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Abstract. Predicted intensified climate warming will likely alter the ecosystem net carbon (C) uptake of 20 

the Qinghai-Tibet Plateau (QTP). Variations in C sink/source responses to climate warming have been 21 

linked to water availability; however, the mechanisms by which net C uptake responds to soil water 22 

content in water-saturated swamp meadow ecosystems remain unclear. To explore how soil moisture and 23 

other environmental drivers modulate net C uptake in the QTP, field measurements were conducted using 24 

the eddy covariance technique in 2014, 2015, 2017, and 2018. The alpine swamp meadow presented in 25 

this study was a consistent and strong C sink of CO2 (-168.0 ± -62.5 gC m-2 y-1, average ± standard 26 

deviation) across the entire 4-year study period. A random forest machine-learning analysis suggests that 27 

the diurnal, seasonal, and annual variations of net ecosystem exchange (NEE) and gross primary 28 

productivity (GPP) were controlled by temperature and solar radiation. Ecosystem respiration (Re), 29 

however, was found mainly regulated by the variability of soil water content (SWC) at different temporal 30 

aggregations followed by temperature, the second contributing driver. We further explored how Re is 31 

controlled by nearly saturated soil moisture and temperature comparing two different periods featuring 32 

identical temperatures and significantly differences on SWC and vice versa. Our data suggest that, 33 
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despite the relatively abundant water supply, periods with a substantial decrease of SWC or increase of 34 

temperature produced higher Re lowering the C sink strength. Our results reveal that nearly saturated 35 

soil conditions during the warm seasons can help to maintain lower ecosystem respiration rates and thus 36 

enhance the overall C sequestration capacity in this alpine swamp meadow. We argue that changes in 37 

soil hydrological conditions induced by a warming climate near permafrost (or seasonal frozen layers) 38 

may affect the C sink magnitude of wet and cold ecosystems through changes in soil hydrology and the 39 

subsequent effect on respiration losses.  40 

1. Introduction 41 

Wetlands play a significant role in the global carbon (C) cycle due to the large amount of C stored in 42 

their soils. The Qinghai-Tibet Plateau (QTP), with an average altitude of over 4,000 m a.s.l., has 43 

approximately 10×104 km2 of natural wetlands, of which ~ 50% (4.9×104 km2) are alpine swamp 44 

meadows. These ecosystems are predominantly located in permafrost areas and are typically soil 45 

nutrient-rich and water-logged (Bai et al., 2019; Zhao et al., 2005). Climate change and human 46 

disturbance can have profound consequences on permafrost regions (Biskaborn et al., 2019) and 47 

significantly impact their hydrological regimes (Lafrenière and Lamoureux, 2019). Hydrological regimes 48 

have an important role in controlling wetland functioning (Bohn et al., 2007; Christensen et al., 2003) 49 

and the changes of hydrological regimes may put the wetland functioning of the QTP under pressure 50 

(Hruby, 1999; Woodward and Wui, 2001; Foti et al., 2013). 51 

The QTP is forecasted to be warmer and wetter in the future (Chen et al., 2015; Cheng et al., 2011). 52 

Warming may accelerate the microbial breakdown of alpine soil organic C and subsequently increase 53 

CO2 emissions (Zhu et al., 2015a). Warming could also improve C sequestration capacity by enhancing 54 

the photosynthetic inputs and growth rates of alpine plants (Fu et al., 2015). Therefore, the potential 55 

increase of CO2 emissions due to warming in alpine regions could be partially offset by enhanced C 56 

uptake (Schuur et al., 2009), triggering different net C uptake responses to climate warming. For 57 

example, an increase in temperature in the QTP has been associated with net C sinks in the Zoige alpine 58 

wetlands (Kang et al., 2014) but also with net C sources in the Damxung alpine swamp meadow (Niu et 59 

al., 2017). 60 

https://doi.org/10.5194/bg-2021-193
Preprint. Discussion started: 6 September 2021
c© Author(s) 2021. CC BY 4.0 License.



 3 

According to recent studies in QTP alpine grasslands, water conditions such as soil water content (SWC) 61 

can be a key factor that changes water-use patterns and ecophysiological characteristics of alpine plants 62 

(Wu et al., 2019) and modulate the warming-mediated increase of ecosystem C uptake (Ganjurjav et al. 63 

2016; Peng et al. 2014). Ecosystem C processes such as net C uptake and soil respiration may increase 64 

with SWC in dry environments, and decrease in water-logged environments (Quan et al., 2019; Taylor 65 

et al., 2017). Warming in conjunction with increased precipitation can turn an ecosystem from net source 66 

to a sink of C (Zhao et al., 2019), increasing both photosynthesis and respiration rates during warmer and 67 

wetter years (López-Blanco et al., 2017, 2018). However, when warming occurs in soils associated with 68 

low moisture, soil drought can change ecosystems from C sinks to sources (Ganjurjav et al., 2017). 69 

