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 15 

Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict 16 

the impact of climate change on marine resources and monitor ocean health. Classically, the 17 

validation of such models relies on comparison with surface quantities from satellite (such as 18 

chlorophyll-a concentrations), climatologies, or sparse in situ data (such as cruises 19 

observations, and permanent fixed oceanic stations). However, these datasets are not fully 20 

suitable to assess how models represent many climate-relevant biogeochemical 21 

processes.  These limitations now begin to be overcome with the availability of a large 22 

number of vertical profiles of light, pH, oxygen, nitrate, chlorophyll-a concentrations and 23 

particulate backscattering acquired by the Biogeochemical-Argo (BGC-Argo) floats network. 24 

Additionally, other key biogeochemical variables such as dissolved inorganic carbon and 25 

alkalinity, not measured by floats, can be predicted by machine learning-based methods 26 

applied to float oxygen concentrations. Here, we demonstrate the use of the global 27 

array of BGC-Argo floats for the assessment of biogeochemical models through a 28 

concise evaluation of the Copernicus Marine Environment Marine Service (CMEMS) global 29 

forecasting system. We first detail the handling of the BGC-Argo data set for model 30 

assessment purposes, then we present 22 assessment metrics to quantify the consistency of 31 

BGC model simulations with respect to BGC-Argo data. The metrics evaluate either the 32 

model state accuracy or the skill of the model in capturing emergent properties, such as the 33 
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 2 

Deep Chlorophyll Maximums (DCMs) or Oxygen Minimum Zones (OMZs). These metrics 1 

are associated with the air-sea CO2 flux, the biological carbon pump, and the oceanic pH and 2 

oxygen levels. We also suggest four diagnostic plots for displaying such metrics.  3 

 4 

1. Introduction 5 

 6 

Since pre-industrial times, the ocean had taken up ~36 % of the CO2 emitted by the 7 

combustion of fossil fuel (Friedlingstein et al., 2019) leading to dramatic change in the 8 

ocean’s biogeochemical (BGC) cycles, such as ocean acidification (Iida et al., 2020). 9 

Moreover, deoxygenation (Breitburg et al., 2018) and change in the biological carbon pump 10 

are now manifesting on a global scale (Capuzzo et al., 2018; Osman et al., 2019; Roxy et al., 11 

2016). Together with plastic pollution (Eriksen et al., 2014) and an increase in fisheries 12 

pressure (Crowder et al., 2008), major changes are therefore occurring in marine ecosystems 13 

at the global scale. In order to monitor these ongoing changes, derive climate projections and 14 

develop better mitigation strategies, realistic numerical simulations of the oceans’ BGC state 15 

are required.  16 

 17 

Numerical models of ocean biogeochemistry represent a prime tool to address these issues 18 

because they produce three dimensional estimates of a large number of chemical and 19 

biological variables that are dynamically consistent with the ocean circulation (Fennel et al., 20 

2019). They can assess past and current states of the biogeochemical ocean, produce short-21 

term to seasonal forecasts as well as climate projections.  However, these models are far from 22 

being flawless, mostly because there are still huge knowledge gaps in the understanding of 23 

key biogeochemical processes and, as a result, the mathematical functions that describe BGC 24 

fluxes and ecosystems dynamics are too simplistic (Schartau et al., 2017). For instance, most 25 

models do not include a radiative component for the penetration of solar radiation in the 26 

ocean. It has been nevertheless shown that coupling such a component with a BGC model 27 

improves the representation of the dynamics of phytoplankton in the lower euphotic zone 28 

(Dutkiewicz et al., 2015). Additionally, the parameterisation of the mathematical functions 29 

generally results from laboratory experiments on few a priori expected representative species 30 

and may not be suitable for extrapolation to ocean simulations that need to represent the large 31 

range of organisms present in oceanic ecosystems (Schartau et al., 2017; Ward et al., 2010). 32 

Furthermore, the assimilation of physical data in coupled physical-BGC models that improves 33 

Formatted: Font colour: Text 1

Formatted: Font: 7 pt, Font colour: Text 1, Not Superscript/
Subscript

Formatted: Font: 7 pt, Font colour: Text 1

Formatted: Font colour: Text 1

Formatted: Font colour: Text 1

Deleted: ,34 

Formatted: Font colour: Text 1

Deleted:  and Oxygen Minimum Zones (OMZs). The metrics are 35 
either a depth-averaged quantity or correspond to the depth of a 36 
particular feature37 
Formatted: Font colour: Text 1

Formatted: Indent: First line:  0 cm

Formatted: Font colour: Text 1

Formatted: Font colour: Text 1

Formatted: Font colour: Text 1

Formatted: Font colour: Text 1

Formatted: Font colour: Text 1

Formatted: Font colour: Text 1

Formatted: Font colour: Text 1

Formatted: Font colour: Text 1

Formatted: Font colour: Text 1

Formatted: Font colour: Text 1

Formatted: Font colour: Text 1

Formatted: Font colour: Text 1
Deleted:   38 
Formatted: Font colour: Text 1

Formatted: Indent: First line:  0 cm

Formatted: Font colour: Text 1

Formatted: Font colour: Text 1

Deleted:  39 
Formatted: Font colour: Text 1

Formatted: Font colour: Text 1

Formatted: Font colour: Text 1

Formatted: Font colour: Text 1

Formatted: Font colour: Text 1
Deleted: result40 
Formatted: Font colour: Text 1

Formatted: Font: Italic, Font colour: Text 1

Formatted: Font colour: Text 1

Formatted: Font colour: Text 1

Formatted: Font colour: Text 1



 

 3 

the physical ocean state can paradoxically degrade the simulation of the BGC state of the 1 

ocean (Fennel et al., 2019; Park et al., 2018; Gasparin et al., 2021). A rigorous validation of 2 

BGC models is thus essential to test their predictive skills, their ability to reproduce BGC 3 

processes and estimate confidence intervals on model predictions (Doney et al., 2009; Stow et 4 

al., 2009). 5 

 6 

However, the validation of BGC models is presently limited by the availability of data. It 7 

relies principally on comparison with surface quantities from satellite (such as chlorophyll-a 8 

concentrations), cruises observations, and few permanent oceanic stations (e.g., Doney et al., 9 

2009; Dutkiewicz et al., 2015; Lazzari et al., 2012, 2016; Lynch et al., 2009; Séférian et al., 10 

2013; Stow et al., 2009). All these datasets neither have a sufficient vertical or temporal 11 

resolution, nor a synoptic view, nor can provide all variables necessary to evaluate how 12 

models represent climate-relevant processes such as the air-sea CO2 fluxes, the biological 13 

carbon pump, ocean acidification or deoxygenation. 14 

  15 

In 2016, the Biogeochemical-Argo (BGC-Argo) program was launched with the goal to 16 

operate a global array of 1000 BGC-Argo floats equipped with oxygen (O2), chlorophyll a 17 

(Chla) and nitrate (NO3) concentrations, particulate backscattering (bbp), pH and downwelling 18 

irradiance sensors (Biogeochemical-Argo Planning Group, 2016; Claustre et al., 2020). 19 

Although the planned number of 1000 floats has not been reached yet, the BGC-Argo 20 

program has already provided a large number of quality-controlled vertical profiles of O2, 21 

Chla, NO3, bbp, and pH (Fig. 1). With respect to O2, Chla, NO3, and bbp, the North Atlantic 22 

and the Southern Ocean are reasonably well sampled whereas pH is so far essentially sampled 23 

in the Southern Ocean. At regional scale, the Mediterranean Sea is also fairly well sampled by 24 

BGC-Argo floats (Salon et al., 2019; Terzić et al., 2019).  However, there are still, large 25 

under-sampled areas, like the subtropical gyres or the sub-polar North Pacific. Nevertheless, 26 

the number of quality-controlled observations collected by the BGC-Argo fleet is already 27 

greater than any other data set (Claustre et al., 2020). The BGC-Argo data also have a 28 

satisfactory level of accuracy and stability over time (Johnson et al., 2017; Mignot et al., 29 

2019). Thanks to machine learning based methods (Bittig et al., 2018; Sauzède et al., 2017), 30 

floats equipped with O2 sensors can be additionally used to derive vertical profiles of NO3, 31 

phosphate (PO4), silicate (Si), alkalinity (Alk), dissolved inorganic carbon (DIC), pH and 32 

pCO2. All these specificities overcome the limitations of previous data sets, in terms of 33 
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 4 

vertical and temporal resolution, from now and open new perspectives for the validation of 1 

