Effects of soil water content on carbon sink strength in an alpine swamp meadow of the northeastern Qinghai-Tibet Plateau

Junqi Wei¹,², Xiaoyan Li¹,²,³,⁴, Lei Liu⁵,⁶, Torben Røjle Christensen⁷, Zhiyun Jiang⁸, Yujun Ma⁹, Xiuchen Wu¹,², Hongyun Yao¹,², Efréñ López-Blanco¹⁰,⁷

¹ State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
² School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
³ Academy of Plateau Science and Sustainability, People’s Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining 810008, China
⁴ Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China
⁵ Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
⁶ College of Resources and Environment, University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
⁷ Department of Bioscience, Arctic Research Center, Aarhus University, Roskilde 4000, Denmark
⁸ School of Geography, South China Normal University, Guangzhou 510631, China
⁹ School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
¹⁰ Greenland Institute of Natural Resources, Department of Environment and Minerals, Nuuk 3900, Greenland

Corresponding to: Xiao-Yan Li (xyli@bnu.edu.cn)

Abstract. Predicted intensified climate warming will likely alter the ecosystem net carbon (C) uptake of the Qinghai-Tibet Plateau (QTP). Variations in C sink/source responses to climate warming have been linked to water availability; however, the mechanisms by which net C uptake responds to soil water content in water-saturated swamp meadow ecosystems remain unclear. To explore how soil moisture and other environmental drivers modulate net C uptake in the QTP, field measurements were conducted using the eddy covariance technique in 2014, 2015, 2017, and 2018. The alpine swamp meadow presented in this study was a consistent and strong C sink of CO₂ (-168.0 ± -62.5 gC m⁻² y⁻¹, average ± standard deviation) across the entire 4-year study period. A random forest machine-learning analysis suggests that the diurnal, seasonal, and annual variations of net ecosystem exchange (NEE) and gross primary productivity (GPP) were controlled by temperature and solar radiation. Ecosystem respiration (Re), however, was found mainly regulated by the variability of soil water content (SWC) at different temporal aggregations followed by temperature, the second contributing driver. We further explored how Re is controlled by nearly saturated soil moisture and temperature comparing two different periods featuring identical temperatures and significantly differences on SWC and vice versa. Our data suggest that,
despite the relatively abundant water supply, periods with a substantial decrease of SWC or increase of
temperature produced higher Re lowering the C sink strength. Our results reveal that nearly saturated
soil conditions during the warm seasons can help to maintain lower ecosystem respiration rates and thus
enhance the overall C sequestration capacity in this alpine swamp meadow. We argue that changes in
soil hydrological conditions induced by a warming climate near permafrost (or seasonal frozen layers)
may affect the C sink magnitude of wet and cold ecosystems through changes in soil hydrology and the
subsequent effect on respiration losses.

1. Introduction

Wetlands play a significant role in the global carbon (C) cycle due to the large amount of C stored in
their soils. The Qinghai-Tibet Plateau (QTP), with an average altitude of over 4,000 m a.s.l., has
approximately $10^4 \times 10^4$ km2 of natural wetlands, of which ~ 50% (4.9×10^4 km2) are alpine swamp
meadows. These ecosystems are predominantly located in permafrost areas and are typically soil
nutrient-rich and water-logged (Bai et al., 2019; Zhao et al., 2005). Climate change and human
disturbance can have profound consequences on permafrost regions (Biskaborn et al., 2019) and
significantly impact their hydrological regimes (Lafrenière and Lamoureux, 2019). Hydrological regimes
have an important role in controlling wetland functioning (Bohn et al., 2007; Christensen et al., 2003)
and the changes of hydrological regimes may put the wetland functioning of the QTP under pressure
(Hruby, 1999; Woodward and Wui, 2001; Foti et al., 2013).

