## SUPPLEMENTARY INFORMATION of

## N<sub>2</sub> fixation in the Mediterranean Sea related to the composition of the diazotrophic community, and impact of dust under present and future environmental conditions

Céline Ridame<sup>1</sup>, Julie Dinasquet<sup>2,3</sup>, Søren Hallstrøm<sup>4</sup>, Estelle Bigeard<sup>5</sup>, Lasse Riemann<sup>4</sup>, France Van Wambeke<sup>6</sup>, Matthieu Bressac<sup>7</sup>, Elvira Pulido-Villena<sup>6</sup>, Vincent Taillandier<sup>7</sup>, Fred Gazeau<sup>7</sup>, Antonio Tovar-Sanchez<sup>8</sup>, Anne-Claire Baudoux<sup>5</sup>, Cécile Guieu<sup>7</sup>

<sup>1</sup> Sorbonne University, CNRS, IRD, LOCEAN: Laboratoire d'Océanographie et du Climat: Expérimentation et Approches Numériques, UMR 7159, 75252 Paris Cedex 05, France

<sup>2</sup> Scripps Institution of Oceanography, University of California San Diego, USA

<sup>3</sup> Sorbonne University, CNRS, Laboratoire d'Océanographie Microbienne, LOMIC, 66650 Banyuls-sur-Mer, France

<sup>4</sup>Marine Biology Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark

<sup>5</sup> Sorbonne University, CNRS, Station Biologique de Roscoff, UMR 7144 Adaptation et Diversité en Milieu Marin, France

<sup>6</sup> Aix-Marseille Université, Université de Toulon, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 13288, Marseille, France

<sup>7</sup> Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, 06230 Villefranche-sur-Mer, France

<sup>8</sup> Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510 Puerto Real, Cádiz, Spain

Correspondence to: Céline Ridame (celine.ridame@locean.ipsl.fr)

Table S1: Nutrients stocks (DIP, DFe,  $NO_3^{-1}$ ) in the surface mixed layer (SML) and in the euphotic layer (surface to the 1% PAR depth).

\* at stations 1 to 4, micromolar NO<sub>3</sub><sup>-</sup> concentrations were under detection limit (0.05  $\mu$ M) in the upper 50 m and samples for the nanomolar level determination (LWCC) were lost. For these stations, maximum NO<sub>3</sub><sup>-</sup> stocks were calculated considering a concentration of 0.05  $\mu$ M when NO<sub>3</sub><sup>-</sup> concentrations were under this detection limit.

