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Abstract

The coastal ocean is affected by an array of co-occurring biogeochemical and
anthropogenic processes, resulting in substantial heterogeneity in water chemistry,
including carbonate chemistry parameters such as pH and partial pressure of CO2 (pCO>).
To better understand coastal and estuarine acidification and air-sea CO- fluxes, it is
important to study baseline variability and driving factors of carbonate chemistry. Using
both discrete bottle sample collection (2014-2020) and hourly sensor measurements
(2016-2017), we explored temporal variability, from diel to interannual scales, in the
carbonate system (specifically pH and pCOy) at the Aransas Ship Channel located in
northwestern Gulf of Mexico. Using other co-located environmental sensors, we also
explored the driving factors of that variability. Both sampling methods demonstrated
significant seasonal variability at the location, with highest pH (lowest pCO>) in the
winter and lowest pH (highest pCO2) in the summer. Significant diel variability was also
evident from sensor data, but the time of day with elevated pCO-/depressed pH was not
consistent across the entire monitoring period, sometimes reversing from what would be
expected from a biological signal. Though seasonal and diel fluctuations were smaller
than many other areas previously studied, carbonate chemistry parameters were among
the most important environmental parameters to distinguish between time of day and
between seasons. It is evident that temperature, biological activity, freshwater inflow, and
tide level (despite the small tidal range) are all important controls on the system, with
different controls dominating at different time scales. The results suggest that the
controlling factors of the carbonate system may not be exerted equally on both pH and

pCO:2 on diel timescales, causing separation of their diel or tidal relationships during
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certain seasons. Despite known temporal variability on shorter timescales, discrete
sampling was generally representative of the average carbonate system and average air-

sea COz2 flux on a seasonal and annual basis when compared with sensor data.

1. Introduction

Coastal waters, especially estuaries, experience substantial spatial and temporal
heterogeneity in water chemistry—including carbonate chemistry parameters such as pH
and partial pressure of CO2 (pCO2)—due to the diversity of co-occurring biogeochemical
and anthropogenic processes (Hofmann et al., 2011; Waldbusser and Salisbury, 2014).
Carbonate chemistry is important because an addition of CO. acidifies seawater, and
acidification can negatively affect marine organisms (Barton et al., 2015; Bednarsek et
al., 2012; Ekstrom et al., 2015; Gazeau et al., 2007; Gobler and Talmage, 2014).
Additionally, despite the small surface area of coastal waters relative to the global ocean,
coastal waters are recognized as important contributors in global carbon cycling (Borges,
2005; Cai, 2011; Laruelle et al., 2018).

While carbonate chemistry, acidification, and air-sea CO> fluxes are relatively
well studied and understood in open ocean environments, large uncertainties remain in
coastal environments. Estuaries are especially challenging to fully understand because of
the heterogeneity between and within estuaries that is driven by diverse processes
operating on different time scales such as river discharge, nutrient and organic matter
loading, stratification, and coastal upwelling (Jiang et al., 2013; Mathis et al., 2012). The
traditional sampling method for carbonate system characterization involving discrete
water sample collection and laboratory analysis is known to lead to biases in average

pCO- and CO: flux calculations due to daytime sampling that neglects to capture diel
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variability (Li et al., 2018). Mean diel ranges in pH can exceed 0.1 unit in many coastal
environments, and especially high diel ranges (even exceeding 1 pH unit) have been
reported in biologically productive areas or areas with higher mean pCO; (Challener et
al., 2016; Cyronak et al., 2018; Schulz and Riebesell, 2013; Semesi et al., 2009; Yates et
al., 2007). These diel ranges can far surpass the magnitude of the changes in open ocean
surface waters that have occurred since the start of the industrial revolution and rival
spatial variability in productive systems, indicating their importance for a full
understanding of the carbonate system.

Despite the need for high-frequency measurements, sensor deployments have
been limited in estuarine environments (especially compared to their extensive use in the
open ocean) because of the challenges associated with varying conditions, biofouling,
and sensor drift (Sastri et al., 2019). Carbonate chemistry monitoring in the Gulf of
Mexico (GOM), has been relatively minimal compared to the United States east and west
coasts. The GOM estuaries currently have less exposure to concerning levels of
acidification than other estuaries because of their high temperatures (causing water to
hold less CO2 and support high productivity year-round) and often suitable river
chemistries (i.e., relatively high buffer capacity) (McCutcheon et al., 2019; Yao et al.,
2020). However, respiration-induced acidification is present in both the open GOM (e. g.,
subsurface water influenced by the Mississippi River Plume and outer shelf region near
the Flower Garden Banks National Marine Sanctuary) and GOM estuaries, and most
estuaries in the northwestern GOM have also experienced long-term acidification (Cai et
al., 2011; Hu et al., 2018, 2015; Kealoha et al., 2020; McCutcheon et al., 2019; Robbins

and Lisle, 2018). This known acidification as well as the relatively high CO2 efflux from
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the estuaries of the northwest GOM, illustrates the necessity to study the-baseline
variability and driving factors of carbonate chemistry in the region. In this study, we
explored temporal variability in the carbonate system in Aransas Ship Channel (ASC)—a
tidal inlet where the lagoonal estuaries meet the coastal waters in a semi-arid region of
the northwestern GOM—using both discrete bottle sample collection and hourly sensor
measurements, and we explored the driving factors of that variability using data from

other co-located environmental sensors. The characterization of carbonate chemistry and

consideration of regional drivers can provide context to acidification and its impacts and

improved-estimates of air-sea CO, fluxes.

