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Abstract 16 

The coastal ocean is affected by an array of co-occurring biogeochemical and 17 

anthropogenic processes, resulting in substantial heterogeneity in water chemistry, 18 

including carbonate chemistry parameters such as pH and partial pressure of CO2 (pCO2). 19 

To better understand coastal and estuarine acidification and air-sea CO2 fluxes, it is 20 

important to study baseline variability and driving factors of carbonate chemistry. Using 21 

both discrete bottle sample collection (2014-2020) and hourly sensor measurements 22 

(2016-2017), we explored temporal variability, from diel to interannual scales, in the 23 

carbonate system (specifically pH and pCO2) at the Aransas Ship Channel located in 24 

northwestern Gulf of Mexico. Using other co-located environmental sensors, we also 25 

explored the driving factors of that variability. Both sampling methods demonstrated 26 

significant seasonal variability at the location, with highest pH (lowest pCO2) in the 27 

winter and lowest pH (highest pCO2) in the summer. Significant diel variability was also 28 

evident from sensor data, but the time of day with elevated pCO2/depressed pH was not 29 

consistent across the entire monitoring period, sometimes reversing from what would be 30 

expected from a biological signal. Though seasonal and diel fluctuations were smaller 31 

than many other areas previously studied, carbonate chemistry parameters were among 32 

the most important environmental parameters to distinguish between time of day and 33 

between seasons. It is evident that temperature, biological activity, freshwater inflow, and 34 

tide level (despite the small tidal range) are all important controls on the system, with 35 

different controls dominating at different time scales. The results suggest that the 36 

controlling factors of the carbonate system may not be exerted equally on both pH and 37 

pCO2 on diel timescales, causing separation of their diel or tidal relationships during 38 
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certain seasons. Despite known temporal variability on shorter timescales, discrete 39 

sampling was generally representative of the average carbonate system and average air-40 

sea CO2 flux on a seasonal and annual basis when compared with sensor data.   41 

1. Introduction   42 

Coastal waters, especially estuaries, experience substantial spatial and temporal 43 

heterogeneity in water chemistry—including carbonate chemistry parameters such as pH 44 

and partial pressure of CO2 (pCO2)—due to the diversity of co-occurring biogeochemical 45 

and anthropogenic processes (Hofmann et al., 2011; Waldbusser and Salisbury, 2014). 46 

Carbonate chemistry is important because an addition of CO2 acidifies seawater, and 47 

acidification can negatively affect marine organisms (Barton et al., 2015; Bednaršek et 48 

al., 2012; Ekstrom et al., 2015; Gazeau et al., 2007; Gobler and Talmage, 2014). 49 

Additionally, despite the small surface area of coastal waters relative to the global ocean, 50 

coastal waters are recognized as important contributors in global carbon cycling (Borges, 51 

2005; Cai, 2011; Laruelle et al., 2018).  52 

While carbonate chemistry, acidification, and air-sea CO2 fluxes are relatively 53 

well studied and understood in open ocean environments, large uncertainties remain in 54 

coastal environments. Estuaries are especially challenging to fully understand because of 55 

the heterogeneity between and within estuaries that is driven by diverse processes 56 

operating on different time scales such as river discharge, nutrient and organic matter 57 

loading, stratification, and coastal upwelling (Jiang et al., 2013; Mathis et al., 2012). The 58 

traditional sampling method for carbonate system characterization involving discrete 59 

water sample collection and laboratory analysis is known to lead to biases in average 60 

pCO2 and CO2 flux calculations due to daytime sampling that neglects to capture diel 61 
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variability (Li et al., 2018). Mean diel ranges in pH can exceed 0.1 unit in many coastal 62 

environments, and especially high diel ranges (even exceeding 1 pH unit) have been 63 

reported in biologically productive areas or areas with higher mean pCO2 (Challener et 64 

al., 2016; Cyronak et al., 2018; Schulz and Riebesell, 2013; Semesi et al., 2009; Yates et 65 

al., 2007). These diel ranges can far surpass the magnitude of the changes in open ocean 66 

surface waters that have occurred since the start of the industrial revolution and rival 67 

spatial variability in productive systems, indicating their importance for a full 68 

understanding of the carbonate system.  69 

Despite the need for high-frequency measurements, sensor deployments have 70 

been limited in estuarine environments (especially compared to their extensive use in the 71 

open ocean) because of the challenges associated with varying conditions, biofouling, 72 

and sensor drift (Sastri et al., 2019). Carbonate chemistry monitoring in the Gulf of 73 

Mexico (GOM), has been relatively minimal compared to the United States east and west 74 

coasts. The GOM estuaries currently have less exposure to concerning levels of 75 

acidification than other estuaries because of their high temperatures (causing water to 76 

hold less CO2 and support high productivity year-round) and often suitable river 77 

chemistries (i.e., relatively high buffer capacity) (McCutcheon et al., 2019; Yao et al., 78 

2020). However, respiration-induced acidification is present in both the open GOM (e. g., 79 

subsurface water influenced by the Mississippi River Plume and outer shelf region near 80 

the Flower Garden Banks National Marine Sanctuary) and GOM estuaries, and most 81 

estuaries in the northwestern GOM have also experienced long-term acidification (Cai et 82 

al., 2011; Hu et al., 2018, 2015; Kealoha et al., 2020; McCutcheon et al., 2019; Robbins 83 

and Lisle, 2018). This known acidification as well as the relatively high CO2 efflux from 84 

tcyro
Highlight
what do you mean by 'varying conditions'?

tcyro
Highlight
What do you mean by this?

tcyro
Inserted Text
,



 5 

the estuaries of the northwest GOM illustrates the necessity to study the baseline 85 

variability and driving factors of carbonate chemistry in the region. In this study, we 86 

explored temporal variability in the carbonate system in Aransas Ship Channel (ASC)—a 87 

tidal inlet where the lagoonal estuaries meet the coastal waters in a semi-arid region of 88 

the northwestern GOM—using both discrete bottle sample collection and hourly sensor 89 

measurements, and we explored the driving factors of that variability using data from 90 

other co-located environmental sensors. The characterization of carbonate chemistry and 91 

consideration of regional drivers can provide context to acidification and its impacts and 92 

improved estimates of air-sea CO2 fluxes.   93 

2. Materials and Methods 94 

2.1 Location 95 

Autonomous sensor monitoring and discrete water sample collections for 96 

laboratory analysis of carbonate system parameters were performed in the Aransas Ship 97 

ChannelASC (ASC, located at 27˚50'17"N, 97˚3'1"W). ASC is one of the few permanent 98 

tidal inlets that intersect a string of barrier islands and connect the GOM coastal waters 99 

with the lagoonal estuaries in the northwest GOM (Fig. 1). ASC provides the direct 100 

connection between the northwestern GOM and the Mission-Aransas Estuary (Copano 101 

and Aransas Bays) to the north and Nueces Estuary (Nueces and Corpus Christi Bays) to 102 

the south (Fig. 1). The region is microtidal, with a small tidal range relative to many other 103 

estuaries, ranging from ~ 0.6 m tides on the open coast to less than 0.3 m in upper 104 

estuaries (Montagna et al., 2011). Mission-Aransas Estuary (MAE) is fed by two small 105 

rivers, the Mission (1787 km2 drainage basin) and Aransas (640 km2 drainage basin) 106 