|             | Lat.  | Long. | MLD | 1%    | DIP Stock            | DFe                  | NO <sub>3</sub> <sup>-</sup> | DIP Stock            | DFe                  | NO <sub>3</sub> <sup>-</sup> |
|-------------|-------|-------|-----|-------|----------------------|----------------------|------------------------------|----------------------|----------------------|------------------------------|
|             |       |       |     | PAR   | SML                  | Stock                | Stock                        | euphotic             | Stock                | Stock                        |
|             |       |       |     | depth |                      | SML                  | SML                          |                      | euphotic             | euphotic                     |
|             | °N    | °E    | m   | m     | µmol.m <sup>-2</sup> | µmol.m <sup>-2</sup> | µmol.m <sup>-2</sup>         | µmol.m <sup>-2</sup> | µmol.m <sup>-2</sup> | mmol.m <sup>-2</sup>         |
| ST01        | 41.89 | 6.33  | 21  | 58    | 160                  | 18.2                 | <1050*                       | 525                  | 45                   | <16.4*                       |
| ST02        | 40.51 | 6.73  | 21  | 72    | 227                  | 24.0                 | <1050*                       | 1277                 | 63                   | <27.7*                       |
| ST03        | 39.13 | 7.68  | 11  | 85    | 53                   | 24.7                 | <550*                        | 1080                 | 142                  | <10.3*                       |
| ST04        | 37.98 | 7.98  | 15  | 66    | 106                  | 30.1                 | <750*                        | 1284                 | 113                  | <13.0*                       |
| ST05        | 38.95 | 11.02 | 9   | 78    | 112                  | 10.9                 | 258                          | 1306                 | 80                   | 16.6                         |
| TYR         | 39.34 | 12.59 | 9   | 68    | 64                   | 11.7                 | 137                          | 693                  | 71                   | 1.5                          |
| ST06        | 38.81 | 14.50 | 18  | 67    | 198                  | 35.1                 | 162                          | 708                  | 97                   | 5.0                          |
| ST07        | 36.66 | 18.15 | 18  | 75    | 104                  | 24.7                 | 162                          | 458                  | 83                   | 2.2                          |
| ION         | 35.49 | 19.78 | 14  | 87    | 142                  | 23.4                 | 195                          | 982                  | 126                  | 1.6                          |
| <b>ST08</b> | 36.21 | 16.63 | 14  | 75    | 169                  | 22.2                 | 911                          | 950                  | 87                   | 5.5                          |
| ST09        | 38.13 | 5.84  | 7   | 87    | 77                   | 10.0                 | 819                          | 1183                 | 80                   | 15.7                         |
| FAST        | 37.95 | 2.90  | 9   | 83    | 99                   | 13.8                 | 716                          | 2775                 | 94                   | 13.1                         |
| ST10        | 37.45 | 1.57  | 19  | 87    | 308                  | 22.3                 | 2016                         | 3187                 | 84                   | 28.3                         |

Table S2: FrameBot annotations of the nearest known references of the 20 most abundant ASVs across all samples.