2. Materials and Methods

2.1 Location

Autonomous sensor monitoring and discrete water sample collections for
laboratory analysis of carbonate system parameters were performed in the-Aransas-Ship
ChannelASC (ASC-located at 27°50'17"N, 97°3'1"W). ASC is one of the few permanent
tidal inlets that intersect a string of barrier islands and connect the GOM coastal waters
with the lagoonal estuaries in the northwest GOM (Fig. 1). ASC provides the direct
connection between the northwestern GOM and the Mission-Aransas Estuary (Copano
and Aransas Bays) to the north and Nueces Estuary (Nueces and Corpus Christi Bays) to
the south (Fig. 1). The region is microtidal, with a small tidal range relative to many other
estuaries, ranging from ~ 0.6 m tides on the open coast to less than 0.3 m in upper
estuaries (Montagna et al., 2011). Mission-Aransas Estuary (MAE) is fed by two small
rivers, the Mission (1787 km? drainage basin) and Aransas (640 km? drainage basin)

Rivers (http://waterdata.usgs.gov/), which both experience low base flows punctuated by
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periodic high flows during storm events. MAE has an average residence time of one year
(Solis and Powell, 1999), so there is a substantial lag between time of rainfall and
riverine delivery to ASC in the lower estuary. A significant portion of riverine water
flowing into Aransas Bay originates from the larger rivers further northeast on the Texas
coast via the Intracoastal Waterway (i.e., Guadalupe River (26,625 km? drainage basin)
feeds San Antonio Bay and has a much shorter residence time of nearly 50 days) (Solis

and Powell, 1999; USGS, 2001).
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Figure 1. Study area. The location of monitoring in the Aransas Ship Channel (red star)
and the locations of NOAA stations used for wind data (yellow circles) are shown.

2.2 Continuous Monitoring
Autonomous sensor monitoring (referred to throughout as continuous monitoring)

of pH and pCO2 was conducted from Nov. 8, 2016 to Aug. 23, 2017 at the University of
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Texas Marine Science Institute’s research pier in ASC. Hourly pH data were collected
using an SAtlantic® SeaFET pH sensor (on total pH scale) and hourly pCO; data were
collected using a Sunburst® SAMI-CO2. Hourly temperature and salinity data were
measured by a YSI® 6000MS V2 sonde. All hourly data were single measurements taken
on the hour. The average difference between sensor pH and discrete quality assurance
samples measured spectrophotometrically in the lab was used to establish a correction (-
0.05) based on a single calibration point across the entire sensor pH dataset (Bresnahan et
al., 2014). See supplemental materials for additional sensor deployment and quality
assurance information.
2.3 Discrete Sample Collection and Sample Analysis

Long-term monitoring via discrete water sample collection was conducted at ASC
from May 2, 2014 to February 25, 2020 (in addition to the discrete, quality assurance

sample collections). Samphing-A single, discrete, surface water sample was eonducted

collected every two weeks during the summer months and monthly during the winter
months from a small vessel at a station near (<20 m from) the sensor deployment. Water
sample collection followed standard protocol for ocean carbonate chemistry studies
(Dickson et al., 2007). Ground glass borosilicate bottles (250 mL) were filled with
surface water and preserved with 100 pL saturated mercury chloride (HgClz). Apiezon®
grease was applied to the bottle stopper, which was then secured to the bottle using a
rubber band and a nylon hose clamp.

These-samples were used for laboratory dissolved inorganic carbon (DIC) and pH
measurements. DIC was measured by injecting 0.5 mL of sample into 1 ml 10% H3PO4

(balanced by 0.5 M NaCl) with a high-precision Kloehn syringe pump. The CO; gas
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produced through sample acidification was then stripped using high-purity nitrogen gas
and carried into a Li-Cor infrared gas detector. DIC analyses had a precision of 0.1%.
Certified Reference Material (CRM) was used to ensure the accuracy of the analysis
(Dickson et al. 2003). For samples with salinity>20, pH was measured using a
spectrophotometric method at 25 + 0.1°C (Carter et al. 2003) and the Douglas and Byrne
(2017) equation. Analytical precision of the spectrophotometric method for pH
measurement was +0.0004 pH units. A calibrated Orion Ross glass pH electrode was
used to measure pH at 25 + 0.1°C for samples with salinity<20, and analytical precision
was +0.01 pH units. All pH values obtained using the potentiometric method were
converted to total scale at in situ temperature (Millero 2001). Salinity of the discrete
samples was measured using a benchtop salinometer calibrated by MilliQ water and a
known salinity CRM. For discrete samples, pCO2 was calculated in CO2Sys for Excel
using laboratory-measured salinity, DIC, pH, and in situ temperature for calculations.
Carbonate speciation calculations were done using Millero (2010) carbonic acid
dissociation constants (K1 and Kz), Dickson (1990) bisulfate dissociation constant, and
Uppstrém (1974) borate concentration.
2.4 Calculation of CO; fluxes

Equation 1 was used for air-water CO> flux calculations (Wanninkhof, 1992;
Wanninkhof et al., 2009). Positive flux values indicate CO2 emission from the water into
the atmosphere (the estuary acting as a source of CO2), and negative flux values indicate
CO- uptake by the water (the estuary acting as a sink for CO>).

F =k Ko (pCO2w — pCO24) (1)



167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

where k is the gas transfer velocity (in m d%), Ko (in mol I’ atm™) is the solubility
constant of CO2 (Weiss, 1974), and pCO2wand pCO2,a are the partial pressure of COz2 (in
patm) in the water and air, respectively.

We used the wind speed parameterization for gas transfer velocity (k) from Jiang
et al. (2008) converted from cm h't to m d%, which is thought to be the best estuarine
parameterization at this time (Crosswell et al., 2017), as it is a composite of k over
several estuaries. The calculation of k requires a windspeed at 10 m above the surface, so
windspeeds measured at 3 m above the surface were converted using the power law wind
profile (Hsu, 1994; Yao and Hu, 2017). To assess uncertainty, other parameterizations
with direct applications to estuaries in the literature were also used to calculate CO2 flux
(Raymond and Cole 2001; Ho et al. 2006). We note that parameterization of k based on
solely windspeed is flawed because several additional parameters can contribute to
turbulence including turbidity, bottom-driven turbulence, water-side thermal convection,
tidal currents, and fetch (Wanninkhof 1992, Abril et al., 2009, Ho et al., 2104, Andersson
et al., 2017), however it is currently the best option for this system given the limited
investigations of CO2 flux and contributing factors in estuaries.

