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 17 

Numerical models of ocean biogeochemistry are becoming major tools to detect and predict 18 

the impact of climate change on marine resources and monitor ocean health. However, the 19 

assessment of biogeochemical models is becoming increasingly challenging due to the 20 

continuous improvement in model structure and spatial resolution. Here, we propose a new 21 

method to inform about the model predictive skill in a concise way.  The method is based on 22 

the conjoint use of a K-means clustering technique -- an unsupervised machine learning 23 

algorithm, assessment metrics and BGC-Argo observations. The K-means algorithm and the 24 

assessment metrics reduce the number of model data points to be evaluated.  The metrics 25 

evaluate either the model state accuracy or the skill of the model in capturing emergent 26 

properties, such as the Deep Chlorophyll Maximums and Oxygen Minimum Zones. The use 27 

of BGC-Argo observations as the single evaluation data set ensure the accuracy of the data as 28 

it is an homogenous data set with strict sampling methodologies and data quality control 29 

procedures. The method is applied to the Copernicus Marine Service global forecasting 30 

system. The model performance is evaluated using the model efficiency statistical score that 31 

compare the model-observations misfit with the variability of the observations, and thus 32 

objectively quantifies whether the model outperforms the BGC-Argo climatology. We show 33 
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that, overall, the model surpass the BGC-Argo climatology in predicting pH, dissolved 1 

inorganic carbon, alkalinity and oxygen in the mesopelagic and the mixed layers, nitrate, 2 

silicate and phosphate in the mesopelagic layer. We provide suggestions to reduce the model-3 

data misfit for phosphate, silicate, pH and the partial pressure of CO2 in the mixed layer, 4 

chlorophyll-a related and particulate organic carbon metrics, and Oxygen Minimum Zones. 5 

The method proposed here is also helpful to inform about the design of the BGC-Argo 6 

network. In particular, the regions where BGC-Argo observations should be enhanced to 7 

improve the model accuracy through the assimilation of BGC-Argo data or process-oriented 8 

assessment studies. We strongly recommend to enhance the Arctic region, which is critically 9 

under sampled and where the model is constantly outperformed by the BGC-Argo 10 

climatology. BGC-Argo observations should also be reinforced in the Equatorial region and 11 

in the Southern Oceans, two regions where the model predictions barely exceed the BGC-12 

Argo climatology.  Our results illustrate how the synergic use of modeling and BGC-Argo 13 

data can both inform about the performance of models and the design of observing systems. 14 

 15 

 16 

1. Introduction 17 

 18 

Since pre-industrial times, the ocean has taken ~26 % of the total anthropogenic CO2 19 

emission (Friedlingstein et al., 2022) leading to dramatic change in the ocean’s 20 

biogeochemical (BGC) cycles, such as ocean acidification (Iida et al., 2020). Moreover, 21 

deoxygenation (Breitburg et al., 2018) and change in the biological carbon pump are now 22 

manifesting globally (Capuzzo et al., 2018; Osman et al., 2019; Roxy et al., 2016). Together 23 

with plastic pollution (Eriksen et al., 2014) and an increase in fisheries pressure (Crowder et 24 

al., 2008), major changes are therefore occurring in marine ecosystems at the global scale. In 25 

order to contextualize monitoring of ongoing changes, derive climate projections and develop 26 

better mitigation strategies, realistic numerical simulations of the oceans’ BGC state are 27 

required.  28 

 29 

Numerical models of ocean biogeochemistry represent a prime tool to address these issues 30 

because they produce three dimensional estimates of a large number of chemical and 31 

biological variables that are dynamically consistent with the ocean circulation (Fennel et al., 32 

2019). They can assess past and current states of the BGC ocean, produce short-term to 33 
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seasonal forecasts as well as climate projections.  However, these models are far from being 1 

flawless, mostly because there are still huge knowledge gaps in the understanding of key 2 

BGC processes and, as a result, the mathematical functions that describe BGC fluxes, and 3 

ecosystems dynamics are too simplistic (Schartau et al., 2017). For instance, most models do 4 

not include a radiative component for the penetration of solar radiation in the ocean. It has 5 

been nevertheless shown that coupling such a component with a BGC model improves the 6 

representation of the dynamics of phytoplankton in the lower euphotic zone (Dutkiewicz et 7 

al., 2015). Additionally, the parameterisation of the mathematical functions generally results 8 

from laboratory experiments on a few representative species and may not be suitable for 9 

extrapolation to ocean simulations that need to represent the large range of organisms present 10 

in oceanic ecosystems (Schartau et al., 2017; Ward et al., 2010). Furthermore, the assimilation 11 

of physical data in coupled physical-BGC models that improves the physical ocean state can 12 

paradoxically degrade the simulation of the BGC state of the ocean (Fennel et al., 2019; Park 13 

et al., 2018; Gasparin et al., 2021). A rigorous assessment of BGC models is thus essential to 14 

test their predictive skills and ability to reproduce BGC processes and estimate confidence 15 

intervals on model predictions (Doney et al., 2009; Stow et al., 2009). 16 

 17 

However, the evaluation of BGC models is limited by the availability of data. It relies 18 

principally on  a combination of different data sets from satellite (such as chlorophyll-a 19 

concentrations), cruises observations,  permanent oceanic stations from large databases such 20 

as the WOD.  (e.g., Doney et al., 2009; Dutkiewicz et al., 2015; Lazzari et al., 2012, 2016; 21 

Lynch et al., 2009; Séférian et al., 2013; Stow et al., 2009). All these datasets have neither a 22 

sufficient vertical or temporal resolution, nor a synoptic view, nor provide all variables 23 

necessary to evaluate how models represent climate-relevant processes such as the air-sea 24 

CO2 fluxes, the biological carbon pump, ocean acidification or deoxygenation.  25 

 26 

In 2016, the Biogeochemical-Argo (BGC-Argo) program was launched with the goal to 27 

operate a global array of 1000 BGC-Argo floats equipped with oxygen (O2), chlorophyll a 28 

(Chla) and nitrate (NO3) concentrations, particulate backscattering (bbp), pH and downwelling 29 

irradiance sensors (Biogeochemical-Argo Planning Group, 2016; Claustre et al., 2020). 30 

Although the planned number of 1000 floats has not been reached yet, the BGC-Argo 31 

program has already provided a large number of quality-controlled vertical profiles of O2, 32 

Chla, NO3, bbp, and pH (Fig. 1). With respect to O2, Chla, NO3, and bbp, the North Atlantic 33 

and the Southern Ocean are reasonably well sampled whereas pH is well sampled only in the 34 
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Southern Ocean. At the regional scale, the Mediterranean Sea is also fairly well sampled by 1 

BGC-Argo floats (Salon et al., 2019; Terzić et al., 2019).  However, there are still large 2 

under-sampled areas like the Arctic ocean, subtropical gyres and the sub-polar North Pacific. 3 