|                       |                                                              | % of all |                                                   |            |
|-----------------------|--------------------------------------------------------------|----------|---------------------------------------------------|------------|
| Feature ID            | Reads                                                        | reads    | FrameBot annotation                               | % Identity |
| 4f130f7262e949bc20    | f7262e949bc20 145569915 1G B 1 1432264_1433145_CP000304      |          | 145569915 1G B 1 1432264_1433145_CP000304 Pse     |            |
| ae5dcd3eee35db 247955 |                                                              | 28,12    | udomonas_stutzeri_A1501                           | 98,925     |
| 00c85e66b298fa566     |                                                              |          | 213578830 1B B 1 FJ170277_complement_13629_14     |            |
| b5587b50e7f3f7f       | 114420                                                       | 12,97    | 492 Uncultured_cyanobacterium_group_A_nif_cluster | 100        |
| 74fc02da755a36c195    |                                                              |          | 213578830 1B B 1 FJ170277_complement_13629_14     |            |
| bbece4dcfb6c3e        | 69304                                                        | 7,86     | 492 Uncultured_cyanobacterium_group_A_nif_cluster | 100        |
| 3aa5d34aa2ac8a8f75    |                                                              |          | 145569915 1G B 1 1432264_1433145_CP000304 Pse     |            |
| 06577551a510a0        | 65812                                                        | 7,46     | udomonas_stutzeri_A1501                           | 98,925     |
| 9d2f4ec132745ac31c    |                                                              |          | 145569915 1G B 1 1432264_1433145_CP000304 Pse     |            |
| 2340a031d726ee        | 63165                                                        | 7,16     | udomonas_stutzeri_A1501                           | 98,925     |
| ab0ecbee56ec313cd     |                                                              |          | 145569915 1G B 1 1432264_1433145_CP000304 Pse     |            |
| a72e61ffdcfb494       | 56134                                                        | 6,37     | udomonas_stutzeri_A1501                           | 98,925     |
| 3474fb451f8b288dcb    |                                                              |          | 145569915 1G B 1 1432264_1433145_CP000304 Pse     |            |
| b190ddd9933884        | 38007                                                        | 4,31     | udomonas_stutzeri_A1501                           | 98,925     |
| e067e3ba7a6570624     |                                                              |          | 213578830 1B B 1 FJ170277_complement_13629_14     |            |
| 8056188777e1763       | 27641                                                        | 3,13     | 492 Uncultured_cyanobacterium_group_A_nif_cluster | 100        |
| 66b09bb28a2d6b2c8     |                                                              |          | 213578830 1B B 1 FJ170277_complement_13629_14     |            |
| a074c7ef455abcf       | 25793                                                        | 2,92     | 492 Uncultured_cyanobacterium_group_A_nif_cluster | 100        |
| f60991866f34f6a2e5    |                                                              |          | 142330 1G B 1 525_1397_M11579 Azotobacter_vinel   |            |
| 1e132307e5bad4        | 19615                                                        | 2,22     | andii_DK_cluster_                                 | 96,774     |
| 106b2b300923c99f0     |                                                              |          | 213578830 1B B 1 FJ170277_complement_13629_14     |            |
| a32e68826fb05c3       | 18111                                                        | 2,05     | 492 Uncultured_cyanobacterium_group_A_nif_cluster | 100        |
| 769ab520efbbb7280f    |                                                              |          | 110168604 1B B 1 6380808_6381698_CP000393 Tric    |            |
| 93376b03c1c171        | /6b03c1c171 18051 2,05 hodesmium_erythraeum_IMS101           |          | 98,925                                            |            |
| e48ca7a05e71d1f402    | a7a05e71d1f402 145569915 1G B 1 1432264_1433145_CP000304 Pse |          |                                                   |            |
| f7f36cc81cb450        | 8525                                                         | 0,97     | udomonas_stutzeri_A1501                           | 98,925     |
| 717a2d9ae33622985     |                                                              |          | 145569915 1G B 1 1432264_1433145_CP000304 Pse     |            |
| dde7cb936331c18       | 8214                                                         | 0,93     | udomonas_stutzeri_A1501                           | 98,925     |
| b5e593c3cbea96f53a    |                                                              |          | 145569915 1G B 1 1432264_1433145_CP000304 Pse     |            |
| 5e597bd502715d        | 8117                                                         | 0,92     | udomonas_stutzeri_A1501                           | 98,925     |
| 12fa8a7272c36cef11    |                                                              |          | 145569915 1G B 1 1432264_1433145_CP000304 Pse     |            |
| 6e673efd697ce5        | 5548                                                         | 0,63     | udomonas_stutzeri_A1501                           | 98,925     |
| 90c741ef17c0270782    |                                                              |          | 142330 1G B 1 525_1397_M11579 Azotobacter_vinel   |            |
| 54972c547ecaaa        | 4206                                                         | 0,48     | andii_DK_cluster_                                 | 96,774     |
| 226e7bd030e1242d6     |                                                              |          | 242120818 3E C 2 CP001649_complement_488297_4     |            |
| 7bffeacc3dfb50a       | 3984                                                         | 0,45     | 89124 Desulfovibrio_salexigens_DSM_2638           | 98,925     |
| 5cd4866faf5030e82d    |                                                              |          | 145569915 1G B 1 1432264_1433145_CP000304 Pse     |            |
| 079b211a72997b        | 3410                                                         | 0,39     | udomonas_stutzeri_A1501                           | 98,925     |
| 0eabd0c5b6d4ada9c     |                                                              |          | 145569915 1G B 1 1432264_1433145_CP000304 Pse     |            |
| 3ed3b7458a4d431       | 3135                                                         | 0,36     | udomonas_stutzeri_A1501                           | 98,925     |