BGC models (Gutknecht et al., 2019; Salon et al., 2019; Terzić et al., 2019).  2 

 3 

The BGC-Argo data set represent a significant improvement for the assessment of models 4 

comparing to large databases such as the World Ocean Atlas (WOA) or the World Ocean 5 

Database (WOD). One of the issues of large databases such as WOD is the interoperability of 6 

the data that compose it, which, ultimately, affects their overall accuracy (Snowden et al., 7 

2019). Using the BGC-Argo dataset separately is a way to ensure consistent accuracy as it is 8 

an interoperable homogenous data set with strict data QC procedures. The BGC-Argo floats 9 

also provide observations at high vertical and temporal resolutions and for long periods of 10 

time providing nearly continuous time series of the vertical distribution of a number of 11 

biogeochemical variables. This is not possible with discrete vertical samplings provided by 12 

cruise cast in situ measurements or from climatological values derived from the WOA. 13 

 14 

We aim to demonstrate the use of the BGC-Argo global array for the assessment of BGC 15 

models at the global scale. To that end, we performed a concise evaluation of Copernicus 16 

Marine Environment Marine Service (CMEMS) global BGC forecasting system using the 17 

global fleet of BGC-Argo floats. We expect that the methodology employed here (from the 18 

data handling to the use of assessment metrics) would be useful and informative for other 19 

research teams interested in model evaluation with BGC-Argo floats. In this study, the BGC-20 

Argo dataset is used in conjunction with the model evaluation framework developed by 21 

Hipsey et al. (2020). In particular, they propose three levels of assessment metrics to evaluate 22 

the skill of a model simulation: state variables validation (e.g., Chla, NO3, O2, etc…), mass 23 

fluxes and process rates validation (e.g., primary production or division rates), and emergent 24 

properties validation (e.g., deep chlorophyll maximum, or oxygen minimum zones). In this 25 

study we present 22 metrics for the assessment of a model simulation with BGC-Argo data. 26 

Most of them evaluate the model state accuracy through the comparison of simulated state 27 

variables with BGC-Argo observations in the mixed layer or at fixed depth. In addition, some 28 

of the metrics assess the skill of the model in capturing emergent properties. These metrics are 29 

associated with the air-sea CO2 flux, the biological carbon pump, the oceanic pH, and oxygen 30 

levels and Oxygen Minimum Zones (OMZs). Further, our validation framework could, in 31 

principle, include the second level of assessment metrics (i.e., flux and process). Indeed, 32 

recent works demonstrated the feasibility of calculation at basin scale, from BGC-Argo 33 

observations, of mass fluxes and process rates, such as primary production, phytoplankton 34 
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 5 

division and accumulation rates (Yang et al., 2021; Mignot et al., 2018), net community 1 

production (Plant et al., 2016), and carbon export (Dall’Olmo and Mork, 2014). However, it 2 

would be arduous to achieve such estimations on the global BGC-Argo dataset as it requires 3 

ad hoc calibration that cannot be easily defined. Consequently, the evaluation of simulated 4 

process rates with BGC-Argo data is not addressed in this study. 5 

 6 

The paper is organised as follow: section 2 presents the data sets used in the study. In section 7 

3, we define the metrics necessary to compare the model to floats’ observations. In section 4, 8 

we show examples of diagnostic plots for displaying the metrics. In section 5, we discuss 9 

metrics relative to optical properties in the water column. Finally, section 6 summarizes and 10 

concludes the study. 11 

 12 

2. Data 13 

 14 

a. BGC-Argo floats observations 15 

 16 

The float data were downloaded from the Argo Coriolis Global Data Assembly Centre in 17 

France (ftp://ftp.ifremer.fr/argo). The CTD and trajectory data were quality controlled using 18 

the standard Argo protocol (Wong et al., 2015). The raw BGC signals were transformed to 19 

biogeochemical variables (i.e., O2, Chla, NO3, bbp, and pH) and quality-controlled according 20 

to international BGC-Argo protocols (Johnson et al., 2018b, a; Schmechtig et al., 2015, 2018; 21 

Thierry et al., 2018; Thierry and Bittig, 2018).  22 

 23 

In the Argo data-system, the data are available in three data modes: “Real-Time”, ”Adjusted” 24 

and ”Delayed” (Bittig et al., 2019). In the “Real-time” mode, the raw data are converted into 25 

state variable and an automatic quality-control is applied to “flag” gross outliers. In the 26 

“Adjusted” mode, the “Real-time” data receive a calibration adjustment in an automated 27 

manner. In the “Delayed” mode, the “Adjusted” data are adjusted and validated by a scientific 28 

expert.  While the “Real-Time” and “Adjusted” data are considered acceptable for operational 29 

application (data assimilation), the “Delayed” mode” is designed for scientific exploitation 30 

and represent the highest quality of data with the ultimate goal, when time-series with 31 

sufficient duration will have been acquired, to possibly extract climate-related trends. 32 

However, for some variables, only a limited fraction of data is accessible in “Delayed-Mode”. 33 

Formatted: Font colour: Text 1

Formatted: Indent: First line:  0 cm, Don't adjust space
between Latin and Asian text, Don't adjust space between
Asian text and numbers
Deleted: ,34 

Formatted: Font colour: Text 1

Formatted: Font colour: Text 1

Formatted: Font colour: Text 1

Deleted: has been35 
Formatted: Font colour: Text 1

Deleted: trend36 
Formatted: Font colour: Text 1

Deleted: parameters37 
Formatted: Font colour: Text 1



 

 6 

Consequently, for each variable, we selected the highest data modes, where at least 80 % of 1 

the data are available (see Table 1). Note that this criterion does not apply to O2, where only 2 

delayed mode data were selected in order to generate the pseudo-observations from 3 

CANYON-B neural network (see after). We removed data with missing location or time 4 

information and flagged as “Bad data” (flag =4). Depending on the parameter and the 5 

associated data mode, we also excluded data flagged as “potentially bad data” (flag=3) (see 6 

Table 1).  7 

 8 

Particulate Organic Carbon (POC) concentrations were derived from bbp observations. First, 9 

three consecutive low-pass filters were applied on the vertical profiles of  bbp  to remove 10 

spikes (Briggs et al., 2011): a 2-points running median followed by a 5-points running 11 

minimum and 5-points running maximum. Then, the filtered bbp profiles were converted into 12 

POC using a POC vs bbp relationship developed for the global ocean 13 

(https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-MOB-QUID-015-14 

010.pdf) based on a global database of in situ POC and satellite bbp (Evers-King et al., 2017). 15 

This relationship, POC= 38687.27* bbp 0.95 , developed for global applications, has been 16 

shown to outperform regional relationships, applied at global scales. Negative values resulting 17 

from this transformation were set to 0. 18 

 19 

Finally, we complemented the existing BGC-Argo dataset with pseudo-observations of NO3, 20 

PO4 , Si, and DIC concentrations as well as pH and pCO2 using the CANYON-B neural 21 

network (Bittig et al., 2018). CANYON-B estimates vertical profiles of nutrients as well as 22 

the carbonate system variables from concomitant measurements of floats pressure, 23 

temperature, salinity and O2 qualified in “Delayed“ mode together with the associated 24 

geolocalization and date of sampling. The CANYON-B estimates of NO3 and pH were 25 

merged with measured values on the rationale that CANYON-B estimates have RMS errors ( 26 

NO3 = 0.7 µmol kg-1 , pH = 0.013) (Bittig et al., 2018) that are of the same order of 27 

magnitude as those of the BGC-Argo observations errors ( NO3 = 0.5 µmol kg-1, pH = 0.07) 28 

(Mignot et al., 2019; Johnson et al., 2017) .  29 

 30 

Finally, we verified that the RMS errors of BGC-Argo data (both measured and from 31 

CANYON-B estimates) are lower than the RMS difference between the model and BGC-32 

Argo data, so that the comparison of simulated properties with the BGC-Argo data leads to a 33 

meaningful evaluation of the model performance. We believe it is reasonable to draw 34 
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 7 

conclusions on the model uncertainty from BGC-Argo data as long as the BGC-Argo errors 1 

are much lower than the model-observations RMS difference. 2 

 3 

 4 

b. CMEMS global BGC Model 5 

 6 

The global model simulation used in this study (see Appendix A.1) originates from the Global 7 