Studies in QTP alpine meadows have indicated that warming significantly stimulates ecosystem net C 70 

uptake in wet years but does not affect ecosystem net C uptake in dry years because the positive effects 71 

of warming on net C uptake are compensated by the negative effects of lower soil moisture (Peng et al., 72 

2014). 73 

Although many studies on the QTP have focused on the alpine meadow ecosystem (Saito et al., 2009; 74 

Zhao et al., 2005, 2010; Zhu et al., 2015b), only a few experiments have been conducted to specifically 75 

characterise alpine swamp meadow ecosystem C dynamics. Alpine swamp meadow ecosystems are 76 

characterised by high SWC, and it remains unclear whether a decrease in SWC would alleviate the stress 77 

from saturated water on net C uptake or aggravate drought effects. Given that these ecosystems have 78 

high soil moisture compared to typical alpine meadows, the effects of warming and drying on the future 79 

C sink strength of the QTP ecosystem remain unknown. These questions and uncertainties require a 80 

detailed investigation to understand wetland C source/sink processes and future C sink strength variations 81 

(sign and magnitude). Therefore, the objectives of this study are to (i) quantify the diurnal, seasonal, and 82 

annual variations of net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem 83 

respiration (Re), (ii) quantify the relative importance of different key environmental drivers contributing 84 

to the variability observed of NEE, Re, and GPP, and (iii) analyse how these C fluxes respond to key 85 

environmental drivers such as temperature or soil moisture variation in a QTP alpine swamp meadow. 86 
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2. Materials and methods 87 

2.1 Site description 88 

The study site (37°35.75′ N, 100°00.47′ E, 3,571 m a.s.l.) is located in Gangcha County, Qinghai 89 

Province, in the north-eastern part of the QTP (Fig. 1a). The mean annual temperature and precipitation 90 

measured at the Gangcha National Weather Station were 0.1 ℃ and 389.4 mm between 1982 and 2011, 91 

respectively (Zhang et al., 2016). The site area has seasonal permafrost featuring frozen soils between 92 

January–March and November–December for a total of about 125–135 days (Zhang et al., 2014). The 93 

dominant species of the alpine swamp meadow ecosystem are Kobresia pygmaea, along with Saussurea 94 

pulchra, Polygonum viviparum, and Potentilla saundersiana. The average plant height at the 95 

experimental site is 7.4 ± 1.5 cm, with a 97 ± 2% coverage. Our study defined the growing season as the 96 

period between June and September. The early (June–July) and late (August–September) growing 97 

seasons, as they will be henceforth referred to, correspond with the early growing season and late growing 98 

seasons, respectively.  99 

 100 

Figure 1. (a) Location of the study site in the Qinghai Lake basin in the northeastern part of the QTP. (b) 101 

Eddy covariance system measuring water and CO2 fluxes between the land surface and the atmosphere in the 102 

alpine swamp meadow. 103 

2.2 Field measurements  104 

An Eddy Covariance (EC) system was installed at the study site (Fig. 1b) to measure the CO2 fluxes at a 105 

sampling frequency of 10 Hz from 2014 to 2018. Data for 2016 was missing due to equipment 106 

malfunction. The EC system included an open-path CO2/H2O infrared gas analyser, which quantified 107 

fluctuations in water vapour and CO2 fluxes. A 3-D sonic anemometer was also installed at a 2.0 m height 108 

above ground to directly measure horizontal and vertical wind velocity components (u, v, and w). C flux 109 
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data were recorded with a data logger (Campbell Scientific Inc.). An automated meteorological station 110 

was installed near the EC station to measure meteorological variables such as air temperature (Ta; ℃), 111 

precipitation (P; mm), net radiation (Rn; W m-2), wind speed (WS; m s-1), wind direction (WD; º), relative 112 

humidity (RH; %), and vapour pressure deficit (VPD; hPa). The meteorological data were collected at 113 

one-minute intervals and subsequently resampled at 30-minute timesteps to keep pace with the EC data. 114 

More details on the in-situ instrument specifications are summarised in Table 1. 115 