The QTP is forecasted to be warmer and wetter in the future (Chen et al., 2015; Cheng et al., 2011).
Warming may accelerate the microbial breakdown of alpine soil organic C and subsequently increase
CO$_2$ emissions (Zhu et al., 2015a). Warming could also improve C sequestration capacity by enhancing
the photosynthetic inputs and growth rates of alpine plants (Fu et al., 2015). Therefore, the potential
increase of CO$_2$ emissions due to warming in alpine regions could be partially offset by enhanced C
uptake (Schuur et al., 2009), triggering different net C uptake responses to climate warming. For
example, an increase in temperature in the QTP has been associated with net C sinks in the Zoige alpine
wetlands (Kang et al., 2014) but also with net C sources in the Damxung alpine swamp meadow (Niu et
al., 2017).
According to recent studies in QTP alpine grasslands, water conditions such as soil water content (SWC) can be a key factor that changes water-use patterns and ecophysiological characteristics of alpine plants (Wu et al., 2019) and modulate the warming-mediated increase of ecosystem C uptake (Ganjurjav et al., 2016; Peng et al. 2014). Ecosystem C processes such as net C uptake and soil respiration may increase with SWC in dry environments, and decrease in water-logged environments (Quan et al., 2019; Taylor et al., 2017). Warming in conjunction with increased precipitation can turn an ecosystem from net source to a sink of C (Zhao et al., 2019), increasing both photosynthesis and respiration rates during warmer and wetter years (López-Blanco et al., 2017, 2018). However, when warming occurs in soils associated with low moisture, soil drought can change ecosystems from C sinks to sources (Ganjurjav et al., 2017).

Studies in QTP alpine meadows have indicated that warming significantly stimulates ecosystem net C uptake in wet years but does not affect ecosystem net C uptake in dry years because the positive effects of warming on net C uptake are compensated by the negative effects of lower soil moisture (Peng et al., 2014).

Although many studies on the QTP have focused on the alpine meadow ecosystem (Saito et al., 2009; Zhao et al., 2005, 2010; Zhu et al., 2015b), only a few experiments have been conducted to specifically characterise alpine swamp meadow ecosystem C dynamics. Alpine swamp meadow ecosystems are characterised by high SWC, and it remains unclear whether a decrease in SWC would alleviate the stress from saturated water on net C uptake or aggravate drought effects. Given that these ecosystems have high soil moisture compared to typical alpine meadows, the effects of warming and drying on the future C sink strength of the QTP ecosystem remain unknown. These questions and uncertainties require a detailed investigation to understand wetland C source/sink processes and future C sink strength variations (sign and magnitude). Therefore, the objectives of this study are to (i) quantify the diurnal, seasonal, and annual variations of net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (Re), (ii) quantify the relative importance of different key environmental drivers contributing to the variability observed of NEE, Re, and GPP, and (iii) analyse how these C fluxes respond to key environmental drivers such as temperature or soil moisture variation in a QTP alpine swamp meadow.
2. Materials and methods

2.1 Site description

The study site (37°35.75′ N, 100°00.47′ E, 3,571 m a.s.l.) is located in Gangcha County, Qinghai Province, in the north-eastern part of the QTP (Fig. 1a). The mean annual temperature and precipitation measured at the Gangcha National Weather Station were 0.1 ℃ and 389.4 mm between 1982 and 2011, respectively (Zhang et al., 2016). The site area has seasonal permafrost featuring frozen soils between January–March and November–December for a total of about 125–135 days (Zhang et al., 2014). The dominant species of the alpine swamp meadow ecosystem are *Kobresia pygmaea*, along with *Saussurea pulchra*, *Polygonum viviparum*, and *Potentilla saundersiana*. The average plant height at the experimental site is 7.4 ± 1.5 cm, with a 97 ± 2% coverage. Our study defined the growing season as the period between June and September. The early (June–July) and late (August–September) growing seasons, as they will be henceforth referred to, correspond with the early growing season and late growing seasons, respectively.

![Figure 1. (a) Location of the study site in the Qinghai Lake basin in the northeastern part of the QTP. (b) Eddy covariance system measuring water and CO₂ fluxes between the land surface and the atmosphere in the alpine swamp meadow.](https://doi.org/10.5194/bg-2021-193)

2.2 Field measurements

An Eddy Covariance (EC) system was installed at the study site (Fig. 1b) to measure the CO₂ fluxes at a sampling frequency of 10 Hz from 2014 to 2018. Data for 2016 was missing due to equipment malfunction. The EC system included an open-path CO₂/H₂O infrared gas analyser, which quantified fluctuations in water vapour and CO₂ fluxes. A 3-D sonic anemometer was also installed at a 2.0 m height above ground to directly measure horizontal and vertical wind velocity components (u, v, and w).
data were recorded with a data logger (Campbell Scientific Inc.). An automated meteorological station was installed near the EC station to measure meteorological variables such as air temperature (Ta; °C), precipitation (P; mm), net radiation (Rn; W m⁻²), wind speed (WS; m s⁻¹), wind direction (WD; º), relative humidity (RH; %), and vapour pressure deficit (VPD; hPa). The meteorological data were collected at one-minute intervals and subsequently resampled at 30-minute timesteps to keep pace with the EC data. More details on the in-situ instrument specifications are summarised in Table 1.

Table 1 Information about the sensors installed in the alpine swamp meadow.