Hourly averaged windspeed data for use in CO: flux calculations were retrieved
from the NOAA-controlled Texas Coastal Ocean Observation Network (TCOON;

https://tidesandcurrents.noaa.gov/tcoon.html). Windspeed data from the nearest TCOON

station (Port Aransas Station — located directly in ASC, < 2 km inshore from our
monitoring location) was prioritized when data were available. During periods of missing
windspeed data at the Port Aransas Station, wind speed data from TCOON’s Aransas

Pass Station (< 2 km offshore from monitoring location) were next used, and for all
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subsequent gaps, data from TCOON’s Nueces Bay Station (~ 40 km away) were used
(Fig. 1; additional discussion of flux calculation and windspeed data can be found in
supplementary materials). For flux calculations from continuous monitoring data, each
hourly measurement of pCO- was paired with the corresponding hourly averaged
windspeed. For flux calculations from discrete sample data, the pCO. calculated for each
sampled day was paired with the corresponding daily averaged windspeed (calculated
from the retrieved hourly averaged windspeeds).

Monthly mean atmospheric xCO: data (later converted to pCO3) for flux
calculations were obtained from NOAA’s flask sampling network of the Global
Monitoring Division of the Earth System Research Laboratory at the Key Biscayne (FL,
USA,) station. Global averages of atmospheric xCO2 were used when Key Biscayne data
were unavailable. Each pCO; observation (whether using continuous or discrete data)
was paired with the corresponding monthly averaged xCO; for flux calculations.
Additional information and justification are available in supplemental materials.

2.5 Additional data retrieval and data processing to investigate carbonate system
variability and controls

All reported annual mean values are seasonally weighted to account for
disproportional sampling between seasons. However, reported annual standard deviation
is associated with the un-weighted, arithmetic mean (Table S1). Temporal variability was
investigated in the form of seasonal and diel variability (Tables S1, S2, S3). For seasonal
analysis, December to February was considered winter, March to May was considered
spring, June to August was considered summer, and September to November was

considered fall. It is important to note that the Fall season had much fewer continuous

10
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sensor observations than other seasons because of the timing of sensor deployment. For
diel comparisons, daytime and nighttime variables-were defined as 09:00-15:00 local
standard time and 21:00-03:00 local standard time, respectively, based on the 6-hour
periods with highest and lowest photosynthetically active radiation (PAR; data from co-
located sensor, obtained from the Mission-Aransas National Estuarine Research Reserve

(MANERR) at https://missionaransas.org/science/download-data). Diel ranges in

parameters were calculated (daily maximum minus daily minimum) and only reported for
days with the full 24 hours of hourly measurements (176 out of 262 measured days) to
ensure that data gaps did not influence the diel ranges (Table S3).

Controls on pCO: from thermal and non-thermal (i.e., combination of physical
and biological) processes were investigated following Takahashi et al. (2002) over
annual, seasonal, and daily time scales using both continuous and discrete data. Over any
given time period, this method uses the ratio of the ranges of temperature-normalized
pCO2 (pCO2nt, EQ. 2) and the mean annual pCO2 perturbed by the difference between
mean and observed temperature (pCOz,+, EQ. 3) to calculate the relative influence of non-
thermal and thermal effects on pCO> (T/B, Eq. 4). When calculating annual T/B values
with discrete data, only complete years (sampling from January to December) were
included (2014 and 2020 were omitted). When calculating daily T/B values with

continuous data, only complete days (24 hourly measurements) were included.

PLO2 0= PO s * XPLD, ¥ (Tpnean Tobs) 2)

A AA A

PLO = PLO; mean, SXPLO * (Lot Tnean), ®),

where the value for § (0.0411 °C™"), which represents average [0 In pCO2 /0

Temperature] from field observations, was taken directly from Yao and Hu (2017), Tops is
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the observed temperature, and Tmean is the mean temperature over the investigated time

period.

T/B — max(pCO 2,thermal) — min (pCO Z,thermal) (4)

max(pCO 2,non— thermal) — min (pCO 2,non— thermal)

Where a T/B greater than one indicates that temperature’s control on pCO; is greater than
the control from non-thermal factors and a T/B less than one indicates that non-thermal
factors’ control on pCO; is greater than the control from temperature.

Tidal control on parameters was investigated using our continuous monitoring
data and tide level data obtained from NOAA’s Aransas Pass Station (the Aransas Pass
Station used for windspeed data, < 2 km offshore from monitoring location, Fig. 1) at

https://tidesandcurrents.noaa.gov/waterlevels.html?id=8775241&name=Aransas,%20Ara

nsas%20Pass&state=TX. Hourly measurements of water level were merged with our

sensor data by date and hour. Given that there were gaps in available water level
measurements (and no measurements prior to December 20, 2016), the usable dataset was
reduced from 6088 observations to 5121 observations and fall was omitted from analyses.
To examine differences between parameters during high tide and low tide, we defined
high tide as tide level greater than the third quartile tide level value and low tide as a tide
level less than the first quartile tide level value.

Other factors that may exert control on the carbonate system were investigated
through parameter relationships. In addition to previously discussed tide and windspeed
data, we obtained dissolved oxygen (DO), PAR, turbidity, and chlorophyll fluorescence
data from MANERR-deployed environmental sensors that were co-located at our

monitoring location (obtained from https://missionaransas.org/science/download-data).

Given that MANERR data are all measured in the bottom water (>5 m) while our sensors

12
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were measuring surface waters, we excluded the observations with significant water
column stratification (defined as a salinity difference > 3 between surface water and
bottom water) from analyses. Omitting stratified water reduced our continuous dataset
from 6088 to 5524 observations (removing 260 winter, 133 spring, 51 summer, and 120
fall observations), and omitting observations where there were no MANERR data to
determine stratification further reduced the dataset to 4112 observations. Similarly,
removing instances of stratification reduced discrete sample data from 104 to 89 surface
water observations.

2.6 Statistical Analyses

All statistical analyses were performed in R, version 4.0.3 (R Core Team, 2020).
To investigate differences between daytime and nighttime parameter values (temperature,
salinity, pH, pCOz2, and CO: flux) using continuous monitoring data across the full
sampling period and within each season, paired t-tests were used, pairing each respective
day’s daytime and nighttime values (Table S3). We also used loess models (locally
weighted polynomial regression) to identify changes in diel patterns over the course of
our monitoring period.

Two-way ANOVAS were used to examine differences in parameter means
between seasons and between monitoring methods (Table S2). Since there were
significant interactions (between season and sampling type factors) in the two-way
ANOVA S for each individual parameter (Table S2), differences between seasons were
investigated within each monitoring method (one-way ANOVAS) and the differences
between monitoring methods were investigated within each season (one-way ANOVAS).

