 298 

  Summertime Sulfur Emissions 
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RFR ANN This Study 
Lana et al. 

(2011) 

µmol m-2 d-1 µmol m-2 d-1 Tg S Tg S 

June 8.0 ± 5.3 8.0 ± 5.5 0.29 ± 0.19 0.59 ± 0.24 

July 8.2 ± 3.5 9.7 ± 4.6 0.33 ± 0.14 0.41 ± 0.16 

August 12.7 ± 3.5 16.5 ± 4.6 0.54 ± 0.25 0.65 ± 0.25 

June-August 9.7 ± 2.8 11.4 ± 4.0 1.16 ± 0.35 1.64 ± 0.51 

 299 

 300 

 301 

 302 

Fig. 5. Histograms of DMS sea-air flux distributions derived from the 1000-model ensemble random forest regression (RFR) and 303 
artificial neural network (ANN) predictions as well as cruise observations (Obs.). The sample sizes of both models are equivalent 304 
(n= 49,632) and are significantly higher than the observational dataset (n=2063). Note that the distribution is restricted to show 305 
trends, with a maximum flux of 238 nM (Obs.). The upper tail (>50 nM) consists of only 2.9% (Obs.) and <0.1% (both RFR and 306 
ANN) of the values. Note that the ANN better predicts the upper tail of DMS observations greater than 20 nM.   307 

 308 
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3.4 Drivers of DMS variability 309 

In addition to modelling the spatial and temporal distribution of surface water DMS in the NESAP, we 310 

examined the influence of different oceanographic variables as model predictors. As expected based on previous 311 

work (Herr et al., 2019), no single predictor was found to exert a dominant control on modelled DMS distributions 312 

from either the RFR or ANN models (Fig. 6, 7). Rather, the relationship between DMS and other oceanographic 313 

variables exhibited significant region-specific patterns. One of the most compelling regional signatures was the 314 

apparent relationship between DMS and SSHA. In both models, we found significant positive correlations between 315 

DMS and SSHA (ρ=0.35, 0.42 for RFR and ANN, respectively) across the full spatial domain, with a particularly 316 

notable relationship along the northern Alaskan coastline (Fig. 8, 9). Here, strong winds (Fig. 9j-l), coupled with 317 

the northeastern Alaska current flow, produce two characteristic oceanographic features in the NESAP: strong, 318 

semi-permanent mesoscale eddies collectively referred to as the Haida, Sitka and Yakutat eddies (Fig. 8a), and the 319 

formation of the high nutrient, low chlorophyll (HNLC) Alaska Gyre (Fig. 8c; Okkonen et al., 2001; Whitney et 320 

al., 2005). Both the monthly (Fig. 9a-i) and summertime-averaged (Fig. 8a,b) RFR and ANN-derived DMS 321 

concentrations are low where these downwelling eddies form. In contrast, elevated DMS concentrations were 322 

associated with the negative SSHA coastal upwelling areas (Fig. 8a,b), where phytoplankton productivity is 323 

stimulated by nutrient inputs into the mixed layer.  324 
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 325 

 326 

Fig. 6. Principal Component Analysis (PCA) showing the relationships between variables used to construct the 327 
predictive algorithms. Eigenvectors (arrows) are superimposed over the principal components (PCs; data points) for 328 
the first two significant modes obtained from PCA. PCs are normalized and clustered by month (June-August, see 329 
legend for colors), while the eigenvectors are grouped by ensemble model predictions (gold) and nine predictor 330 
variables (black). The percentage of variance explained by each mode is indicated along the axes. 331 
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 332 

 333 

Fig. 7. Heatmap of Spearman rank correlations (ρ). (a) Correlations of pooled data (June-August) for DMS 334 
observations (Obs.), RFR and ANN predictions per variable. (b) Correlations per month for the RFR and ANN DMS 335 
predictions. All model correlations are computed on the 1000-model ensembles.  336 
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Modelled DMS concentrations also significantly correlated with hydrographic frontal patterns. We found 337 

significant correlations between DMS and SST (ρ=0.36, 0.35 for RFR and ANN, respectively) which suggested 338 

the central Alaska Gyre and offshore of Vancouver Island are areas of elevated DMS variability (Fig. 8b). Both 339 

models predict high DMS levels in the northern frontal zone of the gyre (140oW-145oW) between the 10.5 and 340 