<table>
<thead>
<tr>
<th>Sensor Names</th>
<th>Sensor type</th>
<th>Installation height/depth</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eddy Covariance</td>
<td>Open-path CO₂/H₂O infrared gas analyser</td>
<td>EC150</td>
<td>2.0 m</td>
</tr>
<tr>
<td></td>
<td>Three-dimensional sonic anemometer</td>
<td>CSAT3</td>
<td>2.0 m</td>
</tr>
<tr>
<td>Meteorological observation</td>
<td>Net radiation</td>
<td>NR Lite</td>
<td>1.8 m</td>
</tr>
<tr>
<td>Wind speed/direction</td>
<td>034B</td>
<td>2 m</td>
<td></td>
</tr>
<tr>
<td>Air temperature/humidity</td>
<td>083E-1-6</td>
<td>0.5 m, 1.5 m</td>
<td>MetOne, US</td>
</tr>
<tr>
<td>Atmosphere pressure</td>
<td>PTB110</td>
<td>In data acquisition box</td>
<td>Vaisala, Finland</td>
</tr>
<tr>
<td>Rain-gauge</td>
<td>7852M-AB</td>
<td>0.7 m</td>
<td>Davis, US</td>
</tr>
</tbody>
</table>

Soil water content (SWC; %) were measured at depths of 10, 20, 40, 60, and 100 cm from the soil surface with EC-H₂O sensors (Decagon Devices, USA) at a 10-minute frequency. The precision of the EC-H₂O sensors for soil moisture measurements was ± 0.03 m³ m⁻³. As the roots of Kobresia meadows are mainly distributed within the top 20 cm of soil, we focused only on the variation of SWC in the top 20 cm of the soil.

2.3 Eddy Covariance data processing

The half-hourly NEE of CO₂ data was calculated using the EddyPro software (version 5.2, LI-COR) from the 10-Hz raw data. During the calculation, three-dimensional rotation was used to correct the data by removing the effects of instrument tilt irregularity on airflow (Wilczak et al., 2001). Webb, Pearman, and Leuning (WPL) (Webb et al., 1980) correction was applied to calculate the averages of CO₂ covariance, rectifying the air density variations induced by heat and water vapour. The half-hourly flux data were quality-checked based on several filtering algorithms, including: (1) the rejection of outliers in sonic temperature, water vapour density, and CO₂ density (Li et al. 2008; Liu et al., 2011), (2) the elimination...
of data one hour before and after precipitation events (Li et al. 2008; Liu et al., 2011), (3) the removal of negative NEE during the non-growing season (from November to March) (Cao et al., 2017; Qi et al., 2021) attributed to the self-heating effect from EC instruments (Cao et al., 2017), and (4) the exclusion of measurements with weak turbulence conditions at night time. The weak turbulence periods were identified by bootstrapping friction velocity (u*) thresholds, as described by Papale et al. (2006). This approach effectively divided the data into 4-year and 7-temperature subsets with similar micro-meteorological conditions (except for u*). The u* thresholds (5%, 50%, and 95% of bootstrapping) were calculated specifically per year and temperature subset.

Based on those different subsets, we gap-filled and partitioned NEE (into GPP and Re) to spread the uncertainty variability emerged from the different u* threshold, similar to López-Blanco et al. (2017). All missing data were marked as -9999 (no data). Negative and positive NEE values represent sink and source of C, respectively. Additionally, a standardised mechanism to fill NEE gaps is needed for adequate data processing (Moffat et al., 2007). Therefore, this study adopted the method described by López-Blanco et al. (2020) using the marginal distribution sampling (MDS) algorithm in the REddyProc gap-filling tool (Reichstein et al., 2016), which was readapted from Reichstein et al. (2005). Finally, NEE was separated into GPP and Re applying the REddyProc partitioning algorithm (Reichstein et al., 2016) for further analyses. This partitioning method is based on the exponential regression of night-time respiration with temperature using the Lloyd-Taylor-Function (Lloyd and Taylor, 1994). Night-time periods were selected via current combined solar radiation and potential radiation thresholds based on the exact solar time, latitude, and longitude. REddyProc estimates the temperature sensitivity from a short-term period, and based on this short-term temperature sensitivity, it estimates the reference temperature in the continuous period of the entire dataset. These estimates were then used to calculate Re for day-time and night-time while GPP was estimated based on the difference between NEE and Re.

