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Abstract 16 

Estuaries is affected by an array of co-occurring biogeochemical and 17 

anthropogenic processes, resulting in substantial heterogeneity in water chemistry, 18 

including carbonate chemistry parameters such as pH and partial pressure of CO2 19 

(pCO2).The coastal ocean experiencesare complex systems with substantial heterogeneity 20 

in water chemistry, including carbonate chemistry parameters such as pH and partial 21 

pressure of CO2 (pCO2), 22 

 because of the diversity of co-occurring biogeochemical processes. To better 23 

understand estuarine coastal and estuarine acidification and air-sea CO2 fluxes from 24 

estuaries, it is important to study baseline variability and driving factors of carbonate 25 

chemistry. Using both discrete bottle sample collection (2014-2020) and hourly sensor 26 

measurements (2016-2017), we explored temporal variability, from diel to interannual 27 

scales, in the carbonate system (specifically pH and pCO2) at the Aransas Ship Channel 28 

located in northwestern Gulf of Mexico. Using other co-located environmental sensors, 29 

we also explored the driving factors of that variability. Both sampling methods 30 

demonstrated significant seasonal variability at the location, with highest pH (lowest 31 

pCO2) in the winter and lowest pH (highest pCO2) in the summer. Significant diel 32 

variability was also evident from sensor data, but the time of day with elevated 33 

pCO2/depressed pH was not consistent across the entire monitoring period, sometimes 34 

reversing from what would be expected from a biological signal. Though seasonal and 35 

diel fluctuations were smaller than many other areas previously studied, carbonate 36 

chemistry parameters were among the most important environmental parameters to 37 

distinguish between time of day and between seasons. It is evident that temperature, 38 
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biological activity, freshwater inflow, and tide level (despite the small tidal range) are all 39 

important controls on the system, with different controls dominating at different time 40 

scales. The results suggest that the controlling factors of the carbonate system may not be 41 

exerted equally on both pH and pCO2 on diel timescales, causing separation of their diel 42 

or tidal relationships during certain seasons. Despite known temporal variability on 43 

shorter timescales, discrete sampling was generally representative of the average 44 

carbonate system and average air-sea CO2 flux on a seasonal and annual basis based on 45 

comparisonwhen compared with sensor data.   46 

1. Introduction   47 

Coastal waters, especially eEstuaries, experience substantial spatial and temporal 48 

heterogeneity in water chemistry—including carbonate chemistry parameters such as pH 49 

and partial pressure of CO2 (pCO2)—due to the diversity of co-occurring biogeochemical 50 

and anthropogenic processes the dynamic environments where the coast and freshwater 51 

inflows meet the ocean, and coastal waters are economically and ecologically important 52 

because they are biological hotspots, but they are also heavily influenced by 53 

anthropogenic activity. Because of the diversity of co-occurring biogeochemical 54 

processes, estuaries experience substantial spatial and temporal heterogeneity in water 55 

quality and chemistry, including carbonate chemistry parameters such as pH and partial 56 

pressure of CO2 (pCO2) (Hofmann et al., 2011; Waldbusser and Salisbury, 2014). 57 

Carbonate chemistry, or the speciation of inorganic carbon in seawater, is important for 58 

two main reasons. First,because an addition of CO2 acidifies seawater, whether it is a 59 

result of uptake from the atmosphere (generally acknowledged as ocean acidification, or 60 

OA) or it is produced by biogeochemical processes in the water (that may intensify or 61 
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alleviate the effects of OA). This is problematic because aA and acidification can 62 

negatively affect marine organisms, especially those that construct calcium carbonate 63 

shells and skeletons (Barton et al., 2015; Bednaršek et al., 2012; Ekstrom et al., 2015; 64 

Gazeau et al., 2007; Gobler and Talmage, 2014). Second, the ocean contributes 65 

substantially to the global carbon budget, which is important to understand because of 66 

climate change implications. Despite Additionally, despite the small surface area of 67 

coastal waters relative to the global ocean, coastal waters are recognized as important 68 

contributors in global carbon cycling (Borges, 2005; Cai, 2011; Laruelle et al., 2018).  69 

While open ocean environments are relatively well studied and understood 70 

regarding carbonate chemistry, acidification, and air-sea CO2 fluxes are relatively well 71 

studied and understood in open ocean environments,, large uncertainties remain in 72 

estuarine coastal environments. Estuaries are especially challenging to fully understand 73 

because of the heterogeneity between and within estuaries that is driven by diverse 74 

processes operating on different time scales such as river discharge, nutrient and organic 75 

matter loading, stratification, and coastal upwelling (Jiang et al., 2013; Mathis et al., 76 

2012). The traditional sampling method for carbonate system characterization involving 77 

discrete water sample collection and laboratory analysis is known to lead to biases in 78 

average pCO2 and CO2 flux calculations due to daytime sampling that neglects to capture 79 

diel variability (Li et al., 2018). Mean diel ranges in pH can exceed 0.1 unit in many 80 

coastal environments,  and single day ranges can exceed 1 pH unit, with and especially 81 

high diel variabilityranges (even exceeding 1 pH unit) have been reported in biologically 82 

productive areas or areas with higher mean pCO2 (Challener et al., 20152016; Cyronak et 83 

al., 2018; Schulz and Riebesell, 2013; Semesi et al., 2009; Yates et al., 2007). These diel 84 
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ranges can far surpass the magnitude of the changes in open ocean surface waters that 85 

have occurred since the start of the industrial revolution and rival spatial variability in 86 

productive systems, indicating their importance for a full understanding of the carbonate 87 

system.  88 

Despite the need for high-frequency measurements, sensor deployments have 89 

been limited in estuarine environments (especially compared to their extensive use in the 90 

open ocean) because of the challenges associated with varying conditions, biofouling, 91 

and sensor drift (Sastri et al., 2019). Carbonate chemistry monitoring in the Gulf of 92 

Mexico (GOM), and especially its estuaries, has been relatively minimal compared to the 93 

United States east and west coasts. The GOM estuaries, where this study takes place, 94 

currently have less exposure to concerning levels of acidification than other estuaries 95 

because of their high temperatures (causing water to hold less CO2 and support high 96 

productivity year-round) and often suitable river chemistries (i.e., relatively high buffer 97 

capacity) (McCutcheon et al., 2019; Yao et al., 2020). However, respiration-induced 98 

acidification is present in both the open GOM (e. g., subsurface water influenced by the 99 

Mississippi River Plume and outer shelf region near the Flower Garden Banks National 100 

Marine Sanctuary) and GOM estuaries, and most estuaries in the northwestern GOM 101 

have also experienced long-term acidification (Cai et al., 2011; Hu et al., 20182015, 102 

20152018; Kealoha et al., 2020; McCutcheon et al., 2019; Robbins and Lisle, 2018). This 103 

known acidification as well as the relatively high CO2 fluxes efflux from the estuaries of 104 

the northwest GOM (which may change our understanding of global estuarine 105 

contribution to the carbon budget) illustrates the necessity to study the baseline variability 106 

and driving factors of carbonate chemistry in the region. In this study, we explored 107 
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temporal variability in the carbonate system in Aransas Ship Channel—a tidal inlet where 108 

the lagoonal estuaries meet the coastal waters in a semi-arid region of the northwestern 109 

GOM—using both discrete bottle sample collection and hourly sensor measurements, and 110 

we explored the driving factors of that variability using data from other co-located 111 

environmental sensors. 112 

2. Materials and Methods 113 

2.1 Location 114 

Autonomous sensor monitoring and discrete water sample collections for 115 

laboratory analysis of carbonate system parameters were performed in the Aransas Ship 116 

Channel (ASC, located at 27˚50'17"N, 97˚3'1"W). The Aransas Ship ChannelASC is one 117 

of the few permanent tidal inlets that intersect a string of barrier islands and connect the 118 

GOM coastal waters with the lagoonal estuaries in the northwest GOM (Fig. 1). The 119 

Aransas Ship ChannelASC provides the direct connection between the nwGOM  120 

northwestern GOM and the Mission-Aransas Estuary (Copano and Aransas Bays) to the 121 

north and Nueces Estuary (Nueces and Corpus Christi Bays) to the south (Fig. 1). The 122 

region is microtidal,  with a small tidal range relative to many other estuaries, ranging 123 

from ~ 0.6 m tides on the open coast to less than 0.3 m in upper estuarieswith a relatively 124 

small tidal range, ranging from The tidal range in the region is small, with around~ 0.6 m 125 

tides on the open coast and to less than 0.3 m in the upper estuaries (Montagna et al., 126 

2011). Mission-Aransas Estuary (MAE) is fed by two small rivers, the Mission (1787 127 

km2 drainage basin) and Aransas (640 km2 drainage basin) Rivers 128 

(http://waterdata.usgs.gov/), which both experience low base flows punctuated by 129 

periodic high flows during storm events. MAE has an average residence time of one year 130 
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(Solis and Powell, 1999), so there is a substantial lag between time of rainfall and 131 

riverine delivery to the Aransas Ship ChannelASC in the lower estuary. A significant 132 

portion of riverine water flowing into Aransas Bay originates from the larger rivers 133 

further northeast on the Texas coast via the Intracoastal Waterway (i.e., Guadalupe River 134 

(26,625 km2 drainage basin) feeds San Antonio Bay and has a much shorter residence 135 

time of nearly 50 days) (Solis and Powell, 1999; USGS, 2001). 136 

Fig 1. Location of Aransas Ship Channel where this study took place (arrow) and 137 
surrounding bay systems.  138 

 139 
Fig 1. Study area. The location of monitoring in the Aransas Ship Channel (red star) and 140 
the is denoted with a red star. The locations of NOAA stations used for wind data (yellow 141 
circles) are denoted with yellow circleshown.   142 
 143 
 144 
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2.2 Continuous Monitoring 145 

Autonomous sensor monitoring (referred to throughout as continuous monitoring) 146 

of pH and pCO2 was conducted from Nov. 8, 2016 to Aug. 23, 2017 at the University of 147 

Texas Marine Science Institute’s research pier in the Aransas Ship ChannelASC. The 148 

sensor deployment was shorter than intended because the pier where the sensors were 149 

deployed was destroyed in the aftermath of Hurricane Harvey in 2017. The Hourly pH 150 

data were collected using an SAtlantic® SeaFET pH sensor (on total pH scale) and hourly 151 

pCO2 data were collected using a Sunburst® SAMI-CO2. Temperature Hourly 152 

temperature and salinity data were measured by a YSI® 600OMS V2 sonde. Hourly All 153 

hourly data were ( single hourly measurements, measuredtaken on the hour.) The average 154 

difference between sensor pH and discrete quality assurance samples measured 155 

spectrophotometrically in the lab was used to establish a correction (-0.05) based on a 156 

single calibration point across the entire sensor pH dataset (Bresnahan et al., 2014). See 157 

supplemental 158 

materials for 159 

additional sensor 160 

deployment and 161 

quality assurance 162 
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information.collected by all sensors (pH, pCO2, salinity, and temperature) were saved in 163 

the onboard data loggers and downloaded during service trips to the field site. Sensor 164 

failures or pump failures occurred for short periods of time throughout the deployment. 165 

Measurements were recorded on 262 individual days, with 176 of those days having the 166 

full set of 24 (hourly) measurements.  167 

Ideally, in-situ sensors should be deployed under the sea surface. However, to 168 

reduce the maintenance cost and effort for sensors deployed in warm water that 169 

experiences intense biofouling, the sensors were set up to measure pH and pCO2 from an 170 

ex situ position using in situ seawater. Water was pumped from ~1 m below the sea 171 

surface into the bottom spigot of a 100-Qt cooler that housed the SAMI-CO2 and SeaFET 172 

sensors. To allow water outflow, a 1” hole was drilled at the opposite side of the spigot 173 

near the top of the cooler rim, allowing water to flow back to the sea surface. The pump 174 

was programmed to turn on 20 minutes before each hour, pumping more than enough 175 

water to fully flush the cooler, and sensors recorded measurements on the hour. The YSI 176 

sonde was deployed directly into the Aransas Ship ChannelASC inside a 2” PVC pipe at 177 

~1 m below the sea surface.  178 

Visits to the field site were conducted every two weeks to service all sensors and 179 

clean the cooler. Additionally, duplicate, discrete water samples were collected on the 180 

hour during service trips for quality assurance of sensor data and to check that surface 181 

water and cooler chemistries aligned. (See supplemental materials for additional 182 

information about discrete quality assurance samples, removal of suspicious sensor data, 183 

and a direct comparison of discrete quality assurance samples to sensor data). The same 184 

methods used for discrete sampling analysis apply for these samples (see section 2.3). 185 
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Samples were collected from the channel near the pump inlet and from the cooler that 186 

housed the sensors, and water temperature and salinity were measured using a handheld 187 

YSI data sonde. quality assuranceThe average difference between sensor pH and 188 

laboratory pH (from the cooler) was used to establish a correction of -0.05 to the final in-189 

situ pH data since the SeaFET may experience drift. The average difference between 190 

sensor pH and laboratory pH (from the cooler) was used to establish a correction of -0.05 191 

to the final in-situ pH data since the SeaFET may experience drift. The difference 192 

between the sensor pCO2 and calculated pCO2 is reported, but it is not used for a 193 

correction since the spectrophotometric measurements of the SAMI-CO2 should not 194 

experience drift. Sensor data were discarded from analysis during known periods of 195 

pump failure when cooler chemistry separated from that of the Aransas Ship Channel.  196 

2.3 Discrete Sample Collection and Sample Analysis 197 

In addition to the discrete sample collections that occurred for quality assurance 198 

during sensor servicing visits, longLong-term monitoring via discrete water sample 199 

collection was conducted at the Aransas Ship ChannelASC from May 2, 2014 to 200 

February 25, 2020 (in addition to the discrete, quality assurance sample collections). 201 

Sampling was conducted from a small vessel at a station very near to the sensor 202 

deployment every two weeks during the summer months and monthly during the winter 203 

months from a small vessel at a station near (<20 m from) the sensor deployment. Water 204 

sample collection followed standard protocol for ocean carbonate chemistry studies 205 

(Dickson et al., 2007). Ground glass borosilicate bottles (250 mL) were filled with 206 

surface water and preserved with 100 µL saturated mercury chloride (HgCl2). Apiezon ® 207 
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grease was applied to the bottle stopper, which was then secured to the bottle using a 208 

rubber band and a nylon hose clamp. 209 

These samples were used for laboratory dissolved inorganic carbon (DIC) and pH 210 

measurements. DIC was measured by injecting 0.5 mL of sample into 1 ml 10% H3PO4 211 

(balanced by 0.5 M NaCl) with a high-precision Kloehn syringe pump. The CO2 gas 212 

produced through sample acidification was then stripped using high-purity nitrogen gas 213 

and carried into a Li-Cor infrared gas detector. DIC analyses had a precision of 0.1%. 214 

Certified Reference Material (CRM) was used to ensure the accuracy of the analysis 215 

(Dickson et al. 2003). For samples with salinity>20, pH was measured using a 216 

spectrophotometric method at 25 ± 0.1°C (Carter et al. 2003) and the Douglas and Byrne 217 

(2017) equation. Analytical precision of the spectrophotometric method for pH 218 

measurement was ±0.0004 pH units. A calibrated Orion Ross glass pH electrode was 219 

used to measure pH at 25 ± 0.1°C for samples with salinity<20, and analytical precision 220 

was ±0.01 pH units. All pH values obtained using the potentiometric method were 221 

converted to total scale at in situ temperature (Millero 2001). Salinity of the discrete 222 

samples was measured using a benchtop salinometer calibrated by MilliQ water and a 223 

known salinity CRM. For discrete samples, pCO2 was calculated in CO2Sys for Excel 224 

using laboratory-measured salinity, DIC, pH, and in situ temperature for calculations. 225 

Carbonate speciation calculations were done using Millero (2010) carbonic acid 226 

dissociation constants (K1 and K2), Dickson (1990) bisulfate dissociation constant, and 227 

Uppström (1974) borate concentration.  228 

2.4 Calculation of CO2 fluxes 229 
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2.4 Data Processing and Statistical Analyses 230 

For the discrete samples, pCO2 was calculated using CO2Sys for Excel. 231 

Carbonate speciation calculations were done using Millero (2010) carbonic acid 232 

dissociation constants (K1 and K2), Dickson (1990) bisulfate dissociation constant, and 233 

Uppström (1974) borate concentration. Temporal variability was investigated in the form 234 

of seasonal and diel variability (Tables 1-2). For seasonal analysis, December to February 235 

was considered winter, March to May was considered spring, June to August was 236 

considered summer, and September to November was considered fall. Two-way 237 

ANOVAs were used to examine differences in parameter means between seasons, using 238 

differences between monitoring methods as the second factor (as differences between 239 

seasons may not be the same between monitoring methods, Table 3). Since there was a 240 

significant interaction in the two-way ANOVA, the differences between seasons were 241 

investigated within each monitoring method. Post-hoc multiple comparisons (between 242 

seasons within sampling types) were conducted using the Westfall adjustment (Westfall, 243 

1997). For diel comparisons, daytime and nighttime variables were defined as 09:00-244 

15:00 local standard time and 21:00-03:00 local standard time, respectively, based on the 245 

6-hour periods with highest and lowest photosynthetically active radiation (PAR; data 246 

obtained from the Mission-Aransas National Estuarine Research Reserve (MANERR) at 247 

https://missionaransas.org/science/download-data. Paired t-tests, comparing the daytime 248 

mean with the nighttime mean on respective days, were used to look for significant 249 

differences between daytime and nighttime parameter values across the full sampling 250 

period and within each season (Table 2).  251 

https://missionaransas.org/science/download-data
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Equation 1 was used for air-water CO2 flux calculations (Wanninkhof, 1992; 252 

Wanninkhof et al., 2009). Positive flux values indicate CO2 emission from the water into 253 

the atmosphere (the estuary acting as a source of CO2), and negative flux values indicate 254 

CO2 uptake by the water (the estuary acting as a sink for CO2).  255 

F = k K0 (pCO2,w – pCO2,a)                    (1) 256 

where k is the gas transfer velocity (in m d-1), K0 (in mol l-1 atm-1) is the solubility 257 

constant of CO2 (Weiss, 1974), and pCO2,w and pCO2,a  are the partial pressure of CO2 (in 258 

µatm) in the water and air, respectively.   259 

We used the wind speed parameterization for gas transfer velocity (k) from Jiang 260 

et al. (2008) converted from cm h-1 to m d-1, which is thought to be the best estuarine 261 

parameterization at this time (Crosswell et al., 2017), as it is a composite of k over 262 

several estuaries. The calculation of k requires a windspeed at 10 m above the surface, so 263 

windspeeds measured at 3 m above the surface were converted using the power law wind 264 

profile (Hsu, 1994; Yao and Hu, 2017). To assess uncertainty, other parameterizations 265 

with direct applications to estuaries in the literature were also used to calculate CO2 flux 266 

(Raymond and Cole 2001; Ho et al. 2006). We note that parameterization of k based on 267 

solely windspeed is flawed because several additional parameters can contribute to 268 

turbulence including turbidity, bottom-driven turbulence, water-side thermal convection, 269 

tidal currents, and fetch (Wanninkhof 1992, Abril et al., 2009, Ho et al., 2104, Andersson 270 

et al., 2017), however it is currently the best option for this system given the limited 271 

investigations of CO2 flux and contributing factors in estuaries.  272 

Hourly averaged windspeed data used infor use in CO2 flux calculations were 273 

retrieved from the NOAA-controlled Texas Coastal Ocean Observation Network 274 
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(TCOON; https://tidesandcurrents.noaa.gov/tcoon.html). The Windspeed data from the 275 

closest nearest TCOON station with windspeed data, (Port Aransas Station,  – located 276 

was located directly in the Aransas Ship ChannelASC, (further ~< 12 km inshore than 277 

from our monitoring location) was usedprioritized when data were available. , however 278 

there were several long periods of missing dataDuring periods of missing windspeed data 279 

at the Port Aransas Station, . To fill in the data gaps, wind speed data from nearby 280 

TCOON’s Aransas Pass Station (~<  12 km offshore from monitoring location) were next 281 

used, and for all subsequent gaps, data from nearby TCOON’s Nueces Bay Station (~ 40 282 

km away) were used (Fig. 1; additional discussion of flux calculation and windspeed data 283 

can be found in supplementary materials). . Prior to 2016-08-05, only the Nueces Bay 284 

station was recording, so early discrete monitoring flux calculations used the farthest 285 

station. About 55 days (<20% of observations) during the continuous monitoring period 286 

used data from Nueces Bay station, and after the continuous monitoring period (2017-08-287 

23 – 2020-02-25) only about nine days of wind data had to be retrieved from the Nueces 288 

Bay station. For those days during the 5+ year monitoring period that data were available 289 

at both the Port Aransas Station and the Nueces Bay station, the Nueces Bay Station did 290 

have higher windspeeds by an average of ~2.33 m/s. Given this offset and the distance of 291 

this station (along with the many other factors that complicate the calculation of fluxes 292 

through windspeed parameterization), the actual values of CO2 flux should not be taken 293 

at face value, but can still be useful in comparing methods and seasonal/diel patterns.  294 

For flux calculations from continuous monitoring data, each hourly measurement 295 

of pCO2 was paired with the corresponding TCOON’s measured hourly windspeed at 296 

each time pointhourly averaged windspeed for was used in flux calculations. For flux 297 
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calculations from biweekly discrete samplessample data, the pCO2 calculated for each 298 

sampled day was paired with the corresponding daily averaged windspeed (calculated 299 

from averaged the retrieved hourly averaged windspeeds) for flux calculationsdaily 300 

windspeeds were calculated from TCOON’s measured hourly windspeeds and used in 301 

flux calculations for the respective day.  302 

Monthly mean atmospheric xCO2 data (later converted to pCO2) for flux 303 

calculations were obtained from NOAA’s flask sampling network of the Global 304 

Monitoring Division of the Earth System Research Laboratory at the Key Biscayne (FL, 305 