For the comparison of monitoring methods, we included both the full discrete sampling

13
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data as well as a subset of the discrete sampling data to overlap with the continuous
monitoring period (referred to throughout as reduced discrete data or Dc) along with the
continuous data. To interpret differences between monitoring methods, a difference in
means between the continuous monitoring and discrete monitoring datasets would only
indicate that the 10-month period of continuous monitoring was not representative of the
5+ year period that discrete samples have been collected, but a difference in means
between the continuous data and discrete sample data collected during the continuous
monitoring period represents discrepancies between types of monitoring. Post-hoc
multiple comparisons (between seasons within sampling types and between sampling
types within seasons) were conducted using the Westfall adjustment (Westfall, 1997).

Differences in parameters between high tide and low tide conditions were
investigated using a two-way ANOVA to model parameters based on tide level and
season. In models for each parameter, there was a significant interaction between tide
level and season factors (based on 0=0.05, results not shown), thus t-tests were used
(within each season) to examine differences in parameters between high and low tide
conditions. Note that fall was omitted from this analysis because tide data were only
available at the location beginning December 20, 2016. Sample sizes were the same for
each parameter (High tide — winter: 354, spring: 569, summer: 350; Low tide — winter:
543, spring: 318, summer: 415).

Additionally, to gain insight to carbonate system controls through correlations, we
conducted Pearson correlation analyses to examine individual correlations of pH and

pCO:2 (both continuous and discrete) with other environmental parameters (Table S5).
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To better understand overall system variability over different time scales, we used
a linear discriminant analysis (LDA), a multivariate statistic that allows dimensional
reduction, to determine the linear combination of environmental parameters (individual
parameters reduced into linear discriminants, LDs) that allow the best differentiation
between day and night as well as between seasons. We included pCOz, pH, temperature,
salinity, tide level, wind speed, total PAR, DO, turbidity, and fluorescent chlorophyll in
this analysis. All variables were centered and scaled to allow direct comparison of their
contribution to the system variability. The magnitude (absolute value) of coefficients of
the LDs (Table 1) represents the relative importance of each individual environmental
parameter in the best discrimination between day and night and between seasons, i.e., the
greater the absolute value of the coefficient, the more information the associated
parameter can provide about whether the sample came from day or night (or winter,
spring, or summer). Only one LD could be created for the diel variability (since there are
only two classes to discriminate between — day and night). Two LDs could be created for
the seasonal variability (since there were three classes to discriminate between — fall was
omitted because of the lack of tidal data), but we chose to only report the coefficients for

LD1 given that LD1 captured 95.64% of the seasonal variability.

3. Results
3.1 Seasonal variability

Both the continuous and discrete data showed substantial seasonal variability for
all parameters (Fig. 2, Tables S1 and S2). All discrete sample results reported here are for

the entire 5+ years of monitoring; the subset of discrete sample data that overlaps with

15
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the continuous monitoring period will be addressed only in the discussion for method
comparisons (Section 4.1.1). Both continuous and discrete data demonstrate significant
differences in temperature between each season, with the highest temperature in summer
and the lowest in winter (Tables S1 and S2). Mean salinity during sampling periods was
highest in the summer and lowest in the fall (Table S1). Significant differences in
seasonal-salinity occurred between all seasons except spring and winter for continuous
data, but only summer differed from other seasons based on discrete data (Tables S1 and
S2).

Carbonate system parameters also varied seasonally (Fig. 2). For both continuous
and discrete data, winter had the highest seasonal pH (8.19 + 0.08 and 8.162 + 0.065,
respectively) and lowest seasonal pCO> (365 * 44 patm and 331 + 39 patm,
respectively), while summer had the lowest seasonal pH (8.05 + 0.06 and 7.975 + 0.046,
respectively) and highest seasonal pCO- (463 + 48 patm and 511 + 108, respectively)
(Fig. 2, Table S1). All seasonal differences in pH and pCO2 were significant, except for

the discrete data spring versus fall for both parameters (Table S2).

16


tcyro
Cross-Out


344
345

346
347
348
349
350
351
352
353
354

355

R $—+ . L=

7.9 1
7.7 1 : : :
winter spring summer fall
Season
B 1000 .
%] - H
3 soo- :
Q400 + %-‘--!— $*‘L =
== .
200+ : i T T
winter spring summer fall
Season

E2 alldiscrete B2 reduced discrete B continuous

Figure 2. Boxplots of seasonal variability in pH and pCO> using all discrete data,
reduced discrete data (to overlap with continuous monitoring, Nov. 8 2016 — Aug 23,
2017), and continuous sensor data.

Mean CO: flux differed by season (Fig. 3, Tables S1 and S2). Both continuous
and discrete data records resulted in net negative CO> fluxes during fall and winter
months, with winter being most negative. Both methods reported a net positive flux for
summer, while spring fluxes were positive according to continuous data and negative

according to the 5+ years of discrete data (Fig. 3, Table S1). Annual net CO> fluxes were

near zero (Table S1).
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Results of the LDA incorporated carbonate system parameters along with
additional environmental parameters to get a full picture of system variability over
seasonal timescales (Table 1). The most important parameter in system variability that
allowed differentiation between seasons was temperature (Table 1, Seasonal LD1), as
would be expected with the clear seasonal temperature fluctuations (Fig. S1E). The

second most important parameter for seasonal differentiation was chlorophyll, likely

indicating clear seasonal phytoplankton blooms. The carbonate chemistry also played a
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critical role in seasonal differentiation, as pCO. was the third most important factor
(Table 1).
Table 1. Coefficients of linear discriminants (LD) from LDA using continuous sensor

data and other environmental parameters. Discriminants for both diel and seasonal
variability shown.