2.4 Identifying the importance of environmental drivers

In order to characterize how environmental conditions impact diurnal, seasonal, and interannual variability of NEE, GPP and Re at this alpine swamp meadow, we used a novel method based on machine learning.
Random forest (Breiman, 2001) is a machine learning technique that can be used to quantify and interpret the contribution of environmental drivers (covariates) to the variability of different C fluxes (response variables) by combining multiple individual regression trees. This technique has been increasingly utilized to upscale global C fluxes from eddy covariance data (Zeng et al., 2020) but also to evaluate controls on C cycle processes (Zhang et al., 2017; López-Blanco et al., 2017, 2020). Here, we calculate the relative importance of air temperature (Ta), net radiation (Rn), soil water content (SWC) and vapour pressure deficit (VPD) controlling the C sink strength, photosynthesis, and respiration variability. This random forest algorithm constructs multiple (1000 in this analysis) decision trees during training time with different random subsamples (with replacement) from the same input training dataset. In each cluster classified by random forest, the algorithm generates a multiple linear regression to characterize different C fluxes as a function of environmental drivers (López-Blanco et al., 2017, 2020). This algorithm version (Pedregosa et al., 2011) estimates the relative importance of each covariate between 0 and 100%, which correspond to the fraction of decision participating during data clustering. We used the random forest algorithm to evaluate the diurnal, seasonal, and annual patterns of relative importance of Ta, Rn, SWC, and VPD responsible for the variability of C fluxes. We used data from the June-September period aggregated per hour and we run multiple random forests per hour of the day, day of the year, and year, respectively (Table S1).

In order to further analyse the effect of SWC on C fluxes, we selected two groups of time stamps with significant difference in SWC but same Ta (i.e. late growing season of 2014 vs 2015) and significant difference in Ta but almost identical SWC (i.e. late growing season of 2014 vs 2018). We made the comparison in each group to exclude the influence of plant phenology, which can influence C fluxes significantly. The magnitude of the differences between C fluxes during the same periods from different years were analysed by the independent-sample T-test method.

3. Results

3.1 Meteorological variability

Mean daily meteorological variables including Ta, P, SWC, and Rn exhibited evident seasonal variability except for VPD; these variables increased progressively in the early growing seasons, reached their maximum in July and decreased gradually afterwards (Fig. 2). Air temperature during the growing season
was 7.7 ± 2.6, 7.4 ± 2.6, 8.5 ± 2.9, and 9.2 ± 3.3 °C in 2014, 2015, 2017, and 2018, respectively while precipitation totalled 662.8, 521.4, 661.2, and 624.3 mm for the same years, falling primarily during the growing season. The precipitation measured during the late growing season of 2015 was only half of the amount measured in 2014, 2017, and 2018. The lower precipitation regime led to a marked decline in SWC, making the late growing season of 2015 the driest period among all growing seasons during the study period. The greatest difference in SWC occurred in the late growing season of 2014 and 2015, when Ta was the same at 6.8 ± 2.6 and 6.8 ± 2.5 °C, respectively. Compared to 2014, SWC decreased by 15.4% in the late growing season of 2015 (Fig. 2; Table S2). Meanwhile, during the same period, the SWC in 2014 and 2018 was almost identical (80.7 ± 4.1 and 80.8 ± 3.8, respectively), but the temperature difference was the largest (25%) compared to any other year (Fig. 2; Table S2).

Figure 2. Five-day moving average meteorological variables (Ta, P, SWC, Rn, VPD) in the studied swamp alpine meadow.

3.2 Diurnal, seasonal, and annual variability of CO₂ fluxes

During the growing season, NEE (Fig. 3, a1–d1) and GPP (Fig. 3, a3–d3) featured a clear peak of the diurnal variations; both fluxes reached their summit between 12:00 and 14:00 local time. Re, however, presented a lower daily variability. The rate of NEE, Re, and GPP during the growing season averaged...
2.3 ± 0.3, 3.2 ± 1.0, and 5.5 ± 0.9 µmol m$^{-2}$ s$^{-1}$, respectively, for the entire study period (2014, 2015, 2017 and 2018). For the late growing season, the lowest rate of net C uptake was measured in 2015 (-10.0 µmol m$^{-2}$ s$^{-1}$), whereas 2014 (-12.4 µmol m$^{-2}$ s$^{-1}$), 2017 (-12.2 µmol m$^{-2}$ s$^{-1}$), and 2018 (-12.5 µmol m$^{-2}$ s$^{-1}$) exhibited more negative NEE values (i.e. stronger net C uptake rate). Between the late growing season in 2015 and the late growing seasons in 2014, 2017 and 2018, there was a significant difference in the rates of Re (p<0.01) while no significant difference was found in GPP variability (p>0.05), suggesting that Re may be the component causing the difference observed in NEE. Specifically, the rates of Re in the late growing season of 2014 and 2015 were 2.4 ± 0.2 and 3.0 ± 0.2 µmol m$^{-2}$ s$^{-1}$, respectively, which indicated that during 2015 drier conditions generated a 25% higher Re compared to 2014. For the same periods, the rate of Re in warmer 2018 was 3.5 ± 0.2 µmol m$^{-2}$ s$^{-1}$, which was also significantly higher than 2014 (2.4 ± 0.2 µmol m$^{-2}$ s$^{-1}$).

