
 1 

Temporal variability and driving factors of the carbonate system in the Aransas 1 

Ship Channel, TX, USA: A time-series study 2 

 3 

Melissa R. McCutcheon1, Hongming Yao1,#, Cory J. Staryk1, Xinping Hu1 4 

1 Harte Research Institute for Gulf of Mexico Studies, Texas A&M University – Corpus 5 
Christi, TX 78412, USA 6 
# current address: Shenzhen Engineering Laboratory of Ocean Environmental Big Data 7 
Analysis and Application, Shenzhen Institute of Advanced Technology, Chinese 8 
Academy of Sciences, Shenzhen 518055, China 9 

 10 

_________________________ 11 

Correspondence to: Melissa R. McCutcheon (melissa.mccutcheon@tamucc.edu) 12 
 13 

 14 

Keywords: pCO2, acidification, diel variability, seasonal variability, autonomous sensors  15 

mailto:melissa.mccutcheon@tamucc.edu


 2 

Abstract 16 

The coastal ocean is affected by an array of co-occurring biogeochemical and 17 

anthropogenic processes, resulting in substantial heterogeneity in water chemistry, 18 

including carbonate chemistry parameters such as pH and partial pressure of CO2 (pCO2). 19 

To better understand coastal and estuarine acidification and air-sea CO2 fluxes, it is 20 

important to study baseline variability and driving factors of carbonate chemistry. Using 21 

both discrete bottle sample collection (2014-2020) and hourly sensor measurements 22 

(2016-2017), we explored temporal variability, from diel to interannual scales, in the 23 

carbonate system (specifically pH and pCO2) at the Aransas Ship Channel located in 24 

northwestern Gulf of Mexico. Using other co-located environmental sensors, we also 25 

explored the driving factors of that variability. Both sampling methods demonstrated 26 

significant seasonal variability at the location, with highest pH (lowest pCO2) in the 27 

winter and lowest pH (highest pCO2) in the summer. Significant diel variability was also 28 

evident from sensor data, but the time of day with elevated pCO2/depressed pH was not 29 

consistent across the entire monitoring period, sometimes reversing from what would be 30 

expected from a biological signal. Though seasonal and diel fluctuations were smaller 31 

than many other areas previously studied, carbonate chemistry parameters were among 32 

the most important environmental parameters to distinguish between time of day and 33 

between seasons. It is evident that temperature, biological activity, freshwater inflow, and 34 

tide level (despite the small tidal range) are all important controls on the system, with 35 

different controls dominating at different time scales. The results suggest that the 36 

controlling factors of the carbonate system may not be exerted equally on both pH and 37 

pCO2 on diel timescales, causing separation of their diel or tidal relationships during 38 



 3 

certain seasons. Despite known temporal variability on shorter timescales, discrete 39 

sampling was generally representative of the average carbonate system and average air-40 

sea CO2 flux on a seasonal and annual basis when compared with sensor data.   41 

1. Introduction   42 

Coastal waters, especially estuaries, experience substantial spatial and temporal 43 

heterogeneity in water chemistry—including carbonate chemistry parameters such as pH 44 

and partial pressure of CO2 (pCO2)—due to the diversity of co-occurring biogeochemical 45 

and anthropogenic processes (Hofmann et al., 2011; Waldbusser and Salisbury, 2014). 46 

Carbonate chemistry is important because an addition of CO2 acidifies seawater, and 47 

acidification can negatively affect marine organisms (Barton et al., 2015; Bednaršek et 48 

al., 2012; Ekstrom et al., 2015; Gazeau et al., 2007; Gobler and Talmage, 2014). 49 

Additionally, despite the small surface area of coastal waters relative to the global ocean, 50 

coastal waters are recognized as important contributors in global carbon cycling (Borges, 51 

2005; Cai, 2011; Laruelle et al., 2018).  52 

While carbonate chemistry, acidification, and air-sea CO2 fluxes are relatively 53 

well studied and understood in open ocean environments, large uncertainties remain in 54 

coastal environments. Estuaries are especially challenging to fully understand because of 55 

the heterogeneity between and within estuaries that is driven by diverse processes 56 

operating on different time scales such as river discharge, nutrient and organic matter 57 

loading, stratification, and coastal upwelling (Jiang et al., 2013; Mathis et al., 2012). The 58 

traditional sampling method for carbonate system characterization involving discrete 59 

water sample collection and laboratory analysis is known to lead to biases in average 60 

pCO2 and CO2 flux calculations due to daytime sampling that neglects to capture diel 61 
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variability (Li et al., 2018). Mean diel ranges in pH can exceed 0.1 unit in many coastal 62 

environments, and especially high diel ranges (even exceeding 1 pH unit) have been 63 

reported in biologically productive areas or areas with higher mean pCO2 (Challener et 64 

al., 2016; Cyronak et al., 2018; Schulz and Riebesell, 2013; Semesi et al., 2009; Yates et 65 

al., 2007). These diel ranges can far surpass the magnitude of the changes in open ocean 66 

surface waters that have occurred since the start of the industrial revolution and rival 67 

spatial variability in productive systems, indicating their importance for a full 68 

understanding of the carbonate system.  69 

Despite the need for high-frequency measurements, sensor deployments have 70 

been limited in estuarine environments (especially compared to their extensive use in the 71 

open ocean) because of the challenges associated with varying conditionshighly variable 72 

salinities, biofouling, and sensor drift (Sastri et al., 2019). Carbonate chemistry 73 

monitoring in the Gulf of Mexico (GOM), has been relatively minimal compared to the 74 

United States east and west coasts. The GOM estuaries currently have less exposure to 75 

concerning levels of acidification than other estuaries because of their high temperatures 76 

(causing water to hold less CO2 and support high productivity year-round) and often 77 

suitable river chemistries (i.e., relatively high buffer capacity) (McCutcheon et al., 2019; 78 

Yao et al., 2020). However, respiration-induced acidification is present in both the open 79 

GOM (e. g., subsurface water influenced by the Mississippi River Plume and outer shelf 80 

region near the Flower Garden Banks National Marine Sanctuary) and GOM estuaries, 81 

and most estuaries in the northwestern GOM have also experienced long-term 82 

acidification (Cai et al., 2011; Hu et al., 2018, 2015; Kealoha et al., 2020; McCutcheon et 83 

al., 2019; Robbins and Lisle, 2018). This known acidificationevidence of acidification as 84 
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well as the relatively high CO2 efflux from the estuaries of the northwest GOM illustrates 85 

the necessity to study the baseline variability and driving factors of carbonate chemistry 86 

in the region. In this study, we explored temporal variability in the carbonate system in 87 

Aransas Ship Channel (ASC)—a tidal inlet where the lagoonal estuaries meet the coastal 88 

waters in a semi-arid region of the northwestern GOM—using both discrete bottle sample 89 

collection and hourly sensor measurements, and we explored the driving factors of that 90 

variability using data from other co-located environmental sensors. The characterization 91 

of carbonate chemistry and consideration of regional drivers can provide context to 92 

acidification and its impacts and improved estimates of air-sea CO2 fluxes.   93 

2. Materials and Methods 94 

2.1 Location 95 

Autonomous sensor monitoring and discrete water sample collections for 96 

laboratory analysis of carbonate system parameters were performed in ASC (located at 97 