12oC isotherms and the southern frontal zone between (42oN-45oN) between the 13.5 and 15oC isotherms (Fig. 341 

8b,c). By comparison, our models suggest that DMS concentrations are predominantly low in relation to high sea 342 

surface nitrate (SSN) concentrations within the HNLC gyre (Fig. 8, 9). As discussed below, the relationship 343 

between DMS and macronutrient concentrations in the HNLC waters of the central Gulf of Alaska could indicate 344 

an important role for iron limitation as a controlling factor in the DMS cycle. The presence of elevated summer 345 

nutrients in offshore waters is taken as a proxy for iron limitation, which increases over the course of the summer 346 

growing season.  347 
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 348 

Fig. 8. Physical drivers of summertime (June-August) NESAP DMS distributions. (a) Sea surface height anomalies 349 
(SSHA), (b) predicted DMS concentrations derived from the mean of all 2000 RFR and ANN machine learning models, 350 
(c) sea surface nitrate (SSN) and (d) photosynthetically active radiation (PAR). Contours in (b,c) show sea surface 351 
temperature (SST) isotherms. Coherent features of elevated sea-surface height indicate the presence of mesoscale 352 
eddies, whereas nearshore low SSHAs features reveal areas of upwelling. Colormaps ranges are restricted to illustrate 353 
trends with <1% of data exceeding the colorbar limits. 354 
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Other variables appear to exhibit a more localized or minimal influence on DMS cycling. For instance, 355 

both NCP and DMS are elevated in productive nearshore waters, but NCP generally correlates weakly with both 356 

RFR- and ANN-derived DMS concentrations (ρ=0.08, 0.07 for RFR and ANN, respectively). It should be noted, 357 

however, the empirically-derived NCP estimates may carry more uncertainty than other predictors obtained from 358 

direct satellite observations (Li and Cassar, 2016). Similarly to NCP, modelled phytoplankton taxonomic 359 

composition (Hirata et al., 2011; Zeng et al., 2018) was not significantly correlated with predicted DMS 360 

concentrations (ρ<0.1). Although strong, persistent winds appear to sustain low DMS concentrations off the coast 361 

of Oregon and Vancouver Island (Fig. 9), wind speeds only weakly correlate with DMS overall for the region (ρ=-362 

0.15 and -0.12 for RFR and ANN, respectively). Additionally, high PAR in these areas correspond with low DMS 363 

concentrations (Fig. 6d) and there is an overall negative correlation between PAR and DMS for the region (Fig. 6, 364 

7; ρ=-0.21 and -0.27 for RFR and ANN, respectively). Finally, despite hypothesized links between DMS cycling 365 

and iron limitation in the NESAP (Levasseur et al., 2006; Merzouk et al., 2006; Royer et al., 2010), nFLH:Chl-a 366 

ratios (taken as a proxy for phytoplankton iron stress; Behrenfeld et al., 2009; Westberry et al., 2013) did not exhibit 367 

any coherent spatial patterns, and only weakly correlated to our modelled DMS concentrations (ρ=0.15 and  ρ=0.16 368 

for RFR and ANN, respectively).  369 

 370 
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 371 

Fig. 9. Predicted spatial and temporal (June-August) DMS distribution in relation to underlying oceanographic 372 
variables. DMS concentrations predicted from (a-c) the Random Forest Regression (RFR) and (d-f) the Artificial 373 
Neural Network (ANN) ensemble models are mapped alongside the monthly-averaged (g-i) sea surface height anomalies 374 
(SSHA), (j-l) wind speeds (Wind), and (m-o) sea surface nitrate (SSN) for each month. Colormap ranges are restricted 375 
to illustrate trends, with at most 1.5% of the data beyond the colorbar limits. 376 