Thanks to machine learning based methods (Bittig et al., 2018; Sauzède et al., 2017), floats 4 

equipped with O2 sensors can be additionally used to derive vertical profiles of NO3, 5 

phosphate (PO4), silicate (Si), alkalinity (Alk), dissolved inorganic carbon (DIC), pH and 6 

pCO2.  7 

 8 

The BGC-Argo data set represents a significant improvement for the assessment of models 9 

comparing to large databases such as the World Ocean Database (WOD) (Boyer et al., 2013) 10 

or the Copernicus Marine Service in situ dataset (European Union-Copernicus Marine 11 

Service, 2015). Large databases are composed of data collected from various instrument types 12 

with heterogenous data sampling methodologies. Therefore, for a given variable, the accuracy 13 

numbers are not the same and change depending on the instrument type (European Union-14 

Copernicus Marine Service, 2019). Consequently, this affects the overall accuracy over time 15 

due to the changing proportion of instrument types over the years. On the other hand, the 16 

BGC-Argo data set is an homogenous data set with strict and uniform sampling 17 

methodologies and data Quality-Control (QC) procedures. As a result, the BGC-Argo data set 18 

have a satisfactory level of accuracy, which remains stable over time (Johnson et al., 2017; 19 

Mignot et al., 2019). Moreover, the number of quality-controlled observations collected every 20 

year by the BGC-Argo fleet is now greater than any other data set (Claustre et al., 2020). 21 

Using the BGC-Argo dataset as the single evaluation data set is therefore a way to ensure 22 

consistent accuracy.   23 

 24 

The BGC-Argo floats provide multivariate observations at high vertical and temporal 25 

resolutions and for long periods of time providing nearly continuous time series of the vertical 26 

distribution of several biogeochemical variables. This is not possible with discrete, univariate 27 

vertical samplings provided by cruise cast in situ measurements or from climatological values 28 

derived from the WOA. All these specificities overcome the limitations of the previous 29 

datasets, especially with respect to their univariate nature, as well as their limited vertical and 30 

temporal resolution. This opens new perspectives for the evaluation of BGC 31 

models(Gutknecht et al., 2019; Salon et al., 2019; Terzić et al., 2019).  32 

 33 



 5 

The development of BGC models as well as the continuous increase in spatial and vertical 1 

resolutions has reached the point where the volume of model outputs has dramatically 2 

increase. Simplification techniques are therefore required to provide decipherable information 3 

on model predictive skill. Allen et al. (2007) proposed a methodology for reducing the spatial 4 

dimensions in model assessment exercises, thereby providing concise information about the 5 

model performance. They use an unsupervised learning algorithm to classify the Southern 6 

North Sea into 5 coherent BGC regions based on modelled time series of temperature, NO3, 7 

NO3, and Si concentrations. They then evaluated the predictive capabilities of the model in 8 

each BGC region (instead of at each grid point), thus greatly reducing the number of points to 9 

be validated. An additional method for reducing the dimensions of model-data comparison is 10 

the use of assessment metrics (Hipsey et al., 2020; Russell et al., 2018). In particular, metrics 11 

such as depth-averaged state variables (e.g., mixed layer averaged Chla, NO3, O2, etc…), 12 

mass fluxes and process rates validation (e.g., primary production or division rates), or 13 

emergent properties validation [e.g., Deep Chlorophyll Maximum (DCM), or Oxygen 14 

Minimum Zone [OMZ]) are particularly useful to reduce the number of model’s vertical 15 

layers to be compared with the observations.  16 

 17 

The objectives of the present study are twofold. Our first aim is to propose a methodology 18 

that uses the BGC-Argo data set, an unsupervised learning algorithm and assessment metrics 19 

to simplify marine BGC model-data comparisons, and thus inform, in a concise way, about 20 

model performance. The second objective is to use this methodology to also identify ocean 21 

regions where the model-observations misfit is larger than the variability of the BGC-Argo 22 

data and thus inform the BGC-Argo observing system of regions that should be better 23 

sampled. The first step of the method consists in defining 23 assessment metrics that are used 24 

both to construct the BGC regions and then to compare the model outputs with the BGC-Argo 25 

data. Second, following the approach of Allen et al. (Allen et al., 2007), we use an 26 

unsupervised learning algorithm, here a K-means clustering technique, to classify the global 27 

ocean into 8 coherent BGC regions based on the climatological modelled time series of the 23 28 

assessments metrics. In the last step, the skill of the model in predicting the assessment 29 

metrics is evaluated in each BGC-region, using the model efficiency statistical score. Unlike 30 

other statistical metrics such the correlation coefficient, the bias or the root mean square 31 

difference, that does not quantifies objectively whether the model performance is acceptable 32 

or not; the model efficiency calculates whether the model outperforms an observational 33 

climatology (Fennel et al., 2022). Finally, the method is implemented using the Copernicus 34 
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Marine Service global BGC forecasting system (European Union-Copernicus Marine Service, 1 

2019). 2 

 3 

The paper is organised as follows: section 2 presents the data sets used in the study. In section 4 

3, we define the assessment metrics and we detail the K-means algorithm as well as the model 5 

efficiency statistical score. In section 4, we presents and discuss the results. Finally, section 5 6 

concludes the study. 7 

 8 

2. Data 9 

 10 

a. BGC-Argo floats observations 11 

 12 

The float data were downloaded from the Argo Coriolis Global Data Assembly Centre in 13 

France (ftp://ftp.ifremer.fr/argo). The CTD and trajectory data were quality controlled using 14 

the standard Argo protocol (Wong et al., 2015). The raw BGC signals were transformed to 15 

biogeochemical variables (i.e., O2, Chla, NO3, bbp, and pH) and quality-controlled according 16 

to international BGC-Argo protocols (Johnson et al., 2018b, a; Schmechtig et al., 2015, 2018; 17 

Thierry et al., 2018; Thierry and Bittig, 2018).  18 

 19 

In the Argo data-system, the data are available in three data modes: “Real-Time”, ”Adjusted” 20 

and ”Delayed” (Bittig et al., 2019). In the “Real-time” mode, the raw data are converted into 21 

state variables and an automatic quality-control is applied to “flag” gross outliers. In the 22 

“Adjusted” mode, the “Real-time” data receive a calibration adjustment in an automated 23 

manner. In the “Delayed” mode, the “Adjusted” data are adjusted and validated by a scientific 24 

expert.  While the “Real-Time” and “Adjusted” data are considered acceptable for operational 25 

application (data assimilation), the “Delayed” mode” is designed for scientific exploitation 26 

and represent the highest quality of data with the ultimate goal, when time-series with 27 

sufficient duration will have been acquired, to possibly extract climate-related trends 28 

(Bojinski et al., 2014). However, for some variables, only a limited fraction of data is 29 

accessible in “Delayed-Mode”. Consequently, for each variable, we selected the highest level 30 

of data modes, where at least 80 % of the data are available (see Table 1). Note that this 31 

criterion does not apply to O2, where only delayed mode data were selected in order to 32 

generate the pseudo-observations from CANYON-B neural network (see after). We removed 33 
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data with missing location or time information and flagged as “Bad data” (flag =4). 1 