USA) station., when available Global averages of atmospheric xCO2 were used when 306 

Key Biscayne data were unavailable. Each pCO2 observation (whether using continuous 307 

or discrete data) was paired with the corresponding monthly averaged xCO2 for flux 308 

calculations. Additional information and justification are available in supplemental 309 

materials. 310 

(https://www.esrl.noaa.gov/gmd/dv/data/index.php?site=KEY&parameter_name=Carbon311 

%2BDioxide). For 2019 and 2020, whenData from Key Biscayne were not available for 312 

the entire period of our discrete sample collection, so  xCO2 data from Key Biscayne 313 

were unavailable, monthly global average values were used 314 

(ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_mlo.txt) to fill in missing values 315 

(16 months from January 2019 – February 2020). We justified this substitution of global 316 

average values because the monthly means between Key Biscayne and global xCO2 over 317 

the initial 56 months of our discrete sampling only differed by 1.2 ±µatm (i.e. 0.3% ± 318 

0.4%). Each pCO2 observation (whether using continuous or discrete data) was paired 319 

with the corresponding monthly averaged windspeed for flux calculations. 320 
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2.45 Data Processing and Statistical Analyses 321 

For the discrete samples, pCO2 was calculated using CO2Sys for Excel. 322 

Carbonate speciation calculations were done using Millero (2010) carbonic acid 323 

dissociation constants (K1 and K2), Dickson (1990) bisulfate dissociation constant, and 324 

Uppström (1974) borate concentration. Temporal variability was investigated in the form 325 

of seasonal and diel variability (Tables 1-2). For seasonal analysis, December to February 326 

was considered winter, March to May was considered spring, June to August was 327 

considered summer, and September to November was considered fall. Two-way 328 

ANOVAs were used to examine differences in parameter means between seasons, using 329 

differences between monitoring methods as the second factor (as differences between 330 

seasons may not be the same between monitoring methods, Table 3). Since there was a 331 

significant interaction in the two-way ANOVA, the differences between seasons were 332 

investigated within each monitoring method. Post-hoc multiple comparisons (between 333 

seasons within sampling types) were conducted using the Westfall adjustment (Westfall, 334 

1997). For diel comparisons, daytime and nighttime variables were defined as 09:00-335 

15:00 local standard time and 21:00-03:00 local standard time, respectively, based on the 336 

6-hour periods with highest and lowest photosynthetically active radiation (PAR; data 337 

obtained from the Mission-Aransas National Estuarine Research Reserve (MANERR) at 338 

https://missionaransas.org/science/download-data. Paired t-tests, comparing the daytime 339 

mean with the nighttime mean on respective days, were used to look for significant 340 

differences between daytime and nighttime parameter values across the full sampling 341 

period and within each season (Table 2).  342 

 343 
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2.65 Additional data retrieval and data processing Factors controlling the carbonate 344 

system parameters to investigate carbonate system variability and controls 345 

All reported annual mean values are seasonally weighted to account for 346 

disproportional sampling between seasons. However, reported annual standard deviation 347 

is associated with the un-weighted, arithmetic mean (Table S1). Temporal variability was 348 

investigated in the form of seasonal and diel variability (Tables S1, S2, S3). For seasonal 349 

analysis, December to February was considered winter, March to May was considered 350 

spring, June to August was considered summer, and September to November was 351 

considered fall. It is important to note that the Fall season had much fewer continuous 352 

sensor observations than other seasons because of the timing of sensor deployment. For 353 

diel comparisons, daytime and nighttime variables were defined as 09:00-15:00 local 354 

standard time and 21:00-03:00 local standard time, respectively, based on the 6-hour 355 

periods with highest and lowest photosynthetically active radiation (PAR; data from co-356 

located sensor, obtained from the Mission-Aransas National Estuarine Research Reserve 357 

(MANERR) at https://missionaransas.org/science/download-data). Diel ranges in 358 

parameters were calculated (daily maximum minus daily minimum) and only reported for 359 

days with the full 24 hours of hourly measurements (176 out of 262 measured days) to 360 

ensure that data gaps did not influence the diel ranges (Table S3). 361 

 362 

 Thermal versus non-thermal cControls on pCO2 from thermal and non-thermal 363 

(i.e., combination of physical and biological) processes) were investigated following 364 

Takahashi et al. ((Takahashi et al., 2002)2002) over annual, seasonal, and daily time 365 

scales using both continuous and discrete data.  (Table 4). Over any given time period, 366 
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this method uses the ratio of the ranges of temperature-normalized  pCO2 (pCO2, (pCO2, 367 

non-thermalnt, Eq. 2) and the mean annual pCO2 perturbed by the difference between mean 368 

and observed temperature (pCO2 , tthermal, Eq. 3) to calculate the relative influence of 369 

non-thermal and thermal effects on pCO2 (T/B, Eq. 4). When calculating annual T/B 370 

values with discrete data, only complete years (sampling from January to December) 371 

were included (2014 and 2020 were omitted). When calculating daily T/B values with 372 

continuous data, only complete days (24 hourly measurements) were included. The 373 

summary of annual T/B values from discrete data includes only 2015-2019 (n=5 years; 374 

2014 and 2020 were omitted since monitoring did not occur throughout the entire year). 375 

Daily values from continuous data were only reported for those days with all 24 376 

measurements.   377 

𝑝𝐶𝑂2,𝑛𝑜𝑛𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑡 = 𝑝𝐶𝑂2,𝑜𝑏𝑠  × exp[ δ × (𝑇𝑚𝑒𝑎𝑛 − 𝑇𝑜𝑏𝑠)]                                        (32) 378 

     𝑝𝐶𝑂2,𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝑝𝐶𝑂2,𝑚𝑒𝑎𝑛  × exp[ δ × (𝑇𝑜𝑏𝑠 − 𝑇𝑚𝑒𝑎𝑛)]                                          (23) 379 

𝑝𝐶𝑂2,𝑛𝑜𝑛𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝑝𝐶𝑂2,𝑜𝑏𝑠  × exp[ δ × (𝑇𝑚𝑒𝑎𝑛 − 𝑇𝑜𝑏𝑠)]                                        (3)  380 

wWhere the value for δ (0.0411 °C-1), which represents average [∂ ln pCO
2
 / ∂ 381 

Temperature] from field observations, was taken directly from Yao and Hu (2017), Tobs is 382 

the observed temperature, and Tmean is the mean temperature over the investigated time 383 

period.  384 

𝑇/𝐵 =  
max(𝑝𝐶𝑂 2,𝑡ℎ𝑒𝑟𝑚𝑎𝑙) − min (𝑝𝐶𝑂 2,𝑡ℎ𝑒𝑟𝑚𝑎𝑙)

max(𝑝𝐶𝑂 2,𝑛𝑜𝑛− 𝑡ℎ𝑒𝑟𝑚𝑎𝑙) − min (𝑝𝐶𝑂 2,𝑛𝑜𝑛− 𝑡ℎ𝑒𝑟𝑚𝑎𝑙)
                                     (4) 385 

Where a T/B greater than one indicates that temperature’s control on pCO2 is greater than 386 

the control from non-thermal factors (i.e. physical and biological processes) and a T/B 387 

less than one indicates that non-thermal factors’ control on  pCO2 is greater than the 388 
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control from temperature. Tidal control on parameters was investigated using only the 389 

continuous monitoring data (Table 5). Hourly measurements of water level immediately 390 

offshore from the Aransas Ship Channel were obtained from NOAA’s Tides and Currents 391 

Aransas Pass Station 392 

https://tidesandcurrents.noaa.gov/waterlevels.html?id=8775241&name=Aransas,%20Ara393 

nsas%20Pass&state=TX. Tide data were merged with our sensor data by date and hour; 394 

given that there were gaps in available water level measurements (and no measurements 395 

prior to December 20, 2016), the usable dataset was reduced from 6088 observations to 396 

5121 observations and fall was omitted from analyses. To examine differences between 397 

parameters during high tide and low tide, we defined high tide as tide level greater than 398 

the third quartile tide level value and low tide as a tide level less than the first quartile 399 

tide level value. The difference between high and low tide for each parameter was 400 

examined within each season (using t-tests) because of a significant interaction (based on 401 

α=0.05) between the season and high/low tide factors in a two-way ANOVA. 402 

Tidal control on parameters was investigated using our continuous monitoring 403 

data and tide level data obtained from NOAA’s Aransas Pass Station (the Aransas Pass 404 

Station used for windspeed data, < 2 km offshore from monitoring location, Fig. 1) at 405 

https://tidesandcurrents.noaa.gov/waterlevels.html?id=8775241&name=Aransas,%20Ara406 

nsas%20Pass&state=TX. Hourly measurements of water level were merged with our 407 

sensor data by date and hour. Given that there were gaps in available water level 408 

measurements (and no measurements prior to December 20, 2016), the usable dataset was 409 

reduced from 6088 observations to 5121 observations and fall was omitted from analyses. 410 

To examine differences between parameters during high tide and low tide, we defined 411 

https://tidesandcurrents.noaa.gov/waterlevels.html?id=8775241&name=Aransas,%20Aransas%20Pass&state=TX
https://tidesandcurrents.noaa.gov/waterlevels.html?id=8775241&name=Aransas,%20Aransas%20Pass&state=TX
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high tide as tide level greater than the third quartile tide level value and low tide as a tide 412 

level less than the first quartile tide level value.  413 

Other factors that may exert control on the carbonate system were investigated 414 

through parameter relationships. In addition to previously discussed tide and windspeed 415 

data, we obtained dissolved oxygen (DO), PAR, turbidity, and chlorophyll fluorescence 416 

data were obtained from MANERR-deployed environmental sensors that were co-located 417 

at our monitoring location (obtained from https://missionaransas.org/science/download-418 

data). Given that MANERR data are all measured atin the bottom water (>5 m) while our 419 

sensors were measuring surface waters, we excluded the observations with significant 420 

water column stratification (defined as a salinity difference > 3 between surface water 421 

from our YSI and bottom water from the MANERR’s YSI) from analyses. Omitting 422 

stratified water reduced our continuous dataset from 6088 to 5524 observations 423 

(removing 260 winter, 133 spring, 51 summer, and 120 fall observations), and omitting 424 

observations where there were no MANERR data to determine stratification further 425 

reduced the dataset to 4112 observations. Similarly, removing instances of stratification 426 

reduced discrete sample data from 104 to 89 surface water observations.  427 

 428 

 429 

2.45 Data Processing and Statistical Analyses 430 

All statistical analyses were performed in R, version 4.0.3 (R Core Team, 2020). 431 

To investigate differences between daytime and nighttime parameter values (temperature, 432 

salinity, pH, pCO2, and CO2 flux) using continuous monitoring data across the full 433 

sampling period and within each season, paired t-tests were used, pairing each respective 434 
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day’s daytime and nighttime values (Table S3). We also used loess models (locally 435 

weighted polynomial regression) to identify changes in diel patterns over the course of 436 

our monitoring period. 437 

Two-way ANOVAs were used to examine differences in parameter means 438 

(temperature, salinity, pH, pCO2, and CO2 flux)between seasons and between monitoring 439 

methods (Table S2). Since there were significant interactions (between season and 440 

sampling type factors) in the two-way ANOVAs for each individual parameter (Table 441 

S2), differences between seasons were investigated within each monitoring method (one-442 

way ANOVAs) and the differences between monitoring methods were investigated 443 

within each season (one-way ANOVAs). For the comparison of monitoring methods, we 444 

included both the full discrete sampling data as well as a subset of the discrete sampling 445 

data to overlap with the continuous monitoring period (referred to throughout as reduced 446 

discrete data or DC) along with the continuous data. To interpret differences between 447 

monitoring methods, a difference in means between the continuous monitoring and 448 

discrete monitoring datasets would only indicate that the 10-month period of continuous 449 

monitoring was not representative of the 5+ year period that discrete samples have been 450 

collected, but a difference in means between the continuous data and discrete sample data 451 

collected during the continuous monitoring period represents discrepancies between types 452 

of monitoring.  Post-hoc multiple comparisons (between seasons within sampling types 453 

and between sampling types within seasons) were conducted using the Westfall 454 

adjustment (Westfall, 1997).  455 

Differences in parameters between high tide and low tide conditions were 456 

investigated using a two-way ANOVA to model parameters based on tide level and 457 
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season. In models for each parameter, there was a significant interaction between tide 458 

level and season factors (based on α=0.05, results not shown), thus t-tests were used 459 

(within each season) to examine differences in parameters between high and low tide 460 

conditions. Note that fFall was omitted from this analysis because tide data were only 461 

available at the location beginning December 20, 2016. Sample sizes were the same for 462 

each parameter (High tide – winter: 354, spring: 569, summer: 350; Low tide – winter: 463 

543, spring: 318, summer: 415).  464 

Additionally, to gain insight to carbonate system controls through correlations, we 465 

conducted Pearson correlation analyses to examine individual correlations betweenof pH 466 

and pCO2 (both continuous and discrete) with other environmental parameters (Table 467 

S5).  468 

To better understand overall system variability over different time scales, we used 469 

a linear discriminant (LD) analysis (LDA), a multivariate statistic that allows dimensional 470 

reduction, to determine the linear combination of environmental parameters (individual 471 

parameters reduced into linear discriminants, LDs) that allow the best differentiation 472 

between day and night as well as between seasons. We included pCO2, pH, temperature, 473 

salinity, tide level, wind speed, total PAR, DO, turbidity, and fluorescent chlorophyll in 474 

this analysis. This used the same suite of environmental data and data sources as Sect. 475 

4.1.2. 476 

All variables were centered and scaled to allow direct comparison of their 477 

contribution to the system variability. The magnitude (absolute value) of coefficients of 478 

the LDs (Table 71) represents the relative importance of each individual environmental 479 

parameter in the best discrimination between day and night and between seasons, i.e., the 480 
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greater the absolute value of the coefficient, the more information the associated 481 

parameter can provide about whether the sample came from day or night (or winter, 482 

spring, or summer). Only one LD could be created for the diel variability (since there are 483 

only two classes to discriminate between – day and night). Two LDs could be created for 484 

the seasonal variability (since there were three classes to discriminate between – fall was 485 

omitted because of the lack of tidal data), but we chose to only report the coefficients for 486 

LD1 are reported (Table 7) given that LD1 captured 95.64% of the seasonal variability.   487 

Tidal control on parameters was investigated using only the continuous monitoring data 488 

(Table 5). Hourly measurements of water level immediately offshore from the Aransas 489 

Ship Channel were obtained from NOAA’s Tides and Currents Aransas Pass Station 490 

https://tidesandcurrents.noaa.gov/waterlevels.html?id=8775241&name=Aransas,%20Ara491 

nsas%20Pass&state=TX. Tide data were merged with our sensor data by date and hour; 492 

given that there were gaps in available water level measurements (and no measurements 493 

prior to December 20, 2016), the usable dataset was reduced from 6088 observations to 494 

5121 observations and fall was omitted from analyses. To examine differences between 495 

parameters during high tide and low tide, we defined high tide as tide level greater than 496 

the third quartile tide level value and low tide as a tide level less than the first quartile 497 

tide level value. The difference between high and low tide for each parameter was 498 

examined within each season (using t-tests) because of a significant interaction (based on 499 

α=0.05) between the season and high/low tide factors in a two-way ANOVA. 500 

Other physical factors that may exert control on the carbonate system (including 501 

windspeed, salinity, tide level, and turbidity) can also be investigated through parameter 502 

relationships. We further investigated controls on the carbonate system using tide and 503 
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windspeed data (obtained from NOAA’s Aransas Pass station at 504 

https://tidesandcurrents.noaa.gov/) and dissolved oxygen, PAR, turbidity, and chlorophyll 505 

fluorescence data (obtained from the MANERR at 506 

https://missionaransas.org/science/download-data) along with our continuous and discrete 507 

data. All investigations of relationships between environmental parameters discussed 508 

below included only the observations with no significant water column stratification 509 

(defined as a salinity difference of less than 3 between surface water from our YSI and 510 

bottom water (>5 m) from the MANERR’s YSI). This omission of stratified water was 511 

intended to omit instances of substantial differences in chemical parameters between the 512 

surface and bottom water since all MANERR environmental data used in our analysis 513 

were measured at depth while our sensors measured surface water. Omitting stratified 514 

water reduced our continuous dataset from 6088 to 5524 observations (removing 260 515 

winter, 133 spring, 51 summer, and 120 fall observations), and omitting observations 516 

where there were no MANERR data to determine stratification further reduced the 517 

dataset to 4112 observations. Similarly, removing instances of stratification reduced 518 

discrete sample data from 104 to 89 surface water observations.  519 

Linear regression analysis within each season reveals that winter, spring, and fall all 520 

experience increases in pCO2 with increasing wind, while there is not a significant 521 

relationship in summer. 522 

To help examine controls on the carbonate system on a diel time scale, we used loess 523 

models (locally weighted polynomial regression) to identify changes in diel patterns over 524 

the course of our monitoring period (Fig. 8) 525 

 526 
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3. Results 527 

3.1 Continuous monitoring resultsSeasonal variability 528 

Both the continuous and discrete data showed substantial seasonal variability for 529 

all parameters (Fig. 2, (Fig. 2, Tables S1 and S2). All discrete sample results reported 530 

here are for the entire 5+ years of monitoring; the subset of discrete sample data that 531 

overlaps with the continuous monitoring period will be addressed only in the discussion 532 

for method comparisons (Section 4.1.1). Both continuous and discrete data demonstrate 533 

significant differences in temperature between each season, with the highest temperature 534 

in summer and the lowest in winter (Fig. 2, Tables S1 and S2). For both continuous and 535 

discrete data, the mMean salinity during sampling periods was highest in the summer and 536 

lowest in the fall Table S1). Significant differences in seasonal salinity occurred between 537 

all seasons except spring and winter for continuous data, but only summer differed from 538 

other seasons based on discrete data (Tables S1 and S2).  539 

Carbonate system parameters also varied seasonally (Fig. 2). For both continuous 540 

and discrete data, winter had both the highest seasonal pH (8.19 ± 0.08 and 8.162 ± 541 

0.065, respectively) and lowest seasonal pCO2 (365 ± 44 µatm and 331 ± 39 µatm, 542 

respectively), while summer had both the lowest seasonal pH (8.05 ± 0.06 and 7.975 ± 543 

0.046, respectively) and highest seasonal pCO2 (463 ± 48 µatm and 511 ± 108, 544 

respectively) (Fig. 2, Table S1). All seasonal differences in pH and pCO2 were significant 545 

for continuous data and discrete data, except for the the non-significant difference with 546 

discrete data between spring andversus fall for both parameters (Table S2).  547 

 548 

 549 
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 550 
Figure 2. Boxplots of seasonal variability in pH and pCO2 using all discrete data, 551 
reduced discrete data (to overlap with continuous monitoring, Nov. 8 2016 – Aug 23, 552 
2017), and continuous sensor data. 553 
 554 

The seasonally weighted mean CO2 flux calculated from sensor data across the 555 

entire monitoring period was 0.2 ± 23.7 mmol m-2 d-1 (Table 1). Mean CO2 flux differed 556 

by season (Fig. 3, Tables S1 and S2 3)). Both continuous and discrete data records 557 

resulted in Winter and fall both had net negative CO2 fluxes during fall and winter 558 

months, with winter being most negative.  (winter was most negativeBoth methods 559 

reported a net positive flux for summer, while spring fluxes were positive according to 560 

continuous data and negative according to the 5+ years of discrete data (Fig. 3, Table S1). 561 

), Annual net CO2 fluxes were near zero (Table S1). and summer and spring both had a 562 

net positive CO2 flux (summer was most positive) (Table 1, Fig. 5). CO2 flux also 563 

fluctuated on a daily scale, with the mean diel range (daily maximum – minimum) over 564 
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the entire monitoring period being 34.1 ± 29.0 mmol m-2 d-1 (Table 2). However, there 565 

was not a significant difference in CO2 flux calculated for daytime versus nighttime hours 566 

for the entire monitoring period or any individual season based on α=0.05 (paired t-test, 567 

Table 2).  568 

 569 

 570 
Figure 3. CO2 flux calculated over the sampling periods from continuous (A) and 571 
discrete (B) data using the Jiang et al. (2008) wind speed parameterization. Gray scale in 572 
(A) and (B) denote different seasons. Vertical lines in (B) denote the time period of 573 
continuous monitoring.  (C) shows the seasonal mean CO2 flux. E calculated using the 574 
Jiang et al. (2008) gas transfer velocity parameterization and error bars representing mean 575 
CO2 flux calculation using Ho (2006) and Raymond and Cole (2001) windspeed 576 
parameterizations.  577 

 578 

Results of the LDA incorporated carbonate system parameters along with 579 

additional environmental parameters to get a full picture of system variability over 580 
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seasonal timescales (Table 1). The most important parameter in system variability that 581 

allowed differentiation between seasons was temperature (Table 1, Seasonal LD1), as 582 

would be expected with the clear seasonal temperature fluctuations (Fig. S1-E). The 583 

second most important parameter for seasonal differentiation was chlorophyll, likely 584 

indicating clear seasonal phytoplankton blooms. The carbonate chemistry also played a 585 

critical role in seasonal differentiation, as pCO2 was the third most important factor 586 

(Table 1).  587 

Table 1. Coefficients of linear discriminants (LD) from LDA using continuous sensor 588 
data and other environmental parameters.  Discriminants for both diel and seasonal 589 
variability shown.  590 