4 Discussion 377 

The relative sparsity of DMS data in many oceanic regions and the complexity of DMS cycling have limited 378 

previous attempts to model oceanic distributions of this compound (Simó and Dachs, 2002; Vallina and Simó, 379 

2007; Galí et al., 2018; Watanabe et al., 2007; Herr et al., 2019). Taking advantage of expanding data resources, 380 

we employed a new approach to statistically describe DMS distributions in the NESAP. Our results show that both 381 

our RFR and ANN models substantially improved predictive strength over traditional empirical approaches (Fig. 382 

2, 3), while identifying several key DMS relationships and regional patterns across the NESAP (Fig. 8, 9). Although 383 

our statistical approach does not directly elucidate the underlying mechanisms driving these relationships, and not 384 

all variability in predictors may be captured at the single spatial scale used here, we can nonetheless make some 385 
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reasonable inductive inferences. These inferences are discussed below, along with the implications of the improved 386 

predictive performance observed here. 387 

4.1 Relationships with other oceanographic variables 388 

Among the more prominent spatial relationships we observed was the coherence between predicted DMS 389 

concentrations and SST, and the negative correlation between predicted DMS concentrations and sea surface nitrate 390 

(SSN) within and surrounding the Alaska Gyre (Fig. 6-9). Notably, regional SSN, NCP and Chl-a distributions did 391 

not vary appreciably inside versus outside the gyre, and these variables were poorly correlated with DMS 392 

concentrations (r=-0.02, ρ=0.08 with NCP,  r=0.09, ρ=-0.12 with Chl-a). This suggests that the patterns in surface 393 

DMS across the Alaska Gyre were not simply driven by changes in phytoplankton biomass or productivity. The 394 

DMS-nitrate relationship may be partially explained by the so-called sulfur overflow hypothesis (Stefels, 2000), 395 

which suggests that nutrient-limited phytoplankton increase DMSP production and its subsequent cleavage to 396 

DMS, in order to regulate intracellular sulfur quotas when protein synthesis is limited (Hatton & Wilson, 2007; 397 

Kinsey et al., 2016; Simó & Vila-Costa, 2006; Spiese & Tatarkov, 2014; Stefels, 2000).  This mechanism may help 398 

explain the higher predicted DMS concentrations at the northern extent of the Alaska Gyre, where SSN 399 

concentrations begin to decrease (Fig. 6). Nutrient-dependent effects may also be important in explaining seasonal 400 

variability, as the DMS-nitrate relationship becomes positive in August as phytoplankton growth becomes 401 

increasingly nutrient limited (Fig. 7b).  402 

The apparent relationship between DMS and nitrate could also result indirectly from the underlying effects of 403 

iron limitation. Excess summertime nitrate concentrations are taken as evidence for iron limitation in the NESAP 404 

(Boyd and Harrison, 1999; Boyd et al., 2004; Martin and Fitzwater, 1988; Whitney et al., 2005). Under iron-limiting 405 

conditions, DMS is thought to function, together with DMSP and DMSO, as part of an antioxidant response to 406 

oxidative stress (Sunda et al., 2002). This hypothesis suggests that iron limitation should stimulate net production 407 

of DMS and DMSP (Bucciarelli et al., 2013; Sunda et al., 2002), which is inconsistent with the overall negative 408 

dependence predicted between DMS and SSN (Fig. 8b,c). 409 

Satellite-based, chlorophyll-normalized fluorescence has been suggested as an additional proxy for iron 410 

limitation. Low iron conditions can lead to both a reduction in photosystem I relative to photosystem II (Strzepek 411 

and Harrison, 2004), and an apparent increase in energetically-decoupled light harvesting complexes (Allen et al., 412 

2008; Behrenfeld & Milligan, 2013), resulting in elevated fluorescence-to-chlorophyll a ratios (nFLH:Chl-a) 413 