Rivers (http://waterdata.usgs.gov/), which both experience low base flows punctuated by 107 
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periodic high flows during storm events. MAE has an average residence time of one year 108 

(Solis and Powell, 1999), so there is a substantial lag between time of rainfall and 109 

riverine delivery to ASC in the lower estuary. A significant portion of riverine water 110 

flowing into Aransas Bay originates from the larger rivers further northeast on the Texas 111 

coast via the Intracoastal Waterway (i.e., Guadalupe River (26,625 km2 drainage basin) 112 

feeds San Antonio Bay and has a much shorter residence time of nearly 50 days) (Solis 113 

and Powell, 1999; USGS, 2001). 114 

 115 

Figure 1. Study area. The location of monitoring in the Aransas Ship Channel (red star) 116 
and the locations of NOAA stations used for wind data (yellow circles) are shown.   117 

 118 

2.2 Continuous Monitoring 119 

Autonomous sensor monitoring (referred to throughout as continuous monitoring) 120 

of pH and pCO2 was conducted from Nov. 8, 2016 to Aug. 23, 2017 at the University of 121 
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Texas Marine Science Institute’s research pier in ASC. Hourly pH data were collected 122 

using an SAtlantic® SeaFET pH sensor (on total pH scale) and hourly pCO2 data were 123 

collected using a Sunburst® SAMI-CO2. Hourly temperature and salinity data were 124 

measured by a YSI® 600OMS V2 sonde. All hourly data were single measurements taken 125 

on the hour. The average difference between sensor pH and discrete quality assurance 126 

samples measured spectrophotometrically in the lab was used to establish a correction (-127 

0.05) based on a single calibration point across the entire sensor pH dataset (Bresnahan et 128 

al., 2014). See supplemental materials for additional sensor deployment and quality 129 

assurance information. 130 

2.3 Discrete Sample Collection and Sample Analysis 131 

Long-term monitoring via discrete water sample collection was conducted at ASC 132 

from May 2, 2014 to February 25, 2020 (in addition to the discrete, quality assurance 133 

sample collections). Sampling A single, discrete, surface water sample was conducted 134 

collected every two weeks during the summer months and monthly during the winter 135 

months from a small vessel at a station near (<20 m from) the sensor deployment. Water 136 

sample collection followed standard protocol for ocean carbonate chemistry studies 137 

(Dickson et al., 2007). Ground glass borosilicate bottles (250 mL) were filled with 138 

surface water and preserved with 100 µL saturated mercury chloride (HgCl2). Apiezon® 139 

grease was applied to the bottle stopper, which was then secured to the bottle using a 140 

rubber band and a nylon hose clamp. 141 

These samples were used for laboratory dissolved inorganic carbon (DIC) and pH 142 

measurements. DIC was measured by injecting 0.5 mL of sample into 1 ml 10% H3PO4 143 

(balanced by 0.5 M NaCl) with a high-precision Kloehn syringe pump. The CO2 gas 144 

tcyro
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produced through sample acidification was then stripped using high-purity nitrogen gas 145 

and carried into a Li-Cor infrared gas detector. DIC analyses had a precision of 0.1%. 146 

Certified Reference Material (CRM) was used to ensure the accuracy of the analysis 147 

(Dickson et al. 2003). For samples with salinity>20, pH was measured using a 148 

spectrophotometric method at 25 ± 0.1°C (Carter et al. 2003) and the Douglas and Byrne 149 

(2017) equation. Analytical precision of the spectrophotometric method for pH 150 

measurement was ±0.0004 pH units. A calibrated Orion Ross glass pH electrode was 151 

used to measure pH at 25 ± 0.1°C for samples with salinity<20, and analytical precision 152 

was ±0.01 pH units. All pH values obtained using the potentiometric method were 153 

converted to total scale at in situ temperature (Millero 2001). Salinity of the discrete 154 

samples was measured using a benchtop salinometer calibrated by MilliQ water and a 155 

known salinity CRM. For discrete samples, pCO2 was calculated in CO2Sys for Excel 156 

using laboratory-measured salinity, DIC, pH, and in situ temperature for calculations. 157 

Carbonate speciation calculations were done using Millero (2010) carbonic acid 158 

dissociation constants (K1 and K2), Dickson (1990) bisulfate dissociation constant, and 159 

Uppström (1974) borate concentration.  160 

2.4 Calculation of CO2 fluxes 161 

Equation 1 was used for air-water CO2 flux calculations (Wanninkhof, 1992; 162 

Wanninkhof et al., 2009). Positive flux values indicate CO2 emission from the water into 163 

the atmosphere (the estuary acting as a source of CO2), and negative flux values indicate 164 

CO2 uptake by the water (the estuary acting as a sink for CO2).  165 

F = k K0 (pCO2,w – pCO2,a)                    (1) 166 
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where k is the gas transfer velocity (in m d-1), K0 (in mol l-1 atm-1) is the solubility 167 

constant of CO2 (Weiss, 1974), and pCO2,w and pCO2,a  are the partial pressure of CO2 (in 168 

µatm) in the water and air, respectively.   169 

We used the wind speed parameterization for gas transfer velocity (k) from Jiang 170 

et al. (2008) converted from cm h-1 to m d-1, which is thought to be the best estuarine 171 

parameterization at this time (Crosswell et al., 2017), as it is a composite of k over 172 

several estuaries. The calculation of k requires a windspeed at 10 m above the surface, so 173 

windspeeds measured at 3 m above the surface were converted using the power law wind 174 

profile (Hsu, 1994; Yao and Hu, 2017). To assess uncertainty, other parameterizations 175 

with direct applications to estuaries in the literature were also used to calculate CO2 flux 176 

(Raymond and Cole 2001; Ho et al. 2006). We note that parameterization of k based on 177 

solely windspeed is flawed because several additional parameters can contribute to 178 

turbulence including turbidity, bottom-driven turbulence, water-side thermal convection, 179 

tidal currents, and fetch (Wanninkhof 1992, Abril et al., 2009, Ho et al., 2104, Andersson 180 

et al., 2017), however it is currently the best option for this system given the limited 181 

investigations of CO2 flux and contributing factors in estuaries.  182 

Hourly averaged windspeed data for use in CO2 flux calculations were retrieved 183 

from the NOAA-controlled Texas Coastal Ocean Observation Network (TCOON; 184 

https://tidesandcurrents.noaa.gov/tcoon.html). Windspeed data from the nearest TCOON 185 

station (Port Aransas Station – located directly in ASC, < 2 km inshore from our 186 

monitoring location) was prioritized when data were available. During periods of missing 187 

windspeed data at the Port Aransas Station, wind speed data from TCOON’s Aransas 188 

Pass Station (< 2 km offshore from monitoring location) were next used, and for all 189 

https://tidesandcurrents.noaa.gov/tcoon.html
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subsequent gaps, data from TCOON’s Nueces Bay Station (~ 40 km away) were used 190 