Table 1 Information about the sensors installed in the alpine swamp meadow. 116 

 Sensor Names Sensor type Installation height/depth Manufacturer 

Eddy Covariance Open-path CO2/H2O infrared gas 

analyser  

EC150 2.0 m Campbell, US 

Three-dimensional sonic 

anemometer 

CSAT3 2.0 m Campbell, US 

Meteorological 

observation 

Net radiation NR Lite 1.8 m Kipp&Zonen, 

Netherlands 

Wind speed/direction 034B 2m  

Air temperature/humidity 083E-1-6 0.5 m, 1.5 m MetOne, US 

Atmosphere pressure PTB110 In data acquisition box Vaisala, Finland 

Rain-gauge 7852M-AB 0.7 m Davis, US 

Soil water content (SWC; %) were measured at depths of 10, 20, 40, 60, and 100 cm from the soil surface 117 

with EC-H2O sensors (Decagon Devices, USA) at a 10-minute frequency. The precision of the EC-H2O 118 

sensors for soil moisture measurements was ± 0.03 m3 m
-3. As the roots of Kobresia meadows are mainly 119 

distributed within the top 20 cm of soil, we focused only on the variation of SWC in the top 20 cm of the 120 

soil. 121 

2.3 Eddy Covariance data processing 122 

The half-hourly NEE of CO2 data was calculated using the EddyPro software (version 5.2, LI-COR) from 123 

the 10-Hz raw data. During the calculation, three-dimensional rotation was used to correct the data by 124 

removing the effects of instrument tilt irregularity on airflow (Wilczak et al., 2001). Webb, Pearman, and 125 

Leuning (WPL) (Webb et al., 1980) correction was applied to calculate the averages of CO2 covariance, 126 

rectifying the air density variations induced by heat and water vapour. The half-hourly flux data were 127 

quality-checked based on several filtering algorithms, including: (1) the rejection of outliers in sonic 128 

temperature, water vapour density, and CO2 density (Li et al. 2008; Liu et al., 2011), (2) the elimination 129 
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of data one hour before and after precipitation events (Li et al. 2008; Liu et al., 2011), (3) the removal of 130 

negative NEE during the non-growing season (from November to March ) (Cao et al., 2017; Qi et al., 131 

2021) attributed to the self-heating effect from EC instruments (Cao et al., 2017), and (4) the exclusion 132 

of measurements with weak turbulence conditions at night time. The weak turbulence periods were 133 

identified by bootstrapping friction velocity (u∗) thresholds, as described by Papale et al. (2006). This 134 

approach effectively divided the data into 4-year and 7-temperature subsets with similar micro-135 

meteorological conditions (except for u*). The u* thresholds (5%, 50%, and 95% of bootstrapping) were 136 

calculated specifically per year and temperature subset. 137 

Based on those different subsets, we gap-filled and partitioned NEE (into GPP and Re) to spread the 138 

uncertainty variability emerged from the different u* threshold, similar to López-Blanco et al. (2017). 139 

All missing data were marked as -9999 (no data). Negative and positive NEE values represent sink and 140 

source of C, respectively. Additionally, a standardised mechanism to fill NEE gaps is needed for adequate 141 

data processing (Moffat et al., 2007). Therefore, this study adopted the method described by López-142 

Blanco et al. (2020) using the marginal distribution sampling (MDS) algorithm in the REddyProc gap-143 

filling tool (Reichstein et al., 2016), which was readapted from Reichstein et al. (2005). Finally, NEE 144 

was separated into GPP and Re applying the REddyProc partitioning algorithm (Reichstein et al., 2016) 145 

for further analyses. This partitioning method is based on the exponential regression of night-time 146 

respiration with temperature using the Lloyd-Taylor-Function (Lloyd and Taylor, 1994). Night-time 147 

periods were selected via current combined solar radiation and potential radiation thresholds based on 148 

the exact solar time, latitude, and longitude. REddyProc estimates the temperature sensitivity from a 149 

short-term period, and based on this short-term temperature sensitivity, it estimates the reference 150 

temperature in the continuous period of the entire dataset. These estimates were then used to calculate 151 

Re for day-time and night-time while GPP was estimated based on the difference between NEE and Re. 152 

2.4 Identifying the importance of environmental drivers 153 

In order to characterize how environmental conditions impact diurnal, seasonal, and interannual 154 

variability of NEE, GPP and Re at this alpine swamp meadow, we used a novel method based on machine 155 

learning.  156 
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Random forest (Breiman, 2001) is a machine learning technique that can be used to quantify and interpret 157 

the contribution of environmental drivers (covariates) to the variability of different C fluxes (response 158 

variables) by combining multiple individual regression trees. This technique has been increasingly 159 

utilized to upscale global C fluxes from eddy covariance data (Zeng et al., 2020) but also to evaluate 160 

controls on C cycle processes (Zhang et al., 2017; López-Blanco et al, 2017, 2020). Here, we calculate 161 

the relative importance of air temperature (Ta), net radiation (Rn), soil water content (SWC) and vapour 162 

pressure deficit (VPD) controlling the C sink strength, photosynthesis, and respiration variability. This 163 

random forest algorithm constructs multiple (1000 in this analysis) decision trees during training time 164 

with different random subsamples (with replacement) from the same input training dataset. In each 165 

cluster classified by random forest, the algorithm generates a multiple linear regression to characterize 166 

different C fluxes as a function of environmental drivers (López-Blanco et al., 2017, 2020). This 167 

algorithm version (Pedregosa et al., 2011) estimates the relative importance of each covariate between 0 168 

and 100%, which correspond to the fraction of decision participating during data clustering. We used the 169 

random forest algorithm to evaluate the diurnal, seasonal, and annual patterns of relative importance of 170 