 Seasonal Diel 

LD1  LD1 

Temperature (°C)     -3.53279 0.5406 

Salinity 0.0432 0.15473 

pCO2 (µatm)         -0.2928 -0.1612 

pH        0.100991 0.06593 

Tide Level (m)  -0.24389 0.100968 

Wind speed (ms-1)               0.0504 -0.0009 

Total PAR            -0.07676 -2.29878 

DO (mg L-1) 0.09859 -0.0839 

Turbidity         0.15455 -0.06561 

Fluor. Chlorophyll -0.4040 0.14397 

 591 

 592 

 593 

3.2 Diel variability 594 

The 10 months of in-situ continuous monitoring revealed that there was 595 

substantial diel variability in measured parameters (Fig. 4, Table S3). Temperature had a 596 

mean diel range of 1.3 ± 0.8°C (Table S3). Daytime and nighttime temperature differed 597 

significantly during the summer and fall months, with higher temperatures at night for 598 

both seasons (Table S3). We note that significant differences in day and night 599 

temperature within seasons do not indicate that the diel difference were observed on all 600 
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days within the season, as large standard deviations in both daytime and nighttime values 601 

result in considerable overlap. The mean diel range of salinity was 3.4 ± 2.7 (Table S3). 602 

Daytime and nighttime salinity differed significantly during the winter and fall months, 603 

with higher salinities at night for both seasons. The mean diel range of pH was 0.09 ± 604 

0.05 (Table S3). Daytime and nighttime pH differed significantly during the winter, 605 

summer, and fall, months; with nighttime pH was significantly higher than that of the 606 

daytime during the summer and winter months, and daytime pH was significantly higher 607 

during theand lower during fall (Fig. 4, Table S3). The mean diel range of pCO2 was 58 ± 608 

33 µatm (Fig. 4, Table S3). Daytime and nighttime pCO2 differed significantly during the 609 

winter and summer months, with nighttime pCO2 significantly higher during the summer 610 

and lower during the winter (Fig. 4, Table S3). N; nighttime pCO2 was significantly 611 

higher than that of the daytime during the summer and daytime pCO2 was significantly 612 

higher during the winter (Fig. 4, Table S3). Despite day-night differences in pCO2, there 613 

was no significant difference in daytime and nighttime DO were observed during any 614 

season (Fig. 5F; paired t-tests, winter p = 0.1573, spring p = 0.4877, summer p = 0.794). 615 

Loess models that investigated the evolution of day-night difference in parameters 616 

revealed that other environmental parameters, including salinity, temperature, and tide 617 

level, also had diel patterns thethat varied over the duration of our continuous monitoring 618 

(Fig. 5).  619 

 620 
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 621 
Figure 4. Boxplots of the diel range (maximum minus minimum) and difference in daily 622 
parameter mean daytime minus nighttime measurements for pH and pCO2 from 623 
continuous sensor data.  624 

 625 
Figure 5. Loess models (red line) and their confidence intervals (gray bands) 626 

showing the difference in daily parameter mean daytime minus nighttime measurements. 627 
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The gray scale of the data points represents the four seasons over which data were 628 
collected 629 

 630 
CO2 flux also fluctuated on a daily scale, with a mean diel range of 34.1 ± 29.0 631 

mmol m-2 d-1 (Table S3). However, there was not a significant difference in CO2 flux 632 

calculated for dof daytime versus nighttime hours for the entire monitoring period or any 633 

individual season based on α=0.05 (paired t-test, Table S3).  634 

 635 
 636 

Formatted: Line spacing:  single



 32 

Figure 5. Loess models (red line) and their confidence intervals (gray bands) showing the 637 
difference in daily parameter mean daytime minus nighttime measurements. The gray 638 
scale of the data points represents the four seasons over which data were collected 639 

 640 

Results of the LDA for differentiation between daytime and nighttime conditions 641 

revealed that the most important factor was PAR, as would be expected (Table 1, Diel 642 

LD1). Temperature was the second most important factor to differentiate between day 643 

and night. The carbonate chemistry also played a critical role in day/night differentiation, 644 

as pCO2 was the third most important parameter, providing more evidence for 645 

differentiation between day and night than other parameters that would be expected to 646 

vary on a diel timescale (e.g., chlorophyll and DO) (Table 1).  647 

 648 

3.3 Controlling factors and correlates 649 

The relative influence of thermal and non-thermal factors (T/B) in controlling 650 

pCO2 varied over different time scales (Fig. 6, Table S4Table 42, Fig. 6). T/B calculated 651 

from sensor data for the entire period was 0.98, indicating that the magnitude of control 652 

of non-thermal processes on pCO2 was slightly greater than that of temperatureBased on 653 

continuous data, non-thermal processes generally exerted more control thatn thermal 654 

processes (T/B<1) over the entire 5+ years of discrete monitoring, within each season, 655 

and over most (1671/178) days (Fig. 6, Table S4Table 2). Within seasons, T/B calculated 656 

from sensor data ranged from 0.51 in the winter to 0.69 in the spring, showing that non-657 

thermal processes exert more control on pCO2 within each individual season (Table 4). 658 

On a daily scale, only 11 of the 178 days with measurements for all 24 hours had 659 

temperature control of pCO2 exceeding the non-thermal control (Table 4, Fig. 6).AFor 660 

the entire 5+ years of discrete monitoring, non-thermal processes also exerted more 661 
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control than temperature on pCO2. However, discrete data demonstrated that there was 662 

substantial interannual variability in T/B, with annual T/B from discrete data ranginged 663 

from 0.4850 to 1.16, with only one7 and two of the five sampled years having T/B 664 

greater than one (i.e., more thermal influence; Table S4). While the majoritymost of 665 

individual seasons that were sampled experienced stronger non-thermal control on pCO2 666 

(T/B <1), the only season that never experienced  stronger thermal control was summer, 667 

with summer T/B values ranging from 0.21 – 0.35 for the 6 sampled years (Table S4).  668 

 669 

Table 2. Thermal versus non-thermal control on pCO2 over different time scales using 670 
both continuous sensor data (C) and discrete sample data (D). If more than one segment 671 
of time is being considered (n>1), ΔpCO2 values are the mean ± standard deviation of all 672 
segments, T/B range is the minimum and maximum T/B, and the number out of n with 673 
T/B>1 is recorded.  674 
Time Period / Scale Sampling 

type 

n ΔpCO2, 

thermal 

(µatm) 

ΔpCO2, 

ntnonthermal 

(µatm) 

T/B Number out 

of n with 

T/B >1 
Full Monitoring Period  D 1 301.9 537.8 0.56  
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(May 2, 2014- Feb. 25, 

2020) 

Annual D 5 259.3 ± 16.0 319.1 ± 130.9  0.48 – 1.17 2/5 

Continuous Monitoring 

Period 

(Nov 2016 – August 2017) 

C 

 

1 355.0 360.7 0.98  

D 1 236.3 229.9 1.03  

Winter C 1 168.2 328.4 0.51  

D 6 42.2 ± 23.4 101.7 ± 78.7  0.20 – 4.90 1/6 

Spring C 1 171.4 246.9 0.69  

 D 6 142.3 ± 53.7 147.8 ± 67.3  0.59 – 2.42 2/6 

Summer C 1 100.2 179.9 0.56  

 D 6 46.9 ± 26.6 176.9 ± 108.3  0.21 – 0.35 0/6 

Fall C 1 105.9 181.6 0.58  

 D 6 179.8 ± 59.5 176.6 ± 78.1  0.59 – 3.06 2/6 

Daily C 178 21.8 ± 11.8 63.8 ± 30.3  0.05 – 1.68 11/178 

Figure 6. Thermal versus non-thermal control on pCO2 daily (top), seasonal (middle), 675 
and annual (bottom) time scales using both continuous sensor data (daily) and discrete 676 
sample data (seasonal and annual).  677 

 678 

Tidal fluctuations seemed to have a significant effect on carbonate system 679 

parameters (Table 32). Both temperature and salinity were higher at low tide during the 680 

winter and summer months and higher at high tide during the spring. pCO2 was higher 681 

during low tide during all seasons. pH was higher during high tide during the winter and 682 

summer, but this reversed during the spring, when pH was higher at low tide. CO2 flux 683 

also varied with tidal fluctuations. CO2 flux was higher (more positive or less negative) in 684 

the low tide condition for all seasons (though the difference was not significant in 685 

spring), i.e., the location was less of a CO2 sink during low tide conditions in the winter 686 

and more of a CO2 source during low tide conditions in the summer.  687 

 688 

Table 3. Mean and standard deviation of temperature, salinity, pH, pCO2, and calculated 689 
CO2 flux (from continuous sensor measurements) during high and low tide conditions.  690 
 691 
Parameter Season High Tide Mean Low Tide Mean Difference 

between tide 

levels,  

t-test p-value 

Temperature (°C) Winter 16.7 ± 1.7 17.6 ± 2.0 <0.0001 
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Spring 24.4 ± 2.7 23.6 ± 2.7 <0.0001 

Summer 29.3 ± 0.5 30.1 ± 0.7 <0.0001 

Salinity Winter 30.2 ± 2.5 31.3 ± 2.9 <0.0001 

Spring 30.4 ± 1.9 30.0 ± 2.7 0.0071 

Summer 30.5 ± 2.4 34.5 ± 3.0 <0.0001 

pH 

 

 

Winter 8.20 ± 0.08 8.15 ± 0.06 <0.0001 

Spring 8.07 ± 0.09 8.10 ± 0.07 <0.0001 

Summer 8.08 ± 0.04 8.04 ± 0.06 <0.0001 

pCO2 (µatm) Winter 331 ± 40 378 ± 42 <0.0001 

Spring 435 ± 33 443 ± 50 0.0154 

Summer 419 ± 30 482 ± 48 <0.0001 

CO2 Flux  

(mmol m-2 d-1) 

 

Winter -33.0 ± 38.1  -11.7 ± 21.8 <0.0001 

Spring 7.4 ± 14.0 8.7 ± 14.8 0.2248 

Summer 1.8 ± 6.3 16.0 ± 14.5 <0.0001 

 692 

Mean water level varied between all seasons; mean spring (highest) water levels 693 

were on average 0.08 m higher than winter (lowest) water levels (ANOVA p<0.0001, fall 694 

was not considered because of a lack of water level data). The mean daily tidal range 695 

during our continuous monitoring period was 0.39 m ± 0.13 m, which did not 696 

significantly differ between seasons (ANOVA p=0.739). However, the day-night 697 

difference in tide level exhibited a strong seasonality pattern during the continuous 698 

monitoring period, with spring and summer having higher tide level during the daytime 699 

and winter having higher tide level during the nighttime (Fig. 5).  This same seasonal 700 

pattern in day-night difference in tide level is exhibited from Dec 20, 2016 (when the tide 701 

data is first available) through the rest of our discrete monitoring period (Feb 25, 2020), 702 

indicating that tidal control on diel variability of carbonate system parameters was likely 703 

consistent throughout this 3+ year period. 704 

There were significant correlations between carbonate system parameters (pH and 705 

pCO2) and many of the other environmental parameters, including windspeed, DO, 706 

turbidity, and fluorescent chlorophyll (Table S4Figure 7, Table S5). Both the continuous 707 

and discrete sampling types indicate that pH has a significant negative relationship with 708 
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both temperature and salinity and pCO2 has a significant positive relationship with both 709 

temperature and salinity (Fig. 67). However, correlations with temperature were stronger 710 

for continuous data and correlations with salinity were stronger for discrete data (Table 711 

S45). The strongest correlations between continuous carbonate system data and all 712 

investigated environmental parameters were with DO (positive correlation with pH and 713 

negative correlation with pCO2; Table S45). It is worth noting that there were no 714 

observations of hypoxia at our study site during our monitoring, with minimum DO 715 

levels of 3.9 mg L-1 and 4.0 mg L-1 for our continuous monitoring period and our discrete 716 

sampling period, respectively.  717 

 718 
 719 

 720 
Figure 7. Correlations of pH and pCO2 with temperature, salinity, and DO from 721 
continuous sensor data (gray) and all discrete data (black). 722 

 723 

 724 

 725 
 Over the 10-month continuous monitoring period, all sensor-measured parameters 726 

showed substantial temporal variability on seasonal and diel time scales (Fig. 2, Tables 1-727 
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3). Mean values of sensor-measured parameters over the entire monitoring period were: 728 

temperature - 23.1°C ± 5.3°C, ranging from 9.4°C to 31.7°C; salinity - 30.8 ± 3.7, 729 

ranging from 18.3 to 38.9; pH - 8.12 ± 0.10, ranging from 7.79 to 8.45; and pCO2 - 416 ± 730 

60 atm, ranging from 251 atm to 620 atm (Table 1). Temperature was significantly 731 

different between each season (Table 3), with the highest being summer and the lowest 732 

being winter (Table 1). Salinity was highest in the summer and lowest in the fall, and 733 

salinity differed between all seasons except from spring and winter (Tables 1 and 3). pH 734 

and pCO2 were both significantly different between all seasons (Table 3). Winter had 735 

both the highest seasonal pH (8.19 ± 0.08) and lowest seasonal pCO2 (365 ± 44 µatm) 736 

and summer had both the lowest seasonal pH (8.05 ± 0.06) and highest seasonal pCO2 737 

(463 ± 48 µatm) (Table 1, Fig. 2- 3).  738 

Table 1. Mean and standard deviation of annual and seasonal temperature, salinity, pH, 739 
pCO2, and CO2 flux from continuous monitoring, discrete sampling over the continuous 740 
monitoring period, and discrete sampling over the entire sampled period. Reported annual 741 
means are seasonally weighted to account for disproportional sampling between seasons 742 
(however, reported annual standard deviation is associated with the un-weighted, 743 
arithmetic mean). CO2 fluxes were calculated using the Jiang et al. (2008) wind speed 744 
parameterization for gas transfer velocity, and ranges of CO2 flux that are given in 745 
brackets represent means calculated using parameterizations from Ho et al. (2006) and 746 
Raymond and Cole (2001), respectively.  747 
Parameter  Continuous Monitoring Discrete Sampling 

 Time Period Nov. 8 2016 – Aug 23, 

2017 

Nov. 8 2016 – Aug 23, 

2017 

May 2, 2014- Feb. 25, 

2020  

Temperature 

(°C) 

Annual 23.1 ± 5.3 23.5 ± 5.0 24.1 ± 5.3 

Winter 17.3 ± 2.1 17.3 ± 1.1 16.2 ± 2.0 

Spring 23.8 ± 2.8 23.4 ± 2.9 22.6 ± 3.7 

Summer 29.7 ± 0.8 29.6 ± 0.5 28.7 ± 1.4 

Fall 22.5 ± 2.1 23.6 ± 0.1 25.5 ± 4.5 

Salinity Annual 30.8 ± 3.7 30.4 ± 3.5 30.1 ± 4.4 

 Winter 30.0 ± 3.7 29.3 ± 4.6 28.9 ± 2.9 

 Spring 30.2 ± 2.6 30.0 ± 1.7 28.7 ± 3.4 

 Summer 33.3 ± 3.2 33.6 ± 3.2 34.6 ± 2.8 

 Fall 27.6 ± 3.7 28.8 ± 0.1 28.4 ± 4.5 

pH Annual 8.12 ± 0.10 8.092 ± 0.078 8.079 ± 0.092 

Winter 8.19 ± 0.08 8.157 ± 0.041 8.162 ± 0.065 

Spring 8.09 ± 0.09 8.078 ± 0.056 8.077 ± 0.066 
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Summer 8.05 ± 0.06 7.999 ± 0.051 7.975 ± 0.046 

Fall 8.18 ± 0.05 8.136 ± 0.001 8.100 ± 0.071 

pCO2 (µatm) Annual 416 ± 60 400 ± 71 406 ± 100 

Winter 365 ± 44 349 ± 31 331 ± 39 

Spring 436 ± 45 413 ± 54 396 ± 67 

Summer 463 ± 48 480 ± 59 511 ± 108 

Fall 400 ± 25 357 ± 2 386 ± 62 

CO2 Flux  

(mmol m-2 d-1) 

Annual 0.2 ± 23.7 

[0.1 – (-87.6)] 

-1.5 ± 9.2 

[(-2.6) – (-4.5)] 

(-0.8) ± 18.7 

[(-0.7) – 5.3] 

Winter (-16.9) ± 29.2 

[(-14.6) – (-444.0)] 

(-9.9) ± 5.2 

[(-8.3) – (-16.2)] 

(-13.0) ± 13.5 

[(-10.6) – (-25.6)] 

Spring 7.6 ± 15.0 

[6.5 – 109.0] 

1.0 ± 7.1 

[1.0 – 3.3] 

(-6.5) ± 12.2 

[(-5.5) – (-18.0)] 

Summer 10.8 ± 13.3 

[9.1 – 28.9] 

10.5 ± 7.8 

[8.6– 16.3] 

18.3 ± 19.6 

[15.3 – 65.5] 

Fall (-0.9) ± 7.7 

[(-0.7) – (-44.0)] 

(-7.5) 

[(-6.2) – (-11.4)] 

(-2.3) ± 13.7 

[(-1.9) – (-0.9)] 

 748 

 749 
Fig 2. Time series data from continuous monitoring (A-D, Nov 8, 2016 to Aug 3, 2017) 750 
and discrete sample analysis (E-H, Nov 8, 2016 to Aug 3, 2017) at the Aransas Ship 751 
Channel. Gray scale (and shape) in the datapoints represents divisions between the four 752 
seasons. Vertical lines in (E-H) denote the time period of continuous monitoring.   753 
 754 
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 755 
Figure  32. Boxplots of seasonal variability in pH and pCO2 using all discrete data (May 756 
2, 2014- Feb. 25, 2020), reduced discrete data (Nov. 8 2016 – Aug 23, 2017, to overlap 757 
with continuous monitoring, Nov. 8 2016 – Aug 23, 2017), and continuous sensor data. 758 
(Nov. 8 2016 – Aug 23, 2017) 759 
 760 
 761 
 762 
Table 2. Diel variability in system parameters from continuous sensor data (Nov 8, 2016 763 
– Aug 23, 2017). The p-values reported are from a paired-t test comparing the means of 764 
each day (9am-3pm LST) with the mean of the same night (9pm – 3am LST); all 765 
significant results based on α=0.05 are bolded. Diel range calculations were done using 766 
only days with the full 24 hours of hourly measurements (176 out of 262 measured) to 767 
ensure that data gaps did not influence the calculations. Reported fluxes use the Jiang et 768 
al. (2008) gas transfer velocity parameterization. Note that the Fall season had much 769 
fewer observations than other seasons because of the timing of sensor deployment.  770 
Parameter Time 

Period 

Daytime 

Mean 

Nighttime 

Mean 

Day 

versus 

Night  

p-value 

Mean Diel 

Range 

Minimum 

Diel Range 

Maximum 

Diel Range 

Temperature 

(°C) 

Full 

Sampling 

Period 

23.0 ± 5.3  23.2 ± 5.4 <0.0001 1.3 ± 0.8 0.30 3.93 

Winter 17.2 ± 2.1 17.4 ± 2.1 0.2055 1.5 ± 0.8 0.3 3.8 

Spring 23.7 ± 2.7 23.8 ± 2.9 0.5579 1.2 ± 0.6 0.3 3.0 

Summer 29.6 ± 0.7 29.9 ± 0.8 <0.0001 1.0 ± 0.6 0.3 3.8 

Fall 22.0 ± 1.19 23.0 ± 1.0 <0.0001 1.8 ± 0.9 0.8 3.9 
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Salinity Full 

Sampling 

Period 

30.5 ± 4.1 31.0 ± 3.3 0.0004 3.4 ± 2.7 0.250 15.870 

 Winter 29.6 ± 4.2 30.4 ± 3.1 0.0051 3.8 ± 2.2 0.25 9.48 

 Spring 30.1 ± 2.6 30.2 ± 2.6 0.5604 2.5 ± 2 0.4 8.17 

 Summer 33.4 ± 3.2 33.1 ± 3.3 0.0550 2.0 ± 1.7 0.3 9.73 

 Fall 25.9 ± 3.9  29.0 ± 3.2 <0.0001 7.7 ± 3.6 1.2 15.87 

pH Full 

Sampling 

Period 

8.12 ± 0.10 8.13 ± 0.09 <0.0001 0.09 ± 0.05 0.02 0.28 

Winter 8.18 ± 0.08 8.20 ± 0.07 0.0108 0.10 ± 0.05 0.02 0.28 

Spring 8.09 ± 0.09 8.10 ± 0.08 0.3286 0.08 ± 0.03 0.03 0.18 

Summer 8.04 ± 0.06 8.07 ± 0.05 <0.0001 0.08 ± 0.04 0.03 0.19 

Fall 8.20 ± 0.05 8.17 ± 0.05 0.0038 0.12 ± 0.04 0.03 0.20 

pCO2 (µatm) Full 

Sampling 

Period 

417 ± 54 416 ± 65 0.7065 58 ± 33 12.6 211.3 

Winter 374 ± 44 358 ± 43 <0.0001 43 ± 21 12.6 121.1 

Spring 438 ± 42 437 ± 48 0.7237 61 ± 31 20.5 152.8 

Summer 452 ± 44 471 ± 51 0.0003 74 ± 42 23.6 211.3 

Fall 406 ± 24 399 ± 27 0.0545 56 ± 18 22 92.2 

CO2 Flux  

(mmol m-2 d-1) 

 