Table S3: FrameBot annotations of the nearest known references of the 20 most abundant ASVs at station 10

| Feature ID       | Reads | % of all | FrameBot annotation                                 | %Identity | Taxonomic group |
|------------------|-------|----------|-----------------------------------------------------|-----------|-----------------|
| bbc2563311419e7  | 58485 | 39,55    | 213578830 1B B 1 FJ170277_complement_13629_14492    | 100       | UCYN-A4         |
| 3e0612506d81539  |       |          | Uncultured_cyanobacterium_group_A_nif_cluster       |           |                 |
| 35               | 20000 | 26.20    | 2125700201101011151170277 annulation 12620 14402    | 100       |                 |
| 195bbece/dcfb6c  | 28889 | 26,30    | 213578830[18]8]1]FJ170277_complement_13629_14492    | 100       | UCYN-AI         |
| 3e               |       |          | Toucarcarea_cyanobacteriam_group_A_im_claster       |           |                 |
| a5ee5acf641bc08  | 13007 | 8,80     | 213578830 1B B 1 FJ170277_complement_13629_14492    | 100       | UCYN-A4         |
| 5da0aa23b0637b4  |       |          | Uncultured_cyanobacterium_group_A_nif_cluster       |           |                 |
| e4               |       |          |                                                     |           |                 |
| 66b09bb28a2d6b   | 10132 | 6,85     | 213578830 1B B 1 FJ170277_complement_13629_14492    | 100       | UCYN-A2         |
| 2c8a074c7ef455a  |       |          | Uncultured_cyanobacterium_group_A_nif_cluster       |           |                 |
| 106b2b200022c00  | 0164  | 6.20     | 212578820 18 8 1 5 170277 complement 12620 14402    | 100       |                 |
| f0a32e68826fb05c | 5104  | 0,20     | Uncultured cvanobacterium group A nif cluster       | 100       | UCINIAI         |
| 3                |       |          | loucarda caTchaugaccu aurTbioab7 (TuuTciascu        |           |                 |
| 00c85e66b298fa5  | 5970  | 4,04     | 213578830 1B B 1 FJ170277_complement_13629_14492    | 100       | UCYN-A3         |
| 66b5587b50e7f3f  |       |          | Uncultured_cyanobacterium_group_A_nif_cluster       |           |                 |
| 7f               |       |          |                                                     |           |                 |
| e067e3ba7a65706  | 1347  | 0,91     | 213578830 1B B 1 FJ170277_complement_13629_14492    | 100       | UCYN-A3         |
| 248056188///e1/  |       |          | Uncultured_cyanobacterium_group_A_nit_cluster       |           |                 |
| 0d074fa0254f304  | 1106  | 0.75     | 213578830 18 8 1 E 170277_complement_13629_14492    | 100       | UCYN-A4         |
| 4df289a87f37c42e | 1100  | 0,75     | Uncultured_cyanobacterium_group_A_nif_cluster       | 100       |                 |
| 6                |       |          |                                                     |           |                 |
| f4a69bcdaea0443  | 1095  | 0,74     | 213578830 1B B 1 FJ170277_complement_13629_14492    | 100       | UCYN-A1         |
| 67c837f016e3ffae |       |          | Uncultured_cyanobacterium_group_A_nif_cluster       |           |                 |
| C                | 1064  | 0.72     | 14556001511C18111422364 1422145 CD00020418          | 08.025    | Camma           |
| abuecbee56ec313  | 1064  | 0,72     | 145569915 16 8 1 1432264_1433145_CP000304 Pseud     | 98,925    | Gamma           |
| 4                |       |          | omonas_statzen_Arsor                                |           | proteobacteria  |
| d2675af859c82c0  | 1024  | 0,69     | 213578830 1B B 1 FJ170277 complement 13629 14492    | 100       | UCYN-A1         |
| d4bb46f8c3d9131  |       |          | Uncultured_cyanobacterium_group_A_nif_cluster       |           |                 |
| 1d               |       |          |                                                     |           |                 |
| 4f130f7262e949bc | 948   | 0,64     | 145569915 1G B 1 1432264_1433145_CP000304 Pseud     | 98,925    | Gamma           |