Ta, Rn, SWC, and VPD responsible for the variability of C fluxes. We used data from the June-September 171 

period aggregated per hour and we run multiple random forests per hour of the day, day of the year, and 172 

year, respectively (Table S1). 173 

In order to further analyse the effect of SWC on C fluxes, we selected two groups of time stamps with 174 

significant difference in SWC but same Ta (i.e. late growing season of 2014 vs 2015) and significant 175 

difference in Ta but almost identical SWC (i.e. late growing season of 2014 vs 2018). We made the 176 

comparison in each group to exclude the influence of plant phenology, which can influence C fluxes 177 

significantly. The magnitude of the differences between C fluxes during the same periods from different 178 

years were analysed by the independent-sample T-test method. 179 

3. Results 180 

3.1 Meteorological variability 181 

Mean daily meteorological variables including Ta, P, SWC, and Rn exhibited evident seasonal variability 182 

except for VPD; these variables increased progressively in the early growing seasons, reached their 183 

maximum in July and decreased gradually afterwards (Fig. 2). Air temperature during the growing season 184 
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was 7.7 ± 2.6, 7.4 ± 2.6, 8.5 ± 2.9, and 9.2 ± 3.3 ℃ in 2014, 2015, 2017, and 2018, respectively while 185 

precipitation totalled 662.8, 521.4, 661.2, and 624.3 mm for the same years, falling primarily during the 186 

growing season. The precipitation measured during the late growing season of 2015 was only half of the 187 

amount measured in 2014, 2017, and 2018. The lower precipitation regime led to a marked decline in 188 

SWC, making the late growing season of 2015 the driest period among all growing seasons during the 189 

study period. The greatest difference in SWC occurred in the late growing season of 2014 and 2015, 190 

when Ta was the same at 6.8 ± 2.6 and 6.8 ± 2.5℃, respectively. Compared to 2014, SWC decreased by 191 

15.4% in the late growing season of 2015 (Fig. 2; Table S2). Meanwhile, during the same period, the 192 

SWC in 2014 and 2018 was almost identical (80.7 ± 4.1 and 80.8 ± 3.8, respectively), but the temperature 193 

difference was the largest (25%) compared to any other year (Fig. 2; Table S2).  194 

 195 

Figure 2. Five-day moving average meteorological variables (Ta, P, SWC, Rn, VPD) in the studied swamp 196 

alpine meadow. 197 

3.2 Diurnal, seasonal, and annual variability of CO2 fluxes  198 

During the growing season, NEE (Fig. 3, a1–d1) and GPP (Fig. 3, a3–d3) featured a clear peak of the 199 

diurnal variations; both fluxes reached their summit between 12:00 and 14:00 local time. Re, however, 200 

presented a lower daily variability. The rate of NEE, Re, and GPP during the growing season averaged -201 
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2.3 ± 0.3, 3.2 ± 1.0, and 5.5 ± 0.9 µmol m-2 s-1, respectively, for the entire study period (2014, 2015, 2017 202 

and 2018). For the late growing season, the lowest rate of net C uptake was measured in 2015 (-10.0 203 

µmol m-2 s-1), whereas 2014 (-12.4 µmol m-2 s-1), 2017 (-12.2 µmol m-2 s-1), and 2018 (-12.5 µmol m-2 s-204 

1) exhibited more negative NEE values (i.e. stronger net C uptake rate). Between the late growing season 205 

in 2015 and the late growing seasons in 2014, 2017 and 2018, there was a significant difference in the 206 

rates of Re (p<0.01) while no significant difference was found in GPP variability (p>0.05), suggesting 207 

that Re may be the component causing the difference observed in NEE. Specifically, the rates of Re in 208 

the late growing season of 2014 and 2015 were 2.4 ± 0.2 and 3.0 ± 0.2 µmol m-2 s-1, respectively, which 209 

indicated that during 2015 drier conditions generated a 25% higher Re compared to 2014. For the same 210 

periods, the rate of Re in warmer 2018 were 3.5 ± 0.2 µmol m-2 s-1, which was also significantly higher 211 

than 2014 (2.4 ± 0.2 µmol m-2 s-1). 212 

 213 

Figure 3. Diurnal variability of gap-filled NEE and partitioned Re and GPP in 2014, 2015, 2017 and 2018. 214 