Full 

Sampling 

Period 

0.0 ± 6.3 -1.3 ± 5.9 0.3028 34.1 ± 29.0 2.7 189.0 

Winter -14.9 ± 8.4 -19.1 ± 7.7 0.0676 46.6 ± 38.9 2.7 189.0 

Spring 7.6 ± 5.2 7.0 ± 5.2 0.6680 27.5 ± 18.5 4.9 115.0 

Summer 9.4  ± 5.6 11.7 ± 5.2 0.1167 32.3 ± 22.9 4.5 111.0 

Fall 0.1 ± 3.8 -0.3 ± 3.5 0.7449 17.0 ± 10.2 3.9 40.1 

 771 

Table 3. Tests examining differences in mean carbonate system parameters between 772 
seasons and between types of sampling (continuous monitoring with sensors Nov. 8 2016 773 
– Aug 23, 2017, discrete sample collection and laboratory measurement during only the 774 
continuous monitoring period Nov. 8 2016 – Aug 23, 2017, and discrete sample 775 
collection and laboratory measurement during the entire sampling period May 2, 2014- 776 
Feb. 25, 2020). For both the two-way ANOVA and associated one-way ANOVAs, p-777 
values are listed. All significant results based on α=0.05 are bolded, and the F statistic is 778 
in parentheses. Since all two-way ANOVAs had a significant interaction between factors, 779 
individual one-way ANOVAs were conducted for each level of the other factor.  780 
Following significant one-way ANOVAs, multiple comparisons using the Westfall 781 
adjustment (Westfall, 1997) were conducted; individual comparisons with significantly 782 
different means (based on α=0.05) are listed as unequal beneath the one-way ANOVA 783 
results (All≠ indicates that every individual comparison between levels had significantly 784 

different means. W = winter, Sp = spring, Su = summer, F = fall; C = continuous sensor 785 
data, D = discrete sample data over the entire discrete monitoring period, DC = Discrete 786 
sample data during only the period of continuous monitoring). 787 
 

Parameter 

 

Two-way ANOVA  

 

One-way ANOVA and post-hoc 

multiple comparison results for 

differences between types of 

sampling 

One-way ANOVA and post-hoc 

multiple comparison results for 

difference between seasons  

 Interactio

n 

Season 

  

Samplin

g type 

winter spring summer fall Continuous Discrete Discrete  
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(Continuou
s Period) 

(Entire 
Period) 

Temp (°C) <0.0001 

 (15.8) 

<0.0001 

(12369.7) 

0.7346 

(0.3) 

0.0710 

(2.6) 

0.1052 

(2.3) 

<0.0001 

(19.6) 

 

D≠C 

 

<0.0001 

(61.4) 

 

D≠C 

<0.0001 

(12559) 

 

All≠ 

<0.000

1 

(22.8) 

 

W≠

Su; W

≠Sp; 

W≠F; 

Su≠

Sp; Su

≠F 

<0.0001 

(58.2) 

 

All≠ 

Salinity 0.0141 

(2.7) 

<0.0001 

(598.7) 

0.6509 

(0.4) 

0.1716 

(1.8) 

0.0013 

(6.7) 

 

D≠C 

0.1921 

(1.7) 

0.7007 

(0.4) 

<0.0001 

(580.0) 

 

W≠Su; 

W≠F; Su

≠Sp; Su

≠F; Sp≠

F 

0.2516 

(1.6) 

<0.0001 

(17.5) 

W≠Su; Su

≠Sp; Su≠

F 

pH 0.0013 

(3.7) 

<0.0001 

(1412.3) 

<0.0001 

 (24.0) 

0.4026 

(0.9) 

 

0.9238 

(0.1) 

<0.0001 

(24.1 

 

D≠C 

C≠DC 

<0.0001 

(33.2) 

 

D≠C 

 

<0.0001 

(1381.2) 

 

All≠ 

0.0152 

(5.7) 

 

W≠Su 

<0.0001 

(35.3) 

 

W≠Su; W

≠Sp; W≠

F; Su≠Sp; 

Su≠F 

pCO2 

(µatm) 

<0.0001 

(10.4) 

<0.0001 

(1747.3) 

0.0147 

(4.2) 

0.0018 

(6.4) 

 

D≠C 

 

<0.000

1 

(17.4) 

 

D≠C 

 

0.0002 

(8.4) 

 

D≠C 

 

0.0398 

(3.2) 

 

All= 

 

<0.0001 

(1737.6) 

 

All≠ 

0.0407 

(4.0) 

 

W≠Su 

<0.0001 

(8.4) 

 

W≠Su; W

≠Sp; W≠

F; Su≠Sp; 

Su≠F 

CO2 Flux 

(mmol m-2 

d-1) 

0.0144 

(2.6) 

<0.0001 

(738.1) 

0.6739 

(0.4) 

0.9140 

(0.1) 

<0.0001 

(11.8) 

 

D≠C 

0.0214 

(3.9) 

 

D≠C 

0.5849 

(0.5) 

<0.0001 

(725.9) 

 

All≠ 

0.0299 

(4.5) 

 

W≠Su 

<0.0001 

(19.2) 

 

W≠Su; W

≠F; Su≠

Sp; Su≠F 

 788 

There was substantial diel variability in parameters (Table 2, Fig. 4). Over the 10-789 

month in-situ monitoring period, temperature had a mean diel range (daily maximum 790 

minus daily minimum) of 1.3 ± 0.8°C (Table 2). Daytime and nighttime temperature 791 

differed significantly during the summer and fall months, with higher temperatures at 792 

night for both seasons (Table 2). The mean diel range of salinity was 3.4 ± 2.7 (Table 2). 793 

Daytime and nighttime salinity differed significantly during the winter and fall months, 794 
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with higher salinities at night for both seasons. The mean diel range of pH was 0.09 ± 795 

0.05 (Table 2). Daytime and nighttime pH differed significantly during the winter, 796 

summer, and fall months; nighttime pH was significantly higher than that of the daytime 797 

during the summer and winter months, and daytime pH was significantly higher during 798 

the fall (Table 2, Fig. 4). The mean diel range of pCO2 was 58 ± 33 µatm (Table 2, Fig. 799 

4). Daytime and nighttime pCO2 differed significantly during the winter and summer 800 

months; nighttime pCO2 was significantly higher than that of the daytime during the 801 

summer and daytime pCO2 was significantly higher during the winter (Table 2, Fig. 4).  802 

 803 
Figure 4 3. Boxplots showing of the diel range (maximum minus minimum) and 804 
difference in daily parameter mean daytime minus nighttime measurements for pH and 805 
pCO2 from continuous sensor data.  806 

 807 

 The seasonally weighted mean CO2 flux calculated from sensor data across the 808 

entire monitoring period was 0.2 ± 23.7 mmol m-2 d-1 (Table 1). Mean CO2 flux differed 809 
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by season (Table 3). Winter and fall both had net negative CO2 flux (winter was most 810 

negative), and summer and spring both had a net positive CO2 flux (summer was most 811 

positive) (Table 1, Fig. 5). CO2 flux also fluctuated on a daily scale, with the mean diel 812 

range (daily maximum – minimum) over the entire monitoring period being 34.1 ± 29.0 813 

mmol m-2 d-1 (Table 2). However, there was not a significant difference in CO2 flux 814 

calculated for daytime versus nighttime hours for the entire monitoring period or any 815 

individual season based on α=0.05 (paired t-test, Table 2).  816 

 817 
Figure 45. CO2 flux calculated over the sampling periods from continuous (A) and 818 
discrete (B) data using the Jiang et al. (2008) wind speed parameterization. Gray scale in 819 
(A) and (B) denote different seasons. Vertical lines in (B) denote the time period of 820 
continuous monitoring.  (C) shows the seasonal mean CO2 flux calculated using the Jiang 821 
et al. (2008) gas transfer velocity parameterization and error bars representing mean CO2 822 
flux calculation using Ho (2006) and Raymond and Cole (2001) windspeed 823 
parameterizations. The different color bars within each season represent all discrete data 824 
(May 2, 2014- Feb. 25, 2020), reduced discrete data (Nov. 8 2016 – Aug 23, 2017, to 825 
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overlap with continuous monitoring), and continuous sensor data (Nov. 8 2016 – Aug 23, 826 
2017). 827 
 828 

The relative influence of thermal and nonthermal factors (T/B) in controlling 829 

pCO2 varied over different time scales (Table 4, Fig. 6). T/B calculated from sensor data 830 

for the entire period was 0.98, indicating that the magnitude of control of non-thermal 831 

processes on pCO2 was slightly greater than that of temperature. Within seasons, T/B 832 

calculated from sensor data ranged from 0.51 in the winter to 0.69 in the spring, showing 833 

that non-thermal processes exert more control on pCO2 within each individual season 834 

(Table 4). On a daily scale, only 11 of the 178 days with measurements for all 24 hours 835 

had temperature control of pCO2 exceeding the non-thermal control (Table 4, Fig. 6). 836 

Table 4. Thermal versus non-thermal control on pCO2 (Takahashi et al. 2002) over 837 
different time scales using both continuous sensor data (C) and discrete sample data (D) 838 
(indicated as Sampling Type C and D, respectively). If more than one segment of time is 839 
being considered (n>1), ΔpCO2 values are the mean ± standard deviation of all segments, 840 
the T/B values arerange is the minimum and maximum T/B, and the number out of n with 841 
T/B>1 (indicating greater control of pCO2 by temperature than other processes) is 842 
recorded. The summary of annual T/B values from discrete data includes only 2015-2019 843 
(n=5 years; 2014 and 2020 were omitted since monitoring did not occur throughout the 844 
entire year). Daily values from continuous data were only reported for those days with all 845 
24 measurements.    846 
Time Period / Scale Sampling 

type 

n ΔpCO2, thermal 

(µatm) 

ΔpCO2, nonthermal 

(µatm) 

T/B Number out of 

n with T/B >1 

Full Monitoring Period  

(May 2, 2014- Feb. 25, 

2020) 

D 1 301.9 537.8 0.56  

Annual D 5 259.3 ± 16.0 319.1 ± 130.9  0.48 – 1.17 2/5 

Continuous Monitoring 

Period 

(Nov 2016 – August 2017) 

C 

 

1 355.0 360.7 0.98  

D 1 236.3 229.9 1.03  

Winter C 1 168.2 328.4 0.51  

D 6 42.2 ± 23.4 101.7 ± 78.7  0.20 – 4.90 1/6 

Spring C 1 171.4 246.9 0.69  

 D 6 142.3 ± 53.7 147.8 ± 67.3  0.59 – 2.42 2/6 

Summer C 1 100.2 179.9 0.56  

 D 6 46.9 ± 26.6 176.9 ± 108.3  0.21 – 0.35 0/6 

Fall C 1 105.9 181.6 0.58  

 D 6 179.8 ± 59.5 176.6 ± 78.1  0.59 – 3.06 2/6 

Daily C 178 21.8 ± 11.8 63.8 ± 30.3  0.05 – 1.68 11/178 
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 847 

 848 
Figure 6. T/B (thermal pCO2/ non-thermal pCO2) calculated for each day from 849 
continuous (A) and each season from discrete (B) data. Bar graphs showing the seasonal 850 
mean and standard deviation of T/B from both discrete and continuous data (C).  851 
  852 

Mean water level varied between all seasons; mean spring (highest) water levels 853 

were on average 0.08 m higher than winter (lowest) water levels (ANOVA p<0.0001, fall 854 

was not considered because of a lack of water level data). Tidal influence on pH was less 855 

clear. Data from continuous monitoring did not show a significant correlation between 856 

pH and tide level across the entire monitoring period (Table 6). Significant differences in 857 

mean pH between tide levels were recorded during each season; pH was higher at high 858 

tide (corresponding with the lower pCO2)  during the winter and summer, but pH was 859 

lower at high tide (conflicting with the lower pCO2) in the spring (Table 5). Tidal 860 

fluctuations had a significant effect on carbonate system parameters (Table 5). Both 861 
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temperature and salinity were higher at low tide during the winter and summer months 862 

and higher at high tide during the spring. pH was higher at high tide during the winter and 863 

summer and higher at low tide during the spring, and pCO2 was higher during low tide 864 

during winter, spring, and summer (Table 5). CO2 flux also varied with tidal fluctuations. 865 

CO2 flux was higher in the low tide condition for all season with tide data; the location 866 

was less of a CO2 sink during low tide conditions in the winter and more of a CO2 source 867 

during low tide conditions in the spring and summer. The mean daily tidal fluctuation 868 

during our continuous monitoring period was 0.39 m ± 0.13 m, which did not 869 

significantly differ between seasons (ANOVA p=0.739). However, diel patterns in tidal 870 

fluctuations exhibited a strong seasonal pattern during the continuous monitoring period, 871 

with spring and summer having higher tide level during the daytime and winter having 872 

higher tide level during the nighttime (Fig. 8).  This same seasonal pattern in diel tidal 873 

fluctuations is exhibited from Dec 20, 2016 (when the tide data is first available) through 874 

the rest of our discrete monitoring period (Feb 25, 2020), indicating that tidal control on 875 

diel variability of carbonate system parameters was likely consistent throughout this time 876 

period.There were no observations of hypoxia at our study site during our monitoring, 877 

with minimum DO levels of 3.9 mg L-1 and 4.0 mg L-1 for our continuous monitoring 878 

period and our discrete sampling period, respectively. 879 

Table 5. Differences in temperature, salinity and mean carbonate system parameters from 880 
continuous sensor data between high tide and low tide. High tide was defined as a tide 881 
level greater than Q3 and low tide was defined as a tide level less than Q1. Seasons were 882 
examined separately with t-tests because of a significant interaction (based on α=0.05) 883 
between the season and high/low tide factors in a two-way ANOVA. Fall was omitted 884 
from the analysis because tide data was only available at the location beginning 885 
December 20, 2016.  886 
 887 
Parameter Season High Tide Mean Low Tide Mean Difference 

between tide 

levels,  

Formatted Table
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t-test p-value 

Temperature (°C) Winter 16.7 ± 1.7 17.6 ± 2.0 <0.0001 

Spring 24.4 ± 2.7 23.6 ± 2.7 <0.0001 

Summer 29.3 ± 0.5 30.1 ± 0.7 <0.0001 

Salinity Winter 30.2 ± 2.5 31.3 ± 2.9 <0.0001 

Spring 30.4 ± 1.9 30.0 ± 2.7 0.0071 

Summer 30.5 ± 2.4 34.5 ± 3.0 <0.0001 

pH 

 

 

Winter 8.20 ± 0.08 8.15 ± 0.06 <0.0001 

Spring 8.07 ± 0.09 8.10 ± 0.07 <0.0001 

Summer 8.08 ± 0.04 8.04 ± 0.06 <0.0001 

pCO2 (µatm) Winter 331 ± 40 378 ± 42 <0.0001 

Spring 435 ± 33 443 ± 50 0.0154 

Summer 419 ± 30 482 ± 48 <0.0001 

CO2 Flux  

(mmol m-2 d-1) 

 

Winter -33.0 ± 38.1  -11.7 ± 21.8 <0.0001 

Spring 7.4 ± 14.0 8.7 ± 14.8 0.2248 

Summer 1.8 ± 6.3 16.0 ± 14.5 <0.0001 

 888 

3.2 Discrete sampling results  889 

All results reported here are for the entire 5+ years of monitoring; the subset of discrete 890 

sample data that overlaps with the continuous monitoring period will be addressed only 891 

in the discussion for method comparisons. All reported discrete sampling parameters 892 

showed substantial temporal variability over the 5+ years of monitoring (Fig. 2E-H). The 893 

mean temperature was 24.1 ± 5.3°C, ranging from 11.8 – 31.2°C; the mean salinity was 894 

30.1 ± 4.4, ranging from 16.7 – 37.5; the mean pH was 8.079 ± 0.092, ranging from 895 

7.693 to 8.354; and the mean pCO2 was 406 ± 100 atm, ranging from 199 to 1043 896 

(Table 1). These parameters all experienced significant seasonal variability (Tables 1 and 897 

3). Temperature was significantly different between each season, highest in summer and 898 

lowest in winter (Tables 1 and 3). Salinity was highest during the summer months and 899 

was not significantly different between other seasons (Tables 1 and 3). pH and pCO2 900 

were both significantly different between all seasons with the exception of spring and fall 901 

(Table 3). Winter had both the highest seasonal pH (8.162 ± 0.065) and lowest seasonal 902 
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pCO2 (331 ± 39 µatm), and summer had both the lowest seasonal pH (7.975 ± 0.046) and 903 

highest seasonal pCO2 (511 ± 108) (Tables 1 and 3, Fig. 3).  904 

 Average annual CO2 flux calculated with discrete sample data was slightly 905 

negative (-0.9± 18.7 mmol m-2 d-1, Table 1). CO2 flux varied greatly by season. Summer, 906 

the only season with a net positive CO2 flux over the 5+ year period, had significantly 907 

higher flux than all other seasons; winter had the lowest calculated flux, but it was not 908 

significantly different from spring (Tables 1 and 3).  909 

As with the continuous data, T/B calculated from the discrete data varied over different 910 

time scales (Table 4, Fig. 6). For the entire period, T/B was 0.56, indicating that non-911 

thermal processes exerted more control than temperature on pCO2. The annual T/B varied 912 

from 0.48 to 1.17, with two of the five sampled years having T/B greater than one (i.e. 913 

more thermal influence). While the majority of individual seasons that were sampled 914 

experienced stronger non-thermal control on pCO2 (T/B <1), the only season that never 915 

experienced stronger thermal control was summer, with summer T/B values ranging from 916 

0.21 – 0.35 for the 6 sampled years (Table 4).  917 

As would be expected, we found that PAR provided the most differentiation between 918 

daytime and nighttime conditions (based on the largest coefficient associated with Diel 919 

LD1, Table 7). Temperature was the second most important factor in differentiating 920 

between day and night; this corresponds to the diel variability that we detected where 921 

both summer and fall had clear separation of mean temperature between day and night, 922 

with nighttime temperatures being 0.3 and 1.0 higher, respectively (Table 3). The next 923 

most important parameter in differentiating between day and night in this system was 924 

pCO2, providing more evidence for differentiation between day and night than other 925 
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parameters that would be expected to vary on a diel timescale (e.g. chlorophyll and DO). 926 

As for system variability that allowed differentiation between the four seasons, the most 927 

important parameter in system variability was temperature (Table 7, Seasonal LD1), as 928 

would be expected with the clear seasonal temperature fluctuations (Fig. 2E). The second 929 

most important parameter in contributing to seasonal variability was chlorophyll, likely 930 

indicating clear seasonal blooms. The third most important parameter for seasonal 931 

differentiation was pCO2; therefore pCO2 variability seems to be more closely tied to 932 

seasons than variability in tide level, DO, or the array of other parameters (Table 7).  933 

The contribution of pH to discriminating along diel or seasonal scales was less than pCO2 934 

despite the same seasonal differences that were identified by ANOVA (Table 3) and 935 

more seasons with significant diel differences (Table 2). However, pH still seemed to be 936 

relatively important on seasonal scales, having clearer contribution to seasonal system 937 

variability than several other parameters including DO and salinity.  938 

 939 

Table 3. Coefficients of linear discriminants (LD) from LDA using continuous sensor 940 
data and other environmental parameters.  Discriminants for both diel and seasonal 941 
variability shown.  942 

 Diel Seasonal 

LD1 LD1  

Temperature (°C)     0.5406 -3.5279 

Salinity 0.1473 0.0432 

pCO2 (µatm)         -0.1612 -0.2928 

pH        0.0593 0.0991 

Tide Level (m)  0.0968 -0.2389 

Wind speed (ms-1)               -0.0009 0.0504 

Total PAR            -2.2878 -0.0676 

DO (mg L-1) -0.0839 0.0859 

Turbidity         -0.0561 0.1455 
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 943 
 Figure 6. Correlations of pH and pCO2 with temperature and salinity from continuous 944 
sensor data (gray) and all discrete data (black). 945 
 946 

4. Discussion 947 

4.1 Comparing continuous monitoring and discrete sampling: Representative sampling in 948 

a temporally variable environment   949 

4.1.1 Representative sampling in a temporally variable environment 950 

Discrete water sample collection and analysis is the most common method that 951 

has been employed to attempt to understand the carbonate system of estuaries. However, 952 

it is difficult to know if these samples are representative of the spatial and temporal 953 

variability in carbonate system parameters. While this time-series study cannot conclude 954 

whether our broader sampling efforts in the MAE are representative of the spatial 955 

variability in the estuary, it can investigate how representative our bimonthly to monthly 956 
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sampling is of the more high-frequency temporal variability that the Aransas Ship 957 

ChannelASC experiences.  958 

There were several instances where seasonal parameter means significantly 959 

differed between the 10-month continuous monitoring period and the 5+ year discrete 960 

sampling period (Table S2, C ≠ D or Dc ≠ D) including temperature in the summer and 961 

fall, salinity in the spring, pH in the summer and fall, and pCO2 in winter, spring, and 962 

summer. While clear seasonal variability was demonstrated for most parameters (using 963 

both continuous and discrete data for the entire period), these differences between the 10-964 

month continuous monitoring period and our 5+ year monitoring period illustrate that 965 

there is also interannual variability in the system. Therefore, short periods of monitoring 966 

are unable to fully capture current baseline conditions.  967 

During the continuous monitoring period (2016-2017), we found no significant 968 

difference between sampling methods in the seasonal mean temperature, salinity, or 969 

pCO2. The two sampling methods also resulted in the same mean pH for all seasons 970 

except for summer, when the sensor data recorded a higher mean pH than discrete 971 

samples (Tables S1 and S2). During this case, we can conclude that discrete monitoring 972 

did not accurately represent the system variability that was able to be captured by the 973 

sensor monitoring. However, given that most seasons did not show differences in pH or 974 

pCO2 between sampling methods, the descriptive statistics associated with the discrete 975 

monitoring did a fair job of representing system means. This is evidence that long-term 976 

discrete monitoring efforts, which are much more widespread in estuarine systems than 977 

sensor deployments, can be generally representative of the system despite known 978 

temporal variability on shorter time scales. However, further study would be needed to 979 