(Fig. 1; additional discussion of flux calculation and windspeed data can be found in 191 

supplementary materials). For flux calculations from continuous monitoring data, each 192 

hourly measurement of pCO2 was paired with the corresponding hourly averaged 193 

windspeed. For flux calculations from discrete sample data, the pCO2 calculated for each 194 

sampled day was paired with the corresponding daily averaged windspeed (calculated 195 

from the retrieved hourly averaged windspeeds).  196 

Monthly mean atmospheric xCO2 data (later converted to pCO2) for flux 197 

calculations were obtained from NOAA’s flask sampling network of the Global 198 

Monitoring Division of the Earth System Research Laboratory at the Key Biscayne (FL, 199 

USA) station. Global averages of atmospheric xCO2 were used when Key Biscayne data 200 

were unavailable. Each pCO2 observation (whether using continuous or discrete data) 201 

was paired with the corresponding monthly averaged xCO2 for flux calculations. 202 

Additional information and justification are available in supplemental materials.  203 

2.5 Additional data retrieval and data processing to investigate carbonate system 204 

variability and controls 205 

All reported annual mean values are seasonally weighted to account for 206 

disproportional sampling between seasons. However, reported annual standard deviation 207 

is associated with the un-weighted, arithmetic mean (Table S1). Temporal variability was 208 

investigated in the form of seasonal and diel variability (Tables S1, S2, S3). For seasonal 209 

analysis, December to February was considered winter, March to May was considered 210 

spring, June to August was considered summer, and September to November was 211 

considered fall. It is important to note that the Fall season had much fewer continuous 212 
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sensor observations than other seasons because of the timing of sensor deployment. For 213 

diel comparisons, daytime and nighttime variables were defined as 09:00-15:00 local 214 

standard time and 21:00-03:00 local standard time, respectively, based on the 6-hour 215 

periods with highest and lowest photosynthetically active radiation (PAR; data from co-216 

located sensor, obtained from the Mission-Aransas National Estuarine Research Reserve 217 

(MANERR) at https://missionaransas.org/science/download-data). Diel ranges in 218 

parameters were calculated (daily maximum minus daily minimum) and only reported for 219 

days with the full 24 hours of hourly measurements (176 out of 262 measured days) to 220 

ensure that data gaps did not influence the diel ranges (Table S3). 221 

 Controls on pCO2 from thermal and non-thermal (i.e., combination of physical 222 

and biological) processes were investigated following Takahashi et al. (2002) over 223 

annual, seasonal, and daily time scales using both continuous and discrete data. Over any 224 

given time period, this method uses the ratio of the ranges of temperature-normalized 225 

pCO2 (pCO2,nt, Eq. 2) and the mean annual pCO2 perturbed by the difference between 226 

mean and observed temperature (pCO2, t, Eq. 3) to calculate the relative influence of non-227 

thermal and thermal effects on pCO2 (T/B, Eq. 4). When calculating annual T/B values 228 

with discrete data, only complete years (sampling from January to December) were 229 

included (2014 and 2020 were omitted). When calculating daily T/B values with 230 

continuous data, only complete days (24 hourly measurements) were included.  231 

pCO
2, nt

= pCO
2,obs

 × exp[ δ ×(Tmean-Tobs)]                                        (2) 232 

     pCO
2, t

= pCO
2,mean

 × exp[ δ ×(Tobs-Tmean)]                                          (3) 233 

where the value for δ (0.0411 °C-1), which represents average [∂ ln pCO
2
 / ∂ 234 

Temperature] from field observations, was taken directly from Yao and Hu (2017), Tobs is 235 
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the observed temperature, and Tmean is the mean temperature over the investigated time 236 

period.  237 

𝑇/𝐵 =  
max(𝑝𝐶𝑂 2,𝑡ℎ𝑒𝑟𝑚𝑎𝑙) − min (𝑝𝐶𝑂 2,𝑡ℎ𝑒𝑟𝑚𝑎𝑙)

max(𝑝𝐶𝑂 2,𝑛𝑜𝑛− 𝑡ℎ𝑒𝑟𝑚𝑎𝑙) − min (𝑝𝐶𝑂 2,𝑛𝑜𝑛− 𝑡ℎ𝑒𝑟𝑚𝑎𝑙)
                                     (4) 238 

Where a T/B greater than one indicates that temperature’s control on pCO2 is greater than 239 

the control from non-thermal factors and a T/B less than one indicates that non-thermal 240 

factors’ control on pCO2 is greater than the control from temperature.  241 

Tidal control on parameters was investigated using our continuous monitoring 242 

data and tide level data obtained from NOAA’s Aransas Pass Station (the Aransas Pass 243 

Station used for windspeed data, < 2 km offshore from monitoring location, Fig. 1) at 244 

https://tidesandcurrents.noaa.gov/waterlevels.html?id=8775241&name=Aransas,%20Ara245 

nsas%20Pass&state=TX. Hourly measurements of water level were merged with our 246 

sensor data by date and hour. Given that there were gaps in available water level 247 

measurements (and no measurements prior to December 20, 2016), the usable dataset was 248 

reduced from 6088 observations to 5121 observations and fall was omitted from analyses. 249 

To examine differences between parameters during high tide and low tide, we defined 250 

high tide as tide level greater than the third quartile tide level value and low tide as a tide 251 

level less than the first quartile tide level value.  252 

Other factors that may exert control on the carbonate system were investigated 253 

through parameter relationships. In addition to previously discussed tide and windspeed 254 

data, we obtained dissolved oxygen (DO), PAR, turbidity, and chlorophyll fluorescence 255 

data from MANERR-deployed environmental sensors that were co-located at our 256 

monitoring location (obtained from https://missionaransas.org/science/download-data). 257 

Given that MANERR data are all measured in the bottom water (>5 m) while our sensors 258 

https://tidesandcurrents.noaa.gov/waterlevels.html?id=8775241&name=Aransas,%20Aransas%20Pass&state=TX
https://tidesandcurrents.noaa.gov/waterlevels.html?id=8775241&name=Aransas,%20Aransas%20Pass&state=TX
https://missionaransas.org/science/download-data
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were measuring surface waters, we excluded the observations with significant water 259 

column stratification (defined as a salinity difference > 3 between surface water and 260 

bottom water) from analyses. Omitting stratified water reduced our continuous dataset 261 

from 6088 to 5524 observations (removing 260 winter, 133 spring, 51 summer, and 120 262 

fall observations), and omitting observations where there were no MANERR data to 263 

determine stratification further reduced the dataset to 4112 observations. Similarly, 264 

removing instances of stratification reduced discrete sample data from 104 to 89 surface 265 

water observations.  266 

2.6 Statistical Analyses 267 

All statistical analyses were performed in R, version 4.0.3 (R Core Team, 2020). 268 