27˚50'17"N, 97˚3'1"W). ASC is one of the few permanent tidal inlets that intersect a 98 

string of barrier islands and connect the GOM coastal waters with the lagoonal estuaries 99 

in the northwest GOM (Fig. 1). ASC provides the direct connection between the 100 

northwestern GOM and the Mission-Aransas Estuary (Copano and Aransas Bays) to the 101 

north and Nueces Estuary (Nueces and Corpus Christi Bays) to the south (Fig. 1). The 102 

region is microtidal, with a small tidal range relative to many other estuaries, ranging 103 

from ~ 0.6 m tides on the open coast to less than 0.3 m in upper estuaries (Montagna et 104 

al., 2011). Mission-Aransas Estuary (MAE) is fed by two small rivers, the Mission (1787 105 

km2 drainage basin) and Aransas (640 km2 drainage basin) Rivers 106 

(http://waterdata.usgs.gov/), which both experience low base flows punctuated by 107 
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periodic high flows during storm events. MAE has an average residence time of one year 108 

(Solis and Powell, 1999), so there is a substantial lag between time of rainfall and 109 

riverine delivery to ASC in the lower estuary. A significant portion of riverine water 110 

flowing into Aransas Bay originates from the larger rivers further northeast on the Texas 111 

coast via the Intracoastal Waterway (i.e., Guadalupe River (26,625 km2 drainage basin) 112 

feeds San Antonio Bay and has a much shorter residence time of nearly 50 days) (Solis 113 

and Powell, 1999; USGS, 2001). 114 

 115 

Figure 1. Study area. The location of monitoring in the Aransas Ship Channel (red star) 116 
and the locations of NOAA stations used for wind data (yellow circles) are shown.   117 

 118 

2.2 Continuous Monitoring 119 

Autonomous sensor monitoring (referred to throughout as continuous monitoring) 120 

of pH and pCO2 was conducted from Nov. 8, 2016 to Aug. 23, 2017 at the University of 121 
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Texas Marine Science Institute’s research pier in ASC. Hourly pH data were collected 122 

using an SAtlantic® SeaFET pH sensor (on total pH scale) and hourly pCO2 data were 123 

collected using a Sunburst® SAMI-CO2. The pH and pCO2 sensors were placed in a 124 

flowthrough system that received surface water from ASC using a time-controlled 125 

diaphragm pump  prior to each measurement. Hourly temperature and salinity data were 126 

measured by a YSI® 600OMS V2 sonde. All hourly data were single measurements taken 127 

on the hour. The average difference between sensor pH and discrete quality assurance 128 

samples measured spectrophotometrically in the lab was used to establish a correction 129 

factor (-0.05) across the entire sensor pH dataset. Note, this correction scheme was not 130 

ideal (Bresnahan et al., 2014) although less rigorous correction based on sensor and 131 

discrete pH values has also been used (Shadwick et al. 2019). Nevertheless, the overall 132 

good agreement between discrete and corresponding sensor pH values during the 133 

deployment period suggested that the SeaFET sensor remained stable. It is also worth 134 

noting that our monitoring setup remained free from biofouling during the 10-month 135 

period. We attribute this to the deployment design in which the high frequency movement 136 

of the pumping mechanisms in the diaphragm pump must have eliminated the influence 137 

of animal larvae. The average difference between sensor pH and discrete quality 138 

assurance samples measured spectrophotometrically in the lab was used to establish a 139 

correction (-0.05) based on a single calibration point across the entire sensor pH dataset 140 

(Bresnahan et al., 2014). See supplemental materials for additional sensor deployment 141 

and quality assurance information. 142 
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2.3 Discrete Sample Collection and Sample Analysis 143 

Long-term monitoring via discrete water sample collection was conducted at ASC 144 

from May 2, 2014 to February 25, 2020 (in addition to the discrete, quality assurance 145 

sample collections). A single, discrete, surface water sample was collected every two 146 

weeks during the summer months and monthly during the winter months from a small 147 

vessel at a station near (<20 m from) the sensor deployment. Water sample collection 148 

followed standard protocol for ocean carbonate chemistry studies (Dickson et al., 2007). 149 

Ground glass borosilicate bottles (250 mL) were filled with surface water and preserved 150 

with 100 µL saturated mercury chloride (HgCl2). Apiezon® grease was applied to the 151 

bottle stopper, which was then secured to the bottle using a rubber band and a nylon hose 152 

clamp. 153 

These samples were used for laboratory dissolved inorganic carbon (DIC) and pH 154 

measurements. DIC was measured by injecting 0.5 mL of sample into 1 ml 10% H3PO4 155 

(balanced by 0.5 M NaCl) with a high-precision Kloehn syringe pump. The CO2 gas 156 

produced through sample acidification was then stripped using high-purity nitrogen gas 157 

and carried into a Li-Cor infrared gas detector. DIC analyses had a precision of 0.1%. 158 

Certified Reference Material (CRM) was used to ensure the accuracy of the analysis 159 

(Dickson et al. 2003). For samples with salinity>20, pH was measured using a 160 

spectrophotometric method at 25 ± 0.1°C (Carter et al. 2003) and the Douglas and Byrne 161 

(2017) equation. Analytical precision of the spectrophotometric method for pH 162 

measurement was ±0.0004 pH units. A calibrated Orion Ross glass pH electrode was 163 

used to measure pH at 25 ± 0.1°C for samples with salinity<20, and analytical precision 164 

was ±0.01 pH units. All pH values obtained using the potentiometric method were 165 
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converted to total scale at in situ temperature (Millero 2001). Salinity of the discrete 166 

samples was measured using a benchtop salinometer calibrated by MilliQ water and a 167 

known salinity CRM. For discrete samples, pCO2 was calculated in CO2Sys for Excel 168 

using laboratory-measured salinity, DIC, pH, and in situ temperature for calculations. 169 

Carbonate speciation calculations were done using Millero (2010) carbonic acid 170 

dissociation constants (K1 and K2), Dickson (1990) bisulfate dissociation constant, and 171 

Uppström (1974) borate concentration.  172 

2.4 Calculation of CO2 fluxes 173 

Equation 1 was used for air-water CO2 flux calculations (Wanninkhof, 1992; 174 

Wanninkhof et al., 2009). Positive flux values indicate CO2 emission from the water into 175 

the atmosphere (the estuary acting as a source of CO2), and negative flux values indicate 176 

CO2 uptake by the water (the estuary acting as a sink for CO2).  177 

F = k K0 (pCO2,w – pCO2,a)                    (1) 178 

where k is the gas transfer velocity (in m d-1), K0 (in mol l-1 atm-1) is the solubility 179 

constant of CO2 (Weiss, 1974), and pCO2,w and pCO2,a  are the partial pressure of CO2 (in 180 