NEE, Re, and GPP also exhibited a strong seasonal variability; the C fluxes gradually increased from 215 

low values in early June to maximum values in the middle of the growing season (late July to early 216 

August on average), followed by a decrease towards the end of the growing season (Fig. 4). The C sink 217 
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strength across the growing season was found lowest in 2018, followed by 2017, whereas 2014 and 2015 218 

exhibited relatively higher values (Fig. 4). Notably, the accumulated Re in the late growing season was 219 

significantly higher in 2015 compared to 2014 (P<0.05), when there was no significant difference in GPP 220 

(Fig. 4; Table S2). Moreover, the late growing season of 2015 witnessed the lowest SWC while keeping 221 

the same Ta compared to the same period in 2014 (Fig. 2; Table S2). The substantial decline of SWC 222 

observed in 2015 appeared to be responsible for the weaker observed C sink strength. On the other hand, 223 

Ta in the late growing season of 2018 was the highest for the same period among all the years while the 224 

SWC remained the same as 2014 (Fig. 2). The late growing season of 2018 showed overall higher GPP, 225 

Re, and lower net C uptake than 2014. Significantly higher Re in 2018 caused by warmer temperatures 226 

eventually led to a decrease of the C sink capacity (Fig. 4; Table S2).  227 

 228 

Figure 4. Seasonal variability of daily 5-day moving average daily NEE, Re, and GPP in the swamp alpine 229 

meadow. 230 

3.3 The importance of environmental forcing controlling C fluxes 231 

Our data processed by a machine learning technique suggest that the relative importance of the primary 232 

environmental drivers (Rn, Ta, VPD, and SWC) regulating terrestrial C fluxes varies diurnally, 233 
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seasonally, and interannually in this swamp meadow of QTP (Fig. 5). The diurnal variability of NEE and 234 

GPP was mostly driven by Ta (Fig. 5), especially in the central hours of the day between 11:00 and 15:00 235 

while Re showed a fairly lower temperature dependence compared to NEE and GPP (Fig. 5). SWC was 236 

a relatively more important than air temperature controlling the diurnal variability of respiration (Fig. 5). 237 

The seasonal variability shaping the terrestrial C fluxes are regulated not only by meteorological 238 

variables but also by plant phenology. To separate the role of meteorological variables from phenology, 239 

we also carried out a random forest analysis every fortnight and assumed that plant phenology changed 240 

little during this time span (Fig. 5; seasonal variability). The analyses based on random forest revealed a 241 

distinct seasonal pattern from June to September, pointing to a marked contribution of net radiation over 242 

NEE and GPP (Fig. 5). Interestingly, Re was found mostly regulated by SWC. On an annual scale, the 243 

contribution patterns of each environmental driver to the variations of C fluxes are similar to the ones 244 

found at seasonal scale. The interannual variability of NEE and GPP were controlled more clearly by 245 

incoming radiation while soil moisture revealed a stronger relative importance over Re (Fig. 5). Overall, 246 

SWC dynamics seem to be the most important variable explaining the variability observed in the Re data 247 

(Fig. 5), suggesting that soil moisture plays an essential role on diurnal, seasonal, and interannual basis 248 

in this cold swamp meadow ecosystem. Note also that Ta played a secondary role controlling the Re at 249 

all assessed time scales (Fig. 5).  250 
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251 

Figure 5. Contribution to diurnal, seasonal, and annual variation of NEE, GPP, and Re from different 252 

environmental drivers (Rn (yellow), Ta (orange), SWC (blue), and VPD (green)). Solid lines (diurnal and 253 

seasonal variability) and bars with error bars (annual variability) both illustrate the average ± standard 254 

deviation of the importance across 1000 decision trees. Annual variability refers to the variability of the 255 

integrated growing season of 2014, 2015, 2017, and 2018. 256 

4. Discussion 257 

The results of this study demonstrate that ecosystem C sequestration is regulated not only by radiation 258 

and temperature but also by soil moisture in the alpine swamp meadow site studied herein. The effects 259 

of soil water content and temperature on C fluxes on diurnal, seasonal, and annual scales are therefore 260 

discussed in detail below. 261 
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4.1 Low soil moisture is associated with enhanced ecosystem respiration 262 

A previous study in alpine swamp meadow ecosystems found that water stress may be the key limiting 263 

factor leading to a decline in photosynthetic rate at noon with a low SWC of 6–21% (Zhang et al., 2018). 264 

In this alpine swamp, the soil layer maintained a relatively higher SWC due to the frequent precipitation 265 

during the growing season. SWC was always greater than 70% during the entire study period (Fig. 2). 266 