Seasonal Diel

LD1 LD1

Temperature (°C) -3.563 0.54
Salinity 0.04 0.15
pCO2 (natm) -0.29 -0.16
pH 0.10 0.06
Tide Level (m) -0.24 0.10
Wind speed (ms™?) 0.05 -0.00
Total PAR -0.07 -2.29
DO (mg L?) 0.09 -0.08
Turbidity 0.15 -0.06
Fluor. Chlorophyll -0.40 0.14

3.2 Diel variability

The 10 months of in-situ continuous monitoring revealed that there was
substantial diel variability in measured parameters (Fig. 4, Table S3). Temperature had a
mean diel range of 1.3 + 0.8°C (Table S3). Daytime and nighttime temperature differed
significantly during the summer and fall months, with higher temperatures at night for
both seasons (Table S3). The mean diel range of salinity was 3.4 £ 2.7 (Table S3).
Daytime and nighttime salinity differed significantly during the winter and fall months,
with higher salinities at night for both seasons. The mean diel range of pH was 0.09 +
0.05 (Table S3). Daytime and nighttime pH differed significantly during the winter,
summer, and fall, with nighttime pH significantly higher during summer and winter and
lower during fall (Fig. 4, Table S3). The mean diel range of pCO> was 58 + 33 patm (Fig.
4, Table S3). Daytime and nighttime pCO. differed significantly during the winter and
summer months, with nighttime pCOz significantly higher during the summer and lower

during the winter (Fig. 4, Table S3). No significant difference in daytime and nighttime
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392 Loess models that investigated the evolution of day-night difference in parameters
393  revealed that other environmental parameters, including salinity, temperature, and tide

394  level, also had diel patterns that varied over the duration of our continuous monitoring
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Figure 4. Boxplots of the diel range (maximum minus minimum) and difference in daily
parameter mean daytime minus nighttime measurements for pH and pCO> from
continuous sensor data.

CO:2 flux also fluctuated on a daily scale, with a mean diel range of 34.1 £ 29.0
mmol m?2 d (Table S3). However, there was not a significant difference in CO- flux of

daytime versus nighttime hours for the entire monitoring period or any individual season

based on 0=0.05 (paired t-test, Table S3).
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Figure 5. Loess models (red line) and their confidence intervals (gray bands) showing the
difference in daily parameterrmean-daytime mean minus nighttime mean measurements.
The gray scale of the data points represents the four seasons over which data were
collected. Data span from Nov 8, 2016 to Aug 3, 2017, except for the tide data, which
began December 20, 2016.

Results of the LDA for differentiation between daytime and nighttime conditions
revealed that the most important factor was PAR, as would be expected (Table 1, Diel
LD1). Temperature was the second most important factor to differentiate between day

and night. The carbonate chemistry also played a critical role in day/night differentiation,
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as pCO2 was the third most important parameter, providing more evidence for
differentiation between day and night than other parameters that would be expected to
vary on a diel timescale (e.g., chlorophyll and DO) (Table 1).
3.3 Controlling factors and correlates

The relative influence of thermal and non-thermal factors (T/B) in controlling
pCO: varied over different time scales (Fig. 6, Table S4). Based on continuous data, non-
thermal processes generally exerted more control than thermal processes (T/B<1) over
the entire 5+ years of discrete monitoring, within each season, and over most (167/178)
days (Fig. 6, Table S4). Annual T/B from discrete data ranged from 0.50 to 1.16, with
only one of the five sampled years having T/B greater than one (i.e., more thermal
influence; Table S4). While most individual seasons that were sampled experienced
stronger non-thermal control on pCO> (T/B <1), the only season that never experienced
stronger thermal control was summer, with summer T/B values ranging from 0.21 — 0.35

for the 6 sampled years (Table S4).
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2014- Feb. 25, 2020(seasenal-and-annual).

Tidal fluctuations seemed to have a significant effect on carbonate system
parameters (Table 2). Both temperature and salinity were higher at low tide during the
winter and summer months and higher at high tide during the spring. pCO2 was higher
during low tide during all seasons. pH was higher during high tide during the winter and
summer, but this reversed during the spring, when pH was higher at low tide. CO; flux

also varied with tidal fluctuations. CO2 flux was higher (more positive or less negative) in
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the low tide condition for all seasons (though the difference was not significant in
spring), i.e., the location was less of a CO2 sink during low tide conditions in the winter

and more of a COz source during low tide conditions in the summer.

Table 2. Mean and standard deviation of temperature, salinity, pH, pCOz, and calculated
CO: flux (from continuous sensor measurements) during high and low tide conditions.

Parameter Season High Tide Mean Low Tide Mean Difference
between tide
levels,
t-test p-value
Temperature (°C)  Winter 16.7+17 176+20 <0.0001
Spring 244427 236+27 <0.0001
Summer 20.3+05 301+07 <0.0001
Salinity Winter 302+25 313+29 <0.0001
Spring 304+19 300127 0.0071
Summer 305+24 345+30 <0.0001
pH Winter 8.20+0.08 8.15+0.06 <0.0001
Spring 8.07+0.09 8.10+0.07 <0.0001
Summer 8.08+0.04 8.04+0.06 <0.0001
pCO2(patm) Winter 331+40 378+42 <0.0001
Spring 435+33 443 +50 0.0154
Summer 419+ 30 482 +48 <0.0001
COz Flux Winter -33.0+38.1 -11.7+21.8 <0.0001
(mmol m2d?) Spring 7.4+14.0 8.7+148 0.2248
Summer 1.8+6.3 16.0+ 145 <0.0001

Mean water level varied between all seasons; mean spring (highest) water levels
were on average 0.08 m higher than winter (lowest) water levels (ANOVA p<0.0001, fall
was not considered because of a lack of water level data). The mean daily tidal range
during our continuous monitoring period was 0.39 m £ 0.13 m, which did not
significantly differ between seasons (ANOVA p=0.739). However, the day-night
difference in tide level exhibited a strong seasonality, with spring and summer having
higher tide level during the daytime and winter having higher tide level during the

nighttime (Fig. 5).
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There were significant correlations between carbonate system parameters (pH and

pCOz2) and many of the other environmental parameters, including windspeed, DO,

turbidity, and fluorescent chlorophyll (Figure 7, Table S5). Both the continuous and

discrete sampling types indicate that pH has a significant negative relationship with both

temperature and salinity and pCO: has a significant positive relationship with both

temperature and salinity (Fig. 7). However, correlations with temperature were stronger

for continuous data and correlations with salinity were stronger for discrete data (Table