To investigate differences between daytime and nighttime parameter values (temperature, 269 

salinity, pH, pCO2, and CO2 flux) using continuous monitoring data across the full 270 

sampling period and within each season, paired t-tests were used, pairing each respective 271 

day’s daytime and nighttime values (Table S3). We also used loess models (locally 272 

weighted polynomial regression) to identify changes in diel patterns over the course of 273 

our monitoring period. 274 

Two-way ANOVAs were used to examine differences in parameter means 275 

between seasons and between monitoring methods (Table S2). Since there were 276 

significant interactions (between season and sampling type factors) in the two-way 277 

ANOVAs for each individual parameter (Table S2), differences between seasons were 278 

investigated within each monitoring method (one-way ANOVAs) and the differences 279 

between monitoring methods were investigated within each season (one-way ANOVAs). 280 

For the comparison of monitoring methods, we included both the full discrete sampling 281 
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data as well as a subset of the discrete sampling data to overlap with the continuous 282 

monitoring period (referred to throughout as reduced discrete data or DC) along with the 283 

continuous data. To interpret differences between monitoring methods, a difference in 284 

means between the continuous monitoring and discrete monitoring datasets would only 285 

indicate that the 10-month period of continuous monitoring was not representative of the 286 

5+ year period that discrete samples have been collected, but a difference in means 287 

between the continuous data and discrete sample data collected during the continuous 288 

monitoring period represents discrepancies between types of monitoring.  Post-hoc 289 

multiple comparisons (between seasons within sampling types and between sampling 290 

types within seasons) were conducted using the Westfall adjustment (Westfall, 1997).  291 

Differences in parameters between high tide and low tide conditions were 292 

investigated using a two-way ANOVA to model parameters based on tide level and 293 

season. In models for each parameter, there was a significant interaction between tide 294 

level and season factors (based on α=0.05, results not shown), thus t-tests were used 295 

(within each season) to examine differences in parameters between high and low tide 296 

conditions. Note that fall was omitted from this analysis because tide data were only 297 

available at the location beginning December 20, 2016. Sample sizes were the same for 298 

each parameter (High tide – winter: 354, spring: 569, summer: 350; Low tide – winter: 299 

543, spring: 318, summer: 415).  300 

Additionally, to gain insight to carbonate system controls through correlations, we 301 

conducted Pearson correlation analyses to examine individual correlations of pH and 302 

pCO2 (both continuous and discrete) with other environmental parameters (Table S5).  303 
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To better understand overall system variability over different time scales, we used 304 

a linear discriminant analysis (LDA), a multivariate statistic that allows dimensional 305 

reduction, to determine the linear combination of environmental parameters (individual 306 

parameters reduced into linear discriminants, LDs) that allow the best differentiation 307 

between day and night as well as between seasons. We included pCO2, pH, temperature, 308 

salinity, tide level, wind speed, total PAR, DO, turbidity, and fluorescent chlorophyll in 309 

this analysis. All variables were centered and scaled to allow direct comparison of their 310 

contribution to the system variability. The magnitude (absolute value) of coefficients of 311 

the LDs (Table 1) represents the relative importance of each individual environmental 312 

parameter in the best discrimination between day and night and between seasons, i.e., the 313 

greater the absolute value of the coefficient, the more information the associated 314 

parameter can provide about whether the sample came from day or night (or winter, 315 

spring, or summer). Only one LD could be created for the diel variability (since there are 316 

only two classes to discriminate between – day and night). Two LDs could be created for 317 

the seasonal variability (since there were three classes to discriminate between – fall was 318 

omitted because of the lack of tidal data), but we chose to only report the coefficients for 319 

LD1 given that LD1 captured 95.64% of the seasonal variability.   320 

 321 

3. Results 322 

3.1 Seasonal variability 323 

Both the continuous and discrete data showed substantial seasonal variability for 324 

all parameters (Fig. 2, Tables S1 and S2). All discrete sample results reported here are for 325 

the entire 5+ years of monitoring; the subset of discrete sample data that overlaps with 326 
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the continuous monitoring period will be addressed only in the discussion for method 327 

comparisons (Section 4.1.1). Both continuous and discrete data demonstrate significant 328 

differences in temperature between each season, with the highest temperature in summer 329 

and the lowest in winter (Tables S1 and S2). Mean salinity during sampling periods was 330 

highest in the summer and lowest in the fall (Table S1). Significant differences in 331 

seasonal salinity occurred between all seasons except spring and winter for continuous 332 

data, but only summer differed from other seasons based on discrete data (Tables S1 and 333 

S2).  334 

Carbonate system parameters also varied seasonally (Fig. 2). For both continuous 335 

and discrete data, winter had the highest seasonal pH (8.19 ± 0.08 and 8.162 ± 0.065, 336 

respectively) and lowest seasonal pCO2 (365 ± 44 µatm and 331 ± 39 µatm, 337 

respectively), while summer had the lowest seasonal pH (8.05 ± 0.06 and 7.975 ± 0.046, 338 

respectively) and highest seasonal pCO2 (463 ± 48 µatm and 511 ± 108, respectively) 339 

(Fig. 2, Table S1). All seasonal differences in pH and pCO2 were significant, except for 340 

the discrete data spring versus fall for both parameters (Table S2).  341 

 342 

 343 

tcyro
Cross-Out



 17 

 344 
Figure 2. Boxplots of seasonal variability in pH and pCO2 using all discrete data, 345 
reduced discrete data (to overlap with continuous monitoring, Nov. 8 2016 – Aug 23, 346 
2017), and continuous sensor data. 347 

 348 

Mean CO2 flux differed by season (Fig. 3, Tables S1 and S2). Both continuous 349 

and discrete data records resulted in net negative CO2 fluxes during fall and winter 350 

months, with winter being most negative. Both methods reported a net positive flux for 351 

summer, while spring fluxes were positive according to continuous data and negative 352 

according to the 5+ years of discrete data (Fig. 3, Table S1).  Annual net CO2 fluxes were 353 

near zero (Table S1).  354 

 355 
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 356 
Figure 3. CO2 flux calculated over the sampling periods from continuous (A) and 357 
discrete (B) data. Gray scale in (A) and (B) denote different seasons. Vertical lines in (B) 358 
denote the time period of continuous monitoring.  (C) shows the seasonal mean CO2 flux. 359 
Error bars represent mean CO2 flux using Ho (2006) and Raymond and Cole (2001) 360 
windspeed parameterizations.  361 

 362 

Results of the LDA incorporated carbonate system parameters along with 363 

additional environmental parameters to get a full picture of system variability over 364 

seasonal timescales (Table 1). The most important parameter in system variability that 365 

allowed differentiation between seasons was temperature (Table 1, Seasonal LD1), as 366 

would be expected with the clear seasonal temperature fluctuations (Fig. S1E). The 367 

second most important parameter for seasonal differentiation was chlorophyll, likely 368 

indicating clear seasonal phytoplankton blooms. The carbonate chemistry also played a 369 
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critical role in seasonal differentiation, as pCO2 was the third most important factor 370 

(Table 1).  371 

Table 1. Coefficients of linear discriminants (LD) from LDA using continuous sensor 372 
data and other environmental parameters.  Discriminants for both diel and seasonal 373 
variability shown.  374 