Figure 3. Diurnal variability of gap-filled NEE and partitioned Re and GPP in 2014, 2015, 2017 and 2018.

NEE, Re, and GPP also exhibited a strong seasonal variability; the C fluxes gradually increased from low values in early June to maximum values in the middle of the growing season (late July to early August on average), followed by a decrease towards the end of the growing season (Fig. 4). The C sink
strength across the growing season was found lowest in 2018, followed by 2017, whereas 2014 and 2015 exhibited relatively higher values (Fig. 4). Notably, the accumulated Re in the late growing season was significantly higher in 2015 compared to 2014 (P<0.05), when there was no significant difference in GPP (Fig. 4; Table S2). Moreover, the late growing season of 2015 witnessed the lowest SWC while keeping the same Ta compared to the same period in 2014 (Fig. 2; Table S2). The substantial decline of SWC observed in 2015 appeared to be responsible for the weaker observed C sink strength. On the other hand, Ta in the late growing season of 2018 was the highest for the same period among all the years while the SWC remained the same as 2014 (Fig. 2). The late growing season of 2018 showed overall higher GPP, Re, and lower net C uptake than 2014. Significantly higher Re in 2018 caused by warmer temperatures eventually led to a decrease of the C sink capacity (Fig. 4; Table S2).

Figure 4. Seasonal variability of daily 5-day moving average daily NEE, Re, and GPP in the swamp alpine meadow.

3.3 The importance of environmental forcing controlling C fluxes

Our data processed by a machine learning technique suggest that the relative importance of the primary environmental drivers (Rn, Ta, VPD, and SWC) regulating terrestrial C fluxes varies diurnally,
seasonally, and interannually in this swamp meadow of QTP (Fig. 5). The diurnal variability of NEE and GPP was mostly driven by Ta (Fig. 5), especially in the central hours of the day between 11:00 and 15:00, while Re showed a fairly lower temperature dependence compared to NEE and GPP (Fig. 5). SWC was a relatively more important than air temperature controlling the diurnal variability of respiration (Fig. 5).

The seasonal variability shaping the terrestrial C fluxes are regulated not only by meteorological variables but also by plant phenology. To separate the role of meteorological variables from phenology, we also carried out a random forest analysis every fortnight and assumed that plant phenology changed little during this time span (Fig. 5; seasonal variability). The analyses based on random forest revealed a distinct seasonal pattern from June to September, pointing to a marked contribution of net radiation over NEE and GPP (Fig. 5). Interestingly, Re was found mostly regulated by SWC. On an annual scale, the contribution patterns of each environmental driver to the variations of C fluxes are similar to the ones found at seasonal scale. The interannual variability of NEE and GPP were controlled more clearly by incoming radiation while soil moisture revealed a stronger relative importance over Re (Fig. 5). Overall, SWC dynamics seem to be the most important variable explaining the variability observed in the Re data (Fig. 5), suggesting that soil moisture plays an essential role on diurnal, seasonal, and interannual basis in this cold swamp meadow ecosystem. Note also that Ta played a secondary role controlling the Re at all assessed time scales (Fig. 5).
4. Discussion

The results of this study demonstrate that ecosystem C sequestration is regulated not only by radiation and temperature but also by soil moisture in the alpine swamp meadow site studied herein. The effects of soil water content and temperature on C fluxes on diurnal, seasonal, and annual scales are therefore discussed in detail below.
4.1 Low soil moisture is associated with enhanced ecosystem respiration

A previous study in alpine swamp meadow ecosystems found that water stress may be the key limiting factor leading to a decline in photosynthetic rate at noon with a low SWC of 6–21% (Zhang et al., 2018). In this alpine swamp, the soil layer maintained a relatively higher SWC due to the frequent precipitation during the growing season. SWC was always greater than 70% during the entire study period (Fig. 2). Therefore, microbial activity, and thus heterotrophic respiration were likely suppressed by the anaerobic environment due to saturated soil water condition. At this site, SWC was found a more important variable than temperature controlling the variability of ecosystem respiration at different time aggregations (Fig. 5). Our results suggest that even under water-saturated conditions, the C dynamics of this alpine swamp meadow are still highly sensitive to changes in soil moisture and could therefore be significantly influenced by future changes in water supply (Li et al., 2015). In fact, previous studies have stressed that soil moisture will likely interact with temperature to affect ecosystem respiration (Han et al., 2013) and therefore modify the overall C sink strength.