µatm) in the water and air, respectively.   181 

We used the wind speed parameterization for gas transfer velocity (k) from Jiang 182 

et al. (2008) converted from cm h-1 to m d-1, which is thought to be the best estuarine 183 

parameterization at this time (Crosswell et al., 2017), as it is a composite of k over 184 

several estuaries. The calculation of k requires a windspeed at 10 m above the surface, so 185 

windspeeds measured at 3 m above the surface were converted using the power law wind 186 

profile (Hsu, 1994; Yao and Hu, 2017). To assess uncertainty, other parameterizations 187 

with direct applications to estuaries in the literature were also used to calculate CO2 flux 188 
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(Raymond and Cole 2001; Ho et al. 2006). We note that parameterization of k based on 189 

solely windspeed is flawed because several additional parameters can contribute to 190 

turbulence including turbidity, bottom-driven turbulence, water-side thermal convection, 191 

tidal currents, and fetch (Wanninkhof 1992, Abril et al., 2009, Ho et al., 2104, Andersson 192 

et al., 2017), however it is currently the best option for this system given the limited 193 

investigations of CO2 flux and contributing factors in estuaries.  194 

Hourly averaged windspeed data for use in CO2 flux calculations were retrieved 195 

from the NOAA-controlled Texas Coastal Ocean Observation Network (TCOON; 196 

https://tidesandcurrents.noaa.gov/tcoon.html). Windspeed data from the nearest TCOON 197 

station (Port Aransas Station – located directly in ASC, < 2 km inshore from our 198 

monitoring location) was prioritized when data were available. During periods of missing 199 

windspeed data at the Port Aransas Station, wind speed data from TCOON’s Aransas 200 

Pass Station (< 2 km offshore from monitoring location) were next used, and for all 201 

subsequent gaps, data from TCOON’s Nueces Bay Station (~ 40 km away) were used 202 

(Fig. 1; additional discussion of flux calculation and windspeed data can be found in 203 

supplementary materials). For flux calculations from continuous monitoring data, each 204 

hourly measurement of pCO2 was paired with the corresponding hourly averaged 205 

windspeed. For flux calculations from discrete sample data, the pCO2 calculated for each 206 

sampled day was paired with the corresponding daily averaged windspeed (calculated 207 

from the retrieved hourly averaged windspeeds).  208 

Monthly mean atmospheric xCO2 data (later converted to pCO2) for flux 209 

calculations were obtained from NOAA’s flask sampling network of the Global 210 

Monitoring Division of the Earth System Research Laboratory at the Key Biscayne (FL, 211 

https://tidesandcurrents.noaa.gov/tcoon.html
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USA) station. Global averages of atmospheric xCO2 were used when Key Biscayne data 212 

were unavailable. Each pCO2 observation (whether using continuous or discrete data) 213 

was paired with the corresponding monthly averaged xCO2 for flux calculations. 214 

Additional information and justification are available in supplemental materials.  215 

2.5 Additional data retrieval and data processing to investigate carbonate system 216 

variability and controls 217 

All reported annual mean values are seasonally weighted to account for 218 

disproportional sampling between seasons. However, reported annual standard deviation 219 

is associated with the un-weighted, arithmetic mean (Table S1). Temporal variability was 220 

investigated in the form of seasonal and diel variability (Tables S1, S2, S3). For seasonal 221 

analysis, December to February was considered winter, March to May was considered 222 

spring, June to August was considered summer, and September to November was 223 

considered fall. It is important to note that the Fall season had much fewer continuous 224 

sensor observations than other seasons because of the timing of sensor deployment. For 225 

diel comparisons, daytime and nighttime variables were defined as 09:00-15:00 local 226 

standard time and 21:00-03:00 local standard time, respectively, based on the 6-hour 227 

periods with highest and lowest photosynthetically active radiation (PAR; data from co-228 

located sensor, obtained from the Mission-Aransas National Estuarine Research Reserve 229 

(MANERR) at https://missionaransas.org/science/download-data). Diel ranges in 230 

parameters were calculated (daily maximum minus daily minimum) and only reported for 231 

days with the full 24 hours of hourly measurements (176 out of 262 measured days) to 232 

ensure that data gaps did not influence the diel ranges (Table S3). 233 

https://missionaransas.org/science/download-data
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 Controls on pCO2 from thermal and non-thermal (i.e., combination of physical 234 

and biological) processes were investigated following Takahashi et al. (2002) over 235 

annual, seasonal, and daily time scales using both continuous and discrete data. Over any 236 

given time period, this method uses the ratio of the ranges of temperature-normalized 237 

pCO2 (pCO2,nt, Eq. 2) and the mean annual pCO2 perturbed by the difference between 238 

mean and observed temperature (pCO2, t, Eq. 3) to calculate the relative influence of non-239 

thermal and thermal effects on pCO2 (T/B, Eq. 4). When calculating annual T/B values 240 

with discrete data, only complete years (sampling from January to December) were 241 

included (2014 and 2020 were omitted). When calculating daily T/B values with 242 

continuous data, only complete days (24 hourly measurements) were included.  243 

pCO
2, nt

= pCO
2,obs

 × exp[ δ ×(Tmean-Tobs)]                                        (2) 244 

     pCO
2, t

= pCO
2,mean

 × exp[ δ ×(Tobs-Tmean)]                                          (3) 245 

where the value for δ (0.0411 °C-1), which represents average [∂ ln pCO
2
 / ∂ 246 

Temperature] from field observations, was taken directly from Yao and Hu (2017), Tobs is 247 

the observed temperature, and Tmean is the mean temperature over the investigated time 248 

period.  249 

𝑇/𝐵 =  
max(𝑝𝐶𝑂 2,𝑡ℎ𝑒𝑟𝑚𝑎𝑙) − min (𝑝𝐶𝑂 2,𝑡ℎ𝑒𝑟𝑚𝑎𝑙)

max(𝑝𝐶𝑂 2,𝑛𝑜𝑛− 𝑡ℎ𝑒𝑟𝑚𝑎𝑙) − min (𝑝𝐶𝑂 2,𝑛𝑜𝑛− 𝑡ℎ𝑒𝑟𝑚𝑎𝑙)
                                     (4) 250 

Where a T/B greater than one indicates that temperature’s control on pCO2 is greater than 251 

the control from non-thermal factors and a T/B less than one indicates that non-thermal 252 

factors’ control on pCO2 is greater than the control from temperature.  253 

Tidal control on parameters was investigated using our continuous monitoring 254 

data and tide level data obtained from NOAA’s Aransas Pass Station (the Aransas Pass 255 
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Station used for windspeed data, < 2 km offshore from monitoring location, Fig. 1) at 256 

https://tidesandcurrents.noaa.gov/waterlevels.html?id=8775241&name=Aransas,%20Ara257 

nsas%20Pass&state=TX. Hourly measurements of water level were merged with our 258 

sensor data by date and hour. Given that there were gaps in available water level 259 

measurements (and no measurements prior to December 20, 2016), the usable dataset was 260 

reduced from 6088 observations to 5121 observations and fall was omitted from analyses. 261 

To examine differences between parameters during high tide and low tide, we defined 262 

high tide as tide level greater than the third quartile tide level value and low tide as a tide 263 

level less than the first quartile tide level value.  264 

Other factors that may exert control on the carbonate system were investigated 265 

through parameter relationships. In addition to previously discussed tide and windspeed 266 

data, we obtained dissolved oxygen (DO), PAR, turbidity, and chlorophyll fluorescence 267 

data from MANERR-deployed environmental sensors that were co-located at our 268 

monitoring location (obtained from https://missionaransas.org/science/download-data). 269 