(Westberry et al., 2013). To our knowledge, this proxy has not been widely investigated with respect to DMS 414 

cycling. In our analysis, we found that nFLH:Chl-a ratios, and the NPQ-corrected fluorescence yields (φf), exhibited 415 
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only weak positive correlations with the RFR and ANN predicted DMS concentrations (Fig. 6, 7). Moreover, 416 

neither of these metrics exhibited coherent spatial patterns with predicted DMS concentrations, suggesting a limited 417 

role for iron in driving spatial patterns of DMS cycling within the NESAP. However, it is important to note the 418 

potential temporal mismatch between our monthly DMS predictions and these more instantaneous metrics of iron 419 

limitation, which reflect short-term physiological changes (days to weeks; Behrenfeld et al., 2009; Westberry et 420 

al., 2019) that depend on sporadic iron loading (e.g. aerosol deposition; Mahowald et al., 2009). Indeed, both natural 421 

and artificial iron-fertilization events have thus far been detected from satellite-derived nFLH:Chl-a at daily 422 

resolution (Westberry et al., 2013), in contrast to the monthly-averaged data used here. Therefore, modelling 423 

frameworks utilizing shorter temporal scales may find a clearer connection between DMS cycling and iron 424 

limitation using the chlorophyll-a fluorescence proxy.   425 

Beyond nutrient limitation effects, ambient light fields are believed to exert significant direct and indirect 426 

effects on DMS cycling (del Valle et al., 2007). At the community level, high irradiance may inhibit bacterial 427 

consumption of DMS (Slezak et al., 2001; Toole et al., 2006; Lizotte et al., 2012), while covarying changes in 428 

mixing and high irradiance can induce transient selectivity for high-light acclimated species and influence the 429 

proportion of  high DMS/P producers within assemblages (Galí et al., 2013; Vance et al., 2013). Ultraviolet 430 

radiation has been noted to induce high DMS production and turnover through a proposed cascading oxidation 431 

pathway, which acts to remove harmful reactive oxygen species (Sunda et al., 2002; Archer et al., 2010). In contrast, 432 

more recent evidence has indicated the potential for elevated DMS production in the NESAP from the reduction of 433 

DMSO due to light-induced oxidative stress over diurnal cycles (Herr et al., 2020). Although our modelled DMS 434 

concentrations exhibited an overall negative correlation with PAR (Fig. 6, 7a), monthly correlations indicate a 435 

stronger positive correlation between DMS and PAR in June, where the summer solstice drives high irradiance. In 436 

contrast, July and August exhibit much weaker negative correlations as the summer bloom declines (Fig. 7b). These 437 

results provide indirect evidence that light-induced oxidative stress, possibly coupled with inhibition of microbial 438 

DMS consumption, may influence regional NESAP DMS distributions, particularly early in the summer.  439 

The overall negative association of DMS and incident light (Fig. 6,7a) may also indicate a role for photolysis 440 

in DMS loss through (del Valle et al., 2007). Since DMS does not have strong light absorption properties, the 441 

presence of photosensitisers is necessary for the abiotic photooxidation of DMS (Brimblecombe and Shooter, 442 

1986). To account for this process, our models incorporated nitrate (SSN) and acdm(443) (as a proxy for CDOM; 443 

Nelson & Siegel, 2013), both of which are thought to be dominant photosensitisers of DMS in marine systems 444 

(Taalba et al., 2013; Bouillon and Miller, 2004, 2005; Galí et al., 2016). In the NESAP, nitrate appears to exert a 445 

stronger influence than CDOM on the apparent quantum yields (AQY) of DMS (Bouillon and Miller, 2004). In 446 
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support of this, our results suggest a stronger negative dependence of predicted DMS concentrations on nitrate 447 

compared to CDOM within the NESAP, particularly in June when irradiance is high (Fig. 6, 7).  We acknowledge, 448 

however, that the DMS-nitrate relationship likely also reflects physiological impacts of nutrient limitation, as 449 

discussed above. Nonetheless, our results are consistent with elevated rates of DMS photo-oxidation in the nitrate-450 

replete, low iron waters of the Alaska Gyre, where photolysis may drive strong DMS oxidation and explain the low 451 

predicted DMS concentrations (Fig. 8, 9). Further in situ work will be required to resolve the relative contributions 452 

of these biotic and abiotic processes to DMS cycling within these areas. 453 

Among all the statistical relationships we observed, perhaps the most striking was the association of DMS 454 

variability with SSHA, particularly along the Alaskan coast and in relation to mesoscale eddies (Okkonen et al., 455 