 52 

determine if this applies throughout the system, as the upper estuary generally 980 

experiences greater variability. 981 

Understanding the relationships of pH and pCO2 with temperature and salinity is 982 

important in a system (Fig. 76). Both the continuous and discrete sampling types indicate 983 

that pH has a significant negative relationship with both temperature and salinity and 984 

pCO2 has a s significant positive relationship with both temperature and salinity (Fig. 7). 985 

Based on the results of an Analysis of Covariance (ANCOVA), the relationship (slope) of 986 

pH with both temperature and salinity and of pCO2 with salinity were not significantly 987 

different between types of monitoring (considering the sensor deployment period only), 988 

supporting the effectiveness of long-term discrete monitoring programs when sensors are 989 

unable to be deployed. However, ANCOVA did reveal the relationship of pCO2 with 990 

temperature is significantly different (method:temp p=0.0062) between monitoring 991 

methods. 992 

While continuous monitoring data from sensors is usually lacking substantial 993 

spatial coverage, it is effective in capturingThe high temporal resolution of sensor data is 994 

and presumably better for estimating providing better estimates of average CO2 flux at a 995 

given location versusthan periodicdiscrete sampling. Previous studies have pointed out 996 

that discrete sampling methods, which generally involve only daytime sampling, do not 997 

adequately capture the diel variability in the carbonate system and may therefore lead to 998 

underestimation of CO2 fluxes. However, we found no significant difference (within any 999 

season) between CO2 flux values calculated with sensor data versus discrete samples 1000 

(Table S32, Fig. 3). Calculated CO2 fluxes also did not significantly differ between day 1001 

and night during any season, despite some differences in pCO2 (Table 2S3), likely due to 1002 
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the large error associated with the calculation of CO2 flux (Table S1, Fig. 3) which will 1003 

be further discussed below. Therefore, the expected underestimation of CO2 flux based 1004 

on diel variability of pCO2 was not encountered at our study site, validating the use of 1005 

discrete samples for quantification of CO2 fluxes (until methods with less associated error 1006 

are available). Even given less error in calculated flux, estimated fluxes would likely not 1007 

differ between methods on an annual scale (as pCO2 did not), but CO2 fluxes may differ 1008 

on a seasonal scale since the differences between daytime and nighttime pCO2 were not 1009 

consistent across seasons (Table 2S3, Fig. 4).  1010 

There are many factors contributing to error associated with CO2 flux. There is 1011 

still large error associated with estimates of estuarine CO2 flux because turbulent mixing 1012 

is difficult to model and turbulence is the main control on CO2 gas transfer velocity, k, in 1013 

shallow water environments. Thus, our wind speed parameterization of k is imperfect and 1014 

likely the greatest source of error. Other notable sources of error include the data 1015 

treatment. For example, we chose to seasonally weight the individual calculated flux 1016 

values in the calculation of annual flux to account for differences in sampling frequency 1017 

between seasons. From continuous data, the weighted average flux was 0.2 mmol m-2 d-1, 1018 

although choosing not to seasonally weight and simply look at the arithmetic mean of 1019 

fluxes calculated directly from sampling dates would have resulted in an annual CO2 flux 1020 

of -0.7 mmol m-2 d-1 for the same period. Similarly, the weighted average flux from all 5+ 1021 

years of discrete data was -0.9 mmol m-2 d-1, but the arithmetic mean of fluxes would 1022 

have resulted in an annual CO2 flux of 0.2 mmol m-2 d-1 for the same period. Another 1023 

source of error that could be associated with the calculation of flux from the discrete data 1024 

is the way in which wind speed data are aggregated to be used in the windspeed 1025 
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parameterization. We decided to use daily averages of the windspeed for calculations. 1026 

Using the windspeed measured for the closest time to our sampling time or the monthly 1027 

averaged wind speed may have resulted in very different flux values.  1028 

4.1.2 Direct agreement of measurement methods and quantified uncertainties associated 1029 

with parameters 1030 

Direct comparisons were made between measurements from sensors and 1031 

laboratory-analyzed bottle samples—including both quality control (QC) samples taken 1032 

from the cooler that housed the sensors at the time when these sensors took recorded 1033 

readings and long-term monitoring samples taken from the ship channel near the sensors 1034 

(within 100 m) that occurred at various times and were compared to sensor measurements 1035 

of the closest full hour (Table 8). The mean difference between the SeaFET pH 1036 

measurements and the QC samples (continuous – discrete) prior to sensor data correction 1037 

was 0.05 ± 0.08 (Table 8, which would reduce to 0.00 ± 0.08 following the correction).  1038 

The mean difference between the SAMICO2 pCO2 measurements and the QC samples 1039 

(continuous – discrete) was -18 ± 44 (Table 8) when discrete sample pCO2 was calculated 1040 

using Millero (2010) constants. We used several different constants to calculate pCO2 to 1041 

check this offset; all were similar in mean and standard deviation, but the offset could be 1042 

slightly reduced using Millero (2002) constants.  1043 

Table 4. Comparison of discrete and continuous monitoring. The difference between 1044 
sampling methods is reported in two different ways: the difference between sensor 1045 
measurements and laboratory measurement of quality control (QC) bottle samples taken 1046 
directly from the cooler (here the pH difference is prior to the sensor pH correction of 1047 
+0.05), and the difference between sensor measurements and laboratory measurement of 1048 
discrete samples taken from a nearby station for our 5+ year monitoring (here the pH 1049 
difference is after the sensor pH correction of +0.05, see methods for details). For all 1050 
calculated parameters, dissociation constants from Millero 2010 were used. Error—1051 
analytical error for directly measured parameters and propagated error for calculated 1052 

parameters (mean ± standard deviation)—is also reported. 1053 
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 Difference between sampling methods  

(mean difference ± standard deviation of the 

difference) 

Error (Analytical or Propagated)  

Sensor – QC cooler 

samples 

(prior to sensor pH 

correction, n=12) 

Sensor – discrete 

samples 

(after pH sensor 

correction, n=13) 

Discrete 

Sampling 

(n = 104) 

Continuous Monitoring 

 (n = 6088) 

Temperature 

(°C)     

  0.1 0.1 

Salinity -0.16 ± 1.44 0.50 ± 1.69 0.01 0.1 

pH -0.05 ± 0.08 0.01 ± 0.12 0.0004 0.05 

pCO2 (µatm) -18 ± 44 25 ± 63 7 ± 2 1.0 

DIC (µmol 

kg-1) 

  2.5 327.4 ± 63.2 

TA (µmol kg-

1) 

  7.4 ± 0.9 400.7 ± 81.0 

ΩAr   0.19 ± 0.03 1.08 ± 0.31 

 1054 

Given that the analytical accuracy of the SeaFET instrument is 0.05 pH units, the 1055 

average offset between sensor and laboratory values of quality control samples 1056 

demonstrates fair agreement (Table 8). Given that calculated uncertainty associated with 1057 

calculated discrete pCO2 was 7 ± 2, we did not see great agreement between SAMICO2 1058 

pCO2 and laboratory-calculated pCO2 for quality control samples (mean difference of -18 1059 

± 44, Table 8). Mean offsets and their associated standard deviations were larger when 1060 

comparing sensor data to samples taken during our long-term discrete monitoring effort. 1061 

This is not surprising given that the discrete sample collection did not occur at the exact 1062 

time of the sensor measurement or the exact location of the cooler pump inlet. Greater 1063 

sensor-laboratory agreement has been achieved for open ocean settings, but this larger 1064 

standard deviation is likely a result of the temporal variability in the more complex 1065 

estuarine environment where these instruments have been much less widely deployed to 1066 

date. 1067 

Propagated error associated with calculated carbonate system parameters was 1068 

calculated using the seacarb package in R (Gattuso et al., 2018) using analytical errors 1069 
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associated with the measurements of the input pair, in-situ temperature and salinity, total 1070 

boron, and the key dissociation constants (Table 8). Error associated with calculated 1071 

parameters from discrete bottle samples was relatively small and likely a result of 1072 

uncertainties in constants (Orr et al., 2018), but error associated with parameters 1073 

calculated from sensor data was relatively large (Table 8). This large error is likely a 1074 

result of both the relatively low analytical precision associated with the pH sensor and the 1075 

poor mathematical combination of variables for speciation calculations. The high error 1076 

suggests that it will be important that autonomous sensors that can measure alternative 1077 

parameters and allow for lower propagated error are developed and broadly used to gain a 1078 

full understanding of carbonate chemistry on high-frequency timescales.  1079 

 1080 

4.21 Factors controlling temporal variability in carbonate system parameters  1081 

Our study site had a relatively small range of pH and pCO2 on both diel and 1082 

seasonal scales compared to other coastal regions (Challener et al., 2016; Yates et al., 1083 

2007). This small variability is likely tied to a combination of the subtropical setting 1084 

(small temperature variability), the lower estuary position of our monitoring (further 1085 

removed from the already small freshwater influence), little ocean upwelling influence, 1086 

and the system’s relatively high buffer capacity that results from the high alkalinity of the 1087 

freshwater endmembers (Yao et al., 2020). Just as the extent of hypoxia-induced 1088 

acidification was relatively low in Corpus Christi Bay because of the bay’s high buffer 1089 

capacity (McCutcheon et al., 2019), the extent of pH fluctuation resulting from all 1090 

controlling factors at ASC would also be modulated by the region’s high intrinsic buffer 1091 

capacity.4.21.1 Thermal versus non-thermal control of pCO2  1092 

 1093 
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Substantial variability in the carbonate system was observed at the study site over 1094 

multiple time scales including diel, seasonal, and interannual. Many physical and 1095 

biological factors (e.g., temperature, currents, tides, wind speed, net ecosystem 1096 

metabolism, etc.) can exert control on pCO2 and subsequently exert control on other 1097 

carbonate system parameterscarbonate chemistry. Using the thermal versus non-thermal 1098 

analysis of control on pCO2 from Takahashi et al. (2002), wWe were able to 1099 

determinedemonstrated that both temperature and non-thermal processes exert control on 1100 

pCO2, but non-thermal control generally surpasses thermal control exert more control on 1101 

the pCO2 in the Aransas Ship ChannelASC relative to temperature over multiple time 1102 

scales (Fig. 6, Table S4Table 42, T/B<1). The magnitude of pCO2 variation attributed to 1103 

non-thermal processes varied greatly (i.e., ΔpCO2,nt had large standard deviations, Table 1104 

2S4). For example, during the year of strongest non-thermal control (2016), ΔpCO2,nt was 1105 

5384 µatm versus ΔpCO2,nt of 2089 µatm in the year of weakest thermal control (2019). 1106 

Conversely, the magnitude of pCO2 variation attributed to temperature was consistent 1107 

across time scales. For example, during the year of strongest thermal control (2015), 1108 

ΔpCO2,t was 276 µatm versus ΔpCO2,t of 2432 µatm in the year of weakest thermal 1109 

control (20197). Spring and fall seasons, which experienced the greatest temperature 1110 

swings (Table S1), had greater relative temperature control exerted on pCO2 out of all 1111 

seasons (Fig. 6, Table S4Table 2). The difference in T/B between sampling methods is 1112 

relatively small over the 10-month sensor deployment period, but it is worth noting that 1113 

T/B did not align over shorter seasonal time scales sampling methods (Fig. 6, Table 2S4). 1114 

Continuous monitoring demonstrated a greater magnitude of fluctuation resulting from 1115 

both temperature and non-thermal processes (i.e., greater   ΔpCO2,t and ΔpCO2,nt), 1116 
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indicating that the extremes are generally not captured by the discrete, daytime sampling, 1117 

and sensor data would provide a better understanding of system controls. 1118 

Though annual average pCO2 and CO2 flux are higher in the upper estuary and 1119 

lower offshore than at our study site, the same seasonal pattern of elevated pCO2 and 1120 

positive CO2 flux in the summer and depressed pCO2 and negative CO2 flux during the 1121 

winter observed at our site has also been observed throughout the entire MAE and in the 1122 

open Gulf of Mexico (Hu et al., 2018; Yao and Hu, 2017).  1123 

The greater influence of non-thermal controls that we report conflicts with Yao 1124 

and Hu (2017), who found that ASC was primarily thermally controlled (T/B 1.53 – 1.79) 1125 

from May 2014 to April 2015. Yao and Hu (2017) also found that locations in the upper 1126 

estuary experienced lower T/B during flooding conditions than drought conditions. 1127 

Although the opposite was found at ASC, it is likely that the high T/B calculated at ASC 1128 

by Yao and Hu (2017) was still a result of the drought condition due to the long residence 1129 

time of the estuary. Since 2015, there has not been another significant drought in the 1130 

system, so it seems that non-thermal controls on pCO2 are more important at this location 1131 

under normal freshwater inflow conditions.  1132 

Significantly warmer water temperatures were observed during the nighttime in 1133 

both summer and fall (Fig. 5), indicating that temperature could exert a slight control on 1134 

the carbonate system over a diel time scale. We note that significant differences in day 1135 

and night temperature within seasons do not indicate that diel differences were observed 1136 

on all days within the season, as large standard deviations in both daytime and nighttime 1137 

values result in considerable overlap. More substantial temperature swings between 1138 

seasons would result in more temperature control over a seasonal timescale. ASC seems 1139 
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to have less thermal control of the carbonate system than offshore GOM waters, as 1140 

temperature had substantially higher explanatory value for pH and pCO2 based on simple 1141 

linear regressions in offshore GOM waters (R2 = 0.81 and 0.78, respectively (Hu et al., 1142 

2018)) than at ASC (R2 = 0.30 and 0.52, respectively, for sensor data and R2 = 0.38 and 1143 

0.25, respectively, for discrete data).  1144 

Though annual average pCO2 (and CO2 flux) are higher in the upper MAE and 1145 

lower offshore than at our study site, the same seasonal patterns that we observed (i.e., 1146 

elevated pCO2 and positive CO2 flux in the summer and depressed pCO2 and negative 1147 

CO2 flux during the winter, Table S1, Fig. S1) has also been observed throughout the 1148 

entire MAE and the open Gulf of Mexico (Hu et al., 2018; Yao and Hu, 2017). These 1149 

seasonal patterns correspond with both the directional response of the system to 1150 

temperature and net community metabolism response to changing temperature, i.e., 1151 

elevated respiration in summer months (Caffrey, 2004). Despite that there were no 1152 

observations of hypoxia, there was a strong relationship between the carbonate system 1153 

parameters and DO (Fig. 7, Table S45), suggesting that net ecosystem metabolism may 1154 

exert an important control on the carbonate system on certain time scales. The lack of 1155 

day-night difference in DO (Fig. 5F) despite the significant day-night difference in both 1156 

pH and pCO2 suggests that net community metabolism is likely not a strong controlling 1157 

factor on diel time scales. Biological control likely becomes more important over 1158 

seasonal timescales.  1159 

While the tidal range in the northwestern GOM is relatively small (1.30 m over 1160 

our 10-month continuous monitoring period), the tidal inlet location of our study site 1161 

results in proportionally more “coastal water” during high tide and proportionally more 1162 
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“estuarine water” during low tide. The carbonate chemistry signal of these different water 1163 

masses was seen in the differences between high tide and low tide conditions at ASC 1164 

(i.e., high tide having lower pCO2 because coastal waters are less heterotrophic than 1165 

estuarine waters, Table 32). Consequently, the relative importance of thermal versus non-1166 

thermal controls may be modulated by tide level. We calculated the thermal and non-1167 

thermal pCO2 terms separately during high tide and low tide periods and found that non-1168 

thermal control is more important during low tide conditions (within each season T/B is 1169 

0.10 ± 0.07 lower during the low tide than high tide). This is likely because low tide has 1170 

proportionally more “estuarine water” at the location and because there is less volume of 1171 

water for the end products of biological processes to accumulate. The difference in T/B 1172 

between high tide and low tide conditions was greatest in the spring, likely due to a 1173 

combination of elevated spring-time productivity and larger tidal ranges in the spring.  1174 

Only five of 24 seasons (one winter, two spring, and two fall) throughout the 1175 

years of discrete sampling had greater variability in pCO2 attributed to temperature 1176 

(ΔpCO2, thermal) than other processes (ΔpCO2, nonthermal) (Table 4). The magnitude of pCO2 1177 

variation attributed to non-thermal processes varied greatly over multiple time scales (i.e. 1178 

ΔpCO2, nonthermal had large standard deviations, Table 42). For example, during the year of 1179 

strongest non-thermal control (2016), ΔpCO2, nonthermal was 538 µatm versus ΔpCO2, 1180 

nonthermal of 208 µatm in the year of weakest thermal control (2019). For example, in 2016 1181 

pCO2 had the strongest non-thermal control of any year, with a ΔpCO2, nonthermal of 538 1182 

µatm, while 2019 had the weakest control from non-thermal processes of any year, with a 1183 

ΔpCO2, nonthermal of 208. Conversely, the magnitude of pCO2 variation attributed to 1184 

temperature was consistent across time scales. For example, during the year of strongest 1185 
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thermal control (2015), ΔpCO2, thermal was , in 2015 pCO2 had the strongest thermal 1186 

control of any year, with a ΔpCO2, thermal of 276 µatm,  versus ΔpCO2, thermal of 243 µatm 1187 

in the year of weakest thermal control (2019). Spring and fall seasons, which experienced 1188 

the greatest temperature swings (Table S1), had greater relative temperature control 1189 

exerted on pCO2 out of all seasons (Table 4). while 2019 had the weakest thermal control 1190 

of any year, with a ΔpCO2, thermal of 243 µatm. The GOM is one of the few places in the 1191 

world that experiences diurnal tides (Seim et al., 1987; Thurman, 1994), so theoretically, 1192 

the fluctuations in pCO2 associated with tides may align to either amplify or 1193 

reduce/reverse the fluctuations that would result from diel variability in net community 1194 

metabolism. Based on diel tidal fluctuations at this site (i.e., higher tides during the day in 1195 

the spring and summer and higher tides at night during the winter, Fig. 5E), and the 1196 

higher pCO2 associated with low tide (Table 2), tidal control should amplify the 1197 

biological signal (nighttime pCO2 > daytime pCO2) during spring and summer and reduce 1198 

or reverse the biological signal during the winter. This tidal control can explain the diel 1199 

variability present in our pCO2 data, which showed the full reversal of the expected 1200 

biological signal in the winter (Fig. 5C, Table S3, nighttime pCO2 < daytime pCO2), i.e., 1201 

the higher nighttime tides in winter brought in enough low CO2 water from offshore to 1202 

fully offset any nighttime buildup of CO2 from the lack of photosynthesis. However, we 1203 

note that the expected diel, biological control was likely minimal since daytime DO was 1204 

not consistently higher than nighttime DO (Fig. 5F). The same seasonal pattern diel tide 1205 

fluctuations were exhibited from Dec 20, 2016 (when the tide data is first available) 1206 

through the rest of our discrete monitoring period (Feb 25, 2020), indicating that tidal 1207 

control on diel variability of carbonate system parameters was likely consistent 1208 
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throughout this 3+ year period. The diel variability in pH did not mirror pCO2 as would 1209 

be expected (Fig. 5). The relationship between pH and tide level more closely mirrored 1210 

the relationships of salinity and temperature with tide level (versus pCO2 relationship 1211 

with tide level; Table 2), indicating that controlling factors of the carbonate system may 1212 

not be exerted equally on both pH and pCO2 over different time scales.  1213 

tidal control should amplify the biological control signal (nighttime pCO2 > 1214 

daytime pCO2) during spring and summer and reduce or reverse the biological control 1215 

signal during the winter. This was supported by our pCO2 data, which showed nighttime 1216 

pCO2 significantly greater than daytime pCO2 in the summer, as expected from the 1217 

biological signal (Table S3, Fig. 5). The full reversal of the biological signal in the winter 1218 

(Table S3, nighttime pCO2 < daytime pCO2) indicated that tidal control exceeded 1219 

biological control (i.e., the higher tides at nighttime in winter brought in enough low CO2 1220 

water from offshore to fully offset the nighttime buildup of CO2 from lack of 1221 

photosynthesis during nighttime hours). The diel variability in pH did not mirror pCO2 as 1222 

would be expected. The loess models show that pCO2 closely follows the directional 1223 

response to both tide level and temperature, while pH does not (Fig. 5), indicating that 1224 

controlling factors of the carbonate system may not be exerted equally on both pH and 1225 

pCO2 over different time scales. 1226 

 1227 

The difference in T/B between sampling methods is relatively small over the 10-1228 

month sensor deployment period, but sampling methods did not align over shorter 1229 

seasonal time scales (Table 42). Each method suggested temperature and nonthermal 1230 

processes exert a relatively similar control on pCO2, but cContinuous monitoring 1231 
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demonstrated a greater magnitude of fluctuation resulting from both temperature and 1232 

non-thermal processes (i.e. greater   ΔpCO2, thermal and ΔpCO2, nonthermal),. Over shorter 1233 

time scales, like individual seasons, the calculated T/B did not align well between 1234 

sampling methods. The T/B (calculated using only data from Nov 2016 – August 2017) 1235 

for discrete versus continuous sampling was respectively 0.17 versus 0.51 for winter, 1236 

2.37 versus 0.69 for spring, and 0.20 versus 0.56 for summer (Table 4, Fall was omitted 1237 

since there was only one discrete sampling event during the fall of the continuous 1238 

monitoring period). Sampling bias due to the small number of within-season sampling 1239 

events for the discrete monitoring likely resulted in this difference. From both continuous 1240 

and discrete data, summers always had stronger control exerted on pCO2 from 1241 

nonthermal processes than temperature. While temperatures were high during the 1242 

summer months, the within-season variability in temperature was the lowest (Table 1); 1243 

less of a temperature swing resulted in less thermal control on the system. Conversely, 1244 

spring and fall seasons, which experienced the greatest temperature swings (Table 1), had 1245 

greater relative temperature control exerted on pCO2 (Table 4). The differences in 1246 