Ocean hydrodynamic-biogeochemical model, implemented and operated by the Global 8 

Monitoring and Forecasting Center of the EU, the Copernicus Marine Environment 9 

Monitoring Service (CMEMS). It is based on the coupled NEMO–PISCES model and it is 10 

constrained by the assimilation of satellite Chla concentrations. The BGC model is forced 11 

offline by daily fields of ocean, sea ice and atmosphere. The ocean and sea ice forcing come 12 

from Mercator Ocean global high-resolution ocean model (Lellouche et al., 2018) that 13 

assimilates along-track altimeter data, satellite Sea Surface Temperature and Sea-Ice 14 

Concentration, and in situ temperature and salinity vertical profiles. The BGC model has a 15 

1/4° horizontal resolution, 50 vertical levels (with 22 levels in the upper 100 m, the vertical 16 

resolution is 1 m near the surface and decreases to 450 m resolution near the bottom). It 17 

produces daily outputs of Chla, NO3, PO4, Si, O2, pH, DIC and Alk, and weekly outputs of 18 

POC (resampled offline from weekly to daily frequency through linear interpolation) from 19 

2009 to 2017. Note that the method of linear resampling, while artificially increasing the 20 

number of data, could potentially bias the statistical results, especially in regions with poor 21 

data coverage. Following the approach of Gali et al. (2021), the POC simulated by the model 22 

corresponds to the sum of the two sizes classes of phytoplankton, the small detrital particles 23 

and microzooplankton modelled by PISCES. This particular combination of phytoplanktonic 24 

and non-phytoplanktonic organisms has been shown match the small POC observed by the 25 

floats (Galí et al., 2021). Partial pressures of CO2 values are calculated offline from the 26 

modelled DIC, Alk, temperature and salinity data using the seacarb program for R 27 

(https://CRAN.R-project.org/package=seacarb). The Black Sea was not considered in the 28 

present analysis because the model solutions are of very poor qualities. Finally, the daily 29 

model outputs were collocated in time and the closest to the BGC-Argo floats positions, and 30 

they were interpolated to the sampling depth of the float observations. The characteristics of 31 

the model are further detailed in the appendix. 32 

 33 
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 8 

3. Metrics 1 

 2 

In this section, we present 22  metrics for the assessment of a model simulation with BGC-3 

Argo data. The metrics are associated with the air-sea CO2 flux, the biological carbon pump, 4 

oceanic pH, oxygen levels and Oxygen minimum zones (OMZs). The metrics are described 5 

below and summarized in Table 2.  6 

 7 

a. Air-sea CO2 flux 8 

 9 

The air-sea CO2 flux is generally calculated following a bulk formulation (Wanninkhof, 10 

2014), FCO2 = ka(pCO2atm - spCO2), where FCO2 is the air-sea CO2 flux, a is the CO2 solubility 11 

in seawater, k is a gas transfer coefficient that depends on wind speed, spCO2 is the partial 12 

pressure of CO2 at the ocean’s surface, and pCO2atm is the partial pressure of CO2 in the 13 

atmosphere. Among the uncertainties affecting the different components of the model CO2 14 

flux, BGC-Argo data can contribute to estimate that on spCO2. Thus, the validation of pCO2 15 

plays a critical role to assess the skill of a BGC model in representing correctly the air-sea 16 

CO2 flux. 17 

 18 

Here, spCO2 is defined as the average of pCO2 profile between the surface and the mixed 19 

layer depth (MLD). Following De Boyer et al. (2004), the MLD is computed as the depth at 20 

which the change in potential density from its value at 10 m exceeded 0.03 kg m-3. We 21 

verified that the MLD is correctly represented in the model -- the global bias between the 22 

model and the BGC-Argo observations is 0.3 m.  23 

 24 

b. Oceanic pH 25 

 26 

Ocean acidification is the decrease in oceanic pH due to the absorption of anthropogenic CO2. 27 

The acidification of the ocean is expected to impact primarily the surface oceanic waters as 28 

well as the 200-400 m layer (Kwiatkowski et al., 2020). Assessing how models correctly 29 

represent oceanic pH at the surface and in the 200-400 m layer is therefore critical if we aim 30 

to derive accurate climate projections on acidification. The surface ocean pH (spH) is defined 31 
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 9 

as the average of pH profile between the surface and the base of the mixed layer and the pH in 1 

the 200-400 m layer (pH200-400) as the average of pH profile in this layer.  2 

 3 

c. Biological carbon pump 4 

 5 

The biological carbon pump is the transformation of nutrients and dissolved inorganic carbon 6 

into organic carbon in the upper part of the ocean through phytoplankton photosynthesis and 7 

the subsequent transfer of this organic material into the deep ocean. The functioning of this 8 

pump relies on key pools of nutrients and carbon as well as several processes that control 9 

mass fluxes between the pools.  10 

 11 

The first level of assessment of a biological carbon pump simulated by a model consists in 12 

evaluating the different pools (or state variables) of the pump (Hipsey et al., 2020). In 13 

particular, the comparison of simulated surface nutrients (NO3, PO4, and Si), DIC, Chla and 14 

POC with BGC-Argo observations gives an indirect evaluation of the model capability to 15 

capture key processes of the biological carbon pump in the ocean upper layer, such as primary 16 

production, respiration, and grazing. A second level assessment would be to directly compare 17 

these key processes with measured mass fluxes, but this assessment level is not addressed in 18 

this study. The surface nutrients, DIC, Chla and POC (hereinafter denoted sNO3, sPO4, sSi, 19 

sDIC, sChl and sPOC) are calculated as the average concentrations in the mixed layer.  20 

 21 

Similarly, the assessment of the mesopelagic nutrients, DIC and POC concentration 22 

(hereinafter indicated with the subscript meso) provides an indirect evaluation of the key 23 

mesopelagic layer processes, such as export production, respiration, etc. The mesopelagic 24 

concentrations are calculated as the depth-averaged concentrations between the base of the 25 

mixed layer down to 1000 m. 26 

 27 

In stratified systems, a Chla maximum (hereinafter denoted Deep Chlorophyll Maximum, 28 

DCM) is formed at the base of the euphotic layer (Barbieux et al., 2019; Cullen, 2015; 29 

Letelier et al., 2004; Mignot et al., 2014, 2011). It has been suggested that the DCM plays an 30 

important role in the synthesis of organic carbon by phytoplankton (Macías et al., 2014). 31 

DCMs are therefore important features to be assessed in BGC models with respect to 32 

processes involved in the biological carbon pump processes such as the primary production, 33 
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however the DCM layer generally escapes detection by remote sensing. Furthermore, DCM is 1 

also an emergent feature that develops in response to complex physical and biogeochemical 2 

interactions (Cullen, 2015). Thus, its evaluation provides critical information regarding the 3 

accuracy of the model in capturing complex patterns of key ecosystem processes. The depth 4 

and magnitude of DCM (Hdcm and Chldcm) are helpful metrics for the assessment of DCM 5 

dynamics. The depth of the DCM is calculated as the depth where the maximum of Chla 6 

occurs in the profile with the criterion that Hdcm should be deeper than the MLD. The 7 

magnitude of the DCM is computed at the value at Hdcm.  8 

 9 

The vertical supply of NO3 to the surface layers is a critical process of the biological carbon 10 

pump as NO3 is often depleted in the surface layers and is a limiting factor for phytoplankton 11 

growth in most oceanic regions. This NO3 vertical supply depends, among other factors, on 12 

the vertical gradient of NO3 (the nitracline), and, in particular, on its depth (the nitracline 13 

depth) (Cermeno et al., 2008; Omand and Mahadevan, 2015). Therefore, the comparison of 14 

the simulated nitracline depth with BGC-Argo observations allows for an indirect assessment 15 

of the model quality in reproducing vertical fluxes of NO3. Following previous studies 16 

(Cermeno et al., 2008; Lavigne et al., 2013; Richardson and Bendtsen, 2019), the depth of the 17 

nitracline corresponds to the first depth where NO3 is detected. The detection threshold is set 18 

to 1 µmol kg-1, which corresponds to an upper estimate of BGC-Argo NO3 data accuracy 19 

(Johnson et al., 2017; Mignot et al., 2019). 20 

 21 
d. Oxygen levels and oxygen minimum zones 22 

 23 

Oxygens levels in the global and coastal waters have declined over the whole water column 24 

over the past decades (Schmidtko et al., 2017) and OMZs are expanding (Stramma et al., 25 

