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Abstract. Disturbances, such as extreme weather events, fires, floods, and biotic agents, can have strong impacts on the 

dynamics and structures of tropical forests. In the future, the intensity of disturbances will likely further increase, which may 

have more serious consequences for tropical forests than those we have already observed. Thus, quantifying aboveground 

biomass loss of forest stands due to stem mortality (hereafter biomass loss rate) is important for the estimation of the role of 

tropical forests in the global carbon cycle. So far, the long-term impacts of altered stem mortality on rates of biomass loss have 15 

been described little.  

This study aims to analyse the consequences of long-term elevated stem mortality rates on forest dynamics and biomass loss 

rate. We applied an individual-based forest model and investigated the impacts of permanently increased stem mortality rates 

on the growth dynamics of humid, terra firme forests in French Guiana. Here, we focused on biomass, leaf area index (LAI), 

forest height, productivity, forest age, quadratic mean stem diameter, and biomass loss rate. Based on the simulation data, we 20 

developed a multiple linear regression model to estimate biomass loss rates of forests in different successional states from the 

various forest attributes. 

The findings of our simulation study indicated that increased stem mortality altered the succession patterns of forests in favour 

of fast-growing species, which increased the old-growth forests’ gross primary production, though net primary production 

remained stable. The stem mortality rate had a strong influence on the functional species composition and tree size distribution, 25 

which led to lower values in LAI, biomass, and forest height at the ecosystem level. We observed a strong influence of a 

change in stem mortality on biomass loss rate. Assuming a doubling of stem mortality rate, biomass loss rate increased from 

3.2% y-1 to 4.5% y-1 at equilibrium. We also obtained a multidimensional relationship that allowed for the estimation of biomass 

loss rates from forest height and LAI. Via an example, we applied this relationship to remote sensing data of LAI and forest 

height to map biomass loss rates for French Guiana. We estimated a countrywide mean biomass loss rate of 3.0% per year. 30 
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The approach described here provides a novel methodology for quantifying biomass loss rates, taking the successional state of 

tropical forests into account. Quantifying biomass loss rates may help to reduce uncertainties in the analysis of the global 

carbon cycle. 

Keywords. FORMIND forest model, MODIS MCD15A2H Version 6 LAI, forest height map, GLAS aboard ICESat, French 

Guiana, biomass loss map, biomass turnover time 35 
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1. Introduction 40 

Tropical forests represent an important pool in the global carbon cycle, as they store approximately 55% of the amount of 

global forest carbon (471 ± 93 PgC) in their living biomass  (Pan et al., 2011). Intact tropical forests assimilate an average of 

0.96 ± 0.46 PgC of carbon per year (Hubau et al., 2020). This carbon sink behaviour of tropical forests has considerably 

reduced the growth rate of atmospheric carbon dioxide (Friedlingstein et al., 2019; Le Quéré et al., 2016). However, the carbon 

assimilation capacity of forests is affected by stem mortality due to disturbances, which can cause rapid, extensive carbon loss 45 

(Chambers et al., 2013; Fisher et al., 2008; Korner, 2003; Pugh et al., 2019; Seidl et al., 2014). Increased stem mortality due 

to disturbances has been related to a reduction in the carbon sink of tropical forests (Brienen et al., 2015; Hubau et al., 2020). 

A number of studies have discussed different climate-controlled mortality drivers, such as temperature (Clark et al., 2010), 

vapour pressure deficit (Trenberth et al., 2014), drought (Fauset et al., 2019; Phillips et al., 2010), and wind-throw (Chambers 

et al., 2009; Magnabosco Marra et al., 2016; Marra et al., 2014; Negrón-Juárez et al., 2010, 2018; Rifai et al., 2016; Silvério 50 

et al., 2019). In addition, mechanical disturbances, such as insect calamities (Coley and Kursar, 2014), fires (Barlow et al., 

2003; Brando et al., 2014; Slik et al., 2010), and lianas (Ingwell et al., 2010; Nepstad et al., 2007a; Wright et al., 2015), may 

also lead to increased stem mortality. The expected increase in the frequency and intensity of those disturbances may result in 

an overall increase in stem mortality and its associated physiological mechanisms (McDowell et al., 2018). Higher levels of 

stem mortality thus present a major risk to climate mitigation efforts (e.g., REDD+: Reducing Emissions from Deforestation 55 

and Forest Degradation), as reductions in carbon assimilation rates and a decrease in the carbon stocks of tropical forests could 

counteract attempts to compensate for climate change (Gumpenberger et al., 2010; Körner, 2017; Le Page et al., 2013).  

Mortality is a complex process because the causes leading to tree death can be diverse. Trees can die naturally from senescence 

or from forest disturbances which may be abrupt or continuous and may have abiotic or biotic, allogenic or autogenic, as well 

as extrinsic or intrinsic causes (Franklin et al., 1987; McDowell et al., 2018). Furthermore, drivers of stem mortality often 60 

occur in combination, so the primary factors of death are not obvious (Franklin et al., 1987; McDowell et al., 2018). Stem 

mortality leads to temporal changes in stand structure, tree species composition, and releases of resources, particularly biomass 

(Franklin et al., 1987; Hülsmann et al., 2018). Consequently, tree death affects important forest growth processes, including 

tree growth and establishment, which are influenced by species-specific competition strategies (Snell et al., 2014) as well as 

by environmental and competitive factors such as light availability (Kuptz et al., 2010; Poorter, 1999; Uriarte et al., 2004). The 65 

influence of stem mortality on forest growth dynamics is determined by the disturbance intensity, which can range from the 

temporary loss of vitality to the mortality (Kindig and Stoddart, 2003) of individual trees, forest stands, and entire landscapes. 

Finally, stem mortality events are heterogeneously distributed such that spatial patterns can be scattered or clustered (Franklin 

et al., 1987). Empirical studies have already analysed the effects of short-term disturbances (i.e., intra-annual or over a few 

years) on increases in tropical stem mortality (e.g., Barlow et al., 2003; Brando et al., 2014; Chambers et al., 2009, 2013; 70 

Doughty et al., 2015a; Holzwarth et al., 2013; Magnabosco Marra et al., 2016; Marra et al., 2014; McDowell et al., 2018; 

Negrón-Juárez et al., 2010, 2017; Nepstad et al., 2007b; Phillips and Brienen, 2017; Slik et al., 2010; Stovall et al., 2019; 
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Wright et al., 2015). Nevertheless, using empirical studies that are limited in space and time, it is difficult to quantify the long-

term effects of permanently increased stem mortality levels and to assess the consequences of such alterations on the dynamics, 

the structures, and the successional states of forests. Also, new remote sensing technologies offer enhanced potential for 75 

measuring the vertical and horizontal structures of forests at country to global scales (e.g., Bi et al., 2015; Hall et al., 2011; 

Lefsky et al., 2002, 2005; Myneni et al., 2015; Simard et al., 2011; Le Toan et al., 2011). Remote sensing products have 

previously been used for large-scale identification of stem mortality following disturbances (e.g., Pugh et al., 2019; Senf and 

Seidl, 2020); however, the estimation of biomass loss rates due to stem mortality for forests at different states remains still 

uncertain. 80 

In this context, individual-based forest gap models offer an approach to analysing forest dynamics (Botkin et al., 1972; 