2001; Whitney et al., 2005; Fig. 8, 9). To our knowledge, only one other study has linked SSHA to DMS within 456 

the NESAP. Herr et al., (2019) demonstrated contrasting positive and negative correlations between DMS and 457 

SSHA in offshore and coastal waters, respectively, in general agreement with our results. Presently, the underlying 458 

mechanisms explaining the relationship between SSHA and DMS cycling remain unclear, yet it is likely that 459 

physical mixing processes are important. For example, enhanced biological production is known to be stimulated 460 

by eddy re-supply of iron and macronutrients via vertical advection and diffusion (Whitney et al., 2005; Bailey et 461 

al., 2008). These nutrient supply processes would also be expected to influence DMS cycling, as outlined above.  462 

Elevated abundances of high DMS-producers within anticyclonic eddies with positive sea surface height anomalies 463 

have been noted in the Sargasso Sea (Bailey et al., 2008), while eddy-induced vertical transport likely supplements 464 

nearshore, current-driven upwelling that can also resupply iron into the coastal waters of the NESAP (Cullen et al., 465 

2009; Freeland et al., 1984). In addition, eddy propagation can allow cross-shelf transport, distributing 466 

micronutrients to offshore waters (Fiechter and Moore, 2012), potentially contributing to the apparent elevated 467 

DMS concentrations in the outer Alaska gyre between the 10.5 and 12oC isotherms (Fig. 8). These mixing and 468 

transport mechanisms could partially explain the influence of elevated productivity in driving increased nearshore 469 

and northern NESAP DMS concentrations (Fig. 4, 7-9), representing a novel source of DMS variability in this 470 

region.  471 

The taxonomic composition of plankton assemblages is also a likely source of variability influencing DMS 472 

cycling. Significant changes to DMS production and consumption rates within the NESAP are expected in response 473 

to variable microbial and phytoplankton taxonomy (Vila‐Costa et al., 2006; Lidbury et al., 2016; Sheehan and 474 

Petrou, 2020). Such taxonomic variability may, in turn, reflect transient community composition shifts in response 475 

to mixing (Bailey et al., 2008), nitrate (Bouillon and Miller, 2004), and iron availability (Levasseur et al., 2006; 476 

Merzouk et al., 2006). The monthly averaging used in our data processing removes autocorrelation associated with 477 



27 

 

individual sampling expeditions (Wang et al., 2020), but it may preclude capturing these transient taxonomic 478 

responses. For instance, coccolithophores are believed to influence DMS cycling in the NESAP (Herr et al., 2019; 479 

Asher et al., 2011), yet monthly-averaged calcite distributions did not yield increased predictive strength for DMS 480 

concentrations in our analysis (see Sect. 2.6). However, as satellite PIC preferentially reflects the optical signature 481 

of detached coccoliths, monthly-averaged satellite PIC observations may represent the senescence of 482 

coccolithophore blooms, rather than active growth phases. Additionally, applying a chlorophyll-a based taxonomic 483 

algorithm (Hirata et al., 2011; Zeng et al., 2018) yielded no further explanation of the DMS variability predicted. 484 

The influence of taxonomic composition thus remains cryptic within our modelling framework.  485 

4.2 Implications of Improved Predictive Power 486 

 As noted above, both the RFR and ANN approaches demonstrate significantly improved accuracy over 487 

existing models, explaining up to 62% of observed DMS variability (Fig. 2, 3). This predictive skill is somewhat 488 

lower than that achieved for methane fluxes (Weber et al., 2019) and dissolved inorganic carbon dynamics (Roshan 489 

and DeVries, 2017), where R2 values ranging from 0.7 to 0.95 were obtained. Nonetheless, the dramatic accuracy 490 

improvement of our algorithms over traditional methods (Fig. 2, 3) encourages the further use of these techniques 491 

in modelling DMS distributions.  492 

Improved predictive accuracy provides opportunities to gain insight into the mechanisms driving DMS cycling. 493 