Given that MANERR data are all measured in the bottom water (>5 m) while our sensors 270 

were measuring surface waters, we excluded the observations with significant water 271 

column stratification (defined as a salinity difference > 3 between surface water and 272 

bottom water) from analyses. Omitting stratified water reduced our continuous dataset 273 

from 6088 to 5524 observations (removing 260 winter, 133 spring, 51 summer, and 120 274 

fall observations), and omitting observations where there were no MANERR data to 275 

determine stratification further reduced the dataset to 4112 observations. Similarly, 276 

removing instances of stratification reduced discrete sample data from 104 to 89 surface 277 

water observations.  278 

https://tidesandcurrents.noaa.gov/waterlevels.html?id=8775241&name=Aransas,%20Aransas%20Pass&state=TX
https://tidesandcurrents.noaa.gov/waterlevels.html?id=8775241&name=Aransas,%20Aransas%20Pass&state=TX
https://missionaransas.org/science/download-data
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2.6 Statistical Analyses 279 

All statistical analyses were performed in R, version 4.0.3 (R Core Team, 2020). 280 

To investigate differences between daytime and nighttime parameter values (temperature, 281 

salinity, pH, pCO2, and CO2 flux) using continuous monitoring data across the full 282 

sampling period and within each season, paired t-tests were used, pairing each respective 283 

day’s daytime and nighttime values (Table S3). We also used loess models (locally 284 

weighted polynomial regression) to identify changes in diel patterns over the course of 285 

our monitoring period. 286 

Two-way ANOVAs were used to examine differences in parameter means 287 

between seasons and between monitoring methods (Table S2). Since there were 288 

significant interactions (between season and sampling type factors) in the two-way 289 

ANOVAs for each individual parameter (Table S2), differences between seasons were 290 

investigated within each monitoring method (one-way ANOVAs) and the differences 291 

between monitoring methods were investigated within each season (one-way ANOVAs). 292 

For the comparison of monitoring methods, we included both the full discrete sampling 293 

data as well as a subset of the discrete sampling data to overlap with the continuous 294 

monitoring period (referred to throughout as reduced discrete data or DC) along with the 295 

continuous data. To interpret differences between monitoring methods, a difference in 296 

means between the continuous monitoring and discrete monitoring datasets would only 297 

indicate that the 10-month period of continuous monitoring was not representative of the 298 

5+ year period that discrete samples have been collected, but a difference in means 299 

between the continuous data and discrete sample data collected during the continuous 300 

monitoring period represents discrepancies between types of monitoring.  Post-hoc 301 
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multiple comparisons (between seasons within sampling types and between sampling 302 

types within seasons) were conducted using the Westfall adjustment (Westfall, 1997).  303 

Differences in parameters between high tide and low tide conditions were 304 

investigated using a two-way ANOVA to model parameters based on tide level and 305 

season. In models for each parameter, there was a significant interaction between tide 306 

level and season factors (based on α=0.05, results not shown), thus t-tests were used 307 

(within each season) to examine differences in parameters between high and low tide 308 

conditions. Note that fall was omitted from this analysis because tide data were only 309 

available at the location beginning December 20, 2016. Sample sizes were the same for 310 

each parameter (High tide – winter: 354, spring: 569, summer: 350; Low tide – winter: 311 

543, spring: 318, summer: 415).  312 

Additionally, to gain insight to carbonate system controls through correlations, we 313 

conducted Pearson correlation analyses to examine individual correlations of pH and 314 

pCO2 (both continuous and discrete) with other environmental parameters (Table S5).  315 

To better understand overall system variability over different time scales, we used 316 

a linear discriminant analysis (LDA), a multivariate statistic that allows dimensional 317 

reduction, to determine the linear combination of environmental parameters (individual 318 

parameters reduced into linear discriminants, LDs) that allow the best differentiation 319 

between day and night as well as between seasons. We included pCO2, pH, temperature, 320 

salinity, tide level, wind speed, total PAR, DO, turbidity, and fluorescent chlorophyll in 321 

this analysis. All variables were centered and scaled to allow direct comparison of their 322 

contribution to the system variability. The magnitude (absolute value) of coefficients of 323 

the LDs (Table 1) represents the relative importance of each individual environmental 324 
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parameter in the best discrimination between day and night and between seasons, i.e., the 325 

greater the absolute value of the coefficient, the more information the associated 326 

parameter can provide about whether the sample came from day or night (or winter, 327 

spring, or summer). Only one LD could be created for the diel variability (since there are 328 

only two classes to discriminate between – day and night). Two LDs could be created for 329 

the seasonal variability (since there were three classes to discriminate between – fall was 330 

omitted because of the lack of tidal data), but we chose to only report the coefficients for 331 

LD1 given that LD1 captured 95.64% of the seasonal variability.   332 

 333 

3. Results 334 

3.1 Seasonal variability 335 

Both the continuous and discrete data showed substantial seasonal variability for 336 

all parameters (Fig. 2, Tables S1 and S2). All discrete sample results reported here are for 337 

the entire 5+ years of monitoring; the subset of discrete sample data that overlaps with 338 

the continuous monitoring period will be addressed only in the discussion for method 339 

comparisons (Section 4.1.1). Both continuous and discrete data demonstrate significant 340 

differences in temperature between each season, with the highest temperature in summer 341 

and the lowest in winter (Tables S1 and S2). Mean salinity during sampling periods was 342 

highest in the summer and lowest in the fall (Table S1). Significant differences in 343 

seasonal salinity occurred between all seasons except spring and winter for continuous 344 

data, but only summer differed from other seasons based on discrete data (Tables S1 and 345 

S2).  346 
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Carbonate system parameters also varied seasonally (Fig. 2). For both continuous 347 

and discrete data, winter had the highest seasonal pH (8.19 ± 0.08 and 8.162 ± 0.065, 348 

respectively) and lowest seasonal pCO2 (365 ± 44 µatm and 331 ± 39 µatm, 349 

respectively), while summer had the lowest seasonal pH (8.05 ± 0.06 and 7.975 ± 0.046, 350 

respectively) and highest seasonal pCO2 (463 ± 48 µatm and 511 ± 108, respectively) 351 

(Fig. 2, Table S1). All seasonal differences in pH and pCO2 were significant, except for 352 

the discrete data spring versus fall for both parameters (Table S2).  353 

 354 

 355 

 356 
Figure 2. Boxplots of seasonal variability in pH and pCO2 using all discrete data, 357 
reduced discrete data (to overlap with continuous monitoring, Nov. 8 2016 – Aug 23, 358 
2017), and continuous sensor data. 359 

 360 
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Mean CO2 flux differed by season (Fig. 3, Tables S1 and S2). Both continuous 361 

and discrete data records resulted in net negative CO2 fluxes during fall and winter 362 

months, with winter being most negative. Both methods reported a net positive flux for 363 

summer, while spring fluxes were positive according to continuous data and negative 364 

according to the 5+ years of discrete data (Fig. 3, Table S1).  Annual net CO2 fluxes were 365 

near zero (Table S1).  366 

 367 

 368 
Figure 3. CO2 flux calculated over the sampling periods from continuous (A) and 369 
discrete (B) data. Gray scale in (A) and (B) denote different seasons. Vertical lines in (B) 370 
denote the time period of continuous monitoring.  (C) shows the seasonal mean CO2 flux. 371 
Error bars represent mean CO2 flux using Ho (2006) and Raymond and Cole (2001) 372 
windspeed parameterizations.  373 