Bugmann, 2001; Bugmann et al., 2019; Fischer et al., 2016; Shugart, 2002). Individual-based forest models are parameterised 

with forest inventory data to allow for the investigation of forest growth dynamics over longer periods. By simulating the 

growth, establishment, mortality, and competition among trees within a forest, these models can contribute in estimating the 

biomass gain and loss of tropical forests (e.g., Hiltner et al., 2018, 2021; Maréchaux and Chave, 2017). As a result of gap 85 

formation after tree falling (Fischer et al., 2016; Huth et al., 1998), simulation areas consist of a mosaic of forest stands on 

which the vertical and horizontal structures and dynamics of forests in different successional states are modelled (Botkin, 1993; 

Botkin et al., 1972; Bugmann, 2001; Fischer et al., 2016; Shugart, 1984). Structural state variables describing successional 

states of forests, such as tree size distributions and functional tree species compositions, play a major role in the estimation of 

the carbon budgets of forest stands and entire landscapes (Bohn and Huth, 2017; Fischer et al., 2018, 2019; Rödig et al., 2017, 90 

2018, 2019; Rüger et al., 2020). Successional state variables of forests can be derived on large spatial scales (e.g., country to 

global levels) through a combination of individual-based forest gap modelling and remote sensing (Rödig et al., 2017, 2019; 

Shugart et al., 2015, 2018), as this allows for a quantification of the spatial variation in forest structure due to stem mortality 

(Rödig et al., 2017). The combination of individual-based forest gap models and remote sensing methods may also provide 

information on the spatial distribution of the annual rates of aboveground biomass loss due to stem mortality (hereafter biomass 95 

loss rate). 

The aims of this study are to investigate the impacts of permanently increased stem mortality rates on forest dynamics, to 

provide a framework for estimating biomass loss rates in terra firme forests at different successional states, and to derive a 

sample map of biomass loss for an entire country (i.e., French Guiana). This biomass loss map represents an application 

example to demonstrate the synergetic benefits of linking an artificial dataset derived from an individual-based forest model 100 

with remote sensing data. Here, we address the following research questions in detail: 

1. What are the consequences of permanently increased stem mortality rates on the dynamics of forest attributes (e.g., 

aboveground biomass, forest height, gross primary production, net primary production, leaf area index, quadratic 

mean stem diameter, mean forest age, and biomass loss rates) in tropical forests? 
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2. Can the biomass loss rates of tropical forests be estimated using various forest attributes that can also be derived from 105 

remote sensing? 

2. Materials and Methods 

We applied the ‘terra firme’ version of the dynamic individual-based forest model FORMIND (Fischer et al., 2016; Hiltner et 

al., 2018; Köhler and Huth, 2004) and simulated the effects of long-term increased stem mortality levels on the dynamics of 

multiple forest attributes (Figure 1). This artificial dataset of forest dynamics covers a wide range of possible forest states such 110 

as the variability in tree species composition, successional state, and tree size distribution. We assume that we can use it to 

partially cover almost every state of forest stands in French Guiana (so-called forest factory approach, see Bohn et al., 2017). 

We included aboveground biomass (hereafter biomass), mean forest height, gross primary production (GPP), net primary 

production (NPP), leaf area index (LAI), biomass turnover time (τB), quadratic mean stem diameter (QMD), mean forest age, 

and rate of biomass loss (mAGB) in our assessment. We analysed all of these forest attributes in relation to the intensity of 115 

increased stem mortality. Each simulated forest used in the analysis has the area of one hectare, with the forest states of each 

hectare differing from each other in each simulated time step and scenario. Then, we developed a multiple linear regression 

model by testing different forest state attributes, such as LAI and forest height, as proxy variables. In addition, we derived a 

sample map for the biomass loss rate and biomass residence time of an entire region by using values for forest height and LAI 

obtained from satellite products. Simulated terra firme forests of French Guiana served as a case study. 120 

  

Figure 1: Framework developed for estimating biomass loss rates by linking a dynamic forest model and remote sensing. 1. A forest 

model was applied to (2.) simulate the succession dynamics of forest stands of various forest attributes, such as LAI, forest height, 

and biomass loss rate, in a set of different stem mortality scenarios (results used to answer research question 1). A simulated forest 

stand has the area of one hectare, with the forest states of each simulated hectare differing at each simulation time step and scenario. 125 
3. Then, we developed a multiple linear regression model to the simulated forest states with LAI and forest height as proxy variables 

and biomass loss rate as the response (results to answer research question 2). 4. In addition, we applied the multiple linear regression 

model to remote sensing maps containing the values of the investigated forest attributes (LAI and forest height) to (5.) derive a 

sample map of biomass loss. 

2.1 Study region 130 

The study region is French Guiana, 95% of which is covered by humid, lowland terra firme forests (Hammond, 2005; Stach 

et al., 2009). These forests are characteristic for the Guiana Shield (Grau et al., 2017). The forests are generally species-rich, 
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with an average of 150 to 200 tree species per hectare (Gourlet-Fleury et al., 2004), and are dense in biomass stock (Johnson 

et al., 2016; Rödig et al., 2017; Saatchi et al., 2011).  

2.2 Forest model FORMIND 135 

2.2.1 Model description 

To analyse the forest dynamics under the impacts of different levels of disturbance, we applied the ‘terra firme 

parameterisation’ of the forest model FORMIND v3.2 (Fischer et al., 2016) and took relevant parameter values from Hiltner 

et al. (2018), including tree growth, mortality, and establishment (see Supplements Tab. S1 and Tab. S2). FORMIND is an 

individual-based forest gap model that describes forest dynamics, tree growth, and changes in forest structures on a simulation 140 

area (1 hectare to multiple square kilometres) consisting of 20 m by 20 m patches that interact with each other (see Fig. S1), 

where trees are not positioned explicitly within a patch.  

Every tree with a stem diameter at breast height (DBH) ≥ 0.1 m was simulated considering the following main processes at 

annual time steps: tree growth, establishment, mortality, and competition for light and space. The biomass gain of a tree results 

from the difference between photosynthetic production and respiratory losses (Fischer et al., 2016; Hiltner et al., 2018, 2021). 145 

In the model, stem mortality is a key driver of forest dynamics. Stem mortality increases if the space for canopy expansion is 

limited, which depends on a tree’s position within the forest stand (self-thinning by crowding), whether tree growth is reduced 

(growth-dependent), and whether surrounding trees die after large trees fall (gap formation). Finally, each tree is subject to a 

stem mortality rate, which is stochastic. Here, we modified the stem mortality rate (eq. 1) to induce heterogeneity in the 

horizontal and vertical forest structures (i.e., tree size distribution and functional species composition) of terra firme forests in 150 

French Guiana. Our study does not focus on short-term disturbances, but on the effects of long-term changes (> 100 years) in 

the intensity of stem mortality. Possible factors altering stem mortality rates in the forest model include environmental drivers, 

such as sustained elevated temperatures, altered precipitation regimes, and reduced soil water availability. The stem mortality 

rate refers to individual trees at the stand level and is not stand-replacing.  

For the generic forest model parameterization of French Guiana’s terra firme forests, tree species were classified into eight 155 

plant functional types (PFTs) according to species-specific traits, i.e., the maximum incremental rates of DBH and maximum 

tree height. We assume here that major parts of the terra firme forests can be characterised on the basis of three functional 

species groups: light-requiring species, species with intermediate light requirements, and shade-tolerant species (see Tab. S2). 