 Seasonal Diel 

LD1  LD1 

Temperature (°C)     -3.53 0.54 

Salinity 0.04 0.15 

pCO2 (µatm)         -0.29 -0.16 

pH        0.10 0.06 

Tide Level (m)  -0.24 0.10 

Wind speed (ms-1)               0.05 -0.00 

Total PAR            -0.07 -2.29 

DO (mg L-1) 0.09 -0.08 

Turbidity         0.15 -0.06 

Fluor. Chlorophyll -0.40 0.14 

 375 

3.2 Diel variability 376 

The 10 months of in-situ continuous monitoring revealed that there was 377 

substantial diel variability in measured parameters (Fig. 4, Table S3). Temperature had a 378 

mean diel range of 1.3 ± 0.8°C (Table S3). Daytime and nighttime temperature differed 379 

significantly during the summer and fall months, with higher temperatures at night for 380 

both seasons (Table S3). The mean diel range of salinity was 3.4 ± 2.7 (Table S3). 381 

Daytime and nighttime salinity differed significantly during the winter and fall months, 382 

with higher salinities at night for both seasons. The mean diel range of pH was 0.09 ± 383 

0.05 (Table S3). Daytime and nighttime pH differed significantly during the winter, 384 

summer, and fall, with nighttime pH significantly higher during summer and winter and 385 

lower during fall (Fig. 4, Table S3). The mean diel range of pCO2 was 58 ± 33 µatm (Fig. 386 

4, Table S3). Daytime and nighttime pCO2 differed significantly during the winter and 387 

summer months, with nighttime pCO2 significantly higher during the summer and lower 388 

during the winter (Fig. 4, Table S3). No significant difference in daytime and nighttime 389 
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DO were observed during any season (Fig. 5F; paired t-tests, winter p = 0.1573, spring p 390 

= 0.4877, summer p = 0.794). 391 

Loess models that investigated the evolution of day-night difference in parameters 392 

revealed that other environmental parameters, including salinity, temperature, and tide 393 

level, also had diel patterns that varied over the duration of our continuous monitoring 394 

(Fig. 5).  395 

 396 
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 397 
Figure 4. Boxplots of the diel range (maximum minus minimum) and difference in daily 398 
parameter mean daytime minus nighttime measurements for pH and pCO2 from 399 
continuous sensor data.  400 
 401 

CO2 flux also fluctuated on a daily scale, with a mean diel range of 34.1 ± 29.0 402 

mmol m-2 d-1 (Table S3). However, there was not a significant difference in CO2 flux of 403 

daytime versus nighttime hours for the entire monitoring period or any individual season 404 

based on α=0.05 (paired t-test, Table S3).  405 
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 408 
Figure 5. Loess models (red line) and their confidence intervals (gray bands) showing the 409 
difference in daily parameter mean daytime mean minus nighttime mean measurements. 410 
The gray scale of the data points represents the four seasons over which data were 411 
collected. Data span from Nov 8, 2016 to Aug 3, 2017, except for the tide data, which 412 
began December 20, 2016.  413 

 414 

Results of the LDA for differentiation between daytime and nighttime conditions 415 

revealed that the most important factor was PAR, as would be expected (Table 1, Diel 416 

LD1). Temperature was the second most important factor to differentiate between day 417 

and night. The carbonate chemistry also played a critical role in day/night differentiation, 418 
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as pCO2 was the third most important parameter, providing more evidence for 419 

differentiation between day and night than other parameters that would be expected to 420 

vary on a diel timescale (e.g., chlorophyll and DO) (Table 1).  421 

3.3 Controlling factors and correlates 422 

The relative influence of thermal and non-thermal factors (T/B) in controlling 423 

pCO2 varied over different time scales (Fig. 6, Table S4). Based on continuous data, non-424 

thermal processes generally exerted more control than thermal processes (T/B<1) over 425 

the entire 5+ years of discrete monitoring, within each season, and over most (167/178) 426 

days (Fig. 6, Table S4). Annual T/B from discrete data ranged from 0.50 to 1.16, with 427 

only one of the five sampled years having T/B greater than one (i.e., more thermal 428 

influence; Table S4). While most individual seasons that were sampled experienced 429 

stronger non-thermal control on pCO2 (T/B <1), the only season that never experienced 430 

stronger thermal control was summer, with summer T/B values ranging from 0.21 – 0.35 431 

for the 6 sampled years (Table S4).  432 
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 434 

Figure 6. Thermal versus non-thermal control on pCO2 daily (topA), seasonal (middleB), 435 
and annual (bottomC) time scales using both continuous sensor data (daily, from Nov 8, 436 
2016 to Aug 3, 2017)(daily) and discrete sample data (seasonal and annual, from May 2, 437 
2014- Feb. 25, 2020 (seasonal and annual).  438 

 439 

Tidal fluctuations seemed to have a significant effect on carbonate system 440 

parameters (Table 2). Both temperature and salinity were higher at low tide during the 441 

winter and summer months and higher at high tide during the spring. pCO2 was higher 442 

during low tide during all seasons. pH was higher during high tide during the winter and 443 

summer, but this reversed during the spring, when pH was higher at low tide. CO2 flux 444 

also varied with tidal fluctuations. CO2 flux was higher (more positive or less negative) in 445 



 27 

the low tide condition for all seasons (though the difference was not significant in 446 

spring), i.e., the location was less of a CO2 sink during low tide conditions in the winter 447 

and more of a CO2 source during low tide conditions in the summer.  448 

 449 

Table 2. Mean and standard deviation of temperature, salinity, pH, pCO2, and calculated 450 
CO2 flux (from continuous sensor measurements) during high and low tide conditions.  451 
 452 
Parameter Season High Tide Mean Low Tide Mean Difference 

between tide 

levels,  

t-test p-value 

Temperature (°C) Winter 16.7 ± 1.7 17.6 ± 2.0 <0.0001 

Spring 24.4 ± 2.7 23.6 ± 2.7 <0.0001 

Summer 29.3 ± 0.5 30.1 ± 0.7 <0.0001 

Salinity Winter 30.2 ± 2.5 31.3 ± 2.9 <0.0001 

Spring 30.4 ± 1.9 30.0 ± 2.7 0.0071 

Summer 30.5 ± 2.4 34.5 ± 3.0 <0.0001 

pH 

 

 

Winter 8.20 ± 0.08 8.15 ± 0.06 <0.0001 

Spring 8.07 ± 0.09 8.10 ± 0.07 <0.0001 

Summer 8.08 ± 0.04 8.04 ± 0.06 <0.0001 

pCO2 (µatm) Winter 331 ± 40 378 ± 42 <0.0001 

Spring 435 ± 33 443 ± 50 0.0154 

Summer 419 ± 30 482 ± 48 <0.0001 

CO2 Flux  

(mmol m-2 d-1) 

 