Depending on the parameter and the associated data mode, we also excluded data flagged as 2 

“potentially bad data” (flag=3) (see Table 1).  3 

 4 

Particulate Organic Carbon (POC) concentrations were derived from bbp observations. First, 5 

three consecutive low-pass filters were applied on the vertical profiles of  bbp  to remove 6 

spikes (Briggs et al., 2011): a 2-point running median followed by a 5-point running 7 

minimum and 5-point running maximum. Then, the filtered bbp profiles were converted into 8 

POC (mgC m-3) using a simplified version of the empirical POC/bbp  algorithm developed by 9 

Gali et al. (2022), i.e , for depths larger than the mixed layer depth (MLD): 10 

 11 
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𝑧 > 𝑀𝐿𝐷, 13 
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  where c  is a constant deep value and, b, the slope of the exponential decrease, sets to 12010 15 

mgC m-3 m and 6.57,respectively, as proposed by Gali et al. (2022). The global coefficient a, 16 

is set to 37990  mgC m-3 m to be consistent with a relationship, developed for global surface 17 

applications (i.e, POC= 38687.27* bbp 0.95) (European Union-Copernicus Marine Service, 18 

2020). This relationship is based on a global database of in situ POC and satellite bbp (Evers-19 

King et al., 2017). In the mixed layer (ML), z is fixed at MLD, and the Eq. (1) simplifies to 20 

    	21 
𝑃𝑂𝐶
𝑏!"

= 𝑐 + 𝑎,																		(2) 22 

𝑧 ≤ 𝑀𝐿𝐷. 23 

 24 

Finally, we complemented the existing BGC-Argo dataset with pseudo-observations of NO3, 25 

PO4 , Si, Alk, and DIC concentrations as well as pH and pCO2 using the CANYON-B neural 26 

network (Bittig et al., 2018). CANYON-B estimates vertical profiles of nutrients as well as 27 

the carbonate system variables from concomitant measurements of float pressure, 28 

temperature, salinity, and O2 qualified in “Delayed“ mode together with the associated 29 

geolocalization and date of sampling. CANYON-B was trained and validated using the 30 

GLODAPv2 data set (Key et al., 2015). The CANYON-B estimates of NO3 and pH were 31 

merged with measured values on the rationale that CANYON-B estimates have RMS errors ( 32 
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NO3 = 0.7 µmol kg-1 , pH = 0.013) (Bittig et al., 2018) that are of the same order of 1 

magnitude as those of the BGC-Argo observations errors ( NO3 = 0.5 µmol kg-1, pH = 0.07) 2 

(Mignot et al., 2019; Johnson et al., 2017) .  3 

 4 

Finally, we verified that the RMS errors of BGC-Argo data (both measured and from 5 

CANYON-B estimates) are lower than the RMS difference between the model and BGC-6 

Argo data, so that the comparison of simulated properties with the BGC-Argo data leads to a 7 

meaningful evaluation of the model performance. We believe it is reasonable to draw 8 

conclusions on the model uncertainty from BGC-Argo data as long as the BGC-Argo errors 9 

are much lower than the model-observations RMS difference. 10 

 11 

 12 

b. Copernicus Marine Service global BGC Model 13 

 14 

The global model simulation used in this study (see Appendix A.1) originates from the Global 15 

Ocean hydrodynamic-biogeochemical model implemented and operated by the Global 16 

Monitoring and Forecasting Center of the EU, the Copernicus Marine Service. It is based on 17 

the coupled NEMO–PISCES model and is constrained by the assimilation of satellite Chla 18 

concentrations. The BGC model is forced offline by daily fields of ocean, sea ice and 19 

atmosphere. The ocean and sea ice forcing come from Mercator Ocean global high-resolution 20 

ocean model (Lellouche et al., 2018) that assimilates along-track altimeter data, satellite Sea 21 

Surface Temperature and Sea-Ice Concentration, and in situ temperature and salinity vertical 22 

profiles. The BGC model has a 1/4° horizontal resolution, 50 vertical levels (with 22 levels in 23 

the upper 100 m, the vertical resolution is 1 m near the surface and decreases to 450 m 24 

resolution near the bottom). It produces daily outputs of Chla, NO3, PO4, Si, O2, pH, DIC and 25 

Alk, and weekly outputs of POC (resampled offline from weekly to daily frequency through 26 

constant interpolation) from 2009 to 2020. Note that the method of linear resampling, while 27 

artificially increasing the number of data, could potentially bias the statistical results, 28 

especially in regions with poor data coverage. Then, following the approach of Gali et al. 29 

(2022), the POC simulated by the model corresponds to the sum of the two sizes classes of 30 

phytoplankton, the small detrital particles and microzooplankton modelled by PISCES. This 31 

particular combination of phytoplanktonic and non-phytoplanktonic organisms has been 32 

shown to match the small POC observed by the floats (Galí et al., 2021). The partial pressures 33 
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of CO2 values are extrapolated in the mixed layer from the surface value estimated by the 1 

model. The Black Sea was not considered in the present analysis because the model solutions 2 

are of poor qualities. Finally, the daily model outputs were collocated in time and spacethe 3 

closest to the BGC-Argo floats positions, and they were interpolated to the sampling depth of 4 

the float observations. The characteristics of the model are further detailed in the appendix. 5 

 6 

3. Methods 7 

a. Assessment metrics 8 

 9 

In this section, we present 23 metrics used for the clustering of the ocean and for the 10 

assessment of the model simulation with BGC-Argo data. The metrics are associated with the 11 

carbonate chemistry, the biological carbon pump, and oxygen levels. Most of the metrics 12 

evaluate the model state accuracy through the comparison of simulated state variables with 13 

BGC-Argo observations depth-averaged in the mixed (herenafter indicated with the subscript 14 

mixed) and mesopelagic (herenafter indicated with the subscript meso) layers. This two-layer 15 

comparison between model and BGC-Argo data provides an indirect evaluation of the key 16 

mesopelagic processes and fluxes associated with the carbonate chemistry, biological carbon 17 

pump and oxygen levels in the mixed, and mesopelagic layers. In addition, some of the 18 

metrics assess the skill of the model in capturing emergent properties, such as the nitracline, 19 

the DCM and the OMZs. The metrics are described below and summarized in Table 2. The 20 

definition of the metrics is the same for the model and the BGC-Argo data. The MLD is 21 

computed, following De Boyer et al. (2004),  as the depth at which the change in potential 22 

density from its value at 10 m exceeded 0.03 kg m-3. The mesopelagic layer is defined as the 23 

layer between the MLD and 1000m. For simplicity, we use a simplified definition of the 24 

mesopelagic layer proposed by Dall’ Olmo and Mork (2014). In their study, this layer is 25 

comprised between the deepest of the euphotic layer depth and the MLD, and 1000 m. Given 26 

the importance of the MLD in the calculation of the metrics, we verified that the MLD is 27 

correctly represented in the model -- the overall mean square difference between the model 28 

and the data is equal to ~30% of the overall variance of the observations. 29 

 30 

i. Carbonate chemistry 31 

 32 



 10 

The uptake of ~26 % anthropogenic CO2 by the global ocean (Friedlingstein et al., 2022)  has 1 

altered the oceanic carbonate chemistry over the past few decades (Iida et al., 2020). 2 