This functional species diversity is considered to be sufficient to capture forest succession dynamics in tropical forests (Fischer 

et al., 2018; Rödig et al., 2017; Rüger et al., 2020). Detailed model descriptions can be found in Fischer et al. (2016), in Hiltner 160 

et al. (2018), and online at www.formind.org.  
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2.2.2 Simulation settings 

To investigate the effects of different stem mortality intensities on the dynamics and the structure of terra firme forests, we 

developed seven simulation scenarios: a baseline scenario and six scenarios with permanently altered stem mortality rates 

(Tab. 1). The baseline scenario based on observed mortality rates (mbl), which was computed by averaging the specific 165 

background mortality rates of all PFTs (Tab. S2). To obtain background mortality rates for the scenarios, the baseline's 

background mortality rate (mbl) was multiplied by a factor (f) for each scenario (sc), resulting in the following equation:  

𝑚  𝑠𝑐 =  𝑓 ∙ 𝑚𝑏𝑙, with 𝑓 ∈ {
1

4
,

1

3
,

1

2
, 2, 3, 4} . (1)  

This resulted, in combination with the subsequent effects of the other types of modelled mortality (see Chap. 2.2.1), in different 

stem mortality rates at the stand level per simulated scenario (Tab. 1). The scenario with f = 1 represented the baseline scenario. 170 

In this study, we simulated forest stands with an area of one hectare and consisting of interacting patches on which the forests 

grow (patch size 20 m ∙ 20 m; see Fig. S1). The one-hectare stands extended over a total simulation area of 16 hectare per 

scenario. Our assumption in the ‘terra firme parameterisation’ of FORMIND is that the one-hectare stands are not explicitly 

located in French Guiana. Forest dynamics were computed in an annual time step that started in year 0 on bare ground and 

ended after 300 years. In the baseline scenario, a forest stand reached equilibrium after 210 years. 175 

Table 1: Average stem mortality rate per simulation scenario and specification (see eq. 1). Background mortality rate msc is the 

unweighted average over the mortality parameters of eight PFTs in the forest model. The resulting average stem mortality rate is the ratio 

of dead trees to the total number of trees in a simulated forest stand (averaged over the entire simulation time). 

Factor (f) Background mortality rate 

(𝑚 𝑠𝑐) (y-1) 

Resulting average stem 

mortality rate (msn y-1) 

Specification 

1/4 0.0032 0.0390 Low impact 

1/3 0.0043 0.0413  

1/2 0.0065 0.0432  

1  0.0129 0.0523 Baseline 

2 0.0258 0.0723  

3 0.0387 0.0845  

4 0.0516 0.0951 High impact 

    

 

From the model outputs of all scenarios, we analysed the average development of multiple forest attributes (averaged over 16 180 

hectares), such as aboveground biomass (AGB), LAI, forest height (mean height of the tallest three trees per 40 m ∙ 40 m; 

Rödig et al., 2017; Simard et al., 2011), gross primary production, net primary production, quadratic mean stem diameter 

(square root of the sum of squared stem diameters per tree divided by the number of trees in a stand), mean forest age 

(arithmetic mean age of the 25 oldest trees per simulated 1 hectare area, selecting the oldest tree per patch), and biomass loss 

rate (mAGB), which we defined as annual proportion of dead biomass (AGBdead) to total stand biomass (AGBtotal): 185 
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𝑚𝐴𝐺𝐵 =  𝐴𝐺𝐵𝑑𝑒𝑎𝑑 ∙ 𝐴𝐺𝐵𝑡𝑜𝑡𝑎𝑙
−1 . (2) 

In our forest model, we use a non-linear relationship between the AGBt of tree (t) and its stem diameter (Dt): 

𝐴𝐺𝐵𝑡 =
𝜋

4
∙ 𝐷𝑡

2 ∙ 𝐻𝑡 ∙ 𝐹𝑡 ∙
𝜌𝑡

𝜎𝑡
 , (3) 

where Ht is the tree height, Ft is a form factor, ρt is the wood density, and σt is the fraction of aboveground biomass attributed 

to the stem (Fischer et al., 2016). Then, the tree biomasses are summed up to yield the total biomass, AGBtotal. We also 190 

calculated the stem mortality rate (mSN) as the ratio of the number of dead trees to the number of total trees in a forest stand at 

each simulation time step.  

In addition, we computed the time over which each forest attribute reached the stable state (hereafter: equilibrium time) as 

well as the mean stand biomass turnover times (τB) with τB averaged over all successional states (simulated years 0 – 300). 

According to Carvalhais et al. (2014), turnover times can be defined as the ratio of the biomass stock to the flux (i.e., influx or 195 

outflux) of biomass. However, biomass outflux is not yet observable over large spatial scales (Thurner et al., 2016). Therefore, 

it was defined that biomass outflux equals biomass influx for forests in equilibrium (Carvalhais et al., 2014). Transferred to 

our study, the stock corresponds to the total biomass, influx to NPP, and outflux to dead biomass. Therefore, the following 

holds true for forests in equilibrium:  

𝜏𝐵 = 𝑠𝑡𝑜𝑐𝑘 ∙ 𝑓𝑙𝑢𝑥−1 =  𝐴𝐺𝐵𝑡𝑜𝑡𝑎𝑙 ∙ 𝑁𝑃𝑃−1 =  𝐴𝐺𝐵𝑡𝑜𝑡𝑎𝑙 ∙ 𝐴𝐺𝐵𝑑𝑒𝑎𝑑
−1 . (4) 200 

In our model, NPP of a stand is the sum of NPP values of all trees within this stand. Tree NPP is calculated as the difference 

between GPP and autotrophic respiration. The τB value can also be calculated from eqs. 2 and 4 as the reciprocal of the biomass 

loss rate: 

𝜏𝐵 = 1 ∙ 𝑚𝐴𝐺𝐵
−1   for mAGB > 0. (5) 

Using eq. 4, we calculated τB by taking forest succession into account. 205 

2.3 Derivation of a multiple linear regression model to estimate biomass loss rates 

To estimate the biomass loss rates, we analysed a number of forest simulations which produced a large number of different 

forest stands each of 1 ha (averaged over 16 ha simulation areas) in different successional states (per simulated year) with 

unique functional species compositions and tree size distributions. Thus, we generated a total of 33,600 terra firme forest 

stands. We assumed that the rate of biomass loss can be related to other forest attributes (e.g., biomass, LAI, forest productivity, 210 

and forest height). For a multiple linear regression model, the temporal and spatial components are not important since forest 

states are considered independently of either. We acknowledged that when fitting linear regression models, it is important that 

the proxy variables do not strongly correlate. We tested this by using a covariance matrix with the Pearson’s correlation 

coefficient of the proxy variables (Tab. S4). Then, we tested different linear and non-linear statistical models using different 
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combinations of the proxy variables (see Tab. S3 and Fig. S15). Important selection criteria for the model type were good 215 

regression statistics and interpretability of the model equation. Furthermore, remote sensing products should be available for 

all proxy variables. Taking all of these criteria into account, the most suitable estimate was made by a multiple linear regression 

model which describes variations in mAGB as a function of two proxy variables, LAI, and forest height (Tab. S3). We estimated 

mAGB (in units of y-1) as follows: 

𝑚𝐴𝐺𝐵 = 𝛽𝐻 ∙ 𝐻 + 𝛽𝐿 ∙ 𝐿 + 𝑖 +  𝜀, (6) 220 

where H is the forest height, L is the LAI (-), i is the y-intercept, 𝜀 is the error term, and 𝛽𝑖 are the regression coefficients of 

the ith forest attributes. To test whether the linear regression model is robust, we simulated additional scenarios with altered 

productivity rates. Based on this new data together with the previous data, we fitted an alternative multiple linear regression 

model. Similarity between both linear multiple regression models implied high robustness of the original model. For further 

information, see the supplemental material (Fig. S10 and Fig. S11). 225 

2.4 Estimation of the country-wide biomass loss rates  

2.4.1 Input maps 

To estimate forest height, we used a global map in the WGS-84 geographical projection with a pixel size of approximately one 

kilometre (Simard et al., 2011;  Fig. S5.a). For the mapping of the forest height, Simard et al. (2011) used data from the 