ΔpCO2, thermal and ΔpCO2, nonthermal between monitoring methods illustrate that there is 1247 

information that is missed when only sampling bimonthly/monthly and during the 1248 

daytime. Generally, both ΔpCO2, thermal and ΔpCO2, nonthermal are higher when calculated 1249 

from sensors than discrete sampling, indicating that the extremes are generally not 1250 

captured by the discrete, daytime sampling, and sensor data would provide a better 1251 

understanding of system controls. 1252 

The relative importance of thermal versus non-thermal controls may be modulated 1253 

by tide level. ; we calculated the thermal and non-thermal pCO2 terms separately during 1254 
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high tide and low tide periods to better investigate control via other physical and 1255 

biological processes. The influence of tides can be removed from the calculated non-1256 

thermal pCO2 term, leaving only biological processes and other physical controls in the 1257 

non-thermal term, by examining periods of high tide and low tide separately. Using our 1258 

sensor data and the same water level data used for the tide analysis, wWe found that T/B 1259 

is higher (by 0.10 ± 0.07) during the high tide condition within each season. T/B for high 1260 

tide and low tide, respectively, was 0.60 and 0.52 for winter, 0.84 and 0.66 for spring, 1261 

and 0.62 and 0.58 for summer. The higher control exerted by nonthermal processes 1262 

during low tide seems intuitive given that there is less volume of water for the end 1263 

products of biological processes to build up in. The difference in T/B between high tide 1264 

and low tide conditions was greatest in the spring, likely due to a combination of elevated 1265 

spring-time productivity and larger tidal ranges in the spring.  1266 

Using data from the first year of our discrete sampling (May 2014 – April 2015), 1267 

Yao and Hu (2017) reported that the Aransas Ship Channel T/B was 1.53 during drought 1268 

and 1.79 during a period of flooding, both of which are significantly higher than what we 1269 

found over most timescales (the exception being certain individual seasons, mostly 1270 

during that first year of sampling, Table 42, Fig. 6B). Yao and Hu (2017) also found that 1271 

locations in the upper estuary experienced lower T/B during flooding conditions than 1272 

drought conditions, but the opposite was found for the Aransas Ship Channel location, 1273 

where the flooding conditions had higher T/B. It is likely that the high T/B calculated by 1274 

Yao and Hu (2017) was a result of the drought condition at the beginning of their 1275 

sampling; given the long residence time of MAE, the Aransas Ship Channel may not 1276 

have experienced the influence of the freshwater inflow by the end of the Yao and Hu 1277 
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(2017) study. Once the freshwater reached the Aransas Ship Channel location, it would 1278 

likely experience a reduced T/B as did the upper parts of the system. Since then, there has 1279 

not been another significant drought in the system, so it seems as though the non-thermal 1280 

controls on pCO2 are more important at this location under normal freshwater inflow 1281 

conditions.  1282 

4.21.2 Investigating controls on the carbonate system using relationships between 1283 

carbonate system parameters and other environmental parameters  1284 

We further investigated controls on the carbonate system using tide and 1285 

windspeed data (obtained from NOAA’s Aransas Pass station at 1286 

https://tidesandcurrents.noaa.gov/) and dissolved oxygen, PAR, turbidity, and chlorophyll 1287 

fluorescence data (obtained from the MANERR at 1288 

https://missionaransas.org/science/download-data) along with our continuous and discrete 1289 

data. All investigations of relationships between environmental parameters discussed 1290 

below included only the observations with no significant water column stratification 1291 

(defined as a salinity difference of less than 3 between surface water from our YSI and 1292 

bottom water (>5 m) from the MANERR’s YSI). This omission of stratified water was 1293 

intended to omit instances of substantial differences in chemical parameters between the 1294 

surface and bottom water since all MANERR environmental data used in our analysis 1295 

were measured at depth while our sensors measured surface water. Omitting stratified 1296 

water reduced our continuous dataset from 6088 to 5524 observations, and omitting 1297 

observations where there were no MANERR data to determine stratification further 1298 

reduced the dataset to 4112 observations. Similarly, removing instances of stratification 1299 

reduced discrete sample data from 104 to 89 surface water observations.  1300 
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 To extend upon the above discussion of thermal versus non-thermal controls on 1301 

pCO2, the extent of thermal control on both pH and pCO2 can be investigated based on 1302 

relationships between parameters. There is a strong negative correlation between pH and 1303 

temperature and a strong positive correlation between pCO2 and temperature (Table 6, 1304 

Fig. 7). The direction of these relationships (sign of the correlation coefficient) of 1305 

carbonate system parameters with temperature and salinity at our site  at the Aransas Ship 1306 

Channel was the same as in open ocean waters despite these relationships not being 1307 

consistent across different estuarine environments (N. Rosenau, personal 1308 

communications). The strong correlations with temperature support our findings that 1309 

thermal controls on pCO2 can be important over multiple time scales. Significantly 1310 

warmer water temperatures were observed during the nighttime in both summer and fall 1311 

(Table 2, Fig. 8), indicating that temperature could exert a slight control on the carbonate 1312 

system over a diel time scale. More substantial temperature swings between seasons 1313 

indicate that temperature is more important over seasonal time scales (Table S1). In 1314 

addition to direct thermal control at our site, the strong correlations with temperature are 1315 

likely derived from changes in net community metabolism associated with temperature 1316 

(Caffrey, 2004). For example, the strong negative correlation between nonthermal pCO2 1317 

and temperature (Table 6S4) is likely indicative of enhanced primary productivity in 1318 

warmer waters.  1319 
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 1320 
 Figure 75. Correlations of pH and pCO2 with temperature and salinity from continuous 1321 
sensor data (gray) and all discrete data (black). 1322 
 1323 

Table 6. Pearson correlation coefficients between surface water carbonate system 1324 
parameters and other water quality and environmental parameters for both continuous 1325 
sensor data and discrete sample data (entire sampling period). Only observations without 1326 
significant stratification in the water column were included in these analyses. Parameter 1327 
pairs with a significant correlation based on α=0.05 have a correlation coefficient 1328 
reported. Asterixis are used to indicate the level of significance of the correlation, * 1329 
p<0.05, ** p<0.01, *** p<0.0001. The correlation coefficient is listed as 0 if the 1330 
relationship was not significant. N/A is listed when the analysis was omitted because the 1331 
environmental parameter did not have observations corresponding to the date and time of 1332 
at least half of our discrete sample measurements (45 observations). 1333 
 pH pCO2 pCO2, nonthermal 

 Continuous Discrete Continuous Discrete Continuous Discrete 

Temperature (°C) -0.55 *** -0.59 *** 0.75 *** 0.53 *** -0.73 *** -0.45 *** 

Salinity -0.47 *** -0.74 *** 0.53 *** 0.69 *** -0.28 *** 0.35 ** 

Wind Speed (m s-1) -0.04 ** N/A 0.15 *** N/A 0 N/A 

Dissolved Oxygen (mg L-1) 0.55 *** 0 -0.81 *** 0 0.45 *** 0 

Tide Level (m) 0 0 -0.15 *** 0 -0.15 *** -0.55 ** 

Turbidity -0.08 *** N/A -0.14 *** N/A -0.28 *** N/A 

Fluor. Chlorophyll  0.12 *** N/A -0.22 *** N/A 0.34 *** N/A 

  1334 
Though annual average pCO2 and CO2 flux are higher in the upper estuary and lower 1335 

offshore than at our study site, the same seasonal pattern of elevated pCO2 and positive 1336 
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CO2 flux in the summer and depressed pCO2 and negative CO2 flux during the winter 1337 

observed at our site has also been observed throughout the entire MAE and in the open 1338 

Gulf of Mexico (Hu et al., 2018; Yao and Hu, 2017). Seasonal fluctuations in pH and 1339 

pCO2 are low at our study site relative to other systems that have been studied to date 1340 

(Carstensen et al., 2018; Yao and Hu, 2017), which may be in part due to the relatively 1341 

small seasonal temperature changes (Table 1) in this warm, semiarid environment. 1342 

Despite substantial seasonal thermal control at our site, simple linear regressions indicate 1343 

that temperature had substantially higher explanatory value for pH and pCO2 in offshore 1344 

GOM waters (R2 = 0.81 and 0.78, respectively (Hu et al., 2018)) than at our site (R2 = 1345 

0.30 and 0.52, respectively, for sensor data and R2 = 0.38 and 0.25, respectively, for 1346 

discrete data). 1347 

Other physical factors that may exert control on the carbonate system (including 1348 

windspeed, salinity, tide level, and turbidity) can also be investigated through parameter 1349 

relationships. We investigated wind speed as a possible control on the carbonate system 1350 

to gain insight into the effect of wind-driven CO2 fluxes on the inventory of CO2 in the 1351 

water column (and subsequent impacts to the entire carbonate system). The Texas coast 1352 

has relatively high wind speeds, with the mean wind speed observed during our 1353 

continuous monitoring period being 5.8 m s-1. While this results in relatively high 1354 

calculated CO2 fluxes (Fig. 5), the seasonal relationship between pCO2 and windspeed 1355 

does not support a change in inventory with higher winds. Linear regression analysis 1356 

within each season reveals that winter, spring, and fall all experience increases in pCO2 1357 

with increasing wind, while there is not a significant relationship in summer. Since spring 1358 

and summer both have a mean estuarine pCO2 greater than atmospheric level (and 1359 
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positive CO2 flux, Table 1) a negative relationship between windspeed and pCO2 would 1360 

be necessary to support this hypothesis. Linear regression analysis within each season 1361 

reveals that winter, spring, and fall all experience increases in pCO2 with increasing wind, 1362 

while there is not a significant relationship in summer. 1363 

 1364 

Previous studies have indicated that freshwater inflow may exert a primary control on the 1365 

carbonate system in the estuaries of the northwestern GOM (Hu et al., 2015; Yao et al., 1366 

2020; Yao and Hu, 2017). Carbonate system variability is much lower at ASC than it is in 1367 

the more upper reaches of MAE, likely due to the lesser influence of freshwater inflow 1368 

and its associated changes in biological activity at ASC (Yao and Hu, 2017).  Increased 1369 

freshwater inflow resulting from storms has also been shown to increase community 1370 

respiration, which would subsequently increase pCO2, in the upper reaches of the MAE 1371 

(Bruesewitz et al., 2013). MAE is also known to experience large swings in the chemistry 1372 

of its freshwater inputs, with relatively high levels of dissolved inorganic carbon and total 1373 

alkalinity during base flows but much lower levels due to dilution during intense flooding 1374 

(Yao et al., 2020). Given the location of our sampling in the lower portion of the estuary 1375 

and the long residence time in the system, we will did not directly address freshwater 1376 

inflowsriver discharge as a controlling factor, but the influence of freshwater inflow may 1377 

be evident in the response of the system to changes in salinity. Fluctuating salinity at 1378 

ASC may also result from direct precipitation, stratification, and tidal fluctuations; 1379 

however, the low R2 (0.02) associated with a simple linear regression between tide level 1380 

and salinity (p<0.0001) indicates that salinity fluctuations are more indicative of non-tidal 1381 

factors. Carbonate system variability is much lower at our study site than it is in the more 1382 
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upper reaches of MAE, likely due to the lesser influence of freshwater inflow and its 1383 

associated changes in biological activity at the Aransas Ship Channel (Yao and Hu, 1384 

2017). Salinity data from both sensor and discrete monitoring was were strongly 1385 

correlated with both pH and pCO2, with correlation coefficients nearing (continuous) or 1386 

surpassing (discrete) that of the correlations with temperature (Fig. 767; Table 6S45). 1387 

Periods of lower salinity had higher pH and lower pCO2, likely due to enhanced 1388 

freshwater influence and subsequent elevated primary productivity at the study site. 1389 

Fluctuating salinity at the Aransas Ship Channel may also result from direct precipitation, 1390 

stratification, and tidal fluctuations. ; however, the low R2 (0.02) associated with a simple 1391 

linear regression between tide level and salinity (p<0.0001) indicates that salinity 1392 

fluctuations are more indicative of non-tidal factors. Based on the simple linear 1393 

regression of salinity with tide level, there is a significant (p<0.0001) relationship 1394 

between tide level and salinity, but the amount of variability in salinity that tides can 1395 

explain (based on model R2) is only about 2%. 1396 

 1397 

Tidal fluctuations were clearly important to carbonate system variability at the 1398 

Aransas Ship Channel (Table 5). While the northwestern GOM estuaries are generally 1399 

microtidal, the constricted tidal inlets such as the Aransas Ship Channel may experience 1400 

relatively large tidal fluctuations. The water level data used in this analysis came from a 1401 

location directly offshore from our study site, and water level had a range of 1.30 m 1402 

(maximum – minimum recorded water level) over the 10-month continuous monitoring 1403 

period. Mean water level varied between all seasons; mean spring (highest) water levels 1404 

were on average 0.08 m higher than winter (lowest) water levels (ANOVA p<0.0001, fall 1405 
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was not considered because of a lack of water level data). Tidal influence on pH was less 1406 

clear. Data from continuous monitoring did not show a significant correlation between 1407 

pH and tide level across the entire monitoring period (Table 6). Significant differences in 1408 

mean pH between tide levels were recorded during each season; pH was higher at high 1409 

tide (corresponding with the lower pCO2)  during the winter and summer, but pH was 1410 

lower at high tide (conflicting with the lower pCO2) in the spring (Table 5). This 1411 

separation between water level correlation with pH and pCO2 suggests that different 1412 

controlling factors of the carbonate system may not be exerted equally on both pCO2 and 1413 

pH over different timescales. Similar to pH, both temperature and salinity experienced 1414 

seasonally dependent reversals in their difference between tide levels during the spring; 1415 

each were higher at low tide during winter and summer and higher at high tide during 1416 

spring (Table 5). Given the negative relationship of both temperature and salinity with 1417 

pH, it is likely these parameters became important controls on pH in the spring. 1418 

To help examine controls on the carbonate system on a diel time scale, we used loess 1419 

models (locally weighted polynomial regression) to identify changes in diel patterns over 1420 

the course of our monitoring period (Fig. 8). Both tidal and biological controls on the 1421 

carbonate system can operate on a diel time scale. The GOM is one of the few places in 1422 

the world that experiences diurnal tides (Seim et al., 1987; Thurman, 1994), so 1423 

theoretically, the fluctuations in pCO2 associated with tides may align to either amplify or 1424 

reduce/reverse the fluctuations that would result from diel variability in net community 1425 

metabolism. The mean daily tidal fluctuation during our continuous monitoring period 1426 

was 0.39 m ± 0.13 m, which did not significantly differ between seasons (ANOVA 1427 

p=0.739). However, diel patterns in tidal fluctuations exhibited a strong seasonal pattern 1428 
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during the continuous monitoring period, with spring and summer having higher tide 1429 

level during the daytime and winter having higher tide level during the nighttime (Fig. 8).  1430 

This same seasonal pattern in diel tidal fluctuations is exhibited from Dec 20, 2016 (when 1431 

the tide data is first available) through the rest of our discrete monitoring period (Feb 25, 1432 

2020), indicating that tidal control on diel variability of carbonate system parameters was 1433 

likely consistent throughout this time period.  1434 

 1435 
Figure 86. Loess models (red line) and their confidence intervals (gray band around red 1436 
lines) showing the difference in daily parameter mean daytime minus nighttime 1437 
measurements. The gray scale of the data points represents the four seasons over which 1438 
data were collected.  1439 
 1440 

Based on diel tidal fluctuations at this site, tidal control should amplify the biological 1441 

control signal (nighttime pCO2 > daytime pCO2) during spring and summer and reduce or 1442 

reverse the biological control signal during the winter. This was supported by our pCO2 1443 

data, which showed nighttime pCO2 significantly greater than daytime pCO2 in the 1444 
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summer (Table 2). The full reversal of the biological signal in the winter (Table 2, 1445 

nighttime pCO2 < daytime pCO2) indicated that biological activity was not the strongest 1446 

controlling factor on the diel time scale and was likely exceeded by tidal control. Winter 1447 

also had higher daytime temperature (Table 3), which could also contribute to the higher 1448 

daytime pCO2, while summer diel temperature and tides would act to amplify the 1449 

biological signal.   1450 

Again, the diel variability in pH did not mirror pCO2 as would be expected. The 1451 

loess models show that daily variability in pH closely mirrors that of temperature while 1452 

the daily variability in pCO2 much closer reflects the tide level (Fig. 8), indicating that 1453 

controlling factors of the carbonate system may not be exerted equally on both pH and 1454 

pCO2. 1455 

The extent of biological control on the system can also be investigated based on 1456 

correlations between carbonate system parameters and dissolved oxygen (DO). 1457 

Respiration-driven acidification is one of the most important local to regional 1458 

contributors to acidification in coastal waters, with acidification closely linked to the 1459 

widespread issue of deoxygenation (Rabalais et al., 2014; Strong et al., 2014). There were 1460 

no observations of hypoxia at our study site during our monitoring, with minimum DO 1461 

levels of 3.9 mg L-1 and 4.0 mg L-1 for our continuous monitoring period and our discrete 1462 

sampling period, respectively. Despite the lack of hypoxia, there was a strong 1463 

relationship between the carbonate system parameters and DO (Table 6), suggesting that 1464 

net ecosystem metabolism may exert an important control on the carbonate system on 1465 

certain time scales. 1466 
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There was no significant difference in daytime and nighttime DO during any 1467 

season (paired t-tests, winter p = 0.1573, spring p = 0.4877, summer p = 0.794) The lack 1468 

of difference between daytime and nighttime DO despite the significant differences in pH 1469 

and pCO2 between daytime and nighttime (Table 2). This suggests that net community 1470 

metabolism is likely not a strong controlling factor of carbonate system parameters at this 1471 

site on a diel time scale. The control exerted on the carbonate system by biological 1472 

processes is likely much greater on the seasonal scale than the diel scale. The correlation 1473 

between continuous pCO2 and DO is stronger than pCO2 and temperature, which suggests 1474 

strong biological control and supports the indication by T/B values that non-thermal 1475 

processes exert more control on pCO2 than temperature. Both types of sampling (i.e., 1476 

continuous and discrete) demonstrate that pH is generally highest in the winter and 1477 

lowest in the summer and pCO2 is highest in the summer and lowest in the winter (Figs. 1478 

2, and 3, Table 1). Though this seasonal pattern corresponds with the directional response 1479 

from temperature fluctuations, it can also be explained by biological activity. We 1480 

investigated wind speed as a possible control on the carbonate system to gain insight into 1481 

the effect of wind-driven CO2 fluxes on the inventory of CO2 in the water column (and 1482 

subsequent impacts to the entire carbonate system). The Texas coast has relatively high 1483 

wind speeds, with the mean wind speed observed during our continuous monitoring 1484 

period being 5.8 m s-1. While this results in relatively high calculated CO2 fluxes (Fig. 3), 1485 

the seasonal relationship between pCO2 and windspeed does not support a change in 1486 

inventory with higher winds. Since spring and summer both have a mean estuarine pCO2 1487 

greater than atmospheric level (and positive CO2 flux, Table S1) a negative relationship 1488 

between windspeed and pCO2 would be necessary to support this hypothesis, but winter, 1489 
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spring, and fall all experience increases in pCO2 with increasing wind based on simple 1490 

linear regression.  1491 

 1492 

Given that this sampling location is in a ship channel where boat traffic (including 1493 

large oil tankers) is relatively heavy, there is potential for atmospheric deposition of acids 1494 

(SOx and NOx) to play a role in the carbonate system variability (Doney et al. 2007, 1495 

Hunter et al. 2011). To try to understand this control, we deployed air samplers at our 1496 

study site for eight 2-week periods. The levels of atmospheric NO2 and SO2 did not vary 1497 

widely over the time period. NO2 was ranged 5.45 to 6.99 ppb (6.13 ± 0.63 ppb), and SO2 1498 

ranged 1.15 to 1.18 ppb (1.43 ± 0.35 ppb) over the sampling dates (J. D. Felix, personal 1499 

communications). There was no apparent correlation between these values and the pH or 1500 

pCO2 levels over the 2-week sampling periods. 1501 

 Co-locating our pH and pCO2 sensors with other coastal environmental 1502 

monitoring sensors allowed insight into correlated environmental parameters and 1503 

potential driving forces of carbonate chemistry on diel and seasonal time scales. The 1504 

results of this study provide strong support for the continued implementation of carbonate 1505 

chemistry monitoring in conjunction with preexisting coastal environmental monitoring 1506 

infrastructure. Our understanding of any estuarine system could benefit from long-term 1507 

effective deployments of these monitoring tools. Strategically locating carbonate 1508 

chemistry sensors at estuarine sites that are subject to local OA drivers or support large 1509 

biodiversity or commercially important species may be the most crucial in guiding future 1510 

mitigation and adaptation strategies for natural systems and aquaculture facilities (Chan 1511 

et al., 2013; Strong et al., 2014). 1512 
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4.32 Carbonate chemistry as a component of overall estuarine system variability 1513 