Winter -33.0 ± 38.1  -11.7 ± 21.8 <0.0001 

Spring 7.4 ± 14.0 8.7 ± 14.8 0.2248 

Summer 1.8 ± 6.3 16.0 ± 14.5 <0.0001 

 453 

Mean water level varied between all seasons; mean spring (highest) water levels 454 

were on average 0.08 m higher than winter (lowest) water levels (ANOVA p<0.0001, fall 455 

was not considered because of a lack of water level data). The mean daily tidal range 456 

during our continuous monitoring period was 0.39 m ± 0.13 m, which did not 457 

significantly differ between seasons (ANOVA p=0.739). However, the day-night 458 

difference in tide level exhibited a strong seasonality, with spring and summer having 459 

higher tide level during the daytime and winter having higher tide level during the 460 

nighttime (Fig. 5).   461 
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There were significant correlations between carbonate system parameters (pH and 462 

pCO2) and many of the other environmental parameters, including windspeed, DO, 463 

turbidity, and fluorescent chlorophyll (Figure 7, Table S5). Both the continuous and 464 

discrete sampling types indicate that pH has a significant negative relationship with both 465 

temperature and salinity and pCO2 has a significant positive relationship with both 466 

temperature and salinity (Fig. 7). However, correlations with temperature were stronger 467 

for continuous data and correlations with salinity were stronger for discrete data (Table 468 

S5). The strongest correlations between continuous carbonate system data and all 469 

investigated environmental parameters were with DO (positive correlation with pH and 470 

negative correlation with pCO2; Table S5). It is worth noting that there were no 471 

observations of hypoxia at our study site during our monitoring, with minimum DO 472 

levels of 3.9 mg L-1 and 4.0 mg L-1 for our continuous monitoring period and our discrete 473 

sampling period, respectively.  474 

 475 
 476 

477 
Figure 7. Correlations of pH and pCO2 with temperature, salinity, and DO from 478 
continuous sensor data (gray) and all discrete data (black). 479 
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 480 

Discussion 481 

4.1 Comparing continuous monitoring and discrete sampling: Representative sampling in 482 

a temporally variable environment   483 

Discrete water sample collection and analysis is the most common method that 484 

has been employed to attempt to understand the carbonate system of estuaries. However, 485 

it is difficult to know if these samples are representative of the spatial and temporal 486 

variability in carbonate system parameters. While this time-series study cannot conclude 487 

whether our broader sampling efforts in the MAE are representative of the spatial 488 

variability in the estuary, it can investigate how representative our bimonthly to monthly 489 

sampling is of the more high-frequency temporal variability that ASC experiences.  490 

There were several instances where seasonal parameter means significantly 491 

differed between the 10-month continuous monitoring period and the 5+ year discrete 492 

sampling period (Table S2, C ≠ D or Dc ≠ D) including temperature in the summer and 493 

fall, salinity in the spring, pH in the summer and fall, and pCO2 in winter, spring, and 494 

summer. While clear seasonal variability was demonstrated for most parameters (using 495 

both continuous and discrete data for the entire period), these differences between the 10-496 

month continuous monitoring period and our 5+ year monitoring period illustrate that 497 

there is also interannual variability in the system. Therefore, short periods of monitoring 498 

are unable to fully capture current baseline conditions.  499 

During the continuous monitoring period (2016-2017), we found no significant 500 

difference between sampling methods in the seasonal mean temperature, salinity, or 501 

pCO2. The two sampling methods also resulted in the same mean pH for all seasons 502 
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except for summer, when the sensor data recorded a higher mean pH than discrete 503 

samples (Tables S1 and S2). During this case, we can conclude that discrete monitoring 504 

did not accurately represent the system variability that was able to be captured by the 505 

sensor monitoring. However, given that most seasons did not show differences in pH or 506 

pCO2 between sampling methods, the descriptive statistics associated with the discrete 507 

monitoring did a fair job of representing system means. This is evidence that long-term 508 

discrete monitoring efforts, which are much more widespread in estuarine systems than 509 

sensor deployments, can be generally representative of the system despite known 510 

temporal variability on shorter time scales. However, further study would be needed to 511 

determine if this applies throughout the system, as the upper estuary generally 512 

experiences greater variability.  513 

Understanding the relationships of pH and pCO2 with temperature and salinity is 514 

important in a system (Fig. 7). Based on the results of an Analysis of Covariance 515 

(ANCOVA), the relationship (slope) of pH with both temperature and salinity and of 516 

pCO2 with salinity were not significantly different between types of monitoring 517 

(considering the sensor deployment period only), supporting the effectiveness of long-518 

term discrete monitoring programs when sensors are unable to be deployed. However, 519 

ANCOVA did reveal the relationship of pCO2 with temperature is significantly different 520 

(method:temp p=0.0062) between monitoring methods. 521 

The high temporal resolution of sensor data is presumably better for estimating 522 

CO2 flux at a given location than discrete sampling. Previous studies have pointed out 523 

that discrete sampling methods, which generally involve only daytime sampling, do not 524 

adequately capture the diel variability in the carbonate system and may therefore lead to 525 
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underestimation biased of CO2 fluxes (Crosswell et al., 2017; Liu et al., 2016). However, 526 

we found no significant difference (within any season) between CO2 flux values 527 

calculated with hourly sensor data versus single, discrete samples collected monthly to 528 

twice monthly (Table S2, Fig. 3). Calculated CO2 fluxes also did not significantly differ 529 

between day and night during any season, despite some differences in pCO2 (Table S3), 530 

likely due to the large error associated with the calculation of CO2 flux (Table S1, Fig. 3) 531 

which will be further discussed below. Therefore, the expected underestimation of CO2 532 

flux based on diel variability of pCO2 was not encountered at our study site, validating 533 

the use of discrete samples for quantification of CO2 fluxes (until methods with less 534 

associated error are available). Even given less error in calculated flux, estimated fluxes 535 

would likely not differ between methods on an annual scale (as pCO2 did not), but CO2 536 

fluxes may differ on a seasonal scale since the differences between daytime and 537 

nighttime pCO2 were not consistent across seasons (Table S3, Fig. 4).  538 

There are many factors contributing to error associated with CO2 flux. There is 539 

still large error associated with estimates of estuarine CO2 flux because turbulent mixing 540 

is difficult to model and turbulence is the main control on CO2 gas transfer velocity, k, in 541 

shallow water environments. Thus, our wind speed parameterization of k is imperfect and 542 

likely the greatest source of error (Borges and Abril, 2011; Van Dam et al., 2019). Other 543 

notable sources of error include the data treatment. For example, we chose to seasonally 544 

weight the individual calculated flux values in the calculation of annual flux to account 545 

for differences in sampling frequency between seasons. From continuous data, the 546 

weighted average flux was 0.2 mmol m-2 d-1, although choosing not to seasonally weight 547 

and simply look at the arithmetic mean of fluxes calculated directly from sampling dates 548 
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would have resulted in an annual CO2 flux of -0.7 mmol m-2 d-1 for the same period. 549 

Similarly, the weighted average flux from all 5+ years of discrete data was -0.9 mmol m-2 550 

d-1, but the arithmetic mean of fluxes would have resulted in an annual CO2 flux of 0.2 551 

mmol m-2 d-1 for the same period. Another source of error that could be associated with 552 

the calculation of flux from the discrete data is the way in which wind speed data are 553 

aggregated to be used in the windspeed parameterization. We decided to use daily 554 

averages of the windspeed for calculations. Using the windspeed measured for the closest 555 

time to our sampling time or the monthly averaged wind speed may have resulted in very 556 

different flux values.  557 

 558 

4.2 Factors controlling temporal variability in carbonate system parameters  559 

Our study site had a relatively small range of pH and pCO2 on both diel and 560 

seasonal scales compared to other coastal regions (Challener et al., 2016; Yates et al., 561 