Geoscience Laser Altimeter System (GLAS) aboard ICESat (Ice, Cloud, and land Elevation Satellite) collected in 2005. To 230 

create an LAI map, we used 139 data layers from the MCD15A2H Version 6 Moderate Resolution Imaging Spectroradiometer 

(MODIS) Level 4 with a pixel size of 500 m and averaged the LAI values between 2004-01-31 and 2006-12-31 to reduce the 

overall LAI variance (Myneni et al., 2015). We harmonised and stacked the two input maps by first projecting the LAI map 

onto the coordinate reference system of the forest height map using the Geospatial Data Abstraction Library for French Guiana 

(www.gdal.org). Resampling was conducted with the bilinear method. The spatial aggregation of the LAI map (Fig. S5.b) was 235 

performed by calculating the mean values of pixels whose centres were within 1-kilometre cells of the forest height map. 

2.4.2 Output maps 

The biomass loss rate was estimated for each pixel by applying the multiple linear regression model (eq. 6) to the two input 

maps (see Fig. S5). We compared the density distributions of both input data sets with the ranges of FORMIND’s simulation 

results (LAI and forest height). No correction factors were required for the extrapolations, since the most abundant 240 

combinations of value pairs of both data sets agree well, and only a few combinations differ (cf. Fig. S9). The biomass loss 

rates were then averaged over a pixel size of 2 km2. We simulated forest stands of one hectare with the forest model. This fine 

resolution allowed us to scale up to the accuracy of remote sensing products. We used a resolution of 2 km for the final biomass 

loss map, although the input data are available in 0.5 km (LAI, Myneni et al., 2015) and 1 km (forest height, Simard et al., 

2011). Our regression model estimated negative biomass loss rates for a small portion of pixels, which were excluded from 245 
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the biomass loss map. This was mainly the case for pixels without forest cover (cf. Fig. S5), according to a land use map 

published by Stach et al. (2009). To create the biomass turnover time map, we computed the reciprocal of each pixel for the 

biomass loss map (see eq. 4). 

We tested the reliability of the mapped biomass loss rate in the underlying input maps for the LAI and forest height via a 

sensitivity analysis regarding variations of ±30% as compared to the original input maps. We examined two methods to 250 

quantify the sensitivity of our study results concerning the input data. In a first experiment we modified the values of the two 

input maps by exactly +30% and -30% each (LAI and forest height). In a second experiment we sampled the input data for the 

LAI and forest height randomly using a uniform distribution. These values ranged between +30% and -30% of the original 

input values. This resulted in six new input maps (LAI+30%, H +30%, LAI-30%, H-30%, Hrandom, LAIrandom). We then applied the 

multiple linear regression model (see eq. 6) to some possible pair-wise combinations of these new input maps (i.e., LAI+30%-255 

H+30%, LAI-30%-H-30%, LAI+30%-H-30%, LAI-30%-H+30%, Hrandom-LAIrandom) to obtain five uncertainty maps. We calculated ∆mAGB 

per pixel, which is defined as the difference between each of these uncertainty maps and the biomass loss map obtained from 

the original input maps. Thus, ∆mAGB represents the variation in the rate of biomass loss given 30% variation in the input 

variables. Note that there are accompanying uncertainty products to the remote sensing products available that could be 

considered in follow-up studies to estimate error propagation. Furthermore, we compared our biomass loss map with forest 260 

plot data, provided by Brienen et al. (2015), and with map data of Johnson et al. (2016). Please refer to the supplementary 

material for details on the computer software used in this study.  

3 Results 

3.1 Influence of increased stem mortality on forest succession dynamics 

To analyse the influences of varying stem mortality intensities, we simulated succession dynamics, which were affected by 265 

competition among individual tree species belonging to species groups. Here, we show that successional stages can be 

differentiated based on the development of the total stand biomass (Fig. 2). After 40 years of forest succession, the simulated 

stand biomass peaked at 500 tODM ha-1 (ODM: organic dry matter) This peak in stand biomass was caused by a high GPP of 

the pioneer species (GPPpioneer = 83 tODM ha-1; Fig. S2.a). After the early successional stage (years 0 – 40), the stand biomass 

fell slightly until year 100 due to the rapidly declining pioneer biomass, while the biomasses of other species increased (mid 270 

successional stage; Fig. 2). After 100 years, the stand biomass stabilised at approximately 420 tODM ha-1a-1 (average over years 

100–300), while the functional species composition reached a steady state after only 210 years (Fig. 2). In the late successional 

stage (gap dynamics), climax species and species with intermediate light requirements fixed five times more carbon in biomass 

than pioneer species (NPP of baseline scenario; Fig. S2.b).  
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 275 

Figure 2: The baseline scenario’s aboveground biomass (AGB) per species group and the total biomass for simulations of terra firme 

forests. (ODM: organic dry matter). 

Our simulation results reveal a sensitive response of the biomass loss rate to increased stem mortality intensities (Fig. 3.a). At 

higher stem mortality levels, higher biomass loss with greater variance emerged and the biomass loss rate was on average 

greater than the stem mortality rate (see Fig. S4).  At the level with the highest stem mortality, a peak in the biomass loss rates 280 

occurred at approximately 0.12 y-1 during the early phase of forest succession before levelling off at a value of 0.08 y-1 in the 

steady state (Fig. 3.a). Due to the higher biomass loss rates, the light climate in the forest stand changed (Fig. 3.c). The pioneer 

species were able to establish quickly in forest gaps. Hence, the GPP of the pioneer species was highest among all species 

groups (Fig. S2.a), which also affected the productivity of the total stand (Fig. 3.e – 3f, Fig. 4.a). Despite the distinctly higher 

GPP values obtained in the case of higher biomass loss rates, NPP did not change distinctly among the different scenarios (Fig. 285 

3.f). Thus, the stem mortality rate had a strong influence on the species composition (e.g., higher pioneer GPPs; Fig. S2.a) and 

forest structure (e.g., QMD and mean stand age; Fig. S3), which led to lower LAI, biomass, and mean forest height values at 

the ecosystem level than those of the reference (Fig. 3.b – 3.d). In addition, structural changes gave rise to modified forest 

stand dynamics, with unique succession patterns depending on the intensity of the disturbance due to stem mortality. 
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 290 

Figure 3: Simulation results of the (a) biomass loss rate (mAGB), (b) aboveground biomass (AGB), (c) leaf area index (LAI), (d) mean 

forest height (H), (e) gross primary production (GPP), and (f) net primary production (NPP) of terra firme forest stands under 

different stem mortality intensities. Grey lines indicate the entire set of scenarios under varying stem mortality rates (eq. 1) (ODM: 

organic dry matter; for further details see Tab. 1, Fig. S2 and Fig. S3). 

Furthermore, we analysed how the stem mortality level affected the time needed to reach equilibrium (Fig. 4.b). GPP responded 295 

particularly sensitively and inversely proportionally to the stem mortality rate, showing a strong decrease with rising stem 

mortality levels. In contrast, other forest attributes, such as biomass and NPP, had altogether shorter equilibrium times than 

that of GPP, responding inversely proportionally to the stem mortality level. 