Assessing how models correctly represent the oceanic carbonate chemistry is therefore critical 3 

if we aim to derive accurate climate projections on their future change. The classical variables 4 

for the study of carbonate chemistry are DIC, Alk, pH and pCO2 (Williams and Follows, 5 

2011). These variables are assessed in the mixed (DICmixed, Alkmixed, pHmixed and pCO2 mixed) 6 

and mesopelagic (DICmeso, Alkmeso, pHmeso) layers. The partial pressure of CO2 is only 7 

assessed in the mixed layer as the evaluation of pCO2 mixed plays a critical role to assess the 8 

skill of a BGC model to correctly represent the air-sea CO2 flux. 9 

 10 

ii. Biological carbon pump 11 

 12 

The biological carbon pump is the transformation of nutrients and dissolved inorganic carbon 13 

into organic carbon in the upper part of the ocean through phytoplankton photosynthesis and 14 

the subsequent transfer of this organic material into the deep ocean. The functioning of this 15 

pump relies on key pools of nutrients and carbon as well as several processes that control 16 

mass fluxes between the pools. Changes in the biological carbon pump are now manifesting 17 

globally (Capuzzo et al., 2018; Osman et al., 2019; Roxy et al., 2016). 18 

 19 

An indirect evaluation of the model capability to capture key processes associated with the 20 

biological carbon pump in the ocean upper layer, such as primary production, respiration, and 21 

grazing consists in comparing the different ML pools [here the nutrients (NO3 mixed, PO4 mixed, 22 

Simixed), Chlmixed and POCmixed] with BGC-Argo observations.  Similarly, the assessment of 23 

the mesopelagic nutrients, and POC concentration (hereinafter denoted NO3 meso, PO4 meso, 24 

Simeso, and POCmeso)  provides an indirect evaluation of the key mesopelagic layer processes, 25 

such as export production, respiration, etc.  26 

 27 

In stratified systems, a DCM is formed at the base of the euphotic layer (Barbieux et al., 2019; 28 

Cullen, 2015; Letelier et al., 2004; Mignot et al., 2014, 2011). It has been suggested that the 29 

DCM plays a key role in the synthesis of organic carbon by phytoplankton (Macías et al., 30 

2014). DCMs are therefore key features to be assessed in BGC models with respect to 31 

processes involved in the biological carbon pump such as the primary production. However 32 

the DCM layer generally escapes detection by remote sensing. Furthermore, the DCM is also 33 
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an emergent feature that develops in response to complex physical and biogeochemical 1 

interactions (Cullen, 2015). Thus, its evaluation provides critical information regarding the 2 

accuracy of the model in capturing complex patterns of key ecosystem processes. The depth 3 

and magnitude of DCM (HDCM and ChlDCM) are helpful metrics for the assessment of DCM 4 

dynamics. The depth of the DCM is calculated as the depth where the maximum of Chla 5 

occurs in the profile with the criterion that HDCM should be deeper than the MLD. The 6 

magnitude of the DCM is computed at the value at HDCM.  7 

 8 

NO3 is often depleted in the surface layers and is a limiting factor for phytoplankton growth in 9 

most oceanic regions. The vertical supply of NO3 to the surface layers depends, among other 10 

factors, on the vertical gradient of NO3 (the nitracline), and, in particular, on its depth (the 11 

nitracline depth) (Cermeno et al., 2008; Omand and Mahadevan, 2015). Therefore, the 12 

comparison of the simulated nitracline depth (Hnit) with BGC-Argo observations allows for an 13 

indirect assessment of the model performance in reproducing vertical fluxes of NO3. 14 

Following previous studies (Cermeno et al., 2008; Lavigne et al., 2013; Richardson and 15 

Bendtsen, 2019), the depth of the nitracline corresponds to the first depth where NO3 is 16 

detected. The detection threshold is set to 1 µmol kg-1, which corresponds to an upper 17 

estimate of BGC-Argo NO3 data accuracy (Johnson et al., 2017; Mignot et al., 2019). 18 

 19 
iii. Oxygen levels  20 

 21 

Oxygens levels in the global and coastal waters have declined over the whole water column 22 

over the past decades (Schmidtko et al., 2017) and OMZs are expanding (Stramma et al., 23 

2008). Assessing how models correctly represent ocean oxygen levels as well as the OMZs is 24 

therefore critical to monitor their change over time. Similarly to DCMs, the assessment of 25 

OMZs is also informative on how the model simulates emergent dynamics as OMZs originate 26 

from complex physical and biogeochemical interactions (Paulmier and Ruiz-Pino, 2009). 27 

Oxygen levels are evaluated in the mixed (O2 mixed) and mesopelagic (O2 meso)  layers. OMZs 28 

are defined as oceanic regions where O2 levels are lower than 20 µmol kg-1 (Paulmier and 29 

Ruiz-Pino, 2009). OMZs are characterized by their depths (HO2min) and their concentrations 30 

(O2min). 31 

 32 
b. Bioregionalization of the model 33 
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 1 

In this study, we use the K-means clustering algorithm (Hartigan and Wong, 1979) to 2 

regionalize the ocean based on the modelled climatological monthly time series of the 23 3 

metrics described previously. The K-means clustering is an unsupervised machine learning 4 

algorithm that combine similar objects into a group in such a way that, within a group, the 5 

similarity between objects is maximum and between groups, the similarity between objects is 6 

minimum. This clustering tool has been successfully used to classify marine BGC regions in 7 

different oceanic basins based on the seasonal cycle of satellite chlorophyll (Kheireddine et 8 

al., 2021; Mayot et al., 2016; Lacour et al., 2015; D’Ortenzio and d’Alcala, 2009) . The step-9 

by-step methodology, used in this study, is described in the next section. 10 

 11 

First, the climatological monthly time series of the 23 metrics were calculated at each model 12 

grid cell from the climatological monthly time series of the state variables predicted by the 13 

model from 2009 to 2017. The metrics in units of Chla or POC were log-10 transformed to 14 

account for the fact that these metrics span several orders of magnitude and are lognormally 15 

distributed. Second, to take into consideration the 6-month shift in seasons between the 16 

northern and southern hemispheres, the dates for grid cells located in the Southern 17 

Hemisphere were shifted by 6 months (Bock et al., 2022). Third, to classify the model grid 18 

cells regardless of the different units of the 23 metrics, each metric was rescaled by 19 

subtracting the global mean and by dividing the global standard deviation. As a result, each 20 

metric had a mean of 0 and standard deviation of 1. Fourth, to reduce the dimensionality of 21 

the data set, a principal component analysis was applied to the scaled data.  Only the 22 

components that explain 99 % of the variance in the data set were kept, reducing thereby the 23 

dimensions of the data set by 85 %. A K-means clustering analysis was then performed on the 24 

resulting data set. Following Kheireddine et al. (2021), the number of clusters was determined 25 

based on a silhouette analysis (Rousseeuw, 1987), and, as a result, was set to 8 . 26 