S5). The strongest correlations between continuous carbonate system data and all

investigated environmental parameters were with DO (positive correlation with pH and

negative correlation with pCO2; Table S5). It is worth noting that there were no

observations of hypoxia at our study site during our monitoring, with minimum DO

levels of 3.9 mg L and 4.0 mg L™ for our continuous monitoring period and our discrete

sampling period, respectively.
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Figure 7. Correlations of pH and pCO> with temperature, salinity, and DO from
continuous sensor data (gray) and all discrete data (black).
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Discussion
4.1 Comparing continuous monitoring and discrete sampling: Representative sampling in
a temporally variable environment
Discrete water sample collection and analysis is the most common method that
has been employed to attempt to understand the carbonate system of estuaries. However,
it is difficult to know if these samples are representative of the spatial and temporal
variability in carbonate system parameters. While this time-series study cannot conclude
whether our broader sampling efforts in the MAE are representative of the spatial
variability in the estuary, it can investigate how representative our bimonthly to monthly
sampling is of the more high-frequency temporal variability that ASC experiences.
There were several instances where seasonal parameter means significantly
differed between the 10-month continuous monitoring period and the 5+ year discrete

sampling period (Table S2, C # D or D¢ # D) including temperature in the summer and

fall, salinity in the spring, pH in the summer and fall, and pCO. in winter, spring, and
summer. While clear seasonal variability was demonstrated for most parameters (using
both continuous and discrete data for the entire period), these differences between the 10-
month continuous monitoring period and our 5+ year monitoring period illustrate that
there is also interannual variability in the system. Therefore, short periods of monitoring
are unable to fully capture current baseline conditions.

During the continuous monitoring period (2016-2017), we found no significant
difference between sampling methods in the seasonal mean temperature, salinity, or

pCO2. The two sampling methods also resulted in the same mean pH for all seasons
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except for summer, when the sensor data recorded a higher mean pH than discrete
samples (Tables S1 and S2). During this case, we can conclude that discrete monitoring
did not accurately represent the system variability that was able to be captured by the
sensor monitoring. However, given that most seasons did not show differences in pH or
pCO: between sampling methods, the descriptive statistics associated with the discrete
monitoring did a fair job of representing system means. This is evidence that long-term
discrete monitoring efforts, which are much more widespread in estuarine systems than
sensor deployments, can be generally representative of the system despite known
temporal variability on shorter time scales. However, further study would be needed to
determine if this applies throughout the system, as the upper estuary generally
experiences greater variability.

Understanding the relationships of pH and pCO2 with temperature and salinity is
important in a system (Fig. 7). Based on the results of an Analysis of Covariance
(ANCOVA), the relationship (slope) of pH with both temperature and salinity and of
pCO:2 with salinity were not significantly different between types of monitoring
(considering the sensor deployment period only), supporting the effectiveness of long-
term discrete monitoring programs when sensors are unable to be deployed. However,
ANCOVA did reveal the relationship of pCO2 with temperature is significantly different
(method:temp p=0.0062) between monitoring methods.

The high temporal resolution of sensor data is presumably better for estimating
CO: flux at a given location than discrete sampling. Previous studies have pointed out
that discrete sampling methods, which generally involve only daytime sampling, do not

adequately capture the diel variability in the carbonate system and may therefore lead to
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underestimation-biased 6f-COz fluxes (Crosswell et al., 2017; Liu et al., 2016). However,

we found no significant difference (within any season) between CO: flux values

calculated with hourly sensor data versus single, discrete samples_collected monthly to
twice monthly (Table S2, Fig. 3). Calculated CO: fluxes also did not significantly differ
between day and night during any season, despite some differences in pCOz (Table S3),
likely due to the large error associated with the calculation of CO> flux (Table S1, Fig. 3)
which will be further discussed below. Therefore, the expected underestimation of CO»
flux based on diel variability of pCO2 was not encountered at our study site, validating
the use of discrete samples for quantification of CO> fluxes (until methods with less
associated error are available). Even given less error in calculated flux, estimated fluxes
would likely not differ between methods on an annual scale (as pCO2 did not), but CO>
fluxes may differ on a seasonal scale since the differences between daytime and
nighttime pCO2 were not consistent across seasons (Table S3, Fig. 4).

There are many factors contributing to error associated with CO> flux. There is
still large error associated with estimates of estuarine CO- flux because turbulent mixing
is difficult to model and turbulence is the main control on CO: gas transfer velocity, k, in
shallow water environments. Thus, our wind speed parameterization of k is imperfect and
likely the greatest source of error (Borges and Abril, 2011; Van Dam et al., 2019). Other
notable sources of error include the data treatment. For example, we chose to seasonally
weight the individual calculated flux values in the calculation of annual flux to account
for differences in sampling frequency between seasons. From continuous data, the
weighted average flux was 0.2 mmol m d-, although choosing not to seasonally weight

and simply look at the arithmetic mean of fluxes calculated directly from sampling dates
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would have resulted in an annual CO> flux of -0.7 mmol m d* for the same period.

Similarly, the weighted average flux from all 5+ years of discrete data was -0.9 mmol m

d, but the arithmetic mean of fluxes would have resulted in an annual CO> flux of 0.2
mmol m2 d’* for the same period. Another source of error that could be associated with
the calculation of flux from the discrete data is the way in which wind speed data are

aggregated to be used in the windspeed parameterization. We decided to use daily

averages of the windspeed for calculations. Using the windspeed measured for the closest

time to our sampling time or the monthly averaged wind speed may have resulted in very

different flux values.

4.2 Factors controlling temporal variability in carbonate system parameters

Our study site had a relatively small range of pH and pCO2 on both diel and
seasonal scales compared to other coastal regions (Challener et al., 2016; Yates et al.,
2007). This small variability is likely tied to a combination of the subtropical setting
(small temperature variability), the lower estuary position of our monitoring (further

removed from the already small freshwater influence), little ocean upwelling influence,

and the system’s relatively high buffer capacity that results from the high alkalinity of the

freshwater endmembers (Yao et al., 2020). Just as the extent of hypoxia-induced
acidification was relatively low in Corpus Christi Bay because of the bay’s high buffer

capacity (McCutcheon et al., 2019), the extent of pH fluctuation resulting from all

controlling factors at ASC would also be modulated by the region’s high intrinsic buffer

capacity.