2007). This small variability is likely tied to a combination of the subtropical setting 562 

(small temperature variability), the lower estuary position of our monitoring (further 563 

removed from the already small freshwater influence), little ocean upwelling influence, 564 

and the system’s relatively high buffer capacity that results from the high alkalinity of the 565 

freshwater endmembers (Yao et al., 2020). Just as the extent of hypoxia-induced 566 

acidification was relatively low in Corpus Christi Bay because of the bay’s high buffer 567 

capacity (McCutcheon et al., 2019), the extent of pH fluctuation resulting from all 568 

controlling factors at ASC would also be modulated by the region’s high intrinsic buffer 569 

capacity. 570 

4.2.1 Thermal and biological controls on carbonate chemistry 571 
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We demonstrated that both temperature and non-thermal processes exert control 572 

on pCO2, but non-thermal control generally surpasses thermal control in ASC over 573 

multiple time scales (Fig. 6, Table S4, T/B<1). The magnitude of pCO2 variation 574 

attributed to non-thermal processes varied greatly (i.e., ΔpCO2,nt had large standard 575 

deviations, Table S4). For example, during the year of strongest non-thermal control 576 

(2016), ΔpCO2,nt was 534 µatm versus ΔpCO2,nt of 209 µatm in the year of weakest 577 

thermal control (2019). Conversely, the magnitude of pCO2 variation attributed to 578 

temperature was consistent across time scales. For example, during the year of strongest 579 

thermal control (2015), ΔpCO2,t was 276 µatm versus ΔpCO2,t of 242 µatm in the year of 580 

weakest thermal control (2017). Spring and fall seasons, which experienced the greatest 581 

temperature swings (Table S1), had greater relative temperature control exerted on pCO2 582 

out of all seasons (Fig. 6, Table S4). The difference in T/B between sampling methods is 583 

relatively small over the 10-month sensor deployment period, but it is worth noting that 584 

T/B did not align over shorter seasonal time scales sampling methods (Fig. 6, Table S4). 585 

Continuous monitoring demonstrated a greater magnitude of fluctuation resulting from 586 

both temperature and non-thermal processes (i.e., greater ΔpCO2,t and ΔpCO2,nt), 587 

indicating that the extremes are generally not captured by the discrete, daytime sampling, 588 

and sensor data would provide a better understanding of system controls. 589 

The greater influence of non-thermal controls that we report conflicts with Yao 590 

and Hu (2017), who found that ASC was primarily thermally controlled (T/B 1.53 – 1.79) 591 

from May 2014 to April 2015. Yao and Hu (2017) also found that locations in the upper 592 

estuary experienced lower T/B during flooding conditions than drought conditions. 593 

Although the opposite was found at ASC, it is likely that the high T/B calculated at ASC 594 
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by Yao and Hu (2017) was still a result of the drought condition due to the long residence 595 

time of the estuary. Since 2015, there has not been another significant drought in the 596 

system, so it seems that non-thermal controls on pCO2 are more important at this location 597 

under normal freshwater inflow conditions.  598 

Significantly warmer water temperatures were observed during the nighttime in 599 

both summer and fall (Fig. 5), indicating that temperature could exert a slight control on 600 

the carbonate system over a diel time scale. We note that significant differences in day 601 

and night temperature within seasons do not indicate that diel differences were observed 602 

on all days within the season, as large standard deviations in both daytime and nighttime 603 

values result in considerable overlap. More substantial temperature swings between 604 

seasons would result in more temperature control over a seasonal timescale. ASC seems 605 

to have less thermal control of the carbonate system than offshore GOM waters, as 606 

temperature had substantially higher explanatory value for pH and pCO2 based on simple 607 

linear regressions in offshore GOM waters (R2 = 0.81 and 0.78, respectively (Hu et al., 608 

2018)) than at ASC (R2 = 0.30 and 0.52, respectively, for sensor data and R2 = 0.38 and 609 

0.25, respectively, for discrete data).  610 

Though annual average pCO2 (and CO2 flux) are higher in the upper MAE and 611 

lower offshore than at our study site, the same seasonal patterns that we observed (i.e., 612 

elevated pCO2 and positive CO2 flux in the summer and depressed pCO2 and negative 613 

CO2 flux during the winter, Table S1, Fig. S1) has also been observed throughout the 614 

entire MAE and the open Gulf of Mexico (Hu et al., 2018; Yao and Hu, 2017). These 615 

seasonal patterns correspond with both the directional response of the system to 616 

temperature and net community metabolism response to changing temperature, i.e., 617 
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elevated respiration in summer months (Caffrey, 2004). Despite that there were no 618 

observations of hypoxia, there was a strong relationship between the carbonate system 619 

parameters and DO (Fig. 7, Table S5), suggesting that net ecosystem metabolism may 620 

exert an important control on the carbonate system on certain seasonal time scales. The 621 

lack of day-night difference in DO (Fig. 5F) despite the significant day-night difference 622 

in both pH and pCO2 suggests that net community metabolism is likely not a strong 623 

controlling factor on diel time scales. Biological control likely becomes more important 624 

over seasonal timescales.  625 

4.2.2 Tidal control on carbonate chemistry  626 

While the tidal range in the northwestern GOM is relatively small (1.30 m over 627 

our 10-month continuous monitoring period), the tidal inlet location of our study site 628 

results in proportionally more “coastal water” during high tide and proportionally more 629 

“estuarine water” during low tide. The carbonate chemistry signal of these different water 630 

masses was seen in the differences between high tide and low tide conditions at ASC 631 

(i.e., high tide having lower pCO2 because coastal waters are less heterotrophic than 632 

estuarine waters, Table 2). Consequently, the relative importance of thermal versus non-633 

thermal controls may be modulated by tide level. We calculated the thermal and non-634 

thermal pCO2 terms separately during high tide and low tide periods and found that non-635 

thermal control is more important during low tide conditions (within each season T/B is 636 

0.10 ± 0.07 lower during the low tide than high tide). This is likely because low tide has 637 

proportionally more “estuarine water” at the location and because there is less volume of 638 

water for the end products of biological processes to accumulate. The difference in T/B 639 
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between high tide and low tide conditions was greatest in the spring, likely due to a 640 

combination of elevated spring-time productivity and larger tidal ranges in the spring.  641 

The GOM is one of the few places in the world that experiences diurnal tides 642 

(Seim et al., 1987; Thurman, 1994), so theoretically, the fluctuations in pCO2 associated 643 

with tides may align to either amplify or reduce/reverse the fluctuations that would result 644 

from diel variability in net community metabolism. Based on diel tidal fluctuations at this 645 

site (i.e., higher tides during the day in the spring and summer and higher tides at night 646 

during the winter, Fig. 5E) and the higher pCO2 associated with low tide (Table 2), tidal 647 

control should amplify the biological signal (nighttime pCO2 > daytime pCO2) during 648 

spring and summer and reduce or reverse the biological signal during the winter. This 649 

tidal control can explain the diel variability present in our pCO2 data, which showed the 650 

full reversal of the expected biological signal in the winter (Fig. 5C, Table S3, nighttime 651 

pCO2 < daytime pCO2), i.e., the higher nighttime tides in winter brought in enough low 652 