Therefore, microbial activity, and thus heterotrophic respiration were likely suppressed by the anaerobic 267 

environment due to saturated soil water condition. At this site, SWC was found a more important variable 268 

than temperature controlling the variability of ecosystem respiration at different time aggregations (Fig. 269 

5). Our results suggest that even under water-saturated conditions, the C dynamics of this alpine swamp 270 

meadow are still highly sensitive to changes in soil moisture and could therefore be significantly 271 

influenced by future changes in water supply (Li et al., 2015). In fact, previous studies have stressed that 272 

soil moisture will likely interact with temperature to affect ecosystem respiration (Han et al., 2013) and 273 

therefore modify the overall C sink strength. 274 

To better understand the underlying mechanisms around how SWC interacts with the C fluxes in the 275 

studied alpine swamp meadow ecosystem, we selected a specific group of data for further evaluation. 276 

The group contains two late growing season periods which have significant difference in SWC but no 277 

significant difference in Ta (Fig. 6; Table S2).  278 

The most significant difference in C fluxes between the late growing season of 2014 and 2015 was 279 

observed in Re (p<0.05). Additionally, on both diurnal and seasonal scales, a 15.4% decrease of SWC in 280 

the late growing season of 2015 resulted in a 25.7% increase of Re and a 19.4% decrease in net C uptake 281 

compared to 2014 (Figs. 6a, b; Table S2). This finding suggests that drier conditions likely prevented 282 

this alpine swamp meadow from water-logged states, thereby strengthening soil respiration due to 283 

improved soil aeration (Wang et al., 2014). According to literature, the intensification of anaerobic 284 

conditions due to water saturated soil can be responsible for weaker respiratory losses (Jansson and 285 

Hofmockel, 2020).  286 

There is evidence that excessive soil water can negatively affect plant physiological and ecological 287 

processes by, for example, insufficient supply of metabolic substrates and the production of toxic 288 

substances (Jackson and Colmer, 2005), which may reduce the overall plant photosynthetic efficiency 289 
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(Xu and Zhou, 2011). Although there was no significant difference between the late growing season GPP 290 

of 2015 and 2014 in terms of both daily accumulated GPP and diurnal rates of GPP, the decline observed 291 

in SWC during September 2015 (the driest month with 65.1% SWC) led to a 11% increase of daily 292 

accumulated GPP (Fig. S1; Table S3). The excess of SWC in 2014 caused an inundation of the 293 

aboveground plant domain, which also likely contributed to the lower value in GPP by reducing plant 294 

photosynthetic efficiency (Cronk et al., 2001; Hirota et al., 2006).  295 

Since the increase of GPP could not offset the increase in Re, September 2015 and the late growing 296 

season of 2015 experienced a lower C sink strength. Although the SWC in September 2015 was much 297 

greater than the 6–21% range reported by Zhang et al. (2018), our data suggest that a 22.2% reduction in 298 

SWC in September 2015 resulted in a 51.6% decline in net C uptake rate compared to September 2014 299 

(Fig. S1; Table S3). There is evidence from literature that the rates of net C uptake in alpine wetlands 300 

during the growing season can be lower under drier conditions (Hao et al., 2011), indicating that this 301 

alpine swamp meadow ecosystem may be adapted to high levels of SWC (Li et al., 2015), but also that 302 

drier conditions may not always favour net C uptake in the cold-adapted alpine swamp meadow 303 

ecosystems. Higher SWC may limit the diffusion of oxygen from the atmosphere to the soil, inhibiting 304 

the activity of microorganisms and reducing the decomposition rate of soil organic matter, decreasing 305 

the nutrients in the soil, and consequently reducing the photosynthetic in alpine wetlands (Chimner and 306 

Cooper, 2003). Our comparisons suggest that drying can weaken the overall C sink strength in this alpine 307 

swamp meadow ecosystem. Therefore, we conclude that the large C sink strength observed in this alpine 308 

swamp meadow of the QTP is largely attributed to the inhibiting effects of the nearly-saturated soil 309 

condition on C release. Wetlands are predicted to experience lower water tables due to permafrost 310 

degradation in the Tibetan Plateau and, therefore, permafrost thaw-induced wetland drying could 311 

enhance the response of C emissions to climate warming (Yu et al., 2020).  312 
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 313 

Figure 6. (a) Comparisons of the diurnal variations of environmental drivers (Ta, SWC, Rn, and VPD) and 314 

C fluxes (NEE, Re, and GPP) between the late growing season of 2014 and 2015. The shading represents the 315 

mean ± standard deviation of the presented variables. (b) Comparisons of the daily accumulated C fluxes 316 