 27 

c. Model efficiency 28 

 29 

To quantify the model predictive skill, a model efficiency statistical score (𝑚.) was computed 30 

for each metric and in each BGC region: 31 

 32 
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𝑚. = 1 −
∑ (𝑚/ − 𝑜/)01
/2&

∑ (𝑜/ − �̅�)01
/2&

,																		(3) 1 

 2 

 where 𝑚/ and 𝑜/ are the model and BGC-Argo matched values, respectively and �̅� is the 3 

BGC-Argo climatology. Assuming that the spatial variations are small in a given BGC-4 

region, �̅� represents the temporal average and ∑ (𝑜/ − �̅�)01
/2&  represents the variance due to 5 

temporal fluctuations. The model efficiency tests whether the model outperforms the BGC-6 

Argo climatology (0 < 𝑚. < 1 ,Fennel et al., 2022), or stated differently, if the model-data 7 

mean square difference is lower than the observation variance, i.e.,  ∑ (𝑚/ − 𝑜/)01
/2& <8 

	∑ (𝑜/ − �̅�)01
/2& 	. To ensure the robustness of 𝑚., we verified that the number of matchups for 9 

each metric and in each BGC-region was greater than 100, then outliers were removed using 10 

Tukey’s fences (Tukey, 1977).  11 

 12 

4. Results and discussion 13 

 14 

a. Global BGC-regions 15 

 16 

The K-means clustering algorithm identified 8 distinct BGC-regions (Figure 2).  6 of the 8 17 

BGC-regions correspond to well-defined spatial regions and are, thus, named accordingly, 18 

i.e., the Arctic, Equatorial, Mediterranean Sea, OMZs, Subtropical Gyres and Southern 19 

Oceans BGC-regions. The two others BGC-regions are located in the North Atlantic, North 20 

Pacific and North of the Southern Oceans BGC-region. These two BGC-regions correspond 21 

to ocean basins that are characterized by a phytoplankton “bloom” during spring time 22 

(Westberry et al., 2016), with the only difference that in one of the BGC-region, 23 

macronutrients such as nitrate and phosphate remains abundant throughout the year due to 24 

phytoplankton growth being mainly limited by iron (Williams and Follows, 2011). 25 

Accordingly, these two regions are named , Low Nutrients Bloom and High Nutrients Bloom, 26 

respectively. Finally, it should be noted that, outlier grid cells were no removed, and are 27 

mainly present in grid cells close to the coast. Furthermore, grid cells with bathymetry 28 

shallower than 1000 m, are not included in the clustering as metrics associated with the 29 

mesopelagic processes cannot be calculated in these shallow grid cells.   30 

 31 
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The BGC-regions found in study are overall coherent with the biomes estimated in Fay and 1 

McKinley (2014) (hereinafter denoted FM2014). The Arctic and Southern Oceans correspond 2 

to the FM2014 ice biome. The Subtropical Gyres correspond to the FM2014 subtropical 3 

permanently stratified biome . The Equatorial BGC-region represents a larger area than the 4 

Equatorial biome in FM2014. The Low Nutrients and High nutrients Bloom regions 5 

correspond to FM2014 subtropical seasonally stratified and subpolar seasonally stratified 6 

biomes, respectively. These two BGC-regions are coherent in the North Pacific and in the 7 

Southern Ocean in both studies. They differ, however, in the North Atlantic. In FM2014, the 8 

subpolar North Atlantic is divided between  the subtropical seasonally stratified and subpolar 9 

seasonally stratified biomes, whereas in our study this area is only represented by one BGC-10 

region; the Low Nutrients Bloom region. Finally, the Mediterranean sea and OMZs BGC-11 

regions are not represented in FM2014.  The main differences observed between our study 12 

and FM2014 stem from the fact our bioregionalization is based on 23 input variables while 13 

the clustering in FM14 is only based on one BGC input variable (Chla) and three physical 14 

variables (sea surface temperature, MLD and sea-ice faction). Therefore, our methodology 15 

can identified specific BGC-regions whose function is mainly characterized by variables other  16 

than Chla  (e.g. OMZs). Our method also include coastal areas, and identify the 17 

Mediterranean Sea which is not included in FM2014 because it is considered as a coastal 18 

region.  19 

 20 

b. Model performance 21 

 22 

Figures 3-5 show the me calculated for each assessment metric and in each BGC region. For 23 

clarity, the me are grouped by process (carbonate chemistry, biological carbon pump and 24 

oxygen levels). The results are presented as bubble plots (panels b) where the size of the 25 

bubble is proportional to the value of  me. For a given assessment metric, the median value of  26 

me over all BGC regions are represented as a bar plot (panels c). Similarly, for a given BGC 27 

region, the median value of  me over all assessment metrics is represented as a bar plot (panels 28 

a).  When the number of assessment metrics is lower than 3, the mean value is computed 29 

instead of the median. In panels b, The x and y axes are arranged in descending order of the 30 

median value of  me over all assessment metrics (panels a) and the median value of  me over 31 

all BGC regions (panel b), respectively. 32 

 33 
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i. Carbonate chemistry 1 

 2 

Overall, the model results in better predictions for Alkmeso, DICmixed , Alkmixed , DICmeso and 3 

pHmeso than the BGC-Argo climatology (me >1)  (Figs. 3b and 3C) . The median me value for 4 

these metrics are (0.84, 0.78, 0.60, 0.57, and 0.56). For pHmeso, the model outperforms the 5 

BGC-Argo climatology in all BGC-regions. For Alkmeso, DICmixed , Alkmixed , the model errors 6 

are lower than the variability of the observations everywhere except in the Arctic BGC-7 

region. DICmeso is better predicted by the model than the BGC-Argo climatology in almost all 8 

BGC-regions except in the Arctic, Southern Oceans, and the Mediterranean Sea . The model’s 9 

ability to reproduce the instantaneous variability of pHmixed and pCO2 mixed is more limited. 10 

The model outperform the  BGC-Argo climatology in only 4 BGC-regions for pHmixed and 2 11 

BGC-regions for pCO2 mixed. Overall, the carbonate chemistry dynamics is better estimated by 12 

the model than the BGC-Argo climatology in all BGC-regions except in the Arctic BGC- 13 

region (Fig. 3a) 14 

 15 

ii. Biological carbon pump 16 

 17 

The model efficiency is more limited for the biological carbon pump (Figs 4b and 4c). The 18 

model results in significant better estimations than the BGC-Argo climatology only for 19 

nutrients in the mesopelagic layer (Simeso, PO4 meso and NO3 meso), and Hnit (Fig. 4c). The model 20 

efficiency in predicting nutrients deteriorates when we move from the mesopelagic to the 21 

mixed layer, where the median me values drop from 0.83, 0.78, 0.68 to -2.10 and 0.1 , 0.08 for 22 