2008). Assessing how models correctly represent ocean oxygen levels as well as the OMZs is 26 

therefore critical to monitor their change over time. Similarly to DCMs, the assessment of 27 

OMZs is also informative on how the model simulates emergent dynamics as OMZs originate 28 

from complex physical and biogeochemical interactions (Paulmier and Ruiz-Pino, 2009). We 29 

evaluate oxygen levels in 3 layers, at the surface, at 300 m and at 1000 m. The surface O2 30 

(sO2), important for the air-sea O2 flux, is defined as the average of O2 profile in the mixed 31 

layer.  The oxygen at 300 m (O2 300), a depth where large areas of the global ocean have very 32 

low O2 (Breitburg et al., 2018), is defined as the average of O2 profile between 250 and 300 33 
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 11 

m. The deep oxygen content, (O2 1000), is defined as the average of O2 profile between 950 and 1 

1000 m. Finally, to characterize the OMZs, we evaluate the depth (HO2min) and concentration 2 

(O2min) of O2 minimums. O2 level lower than 80 µmol kg-1 are used to characterize OMZs 3 

(Schmidtko et al., 2017). 4 

 5 

4. Diagnostic plots to display the BGC-Argo based metrics 6 

 7 

Based upon the existing literature (e.g., Aumont et al., 2015; Cossarini et al., 2019; Doney et 8 

al., 2009; Dutkiewicz et al., 2015; Gutknecht et al., 2019; Salon et al., 2019; Séférian et al., 9 

2013; Terzić et al., 2019), we propose 4 graphical representations that can be used to display 10 

the novel validation metrics and to assess the skill of a model in reproducing a particular 11 

process or variable: Taylor diagrams, scatterplots, spatial maps, and time series.  12 

 13 

a. Taylor diagram 14 

 15 

Taylor diagrams are useful to display simultaneously information on model-data skill for a 16 

suite of metrics (Taylor, 2001). These diagrams combine the Pearson correlation coefficient 17 

(r), root-mean-square difference (RMSD) and the model standard deviation (SD). In order to 18 

represent all metrics with different units into a single diagram, we use a normalized Taylor 19 

diagram (RMSD and the model SD are divided by the SD of the observations). In the 20 

diagram, the Pearson correlation coefficient between the model and the observations is related 21 

to the azimuthal angle. The normalized SDs are proportional to the radial distances from the 22 

origin. The observational reference is indicated along the x-axis and corresponds to the 23 

normalized SD and r =1. Finally, the normalized RMSD is proportional to the distance from 24 

the observational difference.  25 

  26 

b. Scatter/Density plots 27 

 28 

In validation exercises, scatter plots are useful to identify relationships between the predicted 29 

and observed values. It is common to add a least squares regression line to quantify the 30 

strength of the linear relationship between the observed and predicted values. In those cases, 31 

when a large amount of data points has to be plotted (like in our study), the points overlap to a 32 
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degree where it can be difficult to distinguish the relationship between the variables. To 1 

overcome this, scatter plots are displayed as density plots, where each axis is divided in 2 

several bins while the colour within each bin indicates the number of points.  3 

  4 

c. Spatial maps 5 

 6 

Spatial maps draw attention to the spatial distribution of a given metric. The maps are handy 7 

to determine if the model is skilled in reproducing global patterns, spatial gradients, and 8 

basins inter-difference. It is also helpful to display the BIAS and RMSD between predicted 9 

and observed values on a spatial map to quickly determine regions where the model 10 

uncertainty is the highest. Depending on the context, the comparison between the model and 11 

the observation can be performed either on a climatological level, or for a specific period 12 

(year, month, etc ..). In our case, the scarcity of observations imposes us to display all data 13 

(from 2009 to 2017; the period of analysis of the model simulation) in a climatological way if 14 

we want to highlight large scale patterns. To do so, the metrics from 2009 to 2017 are 15 

averaged in 4°x4° bins, bins excluding those with less than 4 points. The 4° distance is an 16 

upper estimate of the autocorrelation length scales for O2, nutrients, and pCO2 (comprised 17 

between 300 and 400 km) between 20° and 40° of latitude in both hemispheres 18 

(Biogeochemical-Argo Planning Group, 2016). We also computed the BIAS and RMSD 19 

within each bin. Standard deviation can also be displayed on spatial maps as an indicator of 20 

the model skill in properly reproducing variability scales. For clarity, it is not shown in this 21 

study. 22 

 23 

d. Seasonal time-series 24 

 25 

Taylor diagrams, scatter plots and spatial maps are powerful diagnostics plots to evaluate the 26 

global skills of a model but understanding the causes of difference remains somewhat limited 27 

with these diagrams.  Rather, the comparative analysis of seasonal time-series of multiple 28 

metrics and their inter-relationships is a powerful tool to highlight and to understand BGC 29 

processes. This is especially true for the biological carbon pump that has a strong seasonal 30 

variability due to the seasonal variation in sunlight, surface heating and surface wind 31 

(Williams and Follows, 2011).  As a matter of fact, the analysis of seasonal dynamics in 32 

nutrients as well as in phyto- and zoo- plankton has a rich history for the development of 33 
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BGC models (Evans and Parslow, 1985; Riley, 1946). In addition to the time series of 1 

metrics, we also display normalized skill scores such as percent BIAS and RMSD as a 2 

function of season in order to combine quantitative metrics with visual comparison. 3 

 4 

5. Results: Application to CMEMS global model 5 

 6 

Examples of the diagnostic plots described in section 4 in combination with the metrics 7 

defined in Section 3 are shown. The objective of this section is to illustrate the opportunities 8 

offered by the BGC-Argo data for evaluating global BGC model solutions, rather than to 9 

provide a full evaluation of the CMEMS global model. Consequently, for each diagnostic 10 

plot, we only present one detailed example. The density plots and spatial maps for all metrics 11 

are displayed in the Appendix section (Fig. A1-A44). 12 

 13 

a. Taylor diagram 14 

 15 

The CMEMS global model skill is summarized in the normalized Taylor diagram (Fig. 2) and 16 

Table 3. The oxygen levels metrics (sO2, O2 300, O2 1000), pH200-400, the average nutrients and 17 

DIC concentrations in the mixed layer and in the mesopelagic layer are particularly well 18 

represented in the model. The correlation coefficients are greater than 0.95, the predicted SDs 19 

are close the observed SDs and the normalized RMSDs are lower than 0.4. The OMZs as well 20 

as the depths of DCM and nitracline are reasonably well represented in the model, with r > 21 

0.9 (OMZs) and r > 0.8 (for Hnit and Hdcm) and normalized RMSDs <0.6. The variability in 22 

the predicted O2min is however larger than the observed ones. Finally, the POC concentrations, 23 

the Chla in the mixed layer and at the DCM as well as spCO2 and spH are the worst predicted 24 

metrics. The normalised RMSDs are greater than 0.7-0.8, and r is between 0.3 and 0.7. 25 

 26 

The fact that surface nutrients are well represented in the model suggests that the model 27 

captures the combination of process rates that drive nutrients dynamics. Some of these 28 

process rates drive both the nutrients, Chla and POC dynamics, but there are also rates that 29 

are specific to each state variable. This probably explains why Chla and POC are not 30 

performing while the surface nutrients are well simulated. However, it must be recognised 31 

that without a direct assessment of the individual rates, we cannot verify this hypothesis. 32 

 33 
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The representation of all metrics into a single Taylor diagram allows to rapidly evaluate the 1 

strengths and the weaknesses of a model simulation. For instance, the CMEMS global model 2 

is skilled in reproducing oxygen levels and the cycling of nutrients and DIC, but the 3 

representation of Chla, POC, spCO2 and spH needs to be improved.   4 

 5 

b. Scatter/Density plots 6 

 7 

The density plots for all metrics are displayed in the Appendix section (Fig. A1-A22). Here, 8 

we detail only the density plot for O2min to illustrate the potential of such representations.  9 

 10 

Figure 3 shows the comparison between the observed and predicted O2min values. The 11 

regression line, the slope, and the intercept as well the coefficient of determination (R2) are 12 

indicated. Overall, the model and the float O2min are in good agreement with a slope close to 1 13 

and R2 close to 0.8. There is however a positive offset of ~11 µmol kg-1 across all O2min values 14 

suggesting that the modelled OMZs are on average too much oxygenated by a constant value. 15 