Finally, we evaluated the effect of increasing stem mortality rates on the turnover time of biomass (eq. 5) in the forest stands 

while taking forest succession into account (Fig. 4.c). The biomass turnover time τB was more than halved at a four-fold higher 300 

stem mortality rate as compared to the baseline ( 𝜏𝐵,(𝑓=1) = 34 y, 𝑠𝑑𝐵,(𝑓=1) = 12 y; 𝜏𝐵,(𝑓=4) = 46 y, 𝑠𝑑𝐵,(𝑓=4) =

43 y; 𝜏𝐵,(𝑓=1/4) = 15 y, 𝑠𝑑𝐵,(𝑓=1/4) = 5 y ). Important forest properties are profoundly affected if the functional species 

composition, tree size distribution, or forest dynamics are changed.  
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 305 

Figure 4: Influence of different mortality levels in simulated terra firme forests on (a) mature forests’ mean GPP and mean NPP 

(averages over simulation years 250 – 300), (b) the time until the forest attributes reached equilibrium states, and (c) the mean 

biomass turnover times, represented as the reciprocal values of the biomass loss rate (cf. eq. 5; averages over years 0–300). Dashed 

lines indicate the baseline scenario (GPP: gross primary production, NPP: net primary production, H: forest height, LAI: leaf area 

index, AGB: aboveground biomass, ODM: organic dry matter). 310 

3.2 Estimation of biomass loss rates using single and multiple forest attributes  

In a further analysis, we assessed how biomass loss rates can be derived from different proxy variables, such as the mean forest 

height and LAI. Including forests at different successional states, we tested the relationships between several single forest 

attributes and the rate of biomass loss but did not find distinct relationships (Fig. 5.a – 5.c; Tab. S3: regression model types 3 

– 7). The biomass loss rates showed a widely scattered range of values and thus unclear relationships to all single forest 315 

attributes during the early successional stage (forest age < 20 years; Fig. 5.a – 5.c). For instance, the LAI values of less-

disturbed, old-growth forests (i.e., LAI = 4 during the gap dynamics stage of mature forests) indicated similar biomass losses 

to forests in the early stages of succession. Relationships between single forest attributes and biomass loss rate seemed to be 

statistically significant (Tab. S3: regression model types 3 – 7), however, this was not useful because the relationships are 

clearly not linear (Fig. 5.a – 5.c). The relationships are strongly influenced by forest age and stem mortality rate. 320 
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Figure 5: Dependence of biomass loss rates from single attributes (a) biomass, (b) LAI, (c) forest height versus (d) the multiple forest 

attributes, LAI and forest height, of simulated forest states, including all stem mortality scenarios. Each dot represents a terra firme 

forest stand with a unique forest structure (i.e., tree size distribution and functional species composition). All simulated years are 325 
included in the analyses. The colours of the dots show the mean forest ages characterising the successional states (ODM: organic dry 

matter). 

Fig. 5.d illustrates a three-dimensional relationship between LAI, forest height, and the rate of biomass loss. Only when 

combined in a multiple linear regression model did the LAI (L) and forest height (H) explain the biomass loss rates of forests 

at different successional states well (R2 = 0. 731, RMSE = 0. 0093, p-value = 0.0; Fig. 6; Tab. S3): 330 

𝑚𝐴𝐺𝐵 =  0. 005698 ∙ 𝐻 − 0. 033831 ∙ 𝐿 − 0.042064 + 𝜀. (7) 

The LAI negatively influenced biomass loss rates, whereas forest height is positively correlated with it. The obtained residuals 

were normally distributed around the expected value (Ε(mAGB) = 0.0; Fig. S6.b), and depending on the estimated biomass loss 
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rates, the residuals were homoscedastic with overall only little remaining trend (Fig. S6.c; Fig. S7), which could be further 

improved by using a non-linear approach (e.g., generalised additive models; s. Fig. S15). Specifically, the residuals attributed 335 

to the LAI contained some “smile” effect (i.e., negative trend for 2.5 < LAI < 3.5 and positive trend for 3.5 < LAI < 4.5) and 

the ones attributed to forest height showed only a little remaining trend (cf. Fig. S7). On the basis of the selection criteria we 

have defined (see chap. 2.3), we conclude that forest height and LAI can be used as proxy variables to estimate biomass loss 

rates using the linear approach.   

The one-to-one comparison of biomass loss rates for the simulated forest stands estimated by the multiple linear regression 340 

model (cf. eq. 7) versus those simulated within the dynamic forest model fit well. Other forest attributes, such as GPP and 

NPP, were not included in the multiple linear regression model because they did not improve the estimation of the biomass 

loss rates substantially (Tab. S3).  

  

Figure 6: One-to-one density plot of biomass loss rates simulated by the dynamic forest model versus biomass loss rates estimated 345 
using a multiple linear regression model, with the forest height and leaf area index as proxy variables (eq. 7 and Tab. S3). The dashed 

line shows the line of perfect fit. Each dot represents a forest stand with a unique forest structure (i.e., tree size distribution and 

functional species composition) while the colours represent the density distributions of the combinations. The black solid line 

indicates the mean deviations of the biomass loss rate simulated with the forest model from the estimated ones (mAGB,DFM = 1.0 ∙ 

mAGB,LM – 0.0 + ɛ, R2 = 0.7312, RMSE = 0.009, p-value < 0.01). (mAGB: biomass loss rate).  350 

3.3 Estimation of biomass loss rates from remote sensing by deriving a sample map 

By combining simulated forest states with the maps of LAI and forest height obtained via remote sensing (Myneni et al., 2015; 

Simard et al., 2011), we derived a biomass loss map for terra firme forests of French Guiana (Fig. 7.a). Based on this sample 

map, we obtained a mean biomass loss rate of 0.030 y-1 (standard deviation of 0.012 y-1; Fig. 7.b). The values of biomass loss 
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rate varied among regions, with higher values in the southern part of the country and lower rates in the northern part of the 355 

country. The highest biomass loss rates can be observed in the centre and at the southwestern country borders (mAGB > 0.06). 

Such high values resulted from a combination of tall forest height together with low LAI values (Fig. S8). In the region 

surrounding the Paracou and Nourage sites, the biomass loss rates had values of 0.012 y-1 and 0.015 y-1, respectively, which 

agree well with the mean biomass loss rates we derived from the empirical data of Brienen et al.'s (2015) study (mAGB,Par = 

0.011 y-1, sdPar = 0.127 y-1 ; mAGB,Nou = 0.015 y-1, sdNou = 0.027 y-1; Fig. 7.c). The sensitivity analysis revealed the dependence 360 

of the mapped biomass loss on the quality of the input data (Fig. 7.d, Fig. 7.e). The sensitivity is moderate (i.e., ∆mAGB is 

small) if the LAI and forest height change uniformly by a certain amount (Fig. S14). If the changes in the LAI and forest height 

are contrary, the sensitivity of the mapped biomass loss is high (i.e., ∆mAGB is large), though we assume that a contrarian 

change in the input data rarely occurs (Fig. S14). Considering forests at all successional states, we derived another sample map 

for biomass residence time (Fig. S12) calculated from the reciprocal of the biomass loss rate (eq. 5).   We estimated a mean 365 

countrywide biomass residence time of 40 y with a standard deviation of 9 y. 