Si, PO4  and NO3 respectively. For the metrics associated with the first trophic level (i.e, 23 

Chlmixed, HDCM, ChlDCM, POCmixed, and POCmeso), the median me values are lower than 0 in 24 

almost all BGC-regions, suggesting than the model is almost systematically outperformed by 25 

the BGC-Argo climatology. Regionally,  the median me values are greater than 1 only  in the 26 

Low Nutrients and High Nutrients Bloom,  the Mediterranean Sea and the OMZs BGC-27 

regions.   28 

 29 

iii. Oxygen levels 30 

 31 

The model errors for O2 mixed are lower than the data variability in all BGC-regions (Fig. 5b). 32 

In the mesopelagic layer, the model results also in better predictions than the BGC-Argo 33 
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climatology everywhere except in the Southern Oceans and in the Arctic BGC-regions. The 1 

Oxygen Minimum Zones are detected in both the Equatorial and OMZs BGC regions. The 2 

magnitude of OMZs in both regions are better represented by the BGC-Argo climatology than 3 

the model, whereas the depth of the OMZ is better predicted by the model only in the OMZs 4 

region. 5 

 6 

iv.  Discussion 7 

 8 

The skill of the model to surpass the BGC-Argo climatology for DIC, Alk and O2 in the 9 

mesopelagic and the mixed layers is not surprising. As detailed in the appendix, the model 10 

applies a climatological damping,- to NO3, PO4, O2, Si - with World Ocean Atlas 2013 11 

(Garcia et al., 2013, 2014) -  and to DIC and Alk– with GLODAPv2 climatology (Key et al., 12 

2015). The damping mitigates the impact of the physical data assimilation in the offline 13 

coupled hydrodynamic-biogeochemical system, that results in an unrealistic drift of various 14 

biogeochemical variables (Fennel et al., 2019; Park et al., 2018; Gasparin et al., 2021).  15 

 16 

Following this reasoning, one should also expect the nutrients to be better estimated by the 17 

model than by the BGC-Argo climatology. While, this is true in the mesopelagic layer, the 18 

model performance is significantly deteriorated in the mixed layer. In addition to the 19 

climatological damping, the model also embeds a reduced order Kalman filter (Lellouche et 20 

al., 2013) that assimilates daily L4 remotely sensed surface Chla that provide a correction in 21 

the mixed layer to the modelled Chla (both in the nanophytoplankton and diatom 22 

compartments) as well as to nitrate through the use of model error covariance. We verified 23 

that the assimilation of satellite Chla decrease the model-BGC-argo data misfit comparing to 24 

a simulation without assimilation (not shown). We can, therefore speculate that uncertain 25 

model error covariance during the assimilation of satellite Chla degrades the model skill in 26 

predicting ML nutrients. This hypothesis could be tested by computing the model efficiencies 27 

for a model simulation with only the climatological damping activated.  28 

 29 

While the assimilation decreases the model-BGC-argo data misfit for Chlmixed  comparing to a 30 

simulation without assimilation (not shown), the model errors for the three metrics associated 31 

with Chla remains systematically larger than the BGC-Argo variability. Yet, it has been 32 

shown that, when comparing to the satellite Chla product assimilated (European Union-33 
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Copernicus Marine Service, 2022), the model-satellite misfit was lower than the variability of 1 

the satellite data (European Union-Copernicus Marine Service, 2019). This suggest that the 2 

model-BGC-Argo data misfit could originate, in part, from discrepancies between the satellite 3 

Chla product assimilated and the BGC-Argo data. We propose that studies should check the 4 

consistency between ocean colour products and BGC-Argo Chla products at the global scale 5 

as these two products are expected to be assimilated together in future operational BGC 6 

systems (Ford, 2021). 7 

 8 

Overall, the model also performs worse than the BGC-Argo climatology in predicting POC 9 

concentrations, the OMZs, pHmixed and pCO2 mixed. The poor performance of PISCES-based 10 

models relative to BGC-Argo POC observations has been extensively studied in Gali et al. 11 

(2022). They pointed out that the large model-data misfit could be the result of an imperfect 12 

BGC-Argo POC-bbp conversion factor, unsuitable model parameters associated with POC 13 

dynamics and missing processes in the model structure. Similarly, the poor model skill in 14 

capturing the OMZs dynamics are also already been documented in several studies (Busecke 15 

et al., 2022; Schmidt et al., 2021; Cabré et al., 2015). All studies suggested that improving the 16 

ocean circulation in physical models may be the most important factor to improve the 17 

accuracy of OMZs model predictions. Finally, the negative model efficiencies for pHmixed and 18 

pCO2 mixed could be understood by considering that pH and pCO2 are driven by DIC, Alk, 19 

temperature and salinity. Consequently, the model uncertainties in pHmixed and pCO2 mixed are 20 

also controlled by the model errors in these 4 variables. Therefore, even small errors in 21 

modelled DIC, Alk (Fig. 3b) as well as modelled temperature and salinity (Lellouche et al., 22 

2018) could lead to a poor model performance in capturing the variability of pH and pCO2. 23 

 24 

 25 

c. Recommendation for the design of the BGC-Argo 26 

observing system 27 

 28 

Observing System Simulation Experiments (OSSE) have been the primary tool to inform 29 

about the design of the BGC-Argo observing system (Ford, 2021; Biogeochemical-Argo 30 

Planning Group, 2016). OSSEs typically comprises a realistic “nature run”, which represents 31 

“the truth” from which synthetic observations are sampled. The synthetic observations 32 

represents the observing system to be designed. To test its impact on improving models 33 
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predictive skill, the synthetic observations are then assimilated in an “assimilative run”. The 1 

accuracy of the “assimilative run” is then evaluated against the “nature run”. Here, we use the 2 

real BGC-Argo observations to inform about the design of the BGC-Argo network. More 3 

specifically, our aim is to inform about the regions where the model errors are greater than the 4 

variability of the BGC-Argo data, and consequently where BGC-Argo observations should be 5 

enhanced to improve the model accuracy through BGC-Argo data assimilation or process-6 

oriented assessment studies.  7 

 8 

For a given BGC-region, we compute a single multivariate score which correspond to the 9 

median of the 23 me associated with each assessment metric (Fig. 6). This is consistent with 10 

the fact that the BGC-Argo floats, that are now deployed, observe the 5 variables used to 11 

derive the assessments metrics, i.e., O2, Chla, NO3, bbp and pH. The Arctic BGC-region is the 12 

only region whose median me is negative (-0.75). This is consistent with the fact that only 4 13 

assessment metrics (namely NO3 meso, POCmeso, pHmeso, pHmixed) are better represented by the 14 

model than the BGC-Argo climatology in this region (Figs. 3 and 4). Few BGC-Argo 15 

observations exist in this region (Fig.1), and, the winter-spring months are particularly under-16 

sampled (not shown). In this region, satellite observations of Chla are not possible most of 17 

year and the scarcity of in situ observations probably make the climatological damping less 18 

efficient in this region. Given the rapid changes occurring in the Arctic biogeochemical 19 

processes and ecosystems due to climate change (Solan et al., 2020),  we strongly recommend 20 

to enhance the Arctic region with BGC-Argo floats. These observations are critical to better 21 

constrain the model. Given also the key role of the Southern Oceans and the Equatorial 22 

regions for the oceanic CO2 cycle (Long et al., 2021; Landschützer et al., 2014),  we also 23 

recommend to enhance these two regions whose median me are barely greater than 0 (0.04 24 

and 0.12, respectively).   25 

 26 

5. Conclusion 27 

 28 

In this study, we propose a method based on the global data set of BGC-Argo observations, a 29 