It is worth noting that the scatter around the regression line is larger for O2min > 50 µmol kg-1, 16 

which corresponds to the Atlantic OMZ around Cap Verde (Fig. A43). This suggests that the 17 

uncertainty in this OMZ is particularly high, as confirmed in Fig. A43. 18 

 19 

c. Spatial maps 20 

 21 

The spatial maps for all metrics are displayed in the Appendix section (Fig. A23-A44), while 22 

we detail hereafter the spatial distribution of sChl.  23 

 24 

Figure 4 shows the spatial distribution of sChl estimated from the BGC-Argo floats (Fig. 4a), 25 

the model (Fig. 4b), the BIAS (Fig. 4c) and the RMSD (Fig. 4d). As already noticed in Fig. 1, 26 

the density of sChl observations is satisfactory for high latitude regions (latitudes > 50° N and 27 

S) whereas it is poor in subtropical gyres and the Equatorial band. Nevertheless, large scale 28 

patterns in sChl are still distinguishable in Fig. 1a, especially the juxtaposition of the high-29 

latitudes-high- sChl regions with the low-latitudes-low- sChl regions. The model (Fig. 4b) 30 

exhibits large-scale, coherent patterns. However, the model tends to be lower than the BGC-31 

Argo observations in the high-latitudes region and higher in the subtropical gyres (Fig. 4c). 32 

The RMS difference between the predicted and the observed values seems to be quite 33 

uniform, suggesting the uncertainty in model sChl is fairly constant in all oceanic basins. 34 
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 1 

d. Seasonal time-series 2 

 3 

Two examples of BGC-Argo float seasonal time-series compared to the same time-series 4 

simulated by the model along the float trajectory are presented in Figs. 5 and 6. The two 5 

figures present a case study in the North Atlantic during the “spring bloom” and a case study 6 

in the South Pacific subtropical gyre. 7 

 8 

Figure 5 compares the seasonal time series of MLD, sChl, sNO3, sSi and sPO4 derived from 9 

the BGC-Argo floats observations (blue) and from the model simulation (yellow). To avoid 10 

relying only on visual inspection, the percent BIAS and percent RMSD are also represented 11 

for each metrics and for each season.  12 

 13 

The seasonal cycles of MLD, sChl and nutrients are typical of the North Atlantic bloom 14 

dynamics (Dale et al., 1999; Mignot et al., 2018). The temporal dynamics of sChl and 15 

nutrients are well approximated by the model with the timings of minima, maxima and the 16 

onset of the bloom being correctly represented. The winter- sChl -minimum and winter-17 

nutrients-maxima are also properly estimated by the model (Figs. 5g and h). However, the 18 

summer- sChl -maximum is underestimated and the summer- sNO3  -minimum and summer- 19 

sPO4 -minimum are overestimated (Fig. 5g ). This is coherent with the negative BIASs 20 

observed in the spatial map of sChl in the North Atlantic (Fig. 4) and the positive BIAS in the 21 

spatial map of sNO3 and sPO4  in the North Atlantic (Figs. A27 and A28).  22 

 23 

Figure 6 shows similar time series than Fig. 5 but for an oligotrophic environment in the 24 

South Pacific subtropical gyre. The time series of HDCM and ChlDCM are also shown as this gyre 25 

is characterized by a seasonal and permanent DCM (Mignot et al., 2011). The model correctly 26 

represents the seasonal cycle of sChl, HDCM and ChlDCM, which are characteristic of this 27 

region. The average percent RMSD for these three metrics is 17 %, 12 % and 16 % 28 

respectively. The more stable time series of sSi and sPO4 are also well simulated by the 29 

model; the average percent RMSD being 19 % and 11 % respectively. Finally, sNO3 are 30 

constantly underestimated by the model by an average negative BIAS of roughly 0.25 µmol 31 

kg-1. 32 

 33 
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6. Perspectives: metrics relative to ocean optical properties 1 

 2 

BGC-Argo floats equipped with sensors measuring the downward planar irradiance are 3 

essential observations to evaluate the performance of recently-developed BGC models that 4 

resolve the spectral and directional properties of the underwater light field. For several years, 5 

the number of BGC models coupled with a multispectral light module has been steadily 6 

increasing (Baird et al., 2016; Dutkiewicz et al., 2015; Gregg and Rousseaux, 2016; Lazzari et 7 

al., 2020; Skákala et al., 2020). Such models require dedicated observations and metrics to 8 

evaluate their skill in representing the ocean’s optical properties of the ocean. Diffuse 9 

attenuation coefficient for downwelling irradiance (Kd) is one of the most common properties 10 

to characterise the optical state of the ocean (Sosik, 2008). Values of Kd can be derived at 11 

three different wavelengths (380, 412, 490 nm) from the BGC-Ago floats observations. This 12 

metric also provides information about the constituents of seawater (Organelli 2017) 13 

(phytoplankton for Kd at 490 nm and coloured dissolved organic carbon for Kd at 380 nm and 14 

412 nm) and is complementary to Chla measurements for the assessment of the modelled 15 

phytoplankton dynamics.  16 

 17 

BGC-Argo floats equipped with optical sensors are available on the global ocean, but the 18 

global model used in this study does not resolve the spectral and directional properties of the 19 

underwater light field. Therefore, to show the potentiality of such comparison, we use a 20 

model of the Mediterranean Sea equipped with a multispectral light module (Lazzari et al., 21 

2020) (Appendix A.2). The spatial distribution of Kd at 490 nm in the first optical depth 22 

estimated from the BGC-Argo floats and from the Mediterranean Sea model are shown in Fig. 23 

7. The BGC-Argo estimated Kd at 490 nm exhibits a basin-scale pattern, with high values in 24 

the North-Western Mediterranean Sea and lower values in the Eastern Mediterranean Sea, 25 

consistent with the spatial distribution of surface Chla in the Mediterranean Sea (Bosc et al., 26 

2004).  The model is able to reproduce the large-scale pattern of Kd at 490 nm, but it tends to 27 

underestimate Kd at 490 nm in the North-Western Mediterranean Sea; area where the RMSD 28 

is also the highest. The annual cycle of phytoplankton being largely influenced by a spring 29 

bloom in this region (Bosc et al., 2004; D’Ortenzio et al., 2014), we can speculate that the 30 

underestimation of Kd at 490 nm highlights a possible misrepresentation of the spring bloom 31 

in the model that yields to lower phytoplankton and Chla concentrations. The comparison 32 
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 17 

exercise performed in the Mediterranean Sea shows the added value of BGC-Argo optical 1 

data for the assessment of biogeochemical model dynamics at the global scale. 2 

 3 

7. Conclusion 4 

 5 

Biogeochemical ocean models are powerful tools to monitor changes in marine ecosystems 6 

and ecosystem health due to human activities, make climate projections and help developing 7 

better strategies for mitigation. However, these models are subject to flaws and require 8 

rigorous validation processes to test their predictive skills. The model’s evaluations have long 9 

been damped by the lack of in situ observations, which has certainly slowed the development 10 

and the improvement of BGC models. The number of observations collected by the BGC-11 

Argo program is now greater than any other in situ data set (Claustre et al., 2020) and thus, 12 

offers new opportunities for the validation of BGC models. 13 

 14 

In this study, we use the global data set of BGC-Argo observations to validate a state-of-the-15 

art BGC model simulation. Our aim was to demonstrate the invaluable opportunities offered 16 

by the BGC-Argo observations for evaluating global BGC model solutions. To ease the 17 

comparison between model and observations at global scale, we proposed 22 assessment 18 

metrics, based on the model evaluation framework developed by Hipsey et al. (Hipsey et al., 19 

2020). These metrics either evaluate the model state accuracy or the skill of the model in 20 

capturing emergent properties. We did not propose BGC-Argo-based phenology metrics 21 

(Gittings et al., 2019), because the numbers of observations per month and per bin is still 22 

presently too low to derive such robust metrics. We suggested 4 diagnostic plots, which we 23 

believe are particularly suitable for displaying the metrics in support of the identification of 24 

model-data difference and subsequent analysis of model representativity. We also discuss the 25 

promising avenue of BGC-Argo-based metrics relative to optical properties in the ocean for 26 

the validation of the new generation of BGC model equipped with a multispectral light 27 

module.  28 

 29 

We assumed that the differences between the observed and predicted BGC values were only 30 

attributable to the BGC model, PISCES. However, BGC models are coupled to ocean general 31 

circulation systems and the quality of the BGC predictions strongly depends on the accuracy 32 

of the physical properties that control the BGC state variables. In our case, the dynamical 33 
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component has been extensively validated (Lellouche et al., 2018, 2013), and correctly 1 

represented variables that are constrained by observations (e. g., temperature and salinity). 2 