To better understand the underlying mechanisms around how SWC interacts with the C fluxes in the studied alpine swamp meadow ecosystem, we selected a specific group of data for further evaluation. The group contains two late growing season periods which have significant difference in SWC but no significant difference in Ta (Fig. 6; Table S2). The most significant difference in C fluxes between the late growing season of 2014 and 2015 was observed in Re (p<0.05). Additionally, on both diurnal and seasonal scales, a 15.4% decrease of SWC in the late growing season of 2015 resulted in a 25.7% increase of Re and a 19.4% decrease in net C uptake compared to 2014 (Figs. 6a, b; Table S2). This finding suggests that drier conditions likely prevented this alpine swamp meadow from water-logged states, thereby strengthening soil respiration due to improved soil aeration (Wang et al., 2014). According to literature, the intensification of anaerobic conditions due to water saturated soil can be responsible for weaker respiratory losses (Jansson and Hofmockel, 2020).

There is evidence that excessive soil water can negatively affect plant physiological and ecological processes by, for example, insufficient supply of metabolic substrates and the production of toxic substances (Jackson and Colmer, 2005), which may reduce the overall plant photosynthetic efficiency.
(Xu and Zhou, 2011). Although there was no significant difference between the late growing season GPP of 2015 and 2014 in terms of both daily accumulated GPP and diurnal rates of GPP, the decline observed in SWC during September 2015 (the driest month with 65.1% SWC) led to a 11% increase of daily accumulated GPP (Fig. S1; Table S3). The excess of SWC in 2014 caused an inundation of the aboveground plant domain, which also likely contributed to the lower value in GPP by reducing plant photosynthetic efficiency (Cronk et al., 2001; Hirota et al., 2006).

Since the increase of GPP could not offset the increase in Re, September 2015 and the late growing season of 2015 experienced a lower C sink strength. Although the SWC in September 2015 was much greater than the 6–21% range reported by Zhang et al. (2018), our data suggest that a 22.2% reduction in SWC in September 2015 resulted in a 51.6% decline in net C uptake rate compared to September 2014 (Fig. S1; Table S3). There is evidence from literature that the rates of net C uptake in alpine wetlands during the growing season can be lower under drier conditions (Hao et al., 2011), indicating that this alpine swamp meadow ecosystem may be adapted to high levels of SWC (Li et al., 2015), but also that drier conditions may not always favour net C uptake in the cold-adapted alpine swamp meadow ecosystems. Higher SWC may limit the diffusion of oxygen from the atmosphere to the soil, inhibiting the activity of microorganisms and reducing the decomposition rate of soil organic matter, decreasing the nutrients in the soil, and consequently reducing the photosynthetic in alpine wetlands (Chimner and Cooper, 2003). Our comparisons suggest that drying can weaken the overall C sink strength in this alpine swamp meadow ecosystem. Therefore, we conclude that the large C sink strength observed in this alpine swamp meadow of the QTP is largely attributed to the inhibiting effects of the nearly-saturated soil condition on C release. Wetlands are predicted to experience lower water tables due to permafrost degradation in the Tibetan Plateau and, therefore, permafrost thaw-induced wetland drying could enhance the response of C emissions to climate warming (Yu et al., 2020).
Figure 6. (a) Comparisons of the diurnal variations of environmental drivers (Ta, SWC, Rn, and VPD) and C fluxes (NEE, Re, and GPP) between the late growing season of 2014 and 2015. The shading represents the mean ± standard deviation of the presented variables. (b) Comparisons of the daily accumulated C fluxes (NEE, Re, and GPP) between the late growing season of 2014 and 2015. Note: late GS represents late (Aug.–Sep.) growing season.