K-means clustering algorithm and 23 assessments metrics to simplify model-data comparison 30 

and inform on Copernicus Marine Service forecasting system predictive skill and the design 31 

of the BGC-Argo observing system. The K-means algorithm identified 8 BGC-regions in the 32 

model simulation  that are consistent with Fay and McKinley (2014) study. Within each 33 
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BGC-region and for each assessment metric, we compute a model efficiency statistical score 1 

that quantify whether the model outperforms the BGC-Argo climatology by comparing the 2 

model-BGC-Argo data mean square difference with the observation variance.  3 

 4 

Overall, the model surpasses the BGC-Argo climatology in predicting pH, DIC, Alk and O2 in 5 

the mesopelagic and the mixed layers, as well as NO3, Si and PO4 in the mesopelagic layer. 6 

Concerning the other metrics, whose model predictions are outperformed by the BGC-Argo 7 

climatology, we provide suggestions to reduce the model-data misfit and thus to increase the 8 

model efficiency.  For, PO4, Si, and NO3, we propose to test if the uncertain model error 9 

covariances during the assimilation of satellite Chla could lead to a degradation in predicting 10 

nutrients in the mixed layer. For Chla-related metrics, we recommend to check the 11 

consistency between ocean colour products and BGC-Argo Chla products at the global scale 12 

as it may explain part of the misfit between the model, that assimilates satellite Chla, and 13 

BGC-Argo observations. The discrepancies between modelled and observed POC and OMZs 14 

have been already investigated in previous studies. It has been suggested that improving the  15 

BGC-Argo POC-bbp conversion factor, tuning the model parameters and implementing 16 

missing processes in the model structure could decrease the model-data inconsistencies 17 

associated with POC dynamics. Similarly, the improvement of the ocean circulation in 18 

physical models should improve the accuracy of OMZs model predictions. Finally, pHmixed 19 

and pCO2 mixed  should be better modelled if the uncertainties associated with DIC, Alk, 20 

temperature and salinity in the mixed layer are reduced. 21 

 22 

The method proposed here is also beneficial to inform about the BGC-Argo network design. 23 

In particular, the regions where BGC-Argo observations should be enhanced to reduce the 24 

model-data misfit through the assimilation of BGC-Argo data or process-oriented assessment 25 

studies. We strongly recommend to enhance the Arctic region, which is critically under 26 

sampled and is constantly outperformed by the BGC-Argo climatology. Likewise, BGC-Argo 27 

observations should be enriched in the Equatorial region and in the Southern Oceans, two 28 

regions where the model error barely exceed the BGC-Argo observations variability.   29 

 30 

 31 

 32 
 33 

  34 
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Tables 1 

 2 

Table 1. Data mode and QC flags of the BGC-Argo observations used in this study. In the 3 

Argo data-system, the data are available in three data modes, “Real-Time”, ”Adjusted” and 4 

”Delayed”. See section 2a for a brief description of each data mode.  The flags “3” and “4” 5 

refers to “potentially bad data “ and “bad data”, respectively. See also Bittig et al. (2019), for 6 

a more detailed description of Argo data modes and flags. 7 

 8 

Parameter Data mode  Data mode of 

associated pressure, 

temperature and 

salinity profiles 

QC flags 

Chla Adjusted and Delayed Real time, Adjusted 

and Delayed 
• Real time: All flags except 

4  

• Adjusted or Delayed: All 

flags except 3 and 4 

 

O2 Delayed Delayed • All flags except 3 and 4 

 

NO3 Adjusted and Delayed Real time, Adjusted 

and Delayed 
• Real time: All flags except 

4  

• Adjusted or Delayed: All 

flags except 3 and 4 

 

pH Adjusted and Delayed Real time, Adjusted 

and Delayed 
• Real time: All flags except 

4  

• Adjusted or Delayed: All 

flags except 3 and 4 

 

bbp Real time and Delayed  Real time, Adjusted 

and Delayed 
• Real time: All flags except 

4  

• Adjusted or Delayed 

(P,T,S): All flags except 3 

and 4 



 21 

• Adjusted or Delayed (bbp): 

All flags 4 

  1 
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 1 

Table 2. Assessment metrics used to assess the model simulation with BGC-Argo data . For 2 

each metric, the level of assessment, as described in Hipsey et al. (2020) is also indicated. 3 

 4 

Process Metric Definition units Assessment 

level 

Carbonate 

chemistry 

pCO2 mixed Depth-averaged 

pCO2 in the mixed 

layer 

µatm State variable 

 DICmixed Depth-averaged DIC 

in the mixed layer 

µmol kg-1 State variable 

 Alkmixed Depth-averaged Alk 

in the mixed layer 

µmol kg-1 State variable 

 DICmeso Depth-averaged DIC 

in the mesopelagic 

layer 

µmol kg-1 State variable 

 Alkmeso Depth-averaged Alk 

in the mesopelagic 

layer 

µmol kg-1 State variable 

 pHmixed Depth-averaged pH 

in the mixed layer 

total State variable 

 pHmeso Depth-averaged pH 

in the mesopelagic 

layer 

total State variable 

Biological 

carbon pump 

Chlmixed Depth-averaged 

Chla in the mixed 

layer 

mg m-3 State variable 

 NO3 mixed  Depth-averaged NO3 

in the mixed layer 

µmol kg-1 State variable 

 PO4 mixed  Depth-averaged PO4 

in the mixed layer 

µmol kg-1 State variable 

 Simixed Depth-averaged Si 

in the mixed layer 

µmol kg-1 State variable 



 23 

 NO3 meso Depth-averaged NO3 

in the mesopelagic 

layer 

µmol kg-1 State variable 

 PO4 meso Depth-averaged PO4 

in the mesopelagic 

layer 

µmol kg-1 State variable 

 Simeso Depth-averaged Si 

in the mesopelagic 

layer 

µmol kg-1 State variable 

 POCmixed Depth-averaged 

POC in the mixed 

layer 

mg m-3 State variable 

 POCmeso Depth-averaged 

POC in the 

mesopelagic layer 

mg m-3 State variable 

 ChlDCM Magnitude of DCM  mg m-3 Emergent 

property  

 HDCM Depth of DCM m Emergent 

property 

 Hnit Depth of nitracline m Emergent 

property 

Oxygen levels  O2 mixed Depth-averaged O2 

in the mixed layer 

µmol kg-1 State variable 

 O2 meso Depth-averaged O2 

in the mesopelagic 

layer 

µmol kg-1 State variable 

 O2min value of O2 

minimum 

µmol kg-1 Emergent 

property 

 HO2min Depth of O2 

minimum 

m Emergent 

property 

 1 

  2 
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Figures 1 

 2 

 3 

Figure 1. Spatial and temporal coverage of quality-controlled BGC-Argo pH, NO3-, Chla, O2, 4 

and bbp profiles. (a) Number of quality-controlled profiles for the entire period per 4°x4° bin. 5 