However, unconstrained variables in the physical system (e.g., vertical velocities) can 3 

generate unrealistic biases in various biogeochemical variables, especially in the Equatorial 4 

Belt area (Fennel et al., 2019; Park et al., 2018).  5 

 6 

We have restricted the number of diagnostic plots as well the statistical indices to the ones 7 

that are most commonly used in the modelling community. More complex statistical 8 

indicators (Stow et al., 2009) can be computed with the proposed metrics, depending on the 9 

context and the skill level necessary. Likewise, similar or more elaborate diagrams can also be 10 

used, such as Target diagram (Salon et al., 2019), zonal mean diagrams (Doney et al., 2009), 11 

or interannual time series (Doney et al., 2009).  12 

 13 

The comparison between BGC-Argo data and model simulations is not only beneficial for the 14 

modelling community but also for the BGC-Argo community. Observation System 15 

Simulation Experiments (OSSEs) are generally used to inform, a priori, observing network 16 

design (Ford, 2020). Here, we showed that the spatial maps of model-observations 17 

comparison are also informative a posteriori, with respect to the network design, as they 18 

highlight sensitive areas where BGC-Argo observations are critical and where sustained 19 

BGC-Argo observations are required to better constrain the model. These maps correspond to 20 

the regions where the model uncertainty (see RMSD spatial maps in Figs. A22-A44) is the 21 

highest, i.e., the Equatorial belt with respect to the carbonate system variables, the Southern 22 

Ocean with respect to the nutrients and the DCM variables, and the western boundary currents 23 

and OMZs with respect to oxygen.  24 
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Tables 1 

 2 

Table 1. Data mode and QC flags of the BGC-Argo observations used in this study. In the 3 

Argo data-system, the data are available in three data modes, “Real-Time”, ”Adjusted” and 4 

”Delayed”. See section 2a for a brief description of each data mode.  The flags “3” and “4” 5 

refers to “potentially bad data “ and “bad data”, respectively. See also Bittig et al. (2019), for 6 

a more detailed description of Argo data modes and flags. 7 

 8 

Parameter Data mode  Data mode of 

associated pressure, 

temperature and 

salinity profiles 

QC flags 

Chla Adjusted and Delayed Real time, Adjusted 

and Delayed 
• Real time: All flags except 

4  

• Adjusted or Delayed: All 

flags except 3 and 4 

 

O2 Delayed Delayed • All flags except 3 and 4 

 

NO3 Adjusted and Delayed Real time, Adjusted 

and Delayed 
• Real time: All flags except 

4  

• Adjusted or Delayed: All 

flags except 3 and 4 

 

pH Adjusted and Delayed Real time, Adjusted 

and Delayed 
• Real time: All flags except 

4  

• Adjusted or Delayed: All 

flags except 3 and 4 

 

bbp Real time and Delayed  Real time, Adjusted 

and Delayed 
• Real time: All flags except 

4  

• Adjusted or Delayed 

(P,T,S): All flags except 3 

and 4 
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• Adjusted or Delayed (bbp): 

All flags 4 

  1 Formatted: Font colour: Text 1
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 1 

Table 2. Assessment metrics used to assess the model simulation with BGC-Argo data . For 2 

each metric, the level of assessment, as described in Hipsey et al. (2020) is also indicated. 3 

 4 

Process Metric Definition units Assessment 

level 

Air-sea CO2 flux spCO2  Depth-averaged 

pCO2 in the mixed 

layer 

µatm State variable 

Oceanic pH spH Depth-averaged pH 

in the mixed layer 

total State variable 

 pH200-400 Depth-averaged pH 

in the 200-400 m 

layer 

total State variable 

Biological 

carbon pump 

sChl Depth-averaged 

Chla in the mixed 

layer 

mg m-3 State variable 

 sNO3  Depth-averaged NO3 

in the mixed layer 

µmol kg-1 State variable 

 sPO4  Depth-averaged PO4 

in the mixed layer 

µmol kg-1 State variable 

 sSi Depth-averaged Si 

in the mixed layer 

µmol kg-1 State variable 

 sDIC Depth-averaged DIC 

in the mixed layer 

µmol kg-1 State variable 

 NO3 meso Depth-averaged NO3 

in the mesopelagic 

layer 

µmol kg-1 State variable 

 PO4 meso Depth-averaged PO4 

in the mesopelagic 

layer 

µmol kg-1 State variable 

 Simeso Depth-averaged Si 

in the mesopelagic 

layer 

µmol kg-1 State variable 
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 DICmeso Depth-averaged DIC 

in the mesopelagic 

layer 

µmol kg-1 State variable 

 sPOC Depth-averaged 

POC in the mixed 

layer 

mg m-3 State variable 

 POCmeso Depth-averaged 

POC in the 

mesopelagic layer 

mg m-3 State variable 

 ChlDCM Magnitude of DCM  mg m-3 Emergent 

property  

 HDCM Depth of DCM m Emergent 

property 

 Hnit Depth of nitracline m Emergent 

property 

Oxygen levels 

and OMZs 

sO2 Depth-averaged O2 

in the lixed layer 

µmol kg-1 State variable 

 O2 300 O2 at 300 m µmol kg-1 State variable 

 O2 1000 O2 at 1000 m µmol kg-1 State variable 

 O2min value of O2 

minimum 

µmol kg-1 Emergent 

property 

 HO2min Depth of O2 

minimum 

m Emergent 

property 

 1 
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 1 

Table 3. Global model skill assessment. The assessment metrics are defined in Table 2.   2 

Metric BGC-

Argo 

mean 

BGC-

Argo SD 

Model 

mean 

Model 

SD 

Bias RMSD Pearson 

correlation 

coefficient 

spCO2 (µatm) 374 29 370 28 -5 29 0.50 

spH (total) 8.056 0.030 8.058 0.028 0.001 0.028 0.54 

pH200-400 

(total) 

7.933 0.125 7.949 0.114 0.016 0.038 0.96 

log10(sChl 

(mg m-3)) 

-0.7 0.7 -0.6 0.4 0.1 0.5 0.69 

sNO3 (µmol 

kg-1) 

9.4 10.1 9.1 9.6 -0.3 2.5 0.97 

sPO4 (µmol 

kg-1) 

0.75 0.64 0.81 0.62 0.07 0.15 0.98 

sSi (µmol kg-

1) 

8.5 14.6 10.5 14.6 2.0 4.7 0.96 

sDIC (µmol 

kg-1) 

2077.0 69.7 2077.5 65.8 0.4 19.0 0.96 

NO3 meso 

(µmol kg-1) 

20.6 9.6 19.9 8.7 -0.8 2.2 0.98 

PO4 meso 

(µmol kg-1) 

1.50 0.7 1.5 0.6 0.0 0.1 0.98 

Simeso (µmol 

kg-1) 

30.0 28.8 30.7 26.9 0.7 4.6 0.99 

DICmeso 

(µmol kg-1) 

2170.5 57.2 2161.1 53.7 -9.4 15.8 0.98 

log10(sPOC 

(mg m-3) 

1.73 0.29 1.55 0.27 -0.18 0.32 0.57 

log10(POCmeso 

(mg m-3) 

1.41 0.23 0.99 0.32 -0.42 0.53 0.35 

ChlDCM (m) -0.3 0.4 -0.4 0.2 -0.1 0.3 0.55 

HDCM (m) 79 36 75 36 -3 21 0.84 

Hnit (m) 43 63 41 57 -2 27 0.89 
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sO2 (µmol 

kg-1) 

266.9 47.8 267.3 47.9 0.4 12.8 0.96 

O2 300 (µmol 

kg-1) 

208.3 68.8 211.4 61.9 3.1 18.9 0.96 

O2min (µmol 

kg-1) 

208.3 68.8 211.4 61.9 3.1 18.9 0.96 

HO2min (m) 725 362 813 332 87 165 0.92 

 1 
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 1 

Figures 2 

 3 

 4 

Figure 1. Spatial and temporal coverage of quality-controlled BGC-Argo pH, NO3-, Chla, O2, 5 

and bbp profiles. (a) Number of quality-controlled profiles for the entire period per 4°x4° bin. 6 