4.2 Temperature increase leads to higher C losses rather than enhanced C uptake

The important role played by temperature controlling C exchange has been extensively found in alpine marshland not only across the QTP (Qi et al., 2021), but also in other ecosystems such as low and high Arctic tundra (López-Blanco et al., 2017, 2020) and northern marshlands (Watson and Byrne, 2009). We therefore explored an additional comparison between the late growing season of 2014 and 2018 (Fig. 7; Table S2) where SWC was almost identical at both periods while temperature differed. Compared to 2014, a 25.2% increase in Ta in the late growing season of 2018 led to joint larger GPP and Re fluxes (Fig. 7a, b; Table S2). Although both GPP and Re increased, the intensification in Re was greater than the one found in GPP, indicating that warmer temperatures had a stronger impact on ecosystem respiration, resulting in a decrease of the net C uptake (Fig. 7; Table S2). This comparison suggests that
future warming could weaken the overall C sink strength in this alpine swamp meadow ecosystem. Similar climate sensitivities have also been found in recent studies. For example, a study performed by Niu et al. (2017) in an alpine swamp meadow on the central Tibet Plateau suggests \(R_e \) was more sensitive to increased temperature than GPP. This suggest that global warming may exacerbate future C releases in the alpine wetlands of the QTP (Niu et al., 2017; Zhu et al., 2020). However, other researchers have also reached different conclusion; for instance, Qi et al. (2021) found that GPP is consistently more sensitive than \(R_e \) to changes of temperature at daily, seasonal, and annual scales, suggesting that cold conditions can act as strong constraint on C uptake in alpine marshlands. Additionally, an analysis based on a twenty-year warming experiment manipulated by Sistla et al. (2013) in an Arctic tundra ecosystem showed that the insensitive response of net C uptake to warming-induced conditions can be balanced by long-term variations in vegetation structure and composition together with soil thermodynamics, revealing a similar sensitivity to temperature triggered by a compensatory effect between photosynthesis and C losses. Similar correlated responses between GPP and \(R_e \) balancing each other have also been found in low and high Arctic tundra sites (López-Blanco et al., 2017, 2020), a grassland in northeast China (Jiang et al., 2012), and an alpine meadow of the Qinghai-Tibet Plateau (Liu et al., 2018).

Certainly, all these comparison results indicating inconsistent effects suggest that there are still large uncertainties regulating the responses of C fluxes to temperature variation and further work is still crucial.
Figure 7. (a) Comparisons of the diurnal variations of environmental drivers (Ta, SWC, Rn, and VPD) and C fluxes (NEE, Re, and GPP) between the late growing season of 2014 and 2018. The shading represents the mean ± standard deviation of the presented variables. (b) Comparisons of the daily accumulated C fluxes (NEE, Re, and GPP) between the late growing season of 2014 and 2018. Note: late GS represents late (Aug.–Sep.) growing season.

4.3 Impacts from the combined effect of warming and soil moisture changes on C exchange dynamics

The QTP experienced a higher rates of temperature increase than that of the Northern Hemisphere average (Zhang et al., 2013). The effects triggered by climate-induced warming over NEE in this area have been argued to either increase or decrease the net C balance NEE, or even have no effect whatsoever (Ganjurjav et al., 2018; Li et al., 2020; Wu et al., 2011; Zhu et al., 2017). These inconsistent responses could be due to water limitations offsetting the C balance or even reversing the effect of elevated temperatures, which change the decomposition and photosynthetic processes (Wu et al., 2011; Yu et al., 2013; Zhao et al., 2019). Alpine swamp meadows of the QTP have recently attracted much attention because they hold 5.9% (~ 1.98 Pg C) of the total grassland soil organic C (~ 33.52 Pg C). Such
ecosystems have the highest organic C density (~ 50 kg C m$^{-2}$) and play an important role in the global C cycle (Niu et al., 2017). To test whether the observed SWC effects in this study were representative of other sites in the QTP and put it into a wider perspective, we examined the warming impacts on NEE in relation to ambient precipitation as a proxy for SWC (Liu et al., 2016).

Our 4-year dataset revealed that this alpine swamp meadow functioned as a net C sink of -168.0 ± 62.5 gC m$^{-2}$ y$^{-1}$ at a 3571 m asl. The NEE observations from this study were within the NEE ranges of previously studies in the similar alpine swamp meadows located across the QTP (-255.5 – 173.2 gC m$^{-2}$ y$^{-1}$) (Table 2). In addition, the NEE estimates of this alpine swamp meadow show a stronger C sink strength than those from alpine meadows (-161.3 – 85.4 gC m$^{-2}$ y$^{-1}$) (Chai et al., 2017; Wang et al., 2017; Wu et al., 2020), alpine steppes (-30 – 21.8 gC m$^{-2}$ y$^{-1}$) (Wang et al., 2018; Wang et al., 2020a; Wang et al., 2020b; Wu et al., 2010), and alpine shrublands (-14 – -67 gC m$^{-2}$ y$^{-1}$) (Zhao et al., 2005, 2006). This is likely a result of the inhibiting effects of the nearly-saturated soil condition over soil respiration rather than by the lower temperatures (Sun et al., 2021). Therefore, in permanently or seasonally inundated swamp meadows, high SWC caused by relatively sufficient water supply may have triggered lower C loss rates further benefiting C preservation. The higher C sink strength at our site was likely attributed to higher precipitation and lower temperature, which created colder and more humid conditions than other sites (Table 2). It has been demonstrated in literature that cold and humid conditions favour stronger C sinks in alpine meadow ecosystems (Fu et al., 2009).