 Estuaries and coastal areas are dynamic systems with human influence, 1514 

riverine influence, and influence from an array of biogeochemical processes, resulting in 1515 

highly variable chemical and eenvironmental conditions. Based on an LDA used to assess 1516 

overall system variability using a suite of environmental parameters compiled at a single 1517 

location, we can conclude that carbonate chemistry parameters are among the most 1518 

important of variants on both daily and seasonal time scales in this coastal setting. Of the 1519 

two carbonate system components that we incorporated (pH and pCO2), pCO2 was the 1520 

most critical in discriminating along diel or seasonal scales despite similar seasonal 1521 

differences that were identified by ANOVA (Table S2) and more seasons with significant 1522 

diel differences in pH (Table S3). pH seemed to be a larger component of overall system 1523 

variability on a seasonal time scale (compared to the very small contribution seen on a 1524 

diel scale, Table 1). Given that the seasonal and diel variability in carbonate chemistry at 1525 

this location is relatively small compared to other coastal areas that are in the literature, 1526 

the high contribution of carbonate chemistry to overall system variability that we detected 1527 

is likely to be present at other coastal locations around the world.  1528 

  1529 

The contribution of pH to discriminating along diel or seasonal scales was less 1530 

than pCO2 despite the same seasonal differences that were identified by ANOVA (Table 1531 

3) and more seasons with significant diel differences (Table 2). However, pH still seemed 1532 

to be relatively important on seasonal scales, having clearer contribution to seasonal 1533 

system variability than several other parameters including DO and salinity.  1534 
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To better understand overall system variability over different time scales, we used a 1535 

linear discriminant (LD) analysis, a multivariate statistic that allows dimensional 1536 

reduction, to determine the linear combination of environmental parameters (individual 1537 

parameters reduced into linear discriminants, LDs) that allow the best differentiation 1538 

between day and night as well as between seasons. This used the same suite of 1539 

environmental data and data sources as Sect. 4.1.2. 1540 

All variables were centered and scaled to allow direct comparison of their 1541 

contribution to the system variability. The magnitude (absolute value) of coefficients of 1542 

the LDs (Table 7) represents the relative importance of each individual environmental 1543 

parameter in the best discrimination between day and night and between seasons, i.e., the 1544 

greater the absolute value of the coefficient, the more information the associated 1545 

parameter can provide about whether the sample came from day or night (or winter, 1546 

spring, or summer). Only one LD could be created for the diel variability (since there are 1547 

only two classes to discriminate between – day and night). Two LDs could be created for 1548 

the seasonal variability (since there were three classes to discriminate between – fall was 1549 

omitted because of the lack of tidal data), but only the coefficients for LD1 are reported 1550 

(Table 7) given that LD1 captured 95.64% of the seasonal variability.   1551 

Table 73. Coefficients of linear discriminants (LD) from discriminant function 1552 
analysis (DFA) using continuous sensor data and other environmental parameters.  1553 
Results for discriminants for both diel and seasonal variability shown. All variables were 1554 
centered and scaled. For the seasonal analysis, only LD1 is given since it was captured 1555 
95.64% of the variability (for the diel analysis, there is only one . Given that many of the 1556 
water quality parameters were measured in bottom waters and our sensors were 1557 
measuring surface waters, only those observations without significant stratification in the 1558 
water column (a salinity difference of less than 3 between surface and bottom) were 1559 
included in these analyses.  1560 

 Diel Seasonal 

LD1 LD1  

Temperature (°C)     0.5406 -3.5279 

Salinity 0.1473 0.0432 
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pCO2 (µatm)         -0.1612 -0.2928 

pH        0.0593 0.0991 

Tide Level (m)  0.0968 -0.2389 

Wind speed (ms-1)               -0.0009 0.0504 

Total PAR            -2.2878 -0.0676 

DO (mg L-1) -0.0839 0.0859 

Turbidity         -0.0561 0.1455 

Fluor. Chlorophyll 0.1397 -0.4040 

  1561 

 As would be expected, we found that PAR provided the most differentiation 1562 

between daytime and nighttime conditions (based on the largest coefficient associated 1563 

with Diel LD1, Table 7). Temperature was the second most important factor in 1564 

differentiating between day and night; this corresponds to the diel variability that we 1565 

detected where both summer and fall had clear separation of mean temperature between 1566 

day and night, with nighttime temperatures being 0.3 and 1.0 higher, respectively (Table 1567 

3). The next most important parameter in differentiating between day and night in this 1568 

system was pCO2, providing more evidence for differentiation between day and night 1569 

than other parameters that would be expected to vary on a diel timescale (e.g. chlorophyll 1570 

and DO). As for system variability that allowed differentiation between the four seasons, 1571 

the most important parameter in system variability was temperature (Table 7, Seasonal 1572 

LD1), as would be expected with the clear seasonal temperature fluctuations (Fig. 2E). 1573 

The second most important parameter in contributing to seasonal variability was 1574 

chlorophyll, likely indicating clear seasonal blooms. The third most important parameter 1575 

for seasonal differentiation was pCO2; therefore pCO2 variability seems to be more 1576 

closely tied to seasons than variability in tide level, DO, or the array of other parameters 1577 

(Table 7).  1578 

The contribution of pH to discriminating along diel or seasonal scales was less than pCO2 1579 

despite the same seasonal differences that were identified by ANOVA (Table 3) and 1580 
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more seasons with significant diel differences (Table 2). However, pH still seemed to be 1581 

relatively important on seasonal scales, having clearer contribution to seasonal system 1582 

variability than several other parameters including DO and salinity.  1583 

 We can conclude that carbonate chemistry parameters are among the most 1584 

important of variants on both daily and seasonal time scales in this coastal setting. 1585 

Compared to six other estuaries around the United States with similar sensor deployments 1586 

for carbonate chemistry characterization, our study site has a relatively small range of pH 1587 

and pCO2 on both diel and seasonal scales (N. Rosenau, personal communication). While 1588 

we do not have the same suite of environmental data for these other systems, this 1589 

suggests that the relative amount of system variability contributed by carbonate chemistry 1590 

may be even greater in other estuarine systems. The relatively small fluctuations in pH 1591 

and pCO2 that are seen on a daily scale at the Aransas Ship Channel is likely due to the 1592 

subtropical setting with little ocean upwelling influence and the lower estuary position of 1593 

our monitoring (further removed from the already small freshwater influence), but it may 1594 

also be tied to the system’s relatively high buffer capacity. Just as the extent of hypoxia-1595 

induced acidification was relatively low in Corpus Christi Bay compared to other systems 1596 

because of the bay’s high buffer capacity (McCutcheon et al., 2019), the extent of pH 1597 

fluctuation on a daily scale from biological activity would also be modulated by the 1598 

intrinsic buffer capacity, which is likely also high in this system due to high alkalinity in 1599 

the freshwater endmembers (Yao et al., 2020).  1600 

4.3 Comparing continuous monitoring and discrete sampling   1601 

4.3.1 Representative sampling in a temporally variable environment 1602 

Commented [m3]: Moved from results:  
; this corresponds to the diel variability that we detected 

where both summer and fall had clear separation of mean 

temperature between day and night, with nighttime 

temperatures being 0.3 and 1.0 higher, respectively (Table 

3). 
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Discrete water sample collection and analysis is the most common method that 1603 

has been employed to attempt to understand the carbonate system of estuaries. However, 1604 

it is difficult to know if these samples are representative of the spatial and temporal 1605 

variability in carbonate system parameters. While this time-series study cannot conclude 1606 

whether our broader sampling efforts in the MAE are representative of the spatial 1607 

variability in the estuary, it can investigate how representative our bimonthly to monthly 1608 

sampling is of the more high-frequency temporal variability that the Aransas Ship 1609 

Channel experiences.  1610 

One-way ANOVAs were conducted to compare between monitoring methods 1611 

(separate one-way ANOVAs within each season because of the significant interaction 1612 

between these factors in an initial two-way ANOVA). There were three levels of 1613 

monitoring method included in the comparison of means: continuous monitoring, discrete 1614 

monitoring during only the continuous monitoring period, and discrete monitoring over 1615 

the entire period (C, DC, and D, respectively, in Table 3). To interpret the results, a 1616 

difference in means between the continuous monitoring and discrete monitoring datasets 1617 

would only indicate that the 10-month period of continuous monitoring was not 1618 

representative of the 5+ year period that discrete samples have been collected, but a 1619 

difference in means between the continuous data and discrete sample data collected 1620 

during the continuous monitoring period represents discrepancies between types of 1621 

monitoring.  1622 

There were several instances where seasonal parameter means significantly 1623 

differed between the 10-month continuous monitoring period and the 5+ year discrete 1624 

sampling period (Table 3, C ≠ D or Dc ≠ D) including temperature in the summer and 1625 
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fall, salinity in the spring, pH in the summer and fall, and pCO2 in winter, spring, and 1626 

summer. While clear seasonal variability was demonstrated for most parameters (using 1627 

both continuous and discrete data for the entire period), these differences between the 10-1628 

month continuous monitoring period and our 5+ year monitoring period illustrate that 1629 

there is also interannual variability in the system. Therefore, short periods of monitoring 1630 

are unable to fully capture current baseline conditions.  1631 

During the continuous monitoring period (2016-2017), we found no significant 1632 

difference between sampling methods in the seasonal mean temperature, salinity, or 1633 

pCO2. The two sampling methods also resulted in the same mean pH for all seasons 1634 

except for summer, when the sensor data recorded a higher mean pH than discrete 1635 

samples (Tables 1 and 3). During this case, we can conclude that discrete monitoring did 1636 

not accurately represent the system variability that was able to be captured by the sensor 1637 

monitoring. However, given that most seasons did not show differences in pH or pCO2 1638 

between sampling methods, the descriptive statistics associated with the discrete 1639 

monitoring did a fair job of representing system means. This is evidence that long-term 1640 

discrete monitoring efforts, which are much more widespread in estuarine systems than 1641 

sensor deployments, can be generally representative of the system despite known 1642 

temporal variability on shorter time scales.  1643 

Understanding the relationships of pH and pCO2 with temperature and salinity is 1644 

important in a system. Both the continuous and discrete sampling types indicate that pH 1645 

has a significant negative relationship with both temperature and salinity and pCO2 has a 1646 

s significant positive relationship with both temperature and salinity (Fig. 7). Based on 1647 

the results of an Analysis of Covariance (ANCOVA), the relationship (slope) of pH with 1648 
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both temperature and salinity and of pCO2 with salinity were not significantly different 1649 

between types of monitoring (considering the sensor deployment period only), supporting 1650 

the effectiveness of long-term discrete monitoring programs when sensors are unable to 1651 

be deployed. However, ANCOVA did reveal the relationship of pCO2 with temperature is 1652 

significantly different (method:temp p=0.0062) between monitoring methods. 1653 

While in situcontinuous monitoring data from sensors is usually lacking good 1654 

substantial spatial coverage, it is effective in capturing temporal resolution and 1655 

presumably providing better estimates of average CO2 flux at a given location versus 1656 

periodic sampling. Previous studies have pointed out that discrete sampling methods, 1657 

which generally involve only daytime sampling, do not adequately capture the diel 1658 

variability in the carbonate system and may therefore lead to underestimation of CO2 1659 

fluxes. However, we found no significant difference (within any season) between CO2 1660 

flux values calculated with sensor data versus discrete samples (Table 3). Calculated CO2 1661 

fluxes also did not significantly differ between day and night during any season, despite 1662 

some differences in pCO2 (Table 2), likely due to the large error associated with the 1663 

calculation of CO2 flux (Table 1, Fig. 5) which will be further discussed below. 1664 

Therefore, the expected underestimation of CO2 flux based on diel variability of pCO2 1665 

was not encountered at our study site, validating the use of discrete samples for 1666 

quantification of CO2 fluxes (until methods with less associated error are available). Even 1667 

given less error in calculated flux, estimated fluxes would likely not differ between 1668 

methods on an annual scale (as pCO2 did not), but CO2 fluxes may differ on a seasonal 1669 

scale since the differences between daytime and nighttime pCO2 were not consistent 1670 

across seasons (Table 2).  1671 
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There are many factors contributing to error associated with CO2 flux. There is 1672 

still large error associated with estimates of estuarine CO2 flux because turbulent mixing 1673 

is difficult to model and turbulence is the main control on CO2 gas transfer velocity, k, in 1674 

shallow water environments. Thus, our wind speed parameterization of k is imperfect and 1675 

likely the greatest source of error. Other notable sources of error include the data 1676 

treatment. For example, we chose to seasonally weight the individual calculated flux 1677 

values in the calculation of annual flux to account for differences in sampling frequency 1678 

between seasons. From continuous data, the weighted average flux was 0.2 mmol m-2 d-1, 1679 

although choosing not to seasonally weight and simply look at the arithmetic mean of 1680 

fluxes calculated directly from sampling dates would have resulted in an annual CO2 flux 1681 

of -0.7 mmol m-2 d-1  for the same period. Similarly, the weighted average flux from all 1682 

5+ years of discrete data was -0.9 mmol m-2 d-1, but the arithmetic mean of fluxes would 1683 

have resulted in an annual CO2 flux of 0.2 mmol m-2 d-1 for the same period. Another 1684 

source of error that could be associated with the calculation of flux from the discrete data 1685 

is the way in which wind speed data are aggregated to be used in the windspeed 1686 

parameterization. We decided to use daily averages of the windspeed for calculations. 1687 

Using the windspeed measured for the closest time to our sampling time or the monthly 1688 

averaged wind speed may have resulted in very different flux values.  1689 

4.3.2 Direct agreement of measurement methods and quantified uncertainties associated 1690 

with parameters 1691 

Direct comparisons were made between measurements from sensors and 1692 

laboratory-analyzed bottle samples—including both quality control (QC) samples taken 1693 

from the cooler that housed the sensors at the time when these sensors took recorded 1694 
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readings and long-term monitoring samples taken from the ship channel near the sensors 1695 

(within 100 m) that occurred at various times and were compared to sensor measurements 1696 

of the closest full hour (Table 8). The mean difference between the SeaFET pH 1697 

measurements and the QC samples (continuous – discrete) prior to sensor data correction 1698 

was 0.05 ± 0.08 (Table 8, which would reduce to 0.00 ± 0.08 following the correction).  1699 

The mean difference between the SAMICO2 pCO2 measurements and the QC samples 1700 

(continuous – discrete) was -18 ± 44 (Table 8) when discrete sample pCO2 was calculated 1701 

using Millero (2010) constants. We used several different constants to calculate pCO2 to 1702 

check this offset; all were similar in mean and standard deviation, but the offset could be 1703 

slightly reduced using Millero (2002) constants.  1704 

Table 84. Comparison of discrete and continuous monitoring. The difference between 1705 
sampling methods is reported in two different ways: the difference between sensor 1706 
measurements and laboratory measurement of quality control (QC) bottle samples taken 1707 
directly from the cooler (here the pH difference is prior to the sensor pH correction of 1708 
+0.05), and the difference between sensor measurements and laboratory measurement of 1709 
bottle samples taken from a nearby station for our 5+ year monitoring (here the pH 1710 
difference if after the sensor pH correction of +0.05, see methods for details). For all 1711 
calculated parameters, dissociation constants from Millero 2010 were used. Error—1712 

analytical error for directly measured parameters and propagated error for calculated 1713 
parameters (mean ± standard deviation, calculated in the seacarb package in R—) 1714 
associated with carbonate system variables is also reported. 1715 

 Difference between sampling methods  

(mean difference ± standard deviation of the 

difference) 

Error (Analytical or Propagated)  

Sensor – QC cooler 

samples 

(prior to sensor pH 

correction, n=12) 

Sensor – discrete 

samples 

(after pH sensor 

correction, n=13) 

Discrete 

Sampling 

(n = 104) 

Continuous Monitoring 

 (n = 6088) 

Temperature 

(°C)     

  0.1 0.1 

Salinity -0.16 ± 1.44 0.50 ± 1.69 0.01 0.1 

pH -0.05 ± 0.08 0.01 ± 0.12 0.0004 0.05 

pCO2 (µatm) -18 ± 44 25 ± 63 7 ± 2 1.0 

DIC (µmol 

kg-1) 

  ±2.5 327.4 ± 63.2 

TA (µmol kg-

1) 

  7.4 ± 0.9 400.7 ± 81.0 

ΩAr   0.19 ± 0.03 1.08 ± 0.31 

Formatted Table
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 1716 

Given that the analytical accuracy of the SeaFET instrument is 0.05 pH units, the 1717 

average offset between sensor and laboratory values of quality control samples 1718 

demonstrates fair agreement (Table 8). Given that calculated uncertainty associated with 1719 

calculated discrete pCO2 was 7 ± 2, we did not see great agreement between SAMICO2 1720 

pCO2 and laboratory-calculated pCO2 for quality control samples (mean difference of -18 1721 

± 44, Table 8). Mean offsets and their associated standard deviations were larger when 1722 

comparing sensor data to samples taken during our long-term discrete monitoring effort. 1723 

This is not surprising given that the discrete sample collection did not occur at the exact 1724 

time of the sensor measurement or the exact location of the cooler pump inlet. Greater 1725 

sensor-laboratory agreement has been achieved for open ocean settings, but this larger 1726 

standard deviation is likely a result of the temporal variability in the more complex 1727 

estuarine environment where these instruments have been much less widely deployed to 1728 

date. 1729 

Propagation of error associated with computed carbonate system parameters was 1730 

done using the seacarb package in R (Gattuso et al., 2018); the error propagation includes 1731 

error associated with the measurements of the input pair (1 µatm for pCO2 from 1732 

SAMICO2 and 0.05 for pH from SeaFET; 0.0004 for laboratory spectrophotometric pH 1733 

and 2.5 µmol kg-1 for laboratory DIC), error associated with in-situ temperature (0.1 °C) 1734 

and salinity (0.1 for sensor-measured and 0.01 for laboratory-measured), and error 1735 

associated with total boron the key dissociation constants (standard recommended error 1736 

used) (Table 8). While the error associated with calculated parameters from discrete 1737 

bottle samples was relatively small and likely a result of uncertainties in constants (Orr et 1738 
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al., 2018), we note that the error associated with the calculated dissolved inorganic 1739 

carbon (DIC), total alkalinity (TA), and saturation state of aragonite (ΩAr), which are 1740 

other frequently addressed carbonate system parameters, from sensor data was relatively 1741 

large when calculated with sensor data(Table 8). This large error is likely a result of both 1742 

the relatively low analytical precision associated with the pH sensor and the poor 1743 

mathematical combination of variables for speciation calculations. Hence, we limited the 1744 

discussion to pH (which was directly measured for both continuous monitoring and 1745 

laboratory analysis of discrete samples) and pCO2  (which was directly measured for 1746 

continuous monitoring and had relatively low error when calculated with discrete sample 1747 

DIC and pH, Table 8) and omitted any discussion of the parameters with high 1748 

propagation error. The high error suggests that it may be important to develop and 1749 

broadly use autonomous sensors that can measure carbonate system parameters that allow 1750 

for lower propagated error to have a full picture of estuarine carbonate chemistry on high-1751 

frequency time scales.  1752 

5. Conclusions 1753 

 We monitored carbonate chemistry parameters (pH and pCO2) using both sensor 1754 

deployments (10 months) and discrete sample collection (5+ years) at the Aransas Ship 1755 

Channel, TX, to characterize temporal variability and investigate controlling factors. 1756 

Significant seasonal variability and diel variability in carbonate system parameters were 1757 

both present at the location. Carbonate chemistry parameters were among the most 1758 

important environmental parameters to distinguish between both diel and seasonal 1759 

environmental conditions.  1760 
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Diel fluctuations were smaller than many other areas previously studied. The difference 1761 

between daytime and nighttime values of carbonate system parameters varied between 1762 

seasons, occasionally reversing the expected diel variability due to biological processes. 1763 

Tide level (despite the small tidal range), temperature, freshwater influence, and 1764 

biological activity , and tide level (despite the small tidal range) all seem to exert 1765 

important controls on the carbonate system at the location. The relative importance of the 1766 

different controls varied with timescale, and controls were not always exerted equally on 1767 

both pH and pCO2. Carbonate chemistry (particularly pCO2) was among the most 1768 

important environmental parameters to in overall system variability to distinguish 1769 

between both diel and seasonal environmental conditions. 1770 

Despite known temporal variability on shorter timescales, discrete sampling was 1771 

generally representative of the average carbonate system on a seasonal and annual basis 1772 

based on comparison with our sensor data. Additionally, there was no difference in CO2 1773 

flux between sampling types, supporting the validity of discrete sample collection for 1774 

carbonate system characterization at this location.  1775 

 1776 

This is one of the first studies that investigates high-temporal frequency data from 1777 

deployed sensors that measure carbonate system parameters in an estuary-influenced 1778 

environment. Long-term, effective deployments of these monitoring tools could greatly 1779 

improve our understanding of estuarine systems. This study’s detailed investigation of 1780 

data from multiple, co-located environmental sensors was able to provide insight into 1781 

potential driving forces of carbonate chemistry on diel and seasonal time scales; this 1782 

provides strong support for the implementation of carbonate chemistry monitoring in 1783 
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conjunction with preexisting coastal environmental monitoring infrastructure, which has 1784 

had little application in estuarine environments thus far. Strategically locating such 1785 

sensors in areas that are subject to local OAacidification drivers or support large 1786 

biodiversity or commercially important species may be the most crucial in guiding future 1787 

mitigation and adaptation strategies for natural systems and aquaculture facilities.Both 1788 

sampling methods demonstrated significant seasonal variability at the location, with 1789 

highest pH (lowest pCO2) in the winter and lowest pH (highest pCO2) in the summer. 1790 

Significant diel variability was also evident from sensor data, though diel fluctuations 1791 

were smaller than many other areas previously studied.The difference between daytime 1792 

and nighttime values of carbonate system parameters varied between seasons, 1793 

occasionally reversing the expected diel variability due to biological processes. 1794 

 Carbonate chemistry parameters were among the most important environmental 1795 

parameters to distinguish between both diel and seasonal environmental conditions.  1796 

The difference between daytime and nighttime values of carbonate system parameters 1797 

varied between seasons, occasionally reversing the expected diel variability due to 1798 

biological processes. It was evident that biological activity is not the strongest controlling 1799 

factor of diel variability at this location, likely surpassed by tidal control despite the small 1800 

tidal range in the northwestern GOM. Controls on the system also differed over different 1801 

time scales, with temperature becoming a less important control over shorter time scales.  1802 