(b) Number of quality-controlled profiles per year.  7 
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 1 

Figure 2.  Comparison of BGC-Argo floats’ observations and model values for all metrics 2 

using Taylor diagram. The symbols correspond to the metrics and the colours represent the 3 

BGC processes with which they are associated. Note that the metrics calculated from the float 4 

pH and NO3 used both the direct observations of the floats and as well as the estimations from 5 

CANYON-B. The metrics related to Chla and POC, namely sChl, ChlDCM, sPOC, POCmeso 6 

were log10-transformed because they cover several orders of magnitude and they are 7 

lognormally distributed. Observed DCMs and nitracline deeper than 250 m are not included. 8 

 9 

 10 
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 1 

Figure 3. Density plots of BGC-Argo floats’ observations and model O2min . Each axis is 2 

divided in 100 bins and the colour represents the number of points in each bin.  The dashed 3 

line represents the 1:1 line. The plain line represents the linear regression line between the 4 

two data sets. The coefficients of the linear regression line (gain and offset) as well the 5 

coefficient of determination (R2) are indicated on the top of the plot.  6 
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 1 
Figure 4. Spatial distribution maps of BGC-Argo floats’ observations of sChl (a), model sChl 2 

(b), the BIAS (c) and the RMSD (d). The data are averaged in 4°x4° bins. Bins containing 3 

less than 4 points are excluded. The BIAS and RMSD are computed on the log10-transformed 4 

data to account that sChl covers several orders of magnitude and is lognormally distributed 5 

(Campbell, 1995). 6 

 7 

 8 
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 1 

Figure 5. (a) Float trajectory of a BGC-Argo float located in the North Atlantic (WMO 2 

number: 5904479). Time series of (b), mixed layer depth, (c), sChl, (d), sNO3, (c), sSi , (f), 3 

sPO4 derived from the BGC-Argo floats observations (blue) and from the model simulation 4 

(yellow).  (g), Percent BIAS !100 ×
!
"∑ (#$%&'#($)*#)

"
#$!

|$)*-----| % and (h), percent RMSD 5 

&
100 × .

!
"∑ (#$%&'#($)*#)%"

#$!

|$)*-----| '
 as a function of season. The float sChl and sNO3 are calculated 6 

from the direct observations of the floats, whereas the float sSi and sPO4 result from 7 

CANYON-B predictions.  8 
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 1 

Figure 6. a) Float trajectory of a BGC-Argo float located in the South Pacific subtropical 2 

gyre (WMO number: 5904479). Time series of (b), mixed layer depth, (c), sChl, (d), sNO3, 3 

(c), sSi , (f), sPO4, (g), HDCM,  (h), ChlDCM derived from the BGC-Argo floats observations 4 

(blue) and from the model simulation (yellow). Time series of (i), percent BIAS 5 

!100 ×
!
"∑ (#$%&'#($)*#)

"
#$!

|$)*-----| % and (j) percent RMSD 
&
100 × .

!
"∑ (#$%&'#($)*#)%"

#$!

|$)*-----| '
 . The float 6 

sChl, HDCM, ChlDCM and sNO3 are calculated from the direct observations of the floats, 7 

whereas the float sSi and sPO4 result from CANYON-B predictions. 8 
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 1 

 2 

Figure. 7 . Spatial distribution maps of BGC-Argo floats’ observations Kd at 490 nm (a), 3 

modelled Kd at 490 nm from the Mediterranean BGC model (b), the BIAS (c) and the RMSD 4 

(d). The data are averaged in 2°x2° bins. Bins containing less than 4 points are excluded.  5 

 6 

 7 
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Appendix 1 

 2 

A.1  The CMEMS global hydrodynamic-biogeochemical model  3 

 4 

The model used in this study features the offline coupled NEMO–PISCES model, with a 1/4° 5 

horizontal resolution 50 vertical levels (with 22 levels in the upper 100 m, the vertical 6 

resolution is 1m near the surface and decreases to 450m resolution near the bottom) and daily 7 

temporal resolution, covering the period from 2009 to 2017. 8 

 9 

The biogeochemical model PISCES v2 (Aumont et al., 2015) is a model of intermediate 10 

complexity designed for global ocean applications, and is part of NEMO modelling platform.  11 

It features 24 prognostic variables and includes five nutrients that limit phytoplankton growth 12 

(nitrate, ammonium, phosphate, silicate and iron) and four living compartments: two 13 

phytoplankton size classes (nanophytoplankton and diatoms, resp. small and large) and two 14 

zooplankton size classes (microzooplankton and mesozooplankton, resp. small and large); the 15 

bacterial pool is not explicitly modelled. PISCES distinguishes three non-living detrital pools 16 

for organic carbon, particles of calcium carbonate and biogenic silicate. Additionally, the 17 

model simulates the carbonate system and dissolved oxygen. PISCES has been successfully 18 

used in a variety of biogeochemical studies, both at regional and global scale (Bopp et al., 19 

2005; Gehlen et al., 2006, 2007; Gutknecht et al., 2019; Lefèvre et al., 2019; Schneider et al., 20 

2008; Séférian et al., 2013; Steinacher et al., 2010; Tagliabue et al., 2010).  21 

 22 

The dynamical component is the latest Mercator Ocean global 1/12° high-resolution ocean 23 

model system, extensively described and validated in Lellouche et al. (2013, 2018). This 24 

system provides daily and 1/4°-coarsened fields of horizontal and vertical current velocities, 25 

vertical eddy diffusivity, mixed layer depth, sea ice fraction, potential temperature, salinity, 26 

sea surface height, surface wind speed, freshwater fluxes and net surface solar shortwave 27 

irradiance that drive the transport of biogeochemical tracers. This system also features a 28 

reduced-order Kalman filter based on the Singular Evolutive Extended Kalman filter (SEEK) 29 

formulation introduced by Pham et al. (1998), that assimilates, on a 7-day assimilation cycle, 30 

along-track altimeter data, satellite Sea Surface Temperature and Sea-Ice Concentration from 31 
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OSTIA, and in situ temperature and salinity vertical profiles from the CORA 4.2 in situ 1 

database. 2 

 3 

In addition, the biogeochemical component of the coupled system also embeds a reduced 4 

order Kalman filter (similar to the above mentioned) that operationally assimilates daily L4 5 

remotely sensed surface chlorophyll 6 

(https://resources.marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-7 

028.pdf). In parallel, a climatological-damping is applied to nitrate, phosphate, oxygen, 8 

silicate - with World Ocean Atlas 2013 - to dissolved inorganic carbon and alkalinity – with 9 

GLODAPv2 climatology (Key et al., 2015) - and to dissolved organic carbon and iron - with a 10 

4000-year PISCES climatological run. This relaxation is set to mitigate the impact of the 11 

physical data assimilation in the offline coupled hydrodynamic-biogeochemical system, 12 

leading significant rises of nutrients in the Equatorial Belt area, and resulting in an unrealistic 13 

drift of various biogeochemical variables e.g. chlorophyll, nitrate, phosphate (Fennel et al., 14 

2019; Park et al., 2018). The time-scale associated with this climatological damping is set to 1 15 

year and allows a smooth constraint that has been shown to be efficient to reduce the model 16 

drift.  17 

 18 

A.2  The Mediterranean Sea biogeochemical model MedBFM 19 

 20 

The Mediterranean Sea biogeochemical model MedBFM, is based on the system described in 21 

Teruzzi et al. (2014) and Salon et al. (2019).  22 

 23 

The physical forcing fields needed to compute the transport include the 3-d horizontal and 24 

vertical current velocities, vertical eddy diffusivity, potential temperature, and salinity and 2-d 25 

data surface data for wind stress. These forcing datasets are simulated by the Mediterranean 26 

Sea Monitoring and Forecasting Centre (MED–MFC) in the Copernicus Marine Environmental 27 