 374 
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Results of the LDA incorporated carbonate system parameters along with 375 

additional environmental parameters to get a full picture of system variability over 376 

seasonal timescales (Table 1). The most important parameter in system variability that 377 

allowed differentiation between seasons was temperature (Table 1, Seasonal LD1), as 378 

would be expected with the clear seasonal temperature fluctuations (Fig. S1E). The 379 

second most important parameter for seasonal differentiation was chlorophyll, likely 380 

indicating clear seasonal phytoplankton blooms. The carbonate chemistry also played a 381 

critical role in seasonal differentiation, as pCO2 was the third most important factor 382 

(Table 1).  383 

Table 1. Coefficients of linear discriminants (LD) from LDA using continuous sensor 384 
data and other environmental parameters.  Discriminants for both diel and seasonal 385 
variability shown.  386 

 Seasonal Diel 

LD1  LD1 

Temperature (°C)     -3.53 0.54 

Salinity 0.04 0.15 

pCO2 (µatm)         -0.29 -0.16 

pH        0.10 0.06 

Tide Level (m)  -0.24 0.10 

Wind speed (ms-1)               0.05 -0.00 

Total PAR            -0.07 -2.29 

DO (mg L-1) 0.09 -0.08 

Turbidity         0.15 -0.06 

Fluor. Chlorophyll -0.40 0.14 

 387 

3.2 Diel variability 388 

The 10 months of in-situ continuous monitoring revealed that there was 389 

substantial diel variability in measured parameters (Fig. 4, Table S3). Temperature had a 390 

mean diel range of 1.3 ± 0.8°C (Table S3). Daytime and nighttime temperature differed 391 

significantly during the summer and fall months, with higher temperatures at night for 392 

both seasons (Table S3). The mean diel range of salinity was 3.4 ± 2.7 (Table S3). 393 

Daytime and nighttime salinity differed significantly during the winter and fall months, 394 
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with higher salinities at night for both seasons. The mean diel range of pH was 0.09 ± 395 

0.05 (Table S3). Daytime and nighttime pH differed significantly during the winter, 396 

summer, and fall, with nighttime pH significantly higher during summer and winter and 397 

lower during fall (Fig. 4, Table S3). The mean diel range of pCO2 was 58 ± 33 µatm (Fig. 398 

4, Table S3). Daytime and nighttime pCO2 differed significantly during the winter and 399 

summer months, with nighttime pCO2 significantly higher during the summer and lower 400 

during the winter (Fig. 4, Table S3). No significant difference in daytime and nighttime 401 

DO were observed during any season (Fig. 5F; paired t-tests, winter p = 0.1573, spring p 402 

= 0.4877, summer p = 0.794). 403 

Loess models that investigated the evolution of day-night difference in parameters 404 

revealed that other environmental parameters, including salinity, temperature, and tide 405 

level, also had diel patterns that varied over the duration of our continuous monitoring 406 

(Fig. 5).  407 

 408 
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 409 
Figure 4. Boxplots of the diel range (maximum minus minimum) and difference in daily 410 
parameter mean daytime minus nighttime measurements for pH and pCO2 from 411 
continuous sensor data.  412 
 413 

CO2 flux also fluctuated on a daily scale, with a mean diel range of 34.1 ± 29.0 414 

mmol m-2 d-1 (Table S3). However, there was not a significant difference in CO2 flux of 415 

daytime versus nighttime hours for the entire monitoring period or any individual season 416 

based on α=0.05 (paired t-test, Table S3).  417 

 418 
 419 
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 420 
Figure 5. Loess models (red line) and their confidence intervals (gray bands) showing the 421 
difference in daily daytime mean minus nighttime mean measurements. The gray scale of 422 
the data points represents the four seasons over which data were collected. Data span 423 
from Nov 8, 2016 to Aug 3, 2017, except for the tide data, which began December 20, 424 
2016.  425 

 426 

Results of the LDA for differentiation between daytime and nighttime conditions 427 

revealed that the most important factor was PAR, as would be expected (Table 1, Diel 428 

LD1). Temperature was the second most important factor to differentiate between day 429 

and night. The carbonate chemistry also played a critical role in day/night differentiation, 430 
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as pCO2 was the third most important parameter, providing more evidence for 431 

differentiation between day and night than other parameters that would be expected to 432 

vary on a diel timescale (e.g., chlorophyll and DO) (Table 1).  433 

3.3 Controlling factors and correlates 434 

The relative influence of thermal and non-thermal factors (T/B) in controlling 435 

pCO2 varied over different time scales (Fig. 6, Table S4). Based on continuous data, non-436 

thermal processes generally exerted more control than thermal processes (T/B<1) over 437 

the entire 5+ years of discrete monitoring, within each season, and over most (167/178) 438 

days (Fig. 6, Table S4). Annual T/B from discrete data ranged from 0.50 to 1.16, with 439 

only one of the five sampled years having T/B greater than one (i.e., more thermal 440 

influence; Table S4). While most individual seasons that were sampled experienced 441 

stronger non-thermal control on pCO2 (T/B <1), the only season that never experienced 442 

stronger thermal control was summer, with summer T/B values ranging from 0.21 – 0.35 443 

for the 6 sampled years (Table S4).  444 

 445 



 24 

 446 

Figure 6. Thermal versus non-thermal control on pCO2 daily (A), seasonal (B), and 447 
annual (C) time scales using both continuous sensor data (daily, from Nov 8, 2016 to Aug 448 
3, 2017) and discrete sample data (seasonal and annual, from May 2, 2014- Feb. 25, 2020).  449 

 450 

Tidal fluctuations seemed to have a significant effect on carbonate system 451 

parameters (Table 2). Both temperature and salinity were higher at low tide during the 452 

winter and summer months and higher at high tide during the spring. pCO2 was higher 453 

during low tide during all seasons. pH was higher during high tide during the winter and 454 

summer, but this reversed during the spring, when pH was higher at low tide. CO2 flux 455 

also varied with tidal fluctuations. CO2 flux was higher (more positive or less negative) in 456 

the low tide condition for all seasons (though the difference was not significant in 457 
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spring), i.e., the location was less of a CO2 sink during low tide conditions in the winter 458 

and more of a CO2 source during low tide conditions in the summer.  459 

 460 

Table 2. Mean and standard deviation of temperature, salinity, pH, pCO2, and calculated 461 
CO2 flux (from continuous sensor measurements) during high and low tide conditions.  462 
 463 
Parameter Season High Tide Mean Low Tide Mean Difference 

between tide 

levels,  

t-test p-value 

Temperature (°C) Winter 16.7 ± 1.7 17.6 ± 2.0 <0.0001 

Spring 24.4 ± 2.7 23.6 ± 2.7 <0.0001 

Summer 29.3 ± 0.5 30.1 ± 0.7 <0.0001 

Salinity Winter 30.2 ± 2.5 31.3 ± 2.9 <0.0001 

Spring 30.4 ± 1.9 30.0 ± 2.7 0.0071 

Summer 30.5 ± 2.4 34.5 ± 3.0 <0.0001 

pH 

 

 

Winter 8.20 ± 0.08 8.15 ± 0.06 <0.0001 

Spring 8.07 ± 0.09 8.10 ± 0.07 <0.0001 

Summer 8.08 ± 0.04 8.04 ± 0.06 <0.0001 

pCO2 (µatm) Winter 331 ± 40 378 ± 42 <0.0001 

Spring 435 ± 33 443 ± 50 0.0154 

Summer 419 ± 30 482 ± 48 <0.0001 

CO2 Flux  

(mmol m-2 d-1) 