| 20ae5dcd3eee35d  |       |          | omonas_stutzeri_A1501                               |           | proteobacteria  |
| 17d5b4757a75ad4  | 727   | 0.49     | 213578830 18 8 1 E 170277_complement_13629_14492    | 100       | LICYN-A1        |
| a6a6a8714e6724a  | 1 121 | 0,45     | Uncultured cvanobacterium group A nif cluster       | 100       | UCIN AI         |
| eb               |       |          |                                                     |           |                 |
| e8681f8ab1563b2  | 581   | 0,39     | 213578830 1B B 1 FJ170277_complement_13629_14492    | 98,925    | UCYN-A4         |
| 921531f4d68020e  |       |          | Uncultured_cyanobacterium_group_A_nif_cluster       |           |                 |
| b0               | 444   | 0.00     | 2425702201401014151470277 as welcovert 42520, 44402 | 100       |                 |
| 3760ca017/3205b  | 411   | 0,28     | 213578830[18]8]1]FJ170277_complement_13629_14492    | 100       | UCYN-A4         |
| 55               |       |          | Toucarca chanopacteriam Broah 2011 Claster          |           |                 |
| 806cee9c1b2488b  | 409   | 0,28     | 213578830 1B B 1 FJ170277_complement_13629_14492    | 100       | UCYN-A1         |
| acb2a595080138b  |       |          | Uncultured_cyanobacterium_group_A_nif_cluster       |           |                 |
| 42               |       |          |                                                     |           |                 |
| t66f288c4a3ce20f | 311   | 0,21     | 213578830 1B B 1 FJ170277_complement_13629_14492    | 100       | UCYN-A4         |
| eb425c205abtt58/ |       |          | Uncultured_cyanobacterium_group_A_hit_cluster       |           |                 |
| 3aa5d34aa2ac8a8f | 293   | 0,20     | 145569915 1G B 1 1432264_1433145_CP000304 Pseud     | 98,925    | Gamma           |
| 7506577551a510a  |       |          | omonas_stutzeri_A1501                               |           | proteobacteria  |
| 0                | 224   | 0.10     | 112570020 18 8 1 5 170377 complement 12500 11400    | 100       |                 |
| h929140300-7f7=  | 234   | 0,16     | Uncultured ovanobacterium group A nif cluster       | 100       | UCTN-A2         |
| 4a               |       |          | Temeananea_cyanosacternam_group_A_im_cluster        |           |                 |
| 15464fc769f26e7e | 225   | 0,15     | 237685316 1G B 1 1597309_1598187_CP001614 Teredi    | 94,624    | Gamma           |
| a2e0d3ee53e52a5  |       |          | nibacter_turnerae_T7901                             | -         | proteobacteria  |
| 7                |       |          |                                                     |           |                 |

Figure S1 Integrated primary production (PP) (a) and heterotrophic bacterial production (BP) (b) from surface to euphotic layer depth along the longitudinal PEACETIME transect



Figure S2 : Slope (and standard deviation) of  $N_2$  fixation (a-c) versus time in the controls (C, black), dust treatments under present climate conditions (D, red) and dust treatments under future climate conditions (G, green) during the dust seeding experiments at TYR, ION and FAST. Only data presenting a significant linear relationship with time (Pearson's correlation coefficient, p < 0.05) were included. Slopes that were significantly different within one experiment are labelled with different letters (A, B, C).



Figure S3: Box plots of the relative changes (in %) in <sup>13</sup>C-primary production (PP) over the duration of the dust seeding experiments at TYR, ION, and FAST stations. D means dust treatments under present climate conditions and G dust treatments under future climate conditions.



Figure S4: Principal coordinate analysis of diazotroph communities. Distances between samples were calculated as Bray-Curtis dissimilarity. Only ASVs above 1% relative abundance were included in this analysis





Figure S5: General diversity trends visualized by Shannon H index, at TYR, ION and FAST. Shows that for TYR and ION the diversity decrease from T0 to Tend whereas the opposite is true for FAST.