Monitoring Service (CMEMS, http://marine.copernicus.eu). The biogeochemical model is then 28 

offline forced adopting the output computed by the CMEMS MED-MFC. In the present 29 

application, we switched off the biogeochemical assimilation scheme that is currently used in 30 

the operational MED-MFC system. 31 

 32 
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The light propagation is resolved coupling an atmospheric multispectral radiative transfer 1 

model (Lazzari et al., 2020) with an in-water radiative model (Dutkiewicz et al., 2015) featuring 2 

bands at 25 nm resolution in the UV and visible wavelengths. 3 

 4 

The horizontal resolution is approximately 6 km and there are 72 vertical levels with 3 m 5 

resolution at surface coarsening at 300 m for the deeper layers. The biogeochemical model here 6 

adopted (Biogeochemical Flux Model -- BFM -- ; (Vichi et al., 2015)) has been already applied 7 

to simulate primary producers biogeochemistry (Lazzari et al., 2012), alkalinity spatial and 8 

temporal variability (Cossarini et al., 2015), and CO2 fluxes (Canu et al., 2015) for the 9 

Mediterranean Sea, and has been corroborated using in situ data for the operational purposes 10 

within CMEMS (Salon et al., 2019). The BFM model has been expanded in the present 11 

configuration adding the dynamics of coloured dissolved organic carbon (CDOM) by assuming 12 

a constant CDOM:DOC production ratio (i.e. 2%, as in (Dutkiewicz et al., 2015)).  The 13 

absorption of CDOM, is described using reference absorption at 450 nm of 0.015 m2/mgC 14 

(Dutkiewicz et al., 2015) and an exponential slope of 0.017 nm-1 (Babin et al., 2003; Organelli 15 

et al., 2014). 16 

 17 

A.3 BGC-Argo Kd estimates  18 

 19 

The data used to compute the Kd metrics are quality checked according to Organelli et al. 20 

(2017). Moreover, for the Kd logarithmic interpolation, the following selection rules were 21 

applied: the profile must have at least 5 BGC Argo float sampling in the first optical depth, the 22 

gap between the two shallower acquisitions must be less than 10 meters, and there must be at 23 

least one measurement deeper than 15 meters.  24 

 25 

A.4 Figures 26 
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 1 

Figure A1. Same as Figure 3 but for spCO2.  2 

 3 

 4 

Figure A2. Same as Figure 3 but for spH. Note that spH is calculated from both the direct 5 

observations of the floats and as well as the estimations from CANYON-B. 6 

 7 
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 1 

 2 

Figure A3. Same as Figure 3 but for pH200-400. Note that pH200-400 is calculated from both the 3 

direct observations of the floats and as well as the estimations from CANYON-B. 4 
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 1 

 2 

Figure A4. Same as Figure 3 but for sChl. Note that the least squares regression is computed 3 

on the log10-transformed data to account that sChl covers several orders of magnitude and it is 4 

lognormally distributed (Campbell, 1995). Data lower than 0.01 mg m-3 are not included. 5 

 6 

 7 
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Figure A5. Same as Figure 3 but for sNO3. Note that sNO3 is calculated from both the direct 1 

observations of the floats and as well as the estimations from CANYON-B. 2 

 3 

 4 

 5 

Figure A6. Same as Figure 3 but for sPO4.  6 
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 1 

Figure A7. Same as Figure 3 but for sSi.  2 

 3 

 4 

Figure A8. Same as Figure 3 but for sDIC.  5 

 6 
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 1 

Figure A9. Same as Figure 3 but for NO3 meso. Note that NO3 meso is calculated from both the 2 

direct observations of the floats and as well as the estimations from CANYON-B. 3 

 4 

 5 

 6 

Figure A10. Same as Figure 3 but for PO4 meso.  7 
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 1 

 2 

Figure A11. Same as Figure 3 but for Simeso.  3 

 4 

 5 

Figure A12. Same as Figure 3 but for DICmeso.  6 
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 1 

Figure A13. Same as Figure 3 but for sPOC.  Note that the least squares regression is 2 

computed on the log10-transformed data to account that sPOC covers several orders of 3 

magnitude and it is lognormally distributed (Campbell, 1995). Data lower than 0.01 mg m-3 4 

are not included. 5 
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Figure A14. Same as Figure 3 but for POCmeso. Note that the least squares regression is 1 

computed on the log10-transformed data to account that POCmeso covers several orders of 2 

magnitude and it is lognormally distributed (Campbell, 1995). Data lower than 0.01 mg m-3 3 

are not included. 4 
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Figure A15. Same as Figure 3 but for ChlDCM. Note that the least squares regression is 9 

computed on the log10-transformed data to account that ChlDCM covers several orders of 10 

magnitude and it is lognormally distributed (Campbell, 1995). Data lower than 0.01 mg m-3 11 

are not included. Observed DCMs deeper than 250 m are not included. 12 

 13 
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Figure A16. Same as Figure 3 but for HDCM. Observed DCMs deeper than 250 m are not 2 

included. 3 
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Figure A17. Same as Figure 3 but for Hnit. Observed nitracline deeper than 250 m are not 5 

included. 6 

 7 

Deleted: ¶8 
Moved up [2]: Figure A12. Same as Figure 3 but for 9 

Formatted: Font colour: Text 1

Moved (insertion) [4]

Deleted: ¶10 
Moved up [3]: Figure A13.11 

Formatted: Font colour: Text 1

Deleted:  Same as Figure 312 
Moved (insertion) [5]

Formatted: Font colour: Text 1



 

 45 

 1 

 2 

Figure A18. Same as Figure 3 but for sO2.  3 
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Figure A19. Same as Figure 3 but for O2 300.  6 
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Figure A20. Same as Figure 3 but for O2 1000.  2 
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Figure A21. Same as Figure 3..  5 
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Figure A22. Same as Figure 3 but for HO2min. 2 
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Figure A23. Same as Figure 4 but for spCO2.  3 
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 1 

Figure A24. Same as Figure 4 but for spH. Note that spH is calculated from both the direct 2 

observations of the floats and as well as the estimations from CANYON-B. 3 
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Figure A25. Same as Figure 4 but for pH200-400. Note that pH200-400 is calculated from both the 1 

direct observations of the floats and as well as the estimations from CANYON-B. 2 
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Figure A26. Same as Figure 4.  6 
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 1 

Figure A27. Same as Figure 4 but for sNO3. Note that sNO3 is calculated from both the direct 2 

observations of the floats and as well as the estimations from CANYON-B. 3 
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Figure A28. Same as Figure 4 but for sPO4.  2 
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Figure A29. Same as Figure 4 but for sSi.  2 
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Figure A30. Same as Figure 4 but for sDIC.  2 
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Figure A31. Same as Figure 4 but for NO3 meso. Note that NO3 meso is calculated from both the 2 

direct observations of the floats and as well as the estimations from CANYON-B. 3 
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Figure A32. Same as Figure 4 but for PO4 meso.  2 
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Figure A33. Same as Figure 4 but for Simeso.  2 
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Figure A34. Same as Figure 4 but for DICmeso.  2 
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 1 
Figure A35. Same as Figure 4 but for sPOC. The BIAS and RMSD are computed on the 2 

log10-transformed data to account that sPOC covers several orders of magnitude and it is 3 

lognormally distributed (Campbell, 1995) 4 
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Figure A36. Same as Figure 4 but for POCmeso. The BIAS and RMSD are computed on the 2 

log10-transformed data to account that POCmeso covers several orders of magnitude and it is 3 

lognormally distributed (Campbell, 1995) 4 
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 1 
Figure A37. Same as Figure 4 but for ChlDCM. Note that the BIAS and RMSD are computed 2 

on the log10-transformed data to account that ChlDCM covers several orders of magnitude and 3 

it is lognormally distributed (Campbell, 1995).  4 
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Figure A38. Same as Figure 4 but for HDCM. Observed DCMs deeper than 250 m are not 2 

included. 3 
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 1 

Figure A39. Same as Figure 4 but for Hnit. Observed nitracline deeper than 250 m are not 2 

included. 3 
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Figure A40. Same as Figure 4 but for sO2.  2 
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Figure A41. Same as Figure 4 but for O2 300.  2 
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Figure A42. Same as Figure 4 but for O2 1000.  2 
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Figure A43. Same as Figure 4 but for O2min.  2 
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Figure A44. Same as Figure 4 but for HO2min. 5 
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Data availability. The BGC model data can be downloaded from the Copernicus Marine 1 

Environmental Monitoring Service 2 

(https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=GLOB3 

AL_ANALYSIS_FORECAST_BIO_001_028). The BGC-Argo data were downloaded from 4 

the Argo Global Data Assembly Centre in France (ftp://ftp.ifremer.fr/argo/).   5 
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