 

Winter -33.0 ± 38.1  -11.7 ± 21.8 <0.0001 

Spring 7.4 ± 14.0 8.7 ± 14.8 0.2248 

Summer 1.8 ± 6.3 16.0 ± 14.5 <0.0001 

 464 

Mean water level varied between all seasons; mean spring (highest) water levels 465 

were on average 0.08 m higher than winter (lowest) water levels (ANOVA p<0.0001, fall 466 

was not considered because of a lack of water level data). The mean daily tidal range 467 

during our continuous monitoring period was 0.39 m ± 0.13 m, which did not 468 

significantly differ between seasons (ANOVA p=0.739). However, the day-night 469 

difference in tide level exhibited a strong seasonality, with spring and summer having 470 

higher tide level during the daytime and winter having higher tide level during the 471 

nighttime (Fig. 5).   472 

There were significant correlations between carbonate system parameters (pH and 473 

pCO2) and many of the other environmental parameters, including windspeed, DO, 474 
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turbidity, and fluorescent chlorophyll (Figure 7, Table S5). Both the continuous and 475 

discrete sampling types indicate that pH has a significant negative relationship with both 476 

temperature and salinity and pCO2 has a significant positive relationship with both 477 

temperature and salinity (Fig. 7). However, correlations with temperature were stronger 478 

for continuous data and correlations with salinity were stronger for discrete data (Table 479 

S5). The strongest correlations between continuous carbonate system data and all 480 

investigated environmental parameters were with DO (positive correlation with pH and 481 

negative correlation with pCO2; Table S5). It is worth noting that there were no 482 

observations of hypoxia at our study site during our monitoring, with minimum DO 483 

levels of 3.9 mg L-1 and 4.0 mg L-1 for our continuous monitoring period and our discrete 484 

sampling period, respectively.  485 

 486 
 487 

488 
Figure 7. Correlations of pH and pCO2 with temperature, salinity, and DO from 489 
continuous sensor data (gray) and all discrete data (black). 490 
 491 
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Discussion 492 

4.1 Comparing continuous monitoring and discrete sampling: Representative sampling in 493 

a temporally variable environment   494 

Discrete water sample collection and analysis is the most common method that 495 

has been employed to attempt to understand the carbonate system of estuaries. However, 496 

it is difficult to know if these samples are representative of the spatial and temporal 497 

variability in carbonate system parameters. While this time-series study cannot conclude 498 

whether our broader sampling efforts in the MAE are representative of the spatial 499 

variability in the estuary, it can investigate how representative our bimonthly to monthly 500 

sampling is of the more high-frequency temporal variability that ASC experiences.  501 

There were several instances where seasonal parameter means significantly 502 

differed between the 10-month continuous monitoring period and the 5+ year discrete 503 

sampling period (Table S2, C ≠ D or Dc ≠ D) including temperature in the summer and 504 

fall, salinity in the spring, pH in the summer and fall, and pCO2 in winter, spring, and 505 

summer. While clear seasonal variability was demonstrated for most parameters (using 506 

both continuous and discrete data for the entire period), these differences between the 10-507 

month continuous monitoring period and our 5+ year monitoring period illustrate that 508 

there is also interannual variability in the system. Therefore, short periods of monitoring 509 

are unable to fully capture current baseline conditions.  510 

During the continuous monitoring period (2016-2017), we found no significant 511 

difference between sampling methods in the seasonal mean temperature, salinity, or 512 

pCO2. The two sampling methods also resulted in the same mean pH for all seasons 513 

except for summer, when the sensor data recorded a higher mean pH than discrete 514 
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samples (Tables S1 and S2). During this case, we can conclude that discrete monitoring 515 

did not accurately represent the system variability that was able to be captured by the 516 

sensor monitoring. However, given that most seasons did not show differences in pH or 517 

pCO2 between sampling methods, the descriptive statistics associated with the discrete 518 

monitoring did a fair job of representing system means. This is evidence that long-term 519 

discrete monitoring efforts, which are much more widespread in estuarine systems than 520 

sensor deployments, can be generally representative of the system despite known 521 

temporal variability on shorter time scales. However, further study would be needed to 522 

determine if this applies throughout the system, as the upper estuary generally 523 

experiences greater variability.  524 

Understanding the relationships of pH and pCO2 with temperature and salinity is 525 

important in a system (Fig. 7). Based on the results of an Analysis of Covariance 526 

(ANCOVA), the relationship (slope) of pH with both temperature and salinity and of 527 

pCO2 with salinity were not significantly different between types of monitoring 528 

(considering the sensor deployment period only), supporting the effectiveness of long-529 

term discrete monitoring programs when sensors are unable to be deployed. However, 530 

ANCOVA did reveal the relationship of pCO2 with temperature is significantly different 531 

(method:temp p=0.0062) between monitoring methods. 532 

The high temporal resolution of sensor data is presumably better for estimating 533 

CO2 flux at a given location than discrete sampling. Previous studies have pointed out 534 

that discrete sampling methods, which generally involve only daytime sampling, do not 535 

adequately capture the diel variability in the carbonate system and may therefore lead to 536 

biased CO2 fluxes (Crosswell et al., 2017; Liu et al., 2016). However, we found no 537 
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significant difference (within any season) between CO2 flux values calculated with 538 

hourly sensor data versus single, discrete samples collected monthly to twice monthly 539 

(Table S2, Fig. 3). Calculated CO2 fluxes also did not significantly differ between day 540 

and night during any season, despite some differences in pCO2 (Table S3), likely due to 541 

the large error associated with the calculation of CO2 flux (Table S1, Fig. 3) which will 542 

be further discussed below. Therefore, the expected underestimation of CO2 flux based 543 

on diel variability of pCO2 was not encountered at our study site, validating the use of 544 

discrete samples for quantification of CO2 fluxes (until methods with less associated error 545 

are available). Even given less error in calculated flux, estimated fluxes would likely not 546 

differ between methods on an annual scale (as pCO2 did not), but CO2 fluxes may differ 547 

on a seasonal scale since the differences between daytime and nighttime pCO2 were not 548 

consistent across seasons (Table S3, Fig. 4).  549 

There are many factors contributing to error associated with CO2 flux. There is 550 

still large error associated with estimates of estuarine CO2 flux because turbulent mixing 551 

is difficult to model and turbulence is the main control on CO2 gas transfer velocity, k, in 552 

shallow water environments. Thus, our wind speed parameterization of k is imperfect and 553 

likely the greatest source of error (Borges and Abril, 2011; Van Dam et al., 2019). Other 554 

notable sources of error include the data treatment. For example, we chose to seasonally 555 

weight the individual calculated flux values in the calculation of annual flux to account 556 

for differences in sampling frequency between seasons. From continuous data, the 557 

weighted average flux was 0.2 mmol m-2 d-1, although choosing not to seasonally weight 558 

and simply look at the arithmetic mean of fluxes calculated directly from sampling dates 559 

would have resulted in an annual CO2 flux of -0.7 mmol m-2 d-1 for the same period. 560 
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Similarly, the weighted average flux from all 5+ years of discrete data was -0.9 mmol m-2 561 

d-1, but the arithmetic mean of fluxes would have resulted in an annual CO2 flux of 0.2 562 

mmol m-2 d-1 for the same period. Another source of error that could be associated with 563 

the calculation of flux from the discrete data is the way in which wind speed data are 564 

aggregated to be used in the windspeed parameterization. We decided to use daily 565 

averages of the windspeed for calculations. Using the windspeed measured for the closest 566 

time to our sampling time or the monthly averaged wind speed may have resulted in very 567 

different flux values.  568 

 569 

4.2 Factors controlling temporal variability in carbonate system parameters  570 

Our study site had a relatively small range of pH and pCO2 on both diel and 571 

seasonal scales compared to other coastal regions (Challener et al., 2016; Yates et al., 572 