Tides exerted significant control on the carbonate system, and low tide allowed more 1803 

biological control of the system. Higher mean pCO2 was reported for low tide versus high 1804 

tide across all seasons. pH was higher at high tide during winter and summer but deviated 1805 

from the expected pattern during spring with lower pH during high tide. The results 1806 
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suggest that the controlling factors of the carbonate system may not be exerted equally on 1807 

both pH and pCO2 on diel timescales, causing separation of their diel or tidal 1808 

relationships during certain seasons. The detailed investigation of controlling factors 1809 

provides strong support for the implementation of carbonate chemistry monitoring in 1810 

conjunction with preexisting coastal environmental monitoring infrastructure, which has 1811 

had little application in estuarine environments thus far. 1812 

Despite known temporal variability on shorter timescales, discrete sampling was 1813 

generally representative of the average carbonate system on a seasonal and annual basis 1814 

based on comparison with our sensor data. Additionally, there was no difference in CO2 1815 

flux between sampling types supporting the validity of discrete sample collection for 1816 

carbonate system characterization.  Co-locating our pH and pCO2 sensors with other 1817 

coastal environmental monitoring sensors allowed insight into correlated environmental 1818 

parameters and potential driving forces of carbonate chemistry on diel and seasonal time 1819 

scales. The results of this study provide strong support for the continued implementation 1820 

of carbonate chemistry monitoring in conjunction with preexisting coastal environmental 1821 

monitoring infrastructure. Our understanding of any estuarine system could benefit from 1822 

long-term effective deployments of these monitoring tools. Strategically locating 1823 

carbonate chemistry sensors at estuarine sites that are subject to local OA drivers or 1824 

support large biodiversity or commercially important species may be the most crucial in 1825 

guiding future mitigation and adaptation strategies for natural systems and aquaculture 1826 

facilities (Chan et al., 2013; Strong et al., 2014). 1827 

 1828 Formatted: Indent: First line:  0"
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dmo.784673.1 and doi: 10.26008/1912/bco-dmo.835227.1).  1835 

Author Contribution   1836 

MM and XH defined the scope of this work. XH received funding for all components of 1837 

the work. MM, HY, and CJS performed field sampling and laboratory analysis of 1838 

samples. MM prepared the initial manuscript and all co-authors contributed to revisions. 1839 

Competing interests 1840 

The authors declare that they have no conflict of interest. 1841 

 1842 

Acknowledgements 1843 

 Funding for autonomous sensors and sensor deployment was provided by the 1844 

United States Environmental Protection Agency’s National Estuary Program via the 1845 

Coastal Bend Bays and Estuaries Program Contract No. 1605. Thanks to Rae Mooney 1846 

from Coastal Bend Bays and Estuaries Program for assistance in the initial sensor setup. 1847 

Funding for discrete sampling as well MM’s dissertation research has been supported by 1848 

both NOAA National Center for Coastal Ocean Science (Contract No. 1849 

NA15NOS4780185) and NSF Chemical Oceanography Program (OCE-1654232). We 1850 

also appreciate the support from the Mission-Aransas National Estuarine Research 1851 

Formatted: Font: (Default) Times New Roman



 91 

Reserve in allowing us the boat-of-opportunity for our ongoing discrete sample 1852 

collections and the University of Texas Marine Science Institute for allowing us access to 1853 

their research pier for the sensor deployment. A special thanks to Hongjie Wang, Lisette 1854 

Alcocer, Allen Dees, and Karen Alvarado for assistance with field work.  1855 

References 1856 

Barton, A., Waldbusser, G.G., Feely, R.A., Weisberg, S.B., Newton, J.A., Hales, B., 1857 

Cudd, S., Eudeline, B., Langdon, C.J., Jefferds, I., King, T., Suhrbier, A., 1858 

Mclaughlin, K., 2015. Impacts of Coastal coastal Acidification acidification on the 1859 

Pacific pacific Northwest northwest Shellfish shellfish Industry industry and 1860 

Adaptation adaptation Strategies strategies Implemented implemented in 1861 

Responseresponse. Oceanography 28, 146–159. 1862 

Bednaršek, N., Tarling, G.A., Bakker, D.C.E., Fielding, S., Jones, E.M., Venables, H.J., 1863 

Ward, P., Kuzirian, A., Lézé, B., Feely, R.A., Murphy, E.J., 2012. Extensive 1864 

dissolution of live pteropods in the Southern Ocean. Nat. Geosci. 5, 881–885. 1865 

https://doi.org/10.1038/ngeo1635 1866 

Borges, A. V., 2005. Do wWe hHave eEnough pPieces of the jJigsaw to iIntegrate CO2 1867 

fFluxes in the cCoastal oOcean ? Estuaries 28, 3–27. 1868 

Caffrey, J.M., 2004. Factors controlling net ecosystem metabolism in U.S. estuaries. 1869 

Estuaries 27, 90–101. https://doi.org/10.1007/BF02803563 1870 

Cai, W.-J., 2011. Estuarine and cCoastal oOcean cCarbon pParadox: CO 2 sSinks or 1871 

Ssites of tTerrestrial cCarbon iIncineration? Ann. Rev. Mar. Sci. 3, 123–145. 1872 

https://doi.org/10.1146/annurev-marine-120709-142723 1873 

Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M.C., Lehrter, J.C., Lohrenz, S.E., Chou, W.-1874 

Formatted: Subscript



 92 

C., Zhai, W., Hollibaugh, J.T., Wang, Y., Zhao, P., Guo, X., Gundersen, K., Dai, M., 1875 

Gong, G.-C., 2011. Acidification of subsurface coastal waters enhanced by 1876 

eutrophication. Nat. Geosci. 4, 766–770. https://doi.org/10.1038/ngeo1297 1877 

Challener, R.C., Robbins, L.L., Mcclintock, J.B., 2016. Variability of the carbonate 1878 

chemistry in a shallow, seagrass-dominated ecosystem: Implications for ocean 1879 

acidification experiments. Mar. Freshw. Res. 67, 163–172. 1880 

https://doi.org/10.1071/MF14219 1881 

Challener, R.C., Robbins, L.L., McClintock, J.B., 20165. Variability of the carbonate 1882 

chemistry in a shallow , seagrass-dominated ecosystem : implications for ocean 1883 

acidification experiments. Mar. Freshw. Res. Res. 67, 163–172. 1884 

https://doi.org/10.1071/MF14219 1885 

Crosswell, J.R., Anderson, I.C., Stanhope, J.W., Van Dam, B., Brush, M.J., Ensign, S., 1886 

Piehler, M.F., McKee, B., Bost, M., Paerl, H.W., 2017. Carbon budget of a shallow, 1887 

lagoonal estuary: Transformations and source-sink dynamics along the river-estuary-1888 

ocean continuum. Limnol. Oceanogr. 62, S29–S45. 1889 

https://doi.org/10.1002/lno.10631 1890 

Cyronak, T., Andersson, A.J., D’Angelo, S., Bresnahan, P., Davidson, C., Griffin, A., 1891 

Kindeberg, T., Pennise, J., Takeshita, Y., White, M., 2018. Short-Term term Spatial 1892 

spatial and Temporal temporal Carbonate carbonate Chemistry chemistry Variability 1893 

variability in Two two Contrasting contrasting Seagrass seagrass 1894 

Meadowsmeadows: Implications for pH Buffering buffering Capacitiescapacities. 1895 

Estuaries and Coasts 41, 1282–1296. https://doi.org/10.1007/s12237-017-0356-5 1896 

Dickson, A.G., 1990. Standard potential of the reaction: AgCl(s) + 1 2H2(g) = Ag(s) + 1897 



 93 

HCl(aq), and and the standard acidity constant of the ion HSO4- in synthetic sea 1898 

water from 273.15 to 318.15 K. J. Chem. Thermodyn. 22, 113–127. 1899 

https://doi.org/10.1016/0021-9614(90)90074-Z 1900 

Ekstrom, J. a., Suatoni, L., Cooley, S.R., Pendleton, L.H., Waldbusser, G.G., Cinner, J.E., 1901 

Ritter, J., Langdon, C., van Hooidonk, R., Gledhill, D., Wellman, K., Beck, M.W., 1902 

Brander, L.M., Rittschof, D., Doherty, C., Edwards, P.E.T., Portela, R., 2015. 1903 

Vulnerability and adaptation of US shellfisheries to ocean acidification. Nat. Clim. 1904 

Chang. 5, 207–214. https://doi.org/10.1038/nclimate2508 1905 

Gattuso, J., Epitalon, J., Lavigne, H. and Orr, J. (2021). seacarb: Seawater Carbonate 1906 

Chemistry. R package version 3.2.15. https://CRAN.R-project.org/package=seacarb 1907 

Gazeau, F., Quiblier, C., Jansen, J.M., Gattuso, J.-P., Middelburg, J.J., Heip, C.H.R., 1908 

2007. Impact of elevated CO 2 on shellfish calcification. Geophys. Res. Lett. 34, 1909 

L07603. https://doi.org/10.1029/2006GL028554 1910 

Gobler, C.J., Talmage, S.C., 2014. Physiological response and resilience of early life-1911 

stage Eastern oysters ( Crassostrea virginica ) to past , present and future ocean 1912 

acidification 2, 1–15. https://doi.org/10.1093/conphys/cou004.Introduction 1913 

Ho, D.T., Law, C.S., Smith, M.J., Schlosser, P., Harvey, M., Hill, P., 2006. 1914 

Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean : 1915 

Implications for global parameterizations. Geophys. Res. Lett. 33, 1–6. 1916 

https://doi.org/10.1029/2006GL026817 1917 

Hofmann, G.E., Smith, J.E., Johnson, K.S., Send, U., Levin, L. a, Micheli, F., Paytan, A., 1918 

Price, N.N., Peterson, B., Takeshita, Y., Matson, P.G., Crook, E.D., Kroeker, K.J., 1919 

Gambi, M.C., Rivest, E.B., Frieder, C. a, Yu, P.C., Martz, T.R., 2011. High-1920 

Formatted: Indent: Left:  0", Hanging:  0.4",

Widow/Orphan control, Adjust space between Latin

and Asian text, Adjust space between Asian text and

numbers, Pattern: Clear (White), Tab stops:  0.64", Left

+  1.27", Left +  1.91", Left +  2.54", Left +  3.18", Left + 

3.82", Left +  4.45", Left +  5.09", Left +  5.73", Left + 

6.36", Left +  7", Left +  7.63", Left +  8.27", Left + 

8.91", Left +  9.54", Left +  10.18", Left

Formatted: Font: Font color: Black, Check spelling and

grammar, Border: : (No border)



 94 

frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One 6, 1921 

e28983. https://doi.org/10.1371/journal.pone.0028983 1922 

Hsu S. A., 1994. Determining the Power-Law Wind-Profile Exponent under Near-Neatral 1923 

Stability Condidtions at Sea. J. Appl. Meteorol. 33, 757–765. 1924 

Hu, X., Beseres Pollack, J., McCutcheon, M.R., Montagna, P. a., Ouyang, Z., 2015. 1925 

Long-term alkalinity decrease and acidification of estuaries in Northwestern Gulf of 1926 

Mexico. Environ. Sci. Technol. 49, 3401–3409. https://doi.org/10.1021/es505945p 1927 

Hu, X., Nuttall, M.F., Wang, H., Yao, H., Staryk, C.J., McCutcheon, M.R., Eckert, R.J., 1928 

Embesi, J.A., Johnston, M.A., Hickerson, E.L., Schmahl, G.P., Manzello, D., 1929 

Enochs, I.C., DiMarco, S., Barbero, L., 2018. Seasonal variability of carbonate 1930 

chemistry and decadal changes in waters of a marine sanctuary in the Northwestern 1931 

Gulf of Mexico. Mar. Chem. 205, 16–28. 1932 

https://doi.org/10.1016/j.marchem.2018.07.006 1933 

Jiang, L.-Q., Cai, W.-J., Wang, Y., 2008. A comparative study of carbon dioxide 1934 

degassing in river- and marine-dominated estuaries. Limnol. Oceanogr. 53, 2603–1935 

2615. https://doi.org/10.4319/lo.2008.53.6.2603 1936 

Jiang, L.Q., Cai, W.J., Wang, Y., Bauer, J.E., 2013. Influence of terrestrial inputs on 1937 

continental shelf carbon dioxide. Biogeosciences 10, 839–849. 1938 

https://doi.org/10.5194/bg-10-839-2013 1939 

Kealoha, A.K., Shamberger, K.E.F., DiMarco, S.F., Thyng, K.M., Hetland, R.D., 1940 

Manzello, D.P., Slowey, N.C., Enochs, I.C., 2020. Surface Water water CO2 1941 

variability in the Gulf of Mexico (1996–2017). Sci. Rep. 10, 1–13. 1942 

https://doi.org/10.1038/s41598-020-68924-0 1943 

Formatted: Subscript



 95 

Laruelle, G.G., Cai, W.-J., Hu, X., Gruber, N., Mackenzie, F.T., Regnier, P., 2018. 1944 

Continental shelves as a variable but increasing global sink for atmospheric carbon 1945 

dioxide. Nat. Commun. 9, 454. https://doi.org/10.1038/s41467-017-02738-z 1946 

Li, D., Chen, J., Ni, X., Wang, K., Zeng, D., Wang, B., Jin, H., Huang, D., Cai, W.-J., 1947 

2018. Effects of biological production and vertical mixing on sea surface p CO 2 1948 

variations in the Changjiang River plume during early autumn: A buoy-based time 1949 

series study. J. Geophys. Res. Ocean. 123, 6156–6173. 1950 

https://doi.org/10.1029/2017JC013740 1951 

Mathis, J.T., Pickart, R.S., Byrne, R.H., Mcneil, C.L., Moore, G.W.K., Juranek, L.W., 1952 

Liu, X., Ma, J., Easley, R.A., Elliot, M.M., Cross, J.N., Reisdorph, S.C., Bahr, F., 1953 

Morison, J., Lichendorf, T., Feely, R.A., 2012. Storm-induced upwelling of high p 1954 

CO 2 waters onto the continental shelf of the western Arctic Ocean and implications 1955 

for carbonate mineral saturation states 39, 4–9. 1956 

https://doi.org/10.1029/2012GL051574 1957 

McCutcheon, M.R., Staryk, C.J., Hu, X., 2019. Characteristics of the Carbonate System 1958 

in a Semiarid Estuary that Experiences Summertime Hypoxia. Estuaries and Coasts. 1959 

https://doi.org/10.1007/s12237-019-00588-0 1960 

Millero, F.J., 2010. Carbonate constant for estuarine waters. Mar. Freshw. Res. 61, 139–1961 

142. 1962 

Montagna, P. a, Brenner, J., Gibeaut, J., Morehead, S., 2011. Chapter 4: Coastal Impacts, 1963 

in: Jurgen Schmandt, Gerald R. North,  and J.C. (Ed.), The Impact of Global 1964 

Warming on Texas. University of Texas Press, pp. 96–123. 1965 



 96 

R Core Team (2020). R: A language and environment for statistical computing. R Founda1966 

tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 1967 

Raymond, P. aA., Cole, J.J., 2001. Gas eExchange in rRivers and eEstuaries: Choosing a 1968 

gGas tTransfer vVelocity. Estuaries 24, 312. https://doi.org/10.2307/1352954 1969 

Robbins, L.L., Lisle, J.T., 2018. Regional Aacidification tTrends in Florida sShellfish 1970 

eEstuaries: a 20+ Year lLook at pH, oOxygen, tTemperature, and Ssalinity. 1971 

Estuaries and Coasts 41, 1268–1281. https://doi.org/10.1007/s12237-017-0353-8 1972 

Sastri, A.R., Christian, J.R., Achterberg, E.P., Atamanchuk, D., Buck, J.J.H., Bresnahan, 1973 

P., Duke, P.J., Evans, W., Gonski, S.F., Johnson, B., Juniper, S.K., Mihaly, S., 1974 

Miller, L.A., Morley, M., Murphy, D., Nakaoka, S.I., Ono, T., Parker, G., Simpson, 1975 

K., Tsunoda, T., 2019. Perspectives on in situ Sensors sensors for Ocean ocean 1976 

Acidification acidification Researchresearch. Front. Mar. Sci. 6, 1–6. 1977 

https://doi.org/10.3389/fmars.2019.00653 1978 

Schulz, K.G., Riebesell, U., 2013. Diurnal changes in seawater carbonate chemistry 1979 

speciation at increasing atmospheric carbon dioxide. Mar. Biol. 160, 1889–1899. 1980 

https://doi.org/10.1007/s00227-012-1965-y 1981 

Seim, H.E., Kjerfve, B., Sneed, J.E., 1987. Tides of Mississippi Sound and the adjacent 1982 

continental shelf. Estuar. Coast. Shelf Sci. 25, 143–156. 1983 

https://doi.org/10.1016/0272-7714(87)90118-1 1984 

Semesi, I.S., Beer, S., Björk, M., 2009. Seagrass photosynthesis controls rates of 1985 

calcification and photosynthesis of calcareous macroalgae in a tropical seagrass 1986 

meadow. Mar. Ecol. Prog. Ser. 382, 41–47. https://doi.org/10.3354/meps07973 1987 

Solis, R.S., Powell, G.L., 1999. Hydrography, Mixing Characteristics, and Residence 1988 

Formatted: Indent: Left:  0", Hanging:  0.4",

Widow/Orphan control, Adjust space between Latin

and Asian text, Adjust space between Asian text and

numbers, Pattern: Clear (White), Tab stops:  0.64", Left

+  1.27", Left +  1.91", Left +  2.54", Left +  3.18", Left + 

3.82", Left +  4.45", Left +  5.09", Left +  5.73", Left + 

6.36", Left +  7", Left +  7.63", Left +  8.27", Left + 

8.91", Left +  9.54", Left +  10.18", Left

Formatted: Font: Font color: Black, Check spelling and

grammar, Border: : (No border)



 97 

Time of Gulf of Mexico Estuaries, in: Bianchi, T.S., Pennock, J.R., Twilley, R.R. 1989 

(Eds.), Biogeochemistry of Gulf of Mexico Estuaries. John Wiley & Sons, Inc: New 1990 

York, pp. 29–61. 1991 

Solis, R.S., Powell, G.L., 1999. Hydrography, Mixing Characteristics, and Residence 1992 

Time of Gulf of Mexico Estuaries. 1993 

Takahashi, T., Sutherland, S.C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, 1994 

N., Wanninkhof, R., Feely, R.A., Sabine, C., Olafsson, J., Nojiri, Y., 2002. Global 1995 

sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal 1996 

biological and temperature effects. Deep. Res. Part II Top. Stud. Oceanogr. 49, 1997 

1601–1622. https://doi.org/10.1016/S0967-0645(02)00003-6 1998 

Thurman, H. V., 1994. Introductory Oceanography, seventh edition. pp. 252–276. 1999 

Uppström, L.R., 1974. The boron/chlorinity ratio of deep-sea water from the Pacific 2000 

Ocean. Deep. Res. Oceanogr. Abstr. 21, 161–162. https://doi.org/10.1016/0011-2001 

7471(74)90074-6 2002 

USGS, 2001. Discharge Between San Antonio Bay and Aransas Bay, Southern Gulf 2003 

Coast, Texas, May-September 1999. 2004 

Waldbusser, G.G., Salisbury, J.E., 2014. Ocean aAcidification in the cCoastal zZone 2005 

from an oOrganism’s pPerspective: Multiple sSystem Pparameters, fFrequency 2006 

dDomains, and hHabitats. Ann. Rev. Mar. Sci. 6, 221–247. 2007 

https://doi.org/10.1146/annurev-marine-121211-172238 2008 

Wanninkhof, R., 1992. Relationship bBetween wWind sSpeed and gGas eExchange. J. 2009 

Geophys. Res. 97, 7373–7382. https://doi.org/10.1029/92JC00188 2010 

Wanninkhof, R., Asher, W.E., Ho, D.T., Sweeney, C., McGillis, W.R., 2009. Advances 2011 



 98 

in quantifying air-sea gas exchange and environmental forcing. Ann. Rev. Mar. Sci. 2012 

1, 213–244. https://doi.org/10.1146/annurev.marine.010908.163742 2013 

Weiss, R.F., 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal 2014 

gas. Mar. Chem. 2, 203–215. 2015 

Westfall, P.H., 1997. Multiple tTesting of gGeneral cContrasts Uusing lLogical 2016 

cConstraints and cCorrelations. J. Am. Stat. Assoc. 92, 299–306. 2017 

https://doi.org/10.1080/01621459.1997.10473627 2018 

Yao, H., Hu, X., 2017. Responses of carbonate system and CO2 flux to extended drought 2019 

and intense flooding in a semiarid subtropical estuary. Limnol. Oceanogr. 62, S112–2020 

S130. https://doi.org/10.1002/lno.10646 2021 

Yao, H., McCutcheon, M.R., Staryk, C.J., Hu, X., 2020. Hydrologic controls on CO2 2022 

chemistry and flux in subtropical lagoonal estuaries of the northwestern Gulf of 2023 

Mexico. Limnol. Oceanogr. 1–19. https://doi.org/10.1002/lno.11394 2024 

Yates, K.K., Dufore, C., Smiley, N., Jackson, C., Halley, R.B., 2007. Diurnal variation of 2025 

oxygen and carbonate system parameters in Tampa Bay and Florida Bay. Mar. 2026 

Chem. 104, 110–124. https://doi.org/10.1016/j.marchem.2006.12.008 2027 

 2028 

 2029 

Formatted: Subscript

Formatted: Subscript