The interannual comparison of the sites presented in Table 2 show that under low annual precipitation conditions (~ 300 mm), the joint effects of warming and reduced precipitation weakened the net C uptake at Damxung (Niu et al., 2017), and even turned the C sink of Xiaobo Lake wetland into a C source when comparing 2015 with 2012 and 2013 (Cao et al., 2017; Wu et al., 2018). Under relatively high annual precipitation (~ 500 mm), the joint effects of warming and increased precipitation also enhanced C release in Haibei site when comparing 2006 to 2004 and 2005 (Zhao et al., 2010). This indicates that net C uptake under warming conditions can be weakened even under high annual precipitation rates.

Table 2 Comparison of annual NEE (gC m$^{-2}$ y$^{-1}$) at different sites in the QTP.

<table>
<thead>
<tr>
<th>Site</th>
<th>Altitude (m)</th>
<th>Ecosystem</th>
<th>Year</th>
<th>$Ta,^\circ\mathrm{C}$</th>
<th>P,mm</th>
<th>Annual NEE</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haibei (37º35′N, 101º20′E)</td>
<td>3200</td>
<td>AWM</td>
<td>2004</td>
<td>2.3</td>
<td>493.5</td>
<td>101.1</td>
<td>Zhao et al., 2010</td>
</tr>
</tbody>
</table>
5. Conclusions

The alpine swamp meadow from the QTP presented in this study has been found to act as a consistent and strong sink of CO$_2$ (-168.0 ± 62.5 g C m$^{-2}$ y$^{-1}$). The results from a novel machine learning technique revealed that air temperature is the most important variable driving NEE and GPP at a diurnal scale, while incoming radiation has a stronger importance controlling the seasonal and interannual variability of the same fluxes. Soil moisture, however, has the largest influence over Re variability at diurnal, seasonal, and interannual scales, suggesting that soil water content is a key control on ecosystem respiration and overall C sink strength. In addition, air temperature plays a less important role in regulating the C exchange variability. This study reveals that both drying and warming can suppress net C uptake in water-saturated alpine swamp meadow ecosystems by enhancing ecosystem respiration. The response of net C uptake to climate warming further indicates that the forecasted warming in the QTP will not always increase the net C sink strength. Our results not only highlight the contributions of soil moisture in regulating C sequestration under high water conditions but also support future process-based modelling initiatives focusing on alpine swamp meadow ecosystem C dynamics.

Data availability. Post-processed data and scripts used in this paper are available from the authors upon request (xyli@bnu.edu.cn).
Author contribution

JQ, XL, LL, TRC, XW, and ELB designed the research. JQ, LL, and ELB processed the data and performed the analyses. YJ and HY helped collect the data. JQ and ELB created the visualization of the outputs. JQ, XL, and ELB prepared the manuscript with contributions (writing, review, and edition) from LL, TRC, and ZJ.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements

The study was financially supported by the second Tibetan Plateau Scientific Expedition and Research Program (STEP 2019QZKK0306), the National Natural Science Foundation of China (NSFC 41730854 & 41971029), the Strategic Priority Research Program of Chinese Academy of Sciences (XDA20100102), and projects from the state Key Laboratory of Earth Surface Processes and Resource Ecology. We also gratefully acknowledge the financial support from the China Scholarship Council (No. 201906040130) and the Faculty of Technical Science from Aarhus University. Additionally, ELB was funded by the Greenland Research Council, grant number 80.35, financed by the “Danish Program for Arctic Research.

References

Jackson, M. B. and Colmer, T. D.: Response and adaptation by plants to flooding stress - Preface, Annals

Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal,

Zhang, S.-Y., Li, X.-Y., Zhao, G.-Q., and Huang, Y.-M.: Surface energy fluxes and controls of evapotranspiration over the typical ecosystems in the Qinghai Lake watershed, Ph.D. thesis, College of Resources Science and Technology, Beijing Normal University, China, 115 pp., 2014.