(NEE, Re, and GPP) between the late growing season of 2014 and 2015. Note: late GS represents late (Aug.–317 

Sep.) growing season. 318 

4.2 Temperature increase leads to higher C losses rather than enhanced C uptake  319 

The important role played by temperature controlling C exchange has been extensively found in alpine 320 

marshland not only across the QTP (Qi et al., 2021), but also in other ecosystems such as low and high 321 

Arctic tundra (López-Blanco et al., 2017, 2020) and northern marshlands (Watson and Byrne, 2009). We 322 

therefore explored an additional comparison between the late growing season of 2014 and 2018 (Fig. 7; 323 

Table S2) where SWC was almost identical at both periods while temperature differed. Compared to 324 

2014, a 25.2% increase in Ta in the late growing season of 2018 led to joint larger GPP and Re fluxes 325 

(Fig. 7a, b; Table S2). Although both GPP and Re increased, the intensification in Re was greater than 326 

the one found in GPP, indicating that warmer temperatures had a stronger impact on ecosystem 327 

respiration, resulting in a decrease of the net C uptake (Fig. 7; Table S2). This comparison suggests that 328 
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future warming could weaken the overall C sink strength in this alpine swamp meadow ecosystem. 329 

Similar climate sensitivities have also been found in recent studies. For example, a study performed by 330 

Niu et al. (2017) in an alpine swamp meadow on the central Tibet Plateau suggests Re was more sensitive 331 

to increased temperature than GPP. This suggest that global warming may exacerbate future C releases 332 

in the alpine wetlands of the QTP (Niu et al., 2017; Zhu et al., 2020). However, other researchers have 333 

also reached different conclusion; for instance, Qi et al. (2021) found that GPP is consistently more 334 

sensitive than Re to changes of temperature at daily, seasonal, and annual scales, suggesting that cold 335 

conditions can act as strong constraint on C uptake in alpine marshlands. Additionally, an analysis based 336 

on a twenty-year warming experiment manipulated by Sistla et al. (2013) in an Arctic tundra ecosystem 337 

showed that the insensitive response of net C uptake to warming-induced conditions can be balanced by 338 

long-term variations in vegetation structure and composition together with soil thermodynamics, 339 

revealing a similar sensitivity to temperature triggered by a compensatory effect between photosynthesis 340 

and C losses. Similar correlated responses between GPP and Re balancing each other have also been 341 

found in low and high Arctic tundra sites (López-Blanco et al., 2017, 2020), a grassland in northeast 342 

China (Jiang et al., 2012), and an alpine meadow of the Qinghai-Tibet Plateau (Liu et al., 2018). 343 

Certainly, all these comparison results indicating inconsistent effects suggest that there are still large 344 

uncertainties regulating the responses of C fluxes to temperature variation and further work is still crucial.  345 
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 346 

Figure 7. (a) Comparisons of the diurnal variations of environmental drivers (Ta, SWC, Rn, and VPD) and 347 

C fluxes (NEE, Re, and GPP) between the late growing season of 2014 and 2018. The shading represents the 348 

mean ± standard deviation of the presented variables. (b) Comparisons of the daily accumulated C fluxes 349 

(NEE, Re, and GPP) between the late growing season of 2014 and 2018. Note: late GS represents late (Aug.–350 

Sep.) growing season. 351 

4.3 Impacts from the combined effect of warming and soil moisture changes on C exchange 352 

dynamics  353 

The QTP experienced a higher rates of temperature increase than that of the Northern Hemisphere 354 

average (Zhang et al., 2013). The effects triggered by climate-induced warming over NEE in this area 355 

have been argued to either increase or decrease the net C balance NEE, or even have no effect whatsoever 356 

(Ganjurjav et al., 2018; Li et al., 2020; Wu et al., 2011; Zhu et al., 2017). These inconsistent responses 357 

could be due to water limitations offsetting the C balance or even reversing the effect of elevated 358 

temperatures, which change the decomposition and photosynthetic processes (Wu et al., 2011; Yu et al., 359 

2013; Zhao et al., 2019). Alpine swamp meadows of the QTP have recently attracted much attention 360 

because they hold 5.9% (~ 1.98 Pg C) of the total grassland soil organic C (~ 33.52 Pg C). Such 361 
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ecosystems have the highest organic C density (~ 50 kg C m-2) and play an important role in the global 362 

C cycle (Niu et al., 2017). To test whether the observed SWC effects in this study were representative of 363 

other sites in the QTP and put it into a wider perspective, we examined the warming impacts on NEE in 364 

relation to ambient precipitation as a proxy for SWC (Liu et al., 2016).  365 

Our 4-year dataset revealed that this alpine swamp meadow functioned as a net C sink of -168.0 366 