 

Figure 7: (a) Map of biomass loss for terra firme forests in French Guiana (~ 2 km resolution) and (b) its histogram. The dashed line 

in b) indicates the estimated country-wide mean (3.0% with a standard deviation of 1.2%). The black squares in the map show the 

locations of forest plots at Paracou (PAR) and Nourage (NOU), from which census-data was used to compare estimated and field-370 
based biomass loss values. (c) The census data originate from Brienen et al., (2015). (d) Sensitivity analysis for the mapped biomass 

loss rates of terra firme forests in French Guiana (cf. Fig. 7.a) and (e) its histogram. The values for the input maps of leaf area index 

(LAI) and forest height were randomly sampled using a uniform distribution ranging between ±30% from their original values (cf. 

Fig. S4). ∆mAGB represents the variation in biomass loss rates given this variation in the input variables. For further results about 

the uncertainty analysis performed, see Fig. S7, Fig. S8, Fig S9, Fig. S10, Fig. S11, and Fig. S14.  375 
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4 Discussion 

4.1 Mechanism of tropical forests in dealing with the increasing intensity of stem mortality 

In this study, we analysed dynamics in tropical forests in relation to stem mortality. We demonstrated that most of the analysed 

forest stand attributes (biomass, forest height, LAI, GPP, biomass loss rate, QMD) had specific responses during succession. 

Moreover, we showed that the rate of biomass loss is strongly affected by succession dynamics as well as by the stem mortality 380 

rate. The period until the stand’s equilibrium was reached differed in duration among each simulation scenario. Additionally, 

the mean turnover time of biomass, i.e., the reciprocal value of biomass loss rate (eq. 5), varied considerably.  

There were multiple reasons for the unique succession patterns of each forest attribute. Succession dynamics are influenced 

by assimilation rates (e.g., photosynthesis rates, light requirements) and physiognomic characteristics (e.g., maximum stem 

diameter increment rates, maximum heights, and wood densities), both of which are specific to each species group (Hiltner et 385 

al., 2018). Functional traits are crucial in simulations of the succession dynamics in forests because they determine the 

competitiveness of species groups (Fischer et al., 2018; Rüger et al., 2020).  

The relationship between successional stages and stem mortality rate has been investigated in empirical studies to estimate 

mortality in tropical forests (Aubry-Kientz et al., 2013a; Chambers et al., 2013; Doughty et al., 2015b; Holzwarth et al., 2013). 

Aubry-Kientz et al. (2013) introduced a method that estimated the stem mortality probability of terra firme forests at Paracou. 390 

Similar to our results, they found that the stem mortality probability depends on the successional stages of the forests as well 

as on the functional traits of species, such as the specific leaf area, wood density, stem diameter increment, and potential height.  

Interestingly, we observed similar NPP values at different stem mortality levels for forests in equilibrium. Erb et al. (2016) 

argued that the NPP of vegetation is effectively independent of the stem mortality rate, which is supported by our results. The 

observed stability of NPP under different disturbance regimes can be explained by shifts within the functional species 395 

compositions and tree size distributions. Pioneer species, which typically have lower wood densities (Chave et al., 2009; Zanne 

et al., 2009) and lower potential heights than those of slow-growing climax and intermediate species (Hiltner et al., 2018), 

store less carbon in their living biomasses. Since pioneer species grow faster, they can bind as much carbon per time as slow-

growing climax species. Therefore, at the forest stand level, higher stem mortality rates result in similar NPP values as those 

observed with lower stem mortality rates, although the individual trees show different growth behaviours. Our simulation 400 

results show how the carbon storage of forests in equilibrium changes across different levels of stem mortality rates, despite 

constant levels of NPP. Instead, our findings indicate that carbon storage depends on the functional species composition. At 

high stem mortality rates (e.g., a high-impact scenario), more pioneer trees of a younger age were present in the forest stands. 

Thus, to achieve a high forest carbon storage capacity, there is a trade-off between large, old, and less productive trees (e.g., 

climax species) and smaller, younger, and more productive trees (e.g., pioneer species). 405 
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4.2 Performance of the regression model for estimating biomass loss rates 

One of the main findings of this study is that the simulated biomass loss rates of terra firme forests can be estimated using 

multiple linear relationships among several forest attributes. The premise was that all forest attributes used could be provided 

by remote sensing and could give information about the forest structure and productivity. We recognized the relationship 

between biomass loss rates to LAI and forest height when fitting many different statistical models with different simulated 410 

forest attributes (Tab. S3, Fig. S15). If stem mortality rates increased, this led to a higher biomass loss rate. However, it is 

impossible to directly infer stem mortality rates from biomass loss rates because forest structural state variables differed for 

each simulated forest stand, depending on its successional stage (Bohn and Huth, 2017; Rödig et al., 2017). For example, the 

stem number distribution of dying trees is not evenly distributed across tree size classes (Aubry-Kientz et al., 2013b; Holzwarth 

et al., 2013; Muller-Landau et al., 2006; Rowland et al., 2015).  415 

In our approach for identifying appropriate forest attributes to infer biomass loss rates, we considered results from empirical 

studies that have investigated stem mortality in tropical forests (Aubry-Kientz et al., 2013b; Esquivel‐Muelbert et al., 2019; 

Stovall et al., 2019). Esquivel-Muelbert et al. (2020) investigated the stem mortality of the Amazon by using empirical data to 

show that stem diameter growth rate and tree size are strong predictors. Fast-growing species with low wood densities are at a 

higher risk of mortality, whereas the effect of tree size varies. Aubry-Kientz et al. (2013) used functional traits, such as potential 420 

tree height and specific leaf area, to estimate the probability of stem mortality. Based on large-scale remote sensing 

observations, tree height was identified as an important predictor of stem mortality during drought, with large trees having 

twice the mortality rate of small trees, while environmental drivers (i.e., temperature, soil water, and competition) controlled 

the intensity of the height-mortality relationship (Stovall et al., 2019). The results of these studies underline the importance of 

productivity (e.g., increment rates and tree size), biomass, and functional characteristics (e.g., wood densities, potential stem 425 

diameter increment rates, leaf areas, and potential tree heights) of trees or tree species in the context of stem mortality. In our 

forest model, such characteristics are included in the derivation of stem mortality rates of specific PFTs (cf. Tab. S1, S2). In 

forest gap models, forest structural state variables, such as the stem number distribution, tree size distribution, and functional 

species composition, of the dying trees emerge, rather than get specified as input parameters (Botkin et al., 1972; Bugmann, 

2001; Shugart, 2002). This fact is a useful model behaviour for estimating the biomass loss rate of simulated forest stands and, 430 

moreover, holds true for the derivation of other forest attributes, which we considered when fitting our regression model. 

Besides the LAI and forest height, we tested GPP, NPP, and biomass as proxy variables for the rate of biomass loss. On the 

forest stand level, however, these variables did not improve the performance of the multiple linear regression model 

substantially. These results suggest using forest height and LAI as proxy variables to estimate the biomass loss rates of forest 

stands. Despite the simplicity of the multiple linear regression model, meaning that we included only two proxy variables, its 435 

statistical performance proved to be robust (cf. eq. 6; Tab. S3, Fig. S6, Fig S7, Fig. S8, Fig. S9). Thus, it was possible to derive 

biomass loss rates from LAI and forest height of simulated data for forests in different successional states. It was important 

that the signs of the regression coefficients of our linear model plausibly reflected the relationships that were observed in the 
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field. In the regression model, forest height was directly proportional, and LAI was indirectly proportional to the biomass loss 

rates of the forest stands. For example, tall forests with low LAI values resulted in high biomass loss rates (cf. Fig. S8). We 440 

would like to note that to further improve the regression model (e.g., further minimise the residual’s remaining trend), 

additional proxy variables could be included, non-linear components can be acknowledged, and spatially variable effects of 

environmental factors on simulated forest states may be investigated in more detail.  In this study, we tested non-linear 

statistical methods (see Fig S15) and various forest attributes available as remote sensing products as potential proxy variables 

to the statistical models (cf. Tab. S3, Tab. S4). We decided to use the simplest possible linear regression model (in terms of 445 

the number of included proxies and interpretability of the model equation) that estimated biomass loss rates best.  