Our approach has yielded accurate DMS predictions at a 4 to 40-fold higher resolution then previous algorithms 494 

(Simó and Dachs, 2002; Vallina and Simó, 2007; Galí et al., 2018; Watanabe et al., 2007), enabling the description 495 

of mesoscale patterns and processes (Fig. 8). Extending these methods to sub-mesoscale resolution will enable 496 

investigations into the dependence of DMS on finer-scale hydrographic processes, particularly stratification and 497 

frontal dynamics, which have been increasingly linked to DMS cycling but remain unresolved mechanistically 498 

(Royer et al., 2015; Asher et al., 2011). Moreover, coupling machine learning algorithms with biophysical and 499 

tracer export models holds promise to resolve the contributions of eddy dynamics and upwelling intensity on DMS 500 

variability, likely through nutrient availability and physiological mechanisms (Asher et al., 2011; Bailey et al., 501 

2008; Cullen et al., 2009). Recent work has also developed a new database of DMS apparent quantum yields (Galí 502 

et al., 2016). As the availability of these measurements increases, simultaneous mapping of both DMS quantum 503 

yields and concentrations will become feasible, enabling future studies to better parse out the contribution of 504 

photolysis, physical mixing, and biological drivers of DMS cycling.  505 

Although used in a diagnostic capacity here, our statistical models also hold potential for prognostic 506 

applications. Frameworks utilizing shorter time scales will likely be able to detect underlying mechanisms 507 
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driving observed diel cycling (Galí et al., 2013; Royer et al., 2016), even if the underlying mechanisms are still 508 

unresolved. We note, however, that caution will need be exercised as machine learning models have a tendency 509 

to overfit noise (Weber et al., 2019; Roshan and DeVries, 2017; Wang et al., 2020), thus requiring appropriately 510 

large training datasets and the use of known “future” observations to validate predictive accuracy in this context. 511 

The significant variability in DMS cycling across oceanic regimes will likely also render predictions more 512 

successful at regional, rather than global, scales (Galí et al., 2018; Royer et al., 2015). Nonetheless, prognostic 513 

applications of these algorithms should be investigated to aid in the future development of improved mechanistic 514 

models.  515 

5 Conclusions 516 

We have presented a statistical approach for modelling DMS distributions, which provides significantly 517 

higher predictive skill than traditional methods (Simó and Dachs, 2002; Vallina and Simó, 2007; Galí et al., 2018; 518 

Watanabe et al., 2007; Lana et al., 2011), and yields estimates of the summertime NESAP DMS sea-air fluxes to 519 

1.16±1.22 Tg S in agreement with previous findings (Herr et al., 2019; Lana et al., 2011). Our results further 520 

underscore the importance of the NESAP to global DMS production and motivate further observations in 521 

traditionally under-sampled areas such as the Alaska Gyre and Aleutian Islands. Although we are unable to directly 522 

examine the mechanistic drivers of DMS variability, our findings suggest nutrient limitation, light-driven 523 

processes, and eddy-induced mixing are potentially key drivers of DMS cycling in the NESAP. Future studies will 524 

benefit from using such statistical algorithms, in conjunction with field-based process studies and mechanistic 525 

models, to better understand the underlying dynamics and driving factors in the oceanic DMS cycle. 526 

Code availability. The analysis in this study makes extensive use of the Numpy, Matplotlib, & Scikit-Learn libraries 527 

in Python. The custom codes used can be downloaded at 528 

https://github.com/bjmcnabb/DMS_Climatology/tree/main/NESAP or are available upon request from the 529 

corresponding author. 530 

Data Availability. DMS observations and predictor datasets are described in the Methods with relevant links to 531 

repositories. Data from the Lana et al. (2011) climatology used for comparison in Table 3 are available via the 532 

SOLAs project (retrieved from www.bodc.ac.uk/solas_integration/implementation_products/group1/dms/), where 533 

the DMS sea-air fluxes were calculated as described in Sect. 2.3. The gridded climatologies produced from each 534 
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