CO2 water from offshore to fully offset any nighttime buildup of CO2 from the lack of 653 

photosynthesis. However, we note that the expected diel, biological control was likely 654 

minimal since daytime DO was not consistently higher than nighttime DO (Fig. 5F). The 655 

same seasonal pattern diel tide fluctuations were exhibited from Dec 20, 2016 (when the 656 

tide data is first available) through the rest of our discrete monitoring period (Feb 25, 657 

2020), indicating that tidal control on diel variability of carbonate system parameters was 658 

likely consistent throughout this 3+ year period. The diel variability in pH did not mirror 659 

pCO2 as would be expected (Fig. 5). The relationship between pH and tide level more 660 

closely mirrored the relationships of salinity and temperature with tide level (versus pCO2 661 
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relationship with tide level; Table 2), indicating that controlling factors of the carbonate 662 

system may not be exerted equally on both pH and pCO2 over different time scales.  663 

4.2.3 Salinity and freshwater inflow controls on carbonate chemistry 664 

Previous studies have indicated that freshwater inflow may exert a primary 665 

control on the carbonate system in the estuaries of the northwestern GOM (Hu et al., 666 

2015; Yao et al., 2020; Yao and Hu, 2017). Carbonate system variability is much lower at 667 

ASC than it is in the more upper reaches of MAE, likely due to the lesser influence of 668 

freshwater inflow and its associated changes in biological activity at ASC (Yao and Hu, 669 

2017).  Given the location of our sampling in the lower portion of the estuary and the 670 

long residence time in the system, we did not directly address river discharge as a 671 

controlling factor, but the influence of freshwater inflow may be evident in the response 672 

of the system to changes in salinity. Fluctuating salinity at ASC may also result from 673 

direct precipitation, stratification, and tidal fluctuations; however, the low R2 (0.02) 674 

associated with a simple linear regression between tide level and salinity (p<0.0001) 675 

indicates that salinity fluctuations are more indicative of non-tidal factors. Salinity data 676 

from both sensor and discrete monitoring were strongly correlated with both pH and 677 

pCO2, with correlation coefficients nearing (continuous) or surpassing (discrete) that of 678 

the correlations with temperature (Fig. 7; Table S5). Periods of lower salinity had higher 679 

pH and lower pCO2, likely due to enhanced freshwater influence and subsequent elevated 680 

primary productivity at the study site.  681 

4.2.4 Windspeed and CO2 inventory 682 

We investigated wind speed as a possible control on the carbonate system to gain 683 

insight into the effect of wind-driven CO2 fluxes on the inventory of CO2 in the water 684 
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column (and subsequent impacts to the entire carbonate system). The Texas coast has 685 

relatively high wind speeds, with the mean wind speed observed during our continuous 686 

monitoring period being 5.8 m s-1. While this results in relatively high calculated CO2 687 

fluxes (Fig. 3), the seasonal relationship between pCO2 and windspeed does not support a 688 

change in inventory with higher winds. Since spring and summer both have a mean 689 

estuarine pCO2 greater than atmospheric level (and positive CO2 flux, Table S1) a 690 

negative relationship between windspeed and pCO2 would be necessary to support this 691 

hypothesis, but winter, spring, and fall all experience increases in pCO2 with increasing 692 

wind based on simple linear regression.  693 

4.3 Carbonate chemistry as a component of overall system variability 694 

Estuaries and coastal areas are dynamic systems with human influence, riverine 695 

influence, and influence from an array of biogeochemical processes, resulting in highly 696 

variable environmental conditions. Based on an LDA used to assess overall system 697 

variability using a suite of environmental parameters compiled at a single location, we 698 

can conclude that carbonate chemistry parameters are among the most important of 699 

variants on both daily and seasonal time scales in this coastal setting. Of the two 700 

carbonate system components that we incorporated (pH and pCO2), pCO2 was the most 701 

critical in discriminating along diel or seasonal scales despite similar seasonal differences 702 

that were identified by ANOVA (Table S2) and more seasons with significant diel 703 

differences in pH (Table S3). pH seemed to be a larger component of overall system 704 

variability on a seasonal time scale (compared to the very small contribution seen on a 705 

diel scale, Table 1). Given that the seasonal and diel variability in carbonate chemistry at 706 

this location is relatively small compared to other coastal areas that are in the literature, 707 
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the high contribution of carbonate chemistry to overall system variability that we detected 708 

is likely to be present at other coastal locations around the world.  709 

5. Conclusions 710 

 We monitored carbonate chemistry parameters (pH and pCO2) using both sensor 711 

deployments (10 months) and discrete sample collection (5+ years) at the Aransas Ship 712 

Channel, TX, to characterize temporal variability. Significant seasonal variability and 713 

diel variability in carbonate system parameters were both present at the location. Diel 714 

fluctuations were smaller than many other areas previously studied. The difference 715 

between daytime and nighttime values of carbonate system parameters varied between 716 

seasons, occasionally reversing the expected diel variability due to biological processes. 717 

Tide level (despite the small tidal range), temperature, freshwater influence, and 718 

biological activity all seem to exert important controls on the carbonate system at the 719 

location. The relative importance of the different controls varied with timescale, and 720 

controls were not always exerted equally on both pH and pCO2. Carbonate chemistry 721 

(particularly pCO2) was among the most important environmental parameters to in 722 

overall system variability to distinguish between both diel and seasonal environmental 723 

conditions. 724 

Despite known temporal variability on shorter timescales, discrete sampling was 725 

generally representative of the average carbonate system on a seasonal and annual basis 726 

based on comparison with our sensor data. Discrete data captured interannual variability, 727 

which could not be captured by the shorter-term continuous sensor data. Additionally, 728 

there was no difference in CO2 flux between sampling types, . All of these findings 729 
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supporting the validity of discrete sample collection for carbonate system characterization 730 

at this location.  731 

This is one of the first studies that investigates high-temporal frequency data from 732 

deployed sensors that measure carbonate system parameters in an estuary-influenced 733 

environment. Long-term, effective deployments of these monitoring tools could greatly 734 

improve our understanding of estuarine systems. This study’s detailed investigation of 735 

data from multiple, co-located environmental sensors was able to provide insight into 736 

potential driving forces of carbonate chemistry on diel and seasonal time scales; this 737 

provides strong support for the implementation of carbonate chemistry monitoring in 738 

conjunction with preexisting coastal environmental monitoring infrastructure. 739 

Strategically locating such sensors in areas that are subject to local acidification drivers 740 

or support large biodiversity or commercially important species may be the most crucial 741 

in guiding future mitigation and adaptation strategies for natural systems and aquaculture 742 

facilities. 743 
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