2007). This small variability is likely tied to a combination of the subtropical setting 573 

(small temperature variability), the lower estuary position of our monitoring (further 574 

removed from the already small freshwater influence), little ocean upwelling influence, 575 

and the system’s relatively high buffer capacity that results from the high alkalinity of the 576 

freshwater endmembers (Yao et al., 2020). Just as the extent of hypoxia-induced 577 

acidification was relatively low in Corpus Christi Bay because of the bay’s high buffer 578 

capacity (McCutcheon et al., 2019), the extent of pH fluctuation resulting from all 579 

controlling factors at ASC would also be modulated by the region’s high intrinsic buffer 580 

capacity. 581 

4.2.1 Thermal and biological controls on carbonate chemistry 582 

We demonstrated that both temperature and non-thermal processes exert control 583 

on pCO2, but non-thermal control generally surpasses thermal control in ASC over 584 
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multiple time scales (Fig. 6, Table S4, T/B<1). The magnitude of pCO2 variation 585 

attributed to non-thermal processes varied greatly (i.e., ΔpCO2,nt had large standard 586 

deviations, Table S4). For example, during the year of strongest non-thermal control 587 

(2016), ΔpCO2,nt was 534 µatm versus ΔpCO2,nt of 209 µatm in the year of weakest 588 

thermal control (2019). Conversely, the magnitude of pCO2 variation attributed to 589 

temperature was consistent across time scales. For example, during the year of strongest 590 

thermal control (2015), ΔpCO2,t was 276 µatm versus ΔpCO2,t of 242 µatm in the year of 591 

weakest thermal control (2017). Spring and fall seasons, which experienced the greatest 592 

temperature swings (Table S1), had greater relative temperature control exerted on pCO2 593 

out of all seasons (Fig. 6, Table S4). The difference in T/B between sampling methods is 594 

relatively small over the 10-month sensor deployment period, but it is worth noting that 595 

T/B did not align over shorter seasonal time scales sampling methods (Fig. 6, Table S4). 596 

Continuous monitoring demonstrated a greater magnitude of fluctuation resulting from 597 

both temperature and non-thermal processes (i.e., greater ΔpCO2,t and ΔpCO2,nt), 598 

indicating that the extremes are generally not captured by the discrete, daytime sampling, 599 

and sensor data would provide a better understanding of system controls. 600 

The greater influence of non-thermal controls that we report conflicts with Yao 601 

and Hu (2017), who found that ASC was primarily thermally controlled (T/B 1.53 – 1.79) 602 

from May 2014 to April 2015. Yao and Hu (2017) also found that locations in the upper 603 

estuary experienced lower T/B during flooding conditions than drought conditions. 604 

Although the opposite was found at ASC, it is likely that the high T/B calculated at ASC 605 

by Yao and Hu (2017) was still a result of the drought condition due to the long residence 606 

time of the estuary. Since 2015, there has not been another significant drought in the 607 
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system, so it seems that non-thermal controls on pCO2 are more important at this location 608 

under normal freshwater inflow conditions.  609 

Significantly warmer water temperatures were observed during the nighttime in 610 

both summer and fall (Fig. 5), indicating that temperature could exert a slight control on 611 

the carbonate system over a diel time scale. We note that significant differences in day 612 

and night temperature within seasons do not indicate that diel differences were observed 613 

on all days within the season, as large standard deviations in both daytime and nighttime 614 

values result in considerable overlap. More substantial temperature swings between 615 

seasons would result in more temperature control over a seasonal timescale. ASC seems 616 

to have less thermal control of the carbonate system than offshore GOM waters, as 617 

temperature had substantially higher explanatory value for pH and pCO2 based on simple 618 

linear regressions in offshore GOM waters (R2 = 0.81 and 0.78, respectively (Hu et al., 619 

2018)) than at ASC (R2 = 0.30 and 0.52, respectively, for sensor data and R2 = 0.38 and 620 

0.25, respectively, for discrete data).  621 

Though annual average pCO2 (and CO2 flux) are higher in the upper MAE and 622 

lower offshore than at our study site, the same seasonal patterns that we observed (i.e., 623 

elevated pCO2 and positive CO2 flux in the summer and depressed pCO2 and negative 624 

CO2 flux during the winter, Table S1, Fig. S1) has also been observed throughout the 625 

entire MAE and the open Gulf of Mexico (Hu et al., 2018; Yao and Hu, 2017). These 626 

seasonal patterns correspond with both the directional response of the system to 627 

temperature and net community metabolism response to changing temperature, i.e., 628 

elevated respiration in summer months (Caffrey, 2004). Despite that there were no 629 

observations of hypoxia, there was a strong relationship between the carbonate system 630 
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parameters and DO (Fig. 7, Table S5), suggesting that net ecosystem metabolism may 631 

exert an important control on the carbonate system on seasonal time scales. The lack of 632 

day-night difference in DO (Fig. 5F) despite the significant day-night difference in both 633 

pH and pCO2 suggests that net community metabolism is likely not a strong controlling 634 

factor on diel time scales. Biological control likely becomes more important over 635 

seasonal timescales.  636 

4.2.2 Tidal control on carbonate chemistry  637 

While the tidal range in the northwestern GOM is relatively small (1.30 m over 638 

our 10-month continuous monitoring period), the tidal inlet location of our study site 639 

results in proportionally more “coastal water” during high tide and proportionally more 640 

“estuarine water” during low tide. The carbonate chemistry signal of these different water 641 

masses was seen in the differences between high tide and low tide conditions at ASC 642 

(i.e., high tide having lower pCO2 because coastal waters are less heterotrophic than 643 

estuarine waters, Table 2). Consequently, the relative importance of thermal versus non-644 

thermal controls may be modulated by tide level. We calculated the thermal and non-645 

thermal pCO2 terms separately during high tide and low tide periods and found that non-646 

thermal control is more important during low tide conditions (within each season T/B is 647 

0.10 ± 0.07 lower during the low tide than high tide). This is likely because low tide has 648 

proportionally more “estuarine water” at the location and because there is less volume of 649 

water for the end products of biological processes to accumulate. The difference in T/B 650 

between high tide and low tide conditions was greatest in the spring, likely due to a 651 

combination of elevated spring-time productivity and larger tidal ranges in the spring.  652 
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The GOM is one of the few places in the world that experiences diurnal tides 653 