Using a forest model to derive the relationships among different forest attributes has several advantages. First, the simulated 

LAI and forest height data were generated mechanistically, integrating a broad spectrum of information about forest dynamics 

and successional states emerging from different physiological processes. This can lead to a lower level of noise in the 

simulation data compared to that in the observed field data. Nevertheless, forest models also include stochastic processes, 450 

including stem mortality rates and establishment (Bugmann, 2001; Fischer et al., 2016; Hiltner et al., 2018; Shugart, 2002). 

By using plant functional types to simulate forest dynamics, we reduced the possible uncertainties in species traits. 

Simplifications allow for a transferability of the regression analysis to forests with similar characteristics and succession states. 

These simplifications also enabled the estimation of the biomass loss rates of terra firme forests across the entirety of French 

Guiana. With the approach pursued here, it might be possible to derive regression models for estimating biomass loss rates in 455 

other locations worldwide. Forest model simulation results contain structural information about the conditions of forests in 

different successional states, allowing the data to be used as training data for the development of statistical regression models. 

Whether LAI and forest height are also suitable as proxy variables of the biomass loss rates of other forest types remains to be 

investigated.   

4.3 Mapping of biomass loss rates of terra firme forests in French Guiana 460 

We combined remote sensing maps of forest height (Simard et al., 2011) and LAI (Myneni et al., 2015) with forest modelling 

to derive a sample map of biomass loss rates in French Guiana. In doing so, we presented an innovative approach for estimating 

biomass loss rates in tropical forests. A comparison of estimated biomass loss rates with census-based values for two sites 

showed reasonable similarity, although in perspective, it would be important to further validate such maps using more field 

data (not available to us at present). In another comparison of biomass loss rates obtained for French Guiana with census-based 465 

values for the entire Guiana Shield (i.e., French Guiana, Suriname, Guyana, northern Brazil, eastern Venezuela; Johnson et 

al., 2016), our estimate is about 50% higher, though it is noteworthy that Johnson et al. (2016) estimated the rate of biomass 

loss for the entire Guiana Shield, with higher values on average in French Guiana. Capabilities for improved projections of 

biomass loss rates are indispensable in the context of improved estimates of the role of tropical forests in the global carbon 

cycle (Anderegg et al., 2020; Friedlingstein et al., 2019; Friend et al., 2007; IPCC, 2014). Remote sensing by airborne and 470 
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satellite-based instruments provides large-scale data on forests, such as the forest height (Simard et al., 2011) and LAI (Myneni 

et al., 2015). However, remote sensors can record measurements only at certain time points; hence, the successional stages of 

forest variables are uncertain in remotely sensed data. Such forest dynamics can be simulated by individual-based, dynamic 

forest models. A combination of remote sensing data and forest models therefore has the potential to improve predictions of 

large-scale ecosystem dynamics (Plummer, 2000; Shugart et al., 2015). 475 

Forests can be in different successional stages due to disturbances that influence forest height and LAI (Dubayah et al., 2010; 

Kim et al., 2017). In the forest height and LAI maps, disturbed regions can be detected visually (cf. Fig. S5); these regions 

have been identified as disturbed areas in other studies (Asner and Alencar, 2010; Piponiot et al., 2016a; Stach et al., 2009). 

Such areas include disturbed areas in the flood plains of lakes and rivers, along the coast, near roads and settlements, and in 

the secondary forests of French Guiana, where the forest height and the crown coverage is, on average, lower than that in 480 

primary forests (Piponiot et al., 2016a; Stach et al., 2009; forest height map from Simard et al. (2011) in Fig. S5). 

Remotely sensed products often include uncertainties. In this study, we demonstrated the sensitivity of the sample biomass 

loss map to variations in the LAI and forest height maps (Fig. 7.d, Fig. S14). Accuracy of the input remote sensing data is 

beneficial.  

Balanced deviations of LAI and forest height (e.g., LAI +30% and H + 30%) result in smaller deviations in biomass loss rates 485 

than opposite deviations (e.g., LAI +30% and H -30%). However, small-scale fluctuations in the LAI (e.g., on the individual 

tree level) were not captured due to the coarse resolution of the MODIS data (500 m). However, by using an individual-based 

dynamic forest model, the small-scale processes that manifest as variations in the LAI and forest height are accounted for in 

the simulations. Because simulated forest structures were the basis upon which the regression model was derived, the multiple 

linear regression model (eq. 7) accounts for successional states and small-scale dynamics of forests. It is plausible that the LAI 490 

alone is not representative of the forest successional state. Therefore, we analysed forest succession (resulting from model-

inherent processes), taking species diversity and interactions between trees into account, and we linked this information to the 

remote sensing products. Such approaches have already been successfully carried out in several studies (Rödig et al., 2017, 

2018, 2019; Shugart et al., 2015). We obtained a good proxy for the successional state and, thus, for biomass loss rates, only 

when forest height was also included in the analysis. It may also be the case that the forest height estimated by FORMIND, 495 

and the forest height mapped by Simard et al., (2011) at the 1-km scale (Fig. S5.a) are subject to a certain bias. Simard et al. 

(2011) used the mean height of the three tallest trees to validate the GLAS data at the footprint level, though not to validate 

the gridded 1-km data product, which tends to be shorter and less variable. The gridded product is based on a biome-level 

random forest model using other auxiliary data (e.g., percentage of tree cover, precipitation, altitude, temperature, conservation 

status), so that the variation in a 1-km resolution of forest height does not necessarily reflect the simulated variation in forest 500 

structure, rather it reflects the predicted variation based on biome-level correlations with other factors.  
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4.4 Introduction of an alternative method for estimating biomass turnover time. 

Information on the carbon balance of forests is important for quantifying the biomass accumulation rates of trees. Various 

studies have estimated the turnover time of biomass, which we defined here as the reciprocal value of the rate of biomass loss, 

in forests worldwide (Carvalhais et al., 2014; Erb et al., 2016; Pugh et al., 2019). Carvalhais et al. (2014) were the first to 505 

estimate biomass turnover times for forests in equilibrium from biomass and GPP (cf. eq. 4: 𝜏 = 𝐴𝐺𝐵𝑡𝑜𝑡𝑎𝑙 ∙ 𝑁𝑃𝑃−1). For the 

French Guiana region, the authors estimated biomass turnover times of approximately 20 to 40 years and discussed that 

disturbances can shorten the biomass turnover time by increasing biomass loss rates. Our study quantifies the extent to which 

stem mortality leads to high biomass loss rates and thus to short biomass turnover times. 

Erb et al. (2016) observed decreases caused by land use in the biomass turnover time. They found turnover times of 20 to 30 510 

years for the French Guiana region, which are similar to our results (Fig. 4.c). Pugh et al. (2019) showed that stand-replacing 

disturbances also shortened the biomass turnover times. We found that the biomass turnover time is strongly affected by 

succession dynamics and stem mortality rates. For our full simulation data set, we found a mean biomass turnover time of 40 

years (standard deviation of 20 y; Fig. S13). We derived an alternative framework to estimate the turnover time from biomass 

loss rates. This framework allows both turnover time and rate of biomass loss to be modelled in a simple way, considering 515 

succession dynamics and disturbances due to stem mortality.  