4.2.1 Thermal and biological _controls on carbonate chemistry
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We demonstrated that both temperature and non-thermal processes exert control
on pCOgz, but non-thermal control generally surpasses thermal control in ASC over
multiple time scales (Fig. 6, Table S4, T/B<1). The magnitude of pCO> variation
attributed to non-thermal processes varied greatly (i.e., ApCO2,nt had large standard
deviations, Table S4). For example, during the year of strongest non-thermal control
(2016), ApCO2,nt Was 534 patm versus ApCO2 ¢ 0f 209 patm in the year of weakest
thermal control (2019). Conversely, the magnitude of pCO> variation attributed to
temperature was consistent across time scales. For example, during the year of strongest
thermal control (2015), ApCO2t was 276 patm versus ApCO2 of 242 patm in the year of
weakest thermal control (2017). Spring and fall seasons, which experienced the greatest
temperature swings (Table S1), had greater relative temperature control exerted on pCO2
out of all seasons (Fig. 6, Table S4). The difference in T/B between sampling methods is
relatively small over the 10-month sensor deployment period, but it is worth noting that
T/B did not align over shorter seasonal time scales sampling methods (Fig. 6, Table S4).
Continuous monitoring demonstrated a greater magnitude of fluctuation resulting from
both temperature and non-thermal processes (i.e., greater ApCO2t and ApCOznt),
indicating that the extremes are generally not captured by the discrete, daytime sampling,
and sensor data would provide a better understanding of system controls.

The greater influence of non-thermal controls that we report conflicts with Yao
and Hu (2017), who found that ASC was primarily thermally controlled (T/B 1.53 — 1.79)
from May 2014 to April 2015. Yao and Hu (2017) also found that locations in the upper
estuary experienced lower T/B during flooding conditions than drought conditions.

Although the opposite was found at ASC, it is likely that the high T/B calculated at ASC
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by Yao and Hu (2017) was still a result of the drought condition due to the long residence
time of the estuary. Since 2015, there has not been another significant drought in the
system, so it seems that non-thermal controls on pCO2 are more important at this location
under normal freshwater inflow conditions.

Significantly warmer water temperatures were observed during the nighttime in
both summer and fall (Fig. 5), indicating that temperature could exert a slight control on
the carbonate system over a diel time scale. We note that significant differences in day
and night temperature within seasons do not indicate that diel differences were observed
on all days within the season, as large standard deviations in both daytime and nighttime
values result in considerable overlap. More substantial temperature swings between
seasons would result in more temperature control over a seasonal timescale. ASC seems
to have less thermal control of the carbonate system than offshore GOM waters, as
temperature had substantially higher explanatory value for pH and pCO> based on simple
linear regressions in offshore GOM waters (R? = 0.81 and 0.78, respectively (Hu et al.,
2018)) than at ASC (R? = 0.30 and 0.52, respectively, for sensor data and R? = 0.38 and
0.25, respectively, for discrete data).

Though annual average pCO2 (and CO; flux) are higher in the upper MAE and
lower offshore than at our study site, the same seasonal patterns that we observed (i.e.,
elevated pCO- and positive CO: flux in the summer and depressed pCO- and negative
CO: flux during the winter, Table S1, Fig. S1) has also been observed throughout the
entire MAE and the open Gulf of Mexico (Hu et al., 2018; Yao and Hu, 2017). These
seasonal patterns correspond with both the directional response of the system to

temperature and net community metabolism response to changing temperature, i.e.,
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elevated respiration in summer months (Caffrey, 2004). Despite that there were no
observations of hypoxia, there was a strong relationship between the carbonate system
parameters and DO (Fig. 7, Table S5), suggesting that net ecosystem metabolism may

exert an important control on the carbonate system on eertain-seasonal time scales. The

lack of day-night difference in DO (Fig. 5F) despite the significant day-night difference

in both pH and pCO: suggests that net community metabolism is likely not a strong

controlling factor on diel time scales. Biological control likely becomes more important

over seasonal timescales.

4.2.2 Tidal control on carbonate chemistry,

While the tidal range in the northwestern GOM is relatively small (1.30 m over
our 10-month continuous monitoring period), the tidal inlet location of our study site

results in proportionally more “coastal water” during high tide and proportionally more

“estuarine water” during low tide. The carbonate chemistry signal of these different water

masses was seen in the differences between high tide and low tide conditions at ASC

(i.e., high tide having lower pCO2 because coastal waters are less heterotrophic than

estuarine waters, Table 2). Consequently, the relative importance of thermal versus non-

thermal controls may be modulated by tide level. We calculated the thermal and non-

thermal pCO: terms separately during high tide and low tide periods and found that non-

thermal control is more important during low tide conditions (within each season T/B is

0.10 £ 0.07 lower during the low tide than high tide). This is likely because low tide has

proportionally more “estuarine water” at the location and because there is less volume of

water for the end products of biological processes to accumulate. The difference in T/B
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between high tide and low tide conditions was greatest in the spring, likely due to a
combination of elevated spring-time productivity and larger tidal ranges in the spring.
The GOM is one of the few places in the world that experiences diurnal tides
(Seim et al., 1987; Thurman, 1994), so theoretically, the fluctuations in pCO. associated
with tides may align to either amplify or reduce/reverse the fluctuations that would result
from diel variability in net community metabolism. Based on diel tidal fluctuations at this
site (i.e., higher tides during the day in the spring and summer and higher tides at night
during the winter, Fig. 5E) and the higher pCO2 associated with low tide (Table 2), tidal
control should amplify the biological signal (nighttime pCO. > daytime pCO2) during
spring and summer and reduce or reverse the biological signal during the winter. This
tidal control can explain the diel variability present in our pCO. data, which showed the
full reversal of the expected biological signal in the winter (Fig. 5C, Table S3, nighttime
pCO- < daytime pCOy), i.e., the higher nighttime tides in winter brought in enough low
CO2 water from offshore to fully offset any nighttime buildup of CO> from the lack of
photosynthesis. However, we note that the expected diel, biological control was likely
minimal since daytime DO was not consistently higher than nighttime DO (Fig. 5F). The
same seasonal pattern diel tide fluctuations were exhibited from Dec 20, 2016 (when the
tide data is first available) through the rest of our discrete monitoring period (Feb 25,
2020), indicating that tidal control on diel variability of carbonate system parameters was
likely consistent throughout this 3+ year period. The diel variability in pH did not mirror
pCO:2as would be expected (Fig. 5). The relationship between pH and tide level more

closely mirrored the relationships of salinity and temperature with tide level (versus pCO2
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relationship with tide level; Table 2), indicating that controlling factors of the carbonate

system may not be exerted equally on both pH and pCO- over different time scales.