± 62.5 gC m-2 y-1 at a 3571m asl. The NEE observations from this study were within the NEE ranges of 367 

previously studies in the similar alpine swamp meadows located across the QTP (-255.5 – 173.2 gC m-2 368 

y-1) (Table 2). In addition, the NEE estimates of this alpine swamp meadow show a stronger C sink 369 

strength than those from alpine meadows (-161.3 – 85.4 gC m-2 y-1) (Chai et al., 2017; Wang et al., 2017; 370 

Wu et al., 2020), alpine steppes (-30 – 21.8 gC m-2 y-1) (Wang et al., 2018; Wang et al., 2020a; Wang 371 

et al., 2020b; Wu et al., 2010), and alpine shrublands (-14 – -67 gC m-2 y-1) (Zhao et al., 2005, 2006). 372 

This is likely a result of the inhibiting effects of the nearly-saturated soil condition over soil respiration 373 

rather than by the lower temperatures (Sun et al., 2021). Therefore, in permanently or seasonally 374 

inundated swamp meadows, high SWC caused by relatively sufficient water supply may have triggered 375 

lower C loss rates further benefiting C preservation. The higher C sink strength at our site was likely 376 

attributed to higher precipitation and lower temperature, which created colder and more humid conditions 377 

than other sites (Table 2). It has been demonstrated in literature that cold and humid conditions favour 378 

stronger C sinks in alpine meadow ecosystems (Fu et al., 2009).  379 

The interannual comparison of the sites presented in Table 2 show that under low annual precipitation 380 

conditions (~ 300 mm), the joint effects of warming and reduced precipitation weakened the net C uptake 381 

at Damxung (Niu et al., 2017), and even turned the C sink of Xiaobo Lake wetland into a C source when 382 

comparing 2015 with 2012 and 2013 (Cao et al., 2017; Wu et al., 2018). Under relatively high annual 383 

precipitation (~ 500 mm), the joint effects of warming and increased precipitation also enhanced C 384 

release in Haibei site when comparing 2006 to 2004 and 2005 (Zhao et al., 2010). This indicates that net 385 

C uptake under warming conditions can be weakened even under high annual precipitation rates. 386 

Table 2 Comparison of annual NEE (gC m-2 y-1) at different sites in the QTP.  387 

Site Altitude (m) Ecosystem Year Ta (°C) P (mm) Annual NEE Reference 

Haibei (37º35′N, 101º20′E) 3200 AWM 2004 2.3 493.5 101.1 Zhao et al., 2010 
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2005 2.2 475.2 44.0 

2006 3.6 562.4 173.2 

Xiaopo Lake (36°42′N, 100°46′E) 3228 

 

AWM 2015 2.8 304.3 54.6 Wu et al., 2018 

2012 1.2 357.0  -225.6 Cao et al., 2017 

2013 1.2 357.0  -255.5 

Damxung (30°28′N, 91°4′E) 4285 ASM 2009 3.4  208.9  -148.5 Niu et al., 2017 

   2011 2.6 393.3 -190.8  

Haibei (37º35′N, 100º00′E) 3571 ASM 2014 -0.9 662.8 -240.3 This study 

2015 -0.6 521.4 -200.1 

2017 -0.5 661.2 -118.1  

2018 -0.3 624.3 -113.4 

Note: P denotes precipitation, AWM denotes Alpine Wetland Meadow and ASM represents Alpine Swamp Meadow. 388 

5. Conclusions 389 

The alpine swamp meadow from the QTP presented in this study has been found to act as a consistent 390 

and strong sink of CO2 (-168.0 ± 62.5 g C m-2 y-1). The results from a novel machine learning technique 391 

revealed that air temperature is the most important variable driving NEE and GPP at a diurnal scale, 392 

while incoming radiation has a stronger importance controlling the seasonal and interannual variability 393 

of the same fluxes. Soil moisture, however, has the largest influence over Re variability at diurnal, 394 

seasonal, and interannual scales, suggesting that soil water content is a key control on ecosystem 395 

respiration and overall C sink strength. In addition, air temperature plays a less important role in 396 

regulating the C exchange variability. This study reveals that both drying and warming can suppress net 397 

C uptake in water-saturated alpine swamp meadow ecosystems by enhancing ecosystem respiration. The 398 

response of net C uptake to climate warming further indicates that the forecasted warming in the QTP 399 

will not always increase the net C sink strength. Our results not only highlight the contributions of soil 400 

moisture in regulating C sequestration under high water conditions but also support future process-based 401 

modelling initiatives focusing on alpine swamp meadow ecosystem C dynamics. 402 

Data availability. Post-processed data and scripts used in this paper are available from the authors upon 403 

request (xyli@bnu.edu.cn). 404 
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