(Seim et al., 1987; Thurman, 1994), so theoretically, the fluctuations in pCO2 associated 654 

with tides may align to either amplify or reduce/reverse the fluctuations that would result 655 

from diel variability in net community metabolism. Based on diel tidal fluctuations at this 656 

site (i.e., higher tides during the day in the spring and summer and higher tides at night 657 

during the winter, Fig. 5E) and the higher pCO2 associated with low tide (Table 2), tidal 658 

control should amplify the biological signal (nighttime pCO2 > daytime pCO2) during 659 

spring and summer and reduce or reverse the biological signal during the winter. This 660 

tidal control can explain the diel variability present in our pCO2 data, which showed the 661 

full reversal of the expected biological signal in the winter (Fig. 5C, Table S3, nighttime 662 

pCO2 < daytime pCO2), i.e., the higher nighttime tides in winter brought in enough low 663 

CO2 water from offshore to fully offset any nighttime buildup of CO2 from the lack of 664 

photosynthesis. However, we note that the expected diel, biological control was likely 665 

minimal since daytime DO was not consistently higher than nighttime DO (Fig. 5F). The 666 

same seasonal pattern diel tide fluctuations were exhibited from Dec 20, 2016 (when the 667 

tide data is first available) through the rest of our discrete monitoring period (Feb 25, 668 

2020), indicating that tidal control on diel variability of carbonate system parameters was 669 

likely consistent throughout this 3+ year period. The diel variability in pH did not mirror 670 

pCO2 as would be expected (Fig. 5). The relationship between pH and tide level more 671 

closely mirrored the relationships of salinity and temperature with tide level (versus pCO2 672 

relationship with tide level; Table 2), indicating that controlling factors of the carbonate 673 

system may not be exerted equally on both pH and pCO2 over different time scales.  674 

4.2.3 Salinity and freshwater inflow controls on carbonate chemistry 675 
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Previous studies have indicated that freshwater inflow may exert a primary 676 

control on the carbonate system in the estuaries of the northwestern GOM (Hu et al., 677 

2015; Yao et al., 2020; Yao and Hu, 2017). Though the river water still has elevated 678 

pCO2 and depressed pH compared to the seawater endmember, the high riverine 679 

alkalinity (often higher than the seawater endmember) in the region results in relatively 680 

well-buffered estuarine conditions in MAE (Yao and Hu, 2017). Carbonate system 681 

variability is much lower at ASC than it is in the more upper reaches of MAE, likely due 682 

to the lesser influence of freshwater inflow and its associated changes in biological 683 

activity at ASC (Yao and Hu, 2017).  Given the location of our sampling in the lower 684 

portion of the estuary and the long residence time in the system, we did not directly 685 

address river discharge as a controlling factor, but the influence of freshwater inflow may 686 

be evident in the response of the system to changes in salinity. Fluctuating salinity at 687 

ASC may also result from direct precipitation, stratification, and tidal fluctuations; 688 

however, the low R2 (0.02) associated with a simple linear regression between tide level 689 

and salinity (p<0.0001) indicates that salinity fluctuations are more indicative of non-tidal 690 

factors. Salinity data from both sensor and discrete monitoring were strongly correlated 691 

with both pH and pCO2, with correlation coefficients nearing (continuous) or surpassing 692 

(discrete) that of the correlations with temperature (Fig. 7; Table S5). Periods of lower 693 

salinity had higher pH and lower pCO2, likely due to enhanced freshwater influence and 694 

subsequent elevated primary productivity at the study site.  695 

4.2.4 Windspeed and CO2 inventory 696 

We investigated wind speed as a possible control on the carbonate system to gain 697 

insight into the effect of wind-driven CO2 fluxes on the inventory of CO2 in the water 698 
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column (and subsequent impacts to the entire carbonate system). The Texas coast has 699 

relatively high wind speeds, with the mean wind speed observed during our continuous 700 

monitoring period being 5.8 m s-1. While this results in relatively high calculated CO2 701 

fluxes (Fig. 3), the seasonal relationship between pCO2 and windspeed does not support a 702 

change in inventory with higher winds. Since spring and summer both have a mean 703 

estuarine pCO2 greater than atmospheric level (and positive CO2 flux, Table S1) a 704 

negative relationship between windspeed and pCO2 would be necessary to support this 705 

hypothesis, but winter, spring, and fall all experience increases in pCO2 with increasing 706 

wind based on simple linear regression.  707 

4.3 Carbonate chemistry as a component of overall system variability 708 

Estuaries and coastal areas are dynamic systems with human influence, riverine 709 

influence, and influence from an array of biogeochemical processes, resulting in highly 710 

variable environmental conditions. Based on an LDA used to assess overall system 711 

variability using a suite of environmental parameters compiled at a single location, we 712 

can conclude that carbonate chemistry parameters are among the most important of 713 

variants on both daily and seasonal time scales in this coastal setting. Of the two 714 

carbonate system components that we incorporated (pH and pCO2), pCO2 was the most 715 

critical in discriminating along diel or seasonal scales despite similar seasonal differences 716 

that were identified by ANOVA (Table S2) and more seasons with significant diel 717 

differences in pH (Table S3). pH seemed to be a larger component of overall system 718 

variability on a seasonal time scale (compared to the very small contribution seen on a 719 

diel scale, Table 1). Given that the seasonal and diel variability in carbonate chemistry at 720 

this location is relatively small compared to other coastal areas that are in the literature, 721 
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the high contribution of carbonate chemistry to overall system variability that we detected 722 

is likely to be present at other coastal locations around the world.  723 

5. Conclusions 724 

 We monitored carbonate chemistry parameters (pH and pCO2) using both sensor 725 

deployments (10 months) and discrete sample collection (5+ years) at the Aransas Ship 726 

Channel, TX, to characterize temporal variability. Significant seasonal variability and 727 

diel variability in carbonate system parameters were both present at the location. Diel 728 

fluctuations were smaller than many other areas previously studied. The difference 729 

between daytime and nighttime values of carbonate system parameters varied between 730 

seasons, occasionally reversing the expected diel variability due to biological processes. 731 

Tide level (despite the small tidal range), temperature, freshwater influence, and 732 

biological activity all seem to exert important controls on the carbonate system at the 733 

location. The relative importance of the different controls varied with timescale, and 734 

controls were not always exerted equally on both pH and pCO2. Carbonate chemistry 735 

(particularly pCO2) was among the most important environmental parameters to in 736 

overall system variability to distinguish between both diel and seasonal environmental 737 

conditions. 738 

Despite known temporal variability on shorter timescales, discrete sampling was 739 

generally representative of the average carbonate system on a seasonal and annual basis 740 

based on comparison with our sensor data. Discrete data captured interannual variability, 741 

which could not be captured by the shorter-term continuous sensor data. Additionally, 742 

there was no difference in CO2 flux between sampling types. All of these findings 743 
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support the validity of discrete sample collection for carbonate system characterization at 744 

this location.  745 

This is one of the first studies that investigates high-temporal frequency data from 746 

deployed sensors that measure carbonate system parameters in an estuary-influenced 747 

environment. Long-term, effective deployments of these monitoring tools could greatly 748 

improve our understanding of estuarine systems. This study’s detailed investigation of 749 

data from multiple, co-located environmental sensors was able to provide insight into 750 

potential driving forces of carbonate chemistry on diel and seasonal time scales; this 751 

provides strong support for the implementation of carbonate chemistry monitoring in 752 

conjunction with preexisting coastal environmental monitoring infrastructure. 753 

Strategically locating such sensors in areas that are subject to local acidification drivers 754 

or support large biodiversity or commercially important species may be the most crucial 755 

in guiding future mitigation and adaptation strategies for natural systems and aquaculture 756 

facilities. 757 
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