4.2.3 Salinity and freshwater inflow controls on carbonate chemistry

Previous studies have indicated that freshwater inflow may exert a primary
control on the carbonate system in the estuaries of the northwestern GOM (Hu et al.,
2015; Yao et al., 2020; Yao and Hu, 2017). Carbonate system variability is much lower
ASC than it is in the more upper reaches of MAE, likely due to the lesser influence of
freshwater inflow and its associated changes in biological activity at ASC (Yao and Hu
2017). Given the location of our sampling in the lower portion of the estuary and the

long residence time in the system, we did not directly address river discharge as a

at

controlling factor, but the influence of freshwater inflow may be evident in the response

of the system to changes in salinity. Fluctuating salinity at ASC may also result from
direct precipitation, stratification, and tidal fluctuations; however, the low R? (0.02)
associated with a simple linear regression between tide level and salinity (p<0.0001)
indicates that salinity fluctuations are more indicative of non-tidal factors. Salinity data
from both sensor and discrete monitoring were strongly correlated with both pH and

pCO., with correlation coefficients nearing (continuous) or surpassing (discrete) that of

the correlations with temperature (Fig. 7; Table S5). Periods of lower salinity had higher

pH and lower pCOg, likely due to enhanced freshwater influence and subsequent elevated

primary productivity at the study site.

4.2.4 Windspeed and CO_ inventory

We investigated wind speed as a possible control on the carbonate system to gai

insight into the effect of wind-driven CO- fluxes on the inventory of CO: in the water

n
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685  column (and subsequent impacts to the entire carbonate system). The Texas coast has
686  relatively high wind speeds, with the mean wind speed observed during our continuous
687  monitoring period being 5.8 m s. While this results in relatively high calculated CO-
688  fluxes (Fig. 3), the seasonal relationship between pCO2 and windspeed does not support a
689  change in inventory with higher winds. Since spring and summer both have a mean

690  estuarine pCO- greater than atmospheric level (and positive CO> flux, Table S1) a

691  negative relationship between windspeed and pCO2 would be necessary to support this
692  hypothesis, but winter, spring, and fall all experience increases in pCO2 with increasing
693  wind based on simple linear regression.

694 4.3 Carbonate chemistry as a component of overall system variability

695 Estuaries and coastal areas are dynamic systems with human influence, riverine
696 influence, and influence from an array of biogeochemical processes, resulting in highly
697  variable environmental conditions. Based on an LDA used to assess overall system

698  variability using a suite of environmental parameters compiled at a single location, we
699  can conclude that carbonate chemistry parameters are among the most important of

700  variants on both daily and seasonal time scales in this coastal setting. Of the two

701  carbonate system components that we incorporated (pH and pCO.), pCO2 was the most
702 critical in discriminating along diel or seasonal scales despite similar seasonal differences
703  that were identified by ANOVA (Table S2) and more seasons with significant diel

704  differences in pH (Table S3). pH seemed to be a larger component of overall system

705  variability on a seasonal time scale (compared to the very small contribution seen on a
706 diel scale, Table 1). Given that the seasonal and diel variability in carbonate chemistry at

707  this location is relatively small compared to other coastal areas that are in the literature,

38



708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

27

28

29

the high contribution of carbonate chemistry to overall system variability that we detected

is likely to be present at other coastal locations around the world.

5. Conclusions

We monitored carbonate chemistry parameters (pH and pCO>) using both sensor
deployments (10 months) and discrete sample collection (5+ years) at the Aransas Ship
Channel, TX, to characterize temporal variability. Significant seasonal variability and
diel variability in carbonate system parameters were both present at the location. Diel
fluctuations were smaller than many other areas previously studied. The difference
between daytime and nighttime values of carbonate system parameters varied between
seasons, occasionally reversing the expected diel variability due to biological processes.
Tide level (despite the small tidal range), temperature, freshwater influence, and
biological activity all seem to exert important controls on the carbonate system at the
location. The relative importance of the different controls varied with timescale, and
controls were not always exerted equally on both pH and pCO.. Carbonate chemistry
(particularly pCO2) was among the most important environmental parameters to in
overall system variability to distinguish between both diel and seasonal environmental
conditions.

Despite known temporal variability on shorter timescales, discrete sampling was
generally representative of the average carbonate system on a seasonal and annual basis

based on comparison with our sensor data._Discrete data captured interannual variability,

which could not be captured by the shorter-term continuous sensor data. Additionally,

there was no difference in CO: flux between sampling types.-. All of these findings
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supporting the validity of discrete sample collection for carbonate system characterization
at this location.

This is one of the first studies that-investigates high-temporal frequency data from
deployed sensors that measure carbonate system parameters in an estuary-influenced
environment. Long-term, effective deployments of these monitoring tools could greatly
improve our understanding of estuarine systems. This study’s detailed investigation of
data from multiple, co-located environmental sensors was able to provide insight into
potential driving forces of carbonate chemistry on diel and seasonal time scales; this
provides strong support for the implementation of carbonate chemistry monitoring in
conjunction with preexisting coastal environmental monitoring infrastructure.
Strategically locating such sensors in areas that are subject to local acidification drivers
or support large biodiversity or commercially important species may be the most crucial
in guiding future mitigation and adaptation strategies for natural systems and aquaculture

facilities.

Data availability

Continuous sensor data are archived with the National Oceanic and Atmospheric
Administration’s (NOAA’s) National Centers for Environmental Information (NCEI)
(https://doi.org/10.25921/dkg3-1989). Discrete sample data are available in two separate
datasets archived with National Science Foundation’s Biological & Chemical
Oceanography Data Management Office (BCO-DMO) (doi:10.1575/1912/bco-

dmo.784673.1 and doi: 10.26008/1912/bco-dmo.835227.1).
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