(b) Number of quality-controlled profiles per year.  6 
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 1 
Figure 2.  Spatial distribution of the 8 BGC-regions obtained with a K-means clustering 2 

method applied to a dataset of modelled climatological monthly time series of the 23 3 

assessment metrics. 4 

 5 

  6 
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 1 
Figure 3. Bubble plot of model efficiency statistical score (me) as a function of BGC-regions 2 

and assessment metrics associated with the carbonate chemistry (b). The size of a bubble is 3 

proportional to the value of  me. For a given assessment metric, the median value of  me over 4 

all BGC regions are represented as a bar plot (c). Similarly, for a given BGC region, the 5 

median value of  me over all assessment metrics is represented as a bar plot (a). In (b), The x 6 

and y axes are arranged in descending order of the median value of  me over all assessment 7 

metrics (panels a) and the median value of  me over all BGC regions, respectively. The blue 8 

and red colours correspond to a positive and negative me . 9 
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 1 
Figure 4. Same as Figure 3 but for assessment metrics associated with the biological carbon 2 

pump. 3 

  4 
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 1 
Figure 5. Same as Figure 3 but for assessment metrics associated with the oxygen levels. 2 

Note that in (a), the bar plot represents the mean value of  me over all assessment metrics.  3 

  4 

Subtropical
Gyres

Low nutrients
Bloom

High nutrients
Bloom OMZs Med Sea Equatorial

Southern
Oceans Arctic

−1.0
−0.5

0.0
0.5
1.0

M
ea

n 
m

e

by
 B

G
C
−r

eg
io

n
Oxygen levels

a

0.120.810.840.9 0.740.89 0.040.91

−0.530.460.80.86 0.450.94 −0.40.94

−0.190.53

−33.26−22.61

Subtropical
Gyres

Low nutrients
Bloom

High nutrients
Bloom OMZs Med Sea Equatorial

Southern
Oceans Arctic

O2 mixed

O2 meso

HO2min

O2min

b

−1.0−0.50.00.51.0

O2 mixed

O2 meso

HO2min

O2min

Median me

by metric
−28−26−24−22−20

c

me

> 0
< 0



 29 

 1 
Figure 6. Median of the 23 me associated with each assessment metric by BGC-region.  2 
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Appendix 1 

 2 

A.1  The CMEMS global hydrodynamic-biogeochemical model  3 

 4 

The model used in this study features the offline coupled NEMO–PISCES model, with a 1/4° 5 

horizontal resolution 50 vertical levels (with 22 levels in the upper 100 m, the vertical 6 

resolution is 1m near the surface and decreases to 450m resolution near the bottom) and daily 7 

temporal resolution, covering the period from 2009 to 2017. 8 

 9 

The biogeochemical model PISCES v2 (Aumont et al., 2015) is a model of intermediate 10 

complexity designed for global ocean applications, and is part of NEMO modelling platform.  11 

It features 24 prognostic variables and includes five nutrients that limit phytoplankton growth 12 

(nitrate, ammonium, phosphate, silicate and iron) and four living compartments: two 13 

phytoplankton size classes (nanophytoplankton and diatoms, resp. small and large) and two 14 

zooplankton size classes (microzooplankton and mesozooplankton, resp. small and large); the 15 

bacterial pool is not explicitly modelled. PISCES distinguishes three non-living detrital pools 16 

for organic carbon, particles of calcium carbonate and biogenic silicate. Additionally, the 17 

model simulates the carbonate system and dissolved oxygen. PISCES has been successfully 18 

used in a variety of biogeochemical studies, both at regional and global scale (Bopp et al., 19 

2005; Gehlen et al., 2006, 2007; Gutknecht et al., 2019; Lefèvre et al., 2019; Schneider et al., 20 

2008; Séférian et al., 2013; Steinacher et al., 2010; Tagliabue et al., 2010).  21 

 22 

The dynamical component is the latest Mercator Ocean global 1/12° high-resolution ocean 23 

model system, extensively described and validated in Lellouche et al. (2013, 2018). This 24 

system provides daily and 1/4°-coarsened fields of horizontal and vertical current velocities, 25 

vertical eddy diffusivity, mixed layer depth, sea ice fraction, potential temperature, salinity, 26 

sea surface height, surface wind speed, freshwater fluxes and net surface solar shortwave 27 

irradiance that drive the transport of biogeochemical tracers. This system also features a 28 

reduced-order Kalman filter based on the Singular Evolutive Extended Kalman filter (SEEK) 29 

formulation introduced by Pham et al. (1998), that assimilates, on a 7-day assimilation cycle, 30 

along-track altimeter data, satellite Sea Surface Temperature and Sea-Ice Concentration from 31 



 31 

OSTIA, and in situ temperature and salinity vertical profiles from the CORA 4.2 in situ 1 

database. 2 

 3 

In addition, the biogeochemical component of the coupled system also embeds a reduced 4 

order Kalman filter (similar to the above mentioned) that operationally assimilates daily L4 5 

remotely sensed surface chlorophyll (European Union-Copernicus Marine Service, 2022). 6 

Thanks to a multivariate formulation of model error covariances, the system is able to provide 7 

a 3D correction to the nanophytoplankton, diatoms and nitrates model concentrations, from 8 

the surface chlorophyll data provided by satellite observations.  9 

In parallel, a climatological-damping is applied to nitrate, phosphate, oxygen, silicate - with 10 

World Ocean Atlas 2013 - to dissolved inorganic carbon and alkalinity – with GLODAPv2 11 

climatology (Key et al., 2015) - and to dissolved organic carbon and iron - with a 4000-year 12 

PISCES climatological run. This relaxation is set to mitigate the impact of the physical data 13 

assimilation in the offline coupled hydrodynamic-biogeochemical system, leading significant 14 

rises of nutrients in the Equatorial Belt area, and resulting in an unrealistic drift of various 15 

biogeochemical variables e.g. chlorophyll, nitrate, phosphate (Fennel et al., 2019; Park et al., 16 

2018). The time-scale associated with this climatological damping is set to 1 year and allows 17 

a smooth constraint that has been shown to be efficient to reduce the model drift.  18 

  19 
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Data availability. The BGC model data can be downloaded from the Copernicus Marine 1 

Environmental Monitoring Service 2 

(https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=GLOB3 

AL_ANALYSIS_FORECAST_BIO_001_028). The BGC-Argo data were downloaded from 4 
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