4.5 Limitations and Outlook 

Our simulation results revealed complex relationships between stem mortality rate and biomass loss rate. The growth stage of 

a tree evidently has an effect on stem mortality, which often results in a U-shaped relationship of stem mortality as a function 

of the tree size distribution in a forest (Aubry-Kientz et al., 2013b; Holzwarth et al., 2013; Muller-Landau et al., 2006). With 520 

regard to tree age, it is more likely that the youngest and oldest trees will die (Aubry-Kientz et al., 2013b; Rüger et al., 2011) 

due to intense competition for light and space between the juvenile trees in the understorey and the senescence of the old trees 

in the canopy layer. Such mortality processes are often represented in forest models (Bugmann et al., 2019). Although empirical 

mortality algorithms which mechanistically describe the main causes of stem mortality and their effects on entire ecosystems 

(e.g., self-thinning, death of trees by crushing, and growth-dependent mortality) have already been developed, other causes of 525 

stem mortality with unclear signals are often summarised as stochastic processes (Bugmann et al., 2019; Hülsmann et al., 2017, 

2018). In our study, biomass loss rates at the stand level arose from different mortality processes that occurred at the tree level 

(competition due to crowding, death of other trees by crushing, growth dependency, gap formation, and stochastic stem 

mortality). Compared to the U-shaped stem mortality distribution across stem diameter classes, the biomass loss rates of a 

forest stand depended in more complex ways on the functional species composition and the levels of carbon fluxes (GPP and 530 

NPP). We analysed the relationships between different levels of stem mortality rate with biomass loss rate, GPP, NPP, and 

biomass stock. It would be interesting to explore simulation results for different modes of stem mortality in future studies. 
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In our study, the effects of disturbances were represented in a simplified manner by modifying the mortality rates of trees. We 

analysed the effects of permanently increasing the stem mortality rates in the studied forests. However, it is also necessary to 

consider the effects of discrete or continuously changing disturbance patterns (e.g., Barlow et al., 2003; Brando et al., 2014; 535 

Chambers et al., 2009, 2013; Doughty et al., 2015a; Holzwarth et al., 2013; Magnabosco Marra et al., 2016; Marra et al., 2014; 

McDowell et al., 2018; Negrón-Juárez et al., 2010, 2017; Nepstad et al., 2007b; Phillips and Brienen, 2017; Slik et al., 2010; 

Stovall et al., 2019; Wright et al., 2015). The impacts of single, discrete disturbance events (e.g., selective logging) on the 

dynamics of terra firme forests were studied by Hiltner et al. (2018). A follow-up study investigated the impacts of repeated 

logging events under continuously changing air temperatures and precipitation rates (Hiltner et al., 2021). If additional effects, 540 

such as climate change and forest management, will be added to the dynamic forest model's simulations of the present study, 

the reasons of biomass losses could be determined more accurately. Assessing this aspect would be interesting for future 

studies where the methodology presented here can be applied. 

It was also found that the temporal patterns of establishing trees can change after disturbances such as modifications to the 

seed mortality of specific tree species, as such changes influence the competitive processes of trees within communities (Dantas 545 

de Paula et al., 2018). Here, we did not consider the influences of stem mortality rates on establishment processes, though this 

factor should be considered in future studies. 

Regarding the mapping of the biomass loss rates in French Guiana, there are four important aspects. First, it is important to 

verify the quality of the forest model parameterization with field data as was done for biomass loss rates in this study and by 

Hiltner et al. (2018; 2021), who analysed biomass dynamics, tree size distribution, and functional species composition by 550 

comparing model results with data from forest inventories in French Guiana. The amount of available ‘ground truth data’ was 

small, so a comprehensive validation of the simulation results and the biomass loss map was not possible. In future studies, 

the addition of more data sources allowed for more extensive validation of the study results. Second, a multiple linear 

regression model predicting biomass loss rates can be valid only for a certain type of forest. In mapping biomass loss rates at 

the country level, we assumed the predominance of a similar type of forest, the terra firme forests in French Guiana (Hammond, 555 

2005). For this forest type, Stach et al. (2009) calculated a forest cover of 95% of the country's land area. Third, site parameters 

across entire landscapes can be heterogeneous, affecting forest dynamics and structure. Various studies demonstrated that 

natural environmental factors, such as soil properties (Rödig et al., 2017; Soong et al., 2020), relief (Guitet et al., 2018), and 

climatic variations (Rödig et al., 2017; Wagner et al., 2012), as well as the silvicultural  history (Hiltner et al., 2018; Piponiot 

et al., 2016b, 2019), can affect the succession dynamics and states of tropical forests. In this study, such spatially heterogeneous 560 

environmental influences on forest dynamics in terra firme forests are indirectly considered in the forest model and the 

regression model via stochastic stem mortality. Some of these environmental factors, which vary at the regional level, can be 

considered in future studies by including further processes (see Tab. S1, Tab. S2, Fischer et al., 2016). Examples are 1) effects 

of forest management and fire can be implemented, 2) the effects of weather variables such as temperature, rainfall variability 

and solar radiation can be taken into account, and 3) the relationships describing tree geometry can vary in space and time. 565 
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Moreover, species diversity could play an important role, which was aggregated in this study using the plant functional type 

approach (Maréchaux and Chave, 2017). In further investigations, it is recommended that climatic and topographic effects or 

short-term disturbance events and forest management be implemented to further improve the approach developed here. Finally, 

changes in climatic conditions and tree coverage have an impact on forest height, LAI, and subsequently, on biomass loss 

rates. For example, drought, uprooting due to storm or flooding, forest fire, insect calamity, and forest management can be 570 

possible drivers of variability in the LAI. Furthermore, forest height can vary, e.g., due to uprooting from storm and flooding, 

fire, and forest management. Those environmental drivers may also interact with each other. The effects of tree coverage and 

climate and their importance for driving the maps of forest height and LAI and subsequently the estimations of biomass loss 

rates should be explored in follow-up studies. 

5 Conclusions 575 

Here, we developed a framework for estimating biomass loss rates in tropical forests. We analysed the effects of stem mortality 

rates and its relation to forest productivity, forest structure, and biomass, based on the example of terra firme forests in French 

Guiana. By quantifying such effects through simulation experiments, it was possible to derive complex relationships between 

biomass loss rates and other forest attributes. Our approach revealed the strong influences of the succession states and stem 

mortality rates on the biomass loss rates of forests. 580 

We also linked individual-based forest modelling with remote sensing so that an estimation of biomass loss rates due to stem 

mortality was feasible. The resulting sample map of biomass loss predicted that biomass is dying at a faster rate in the central, 

southern, and eastern regions than in the northern parts of French Guiana. The forest areas in the north and northeast are used 

for timber production, agricultural activities, and housing (Bovolo et al., 2018; Stach et al., 2009), whereas the forest areas in 

the south are predominantly natural rainforests (Hammond, 2005). 585 

The approach we developed here can be easily transferred to other forest biomes (e.g., boreal and temperate forests) using 

forest models that capture biome-specific forest dynamics and available remote sensing products. Estimating the 

spatiotemporal distribution of forest biomass loss rates has recently been identified as particularly relevant for the monitoring 

of mortality hotspots (Hartmann et al., 2018). Moreover, improved estimations of the turnover times of carbon in forest stands 

have been made possible so that uncertainties in the global carbon cycle (Friend et al., 2014) can be reduced.  590 
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