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 17 

Numerical models of ocean biogeochemistry are becoming major tools to detect and predict 18 

the impact of climate change on marine resources and monitor ocean health. However, with 19 

the continuous improvement in model structure and spatial resolution, incorporation of these 20 

additional degrees of freedom into fidelity assessment has become increasingly challenging. 21 

Here, we propose a new method to inform about the model predictive skill in a concise way.  22 

The method is based on the conjoint use of a K-means clustering technique, assessment 23 

metrics and BGC-Argo observations. The K-means algorithm and the assessment metrics 24 

reduce the number of model data points to be evaluated. The metrics evaluate either the model 25 

state accuracy or the skill of the model in capturing emergent properties, such as the Deep 26 

Chlorophyll Maximums and Oxygen Minimum Zones. The use of BGC-Argo observations as 27 

the sole evaluation data set ensures the accuracy of the data as it is an homogenous data set 28 

with strict sampling methodologies and data quality control procedures. The method is 29 

applied to the global ocean biogeochemical analysis and forecasting system of the Copernicus 30 

Marine Service. The model performance is evaluated using the model efficiency statistical 31 

score that compares the model-observations misfit with the variability of the observations, 32 

and thus objectively quantifies whether the model outperforms the BGC-Argo climatology. 33 



 2 

We show that, overall, the model surpasses the BGC-Argo climatology in predicting pH, 1 

dissolved inorganic carbon, alkalinity, oxygen, nitrate, and phosphate in the mesopelagic and 2 

the mixed layers, as well as, silicate in the mesopelagic layer. However, there are still areas 3 

for improvement in reducing the model-data misfit for certain variables such as silicate, pH, 4 

and the partial pressure of CO2 in the mixed layer, as well as chlorophyll-a related, Oxygen 5 

Minimum Zones-related and particulate organic carbon metrics. The method proposed here is 6 

also helpful to inform the design of the BGC-Argo network, in particular, the regions where 7 

BGC-Argo observations should be enhanced to improve the model accuracy through the 8 

assimilation of BGC-Argo data or process-oriented assessment studies. We strongly 9 

recommend to increase the number of observations in the Arctic region, while maintaining the 10 

already high-density of observations in the Southern Oceans. The model error in these regions 11 

is only slightly less than the variability observed in BGC-Argo measurements. Our study 12 

illustrate how the synergic use of modelling and BGC-Argo data can both inform about the 13 

performance of models and the design of observing systems. 14 

 15 

 16 

1. Introduction 17 

 18 

Since pre-industrial times, the ocean has taken ~26 % of the total anthropogenic CO2 19 

emission (Friedlingstein et al., 2022) leading to dramatic change in the ocean’s 20 

biogeochemical (BGC) cycles, such as ocean acidification (Iida et al., 2020). Moreover, 21 

deoxygenation (Breitburg et al., 2018) and change in the biological carbon pump are now 22 

manifesting globally (Capuzzo et al., 2018; Osman et al., 2019; Roxy et al., 2016). Together 23 

with plastic pollution (Eriksen et al., 2014) and an increase in fisheries pressure (Crowder et 24 

al., 2008), major changes are therefore occurring in marine ecosystems at the global scale. In 25 

order to contextualize monitoring of ongoing changes, derive climate projections and develop 26 

better mitigation strategies, realistic numerical simulations of the oceans’ BGC state are 27 

required.  28 

 29 

Numerical models of ocean biogeochemistry represent a prime tool to address these issues 30 

because they produce three dimensional estimates of a large number of chemical and 31 

biological variables that are dynamically consistent with the ocean circulation (Fennel et al., 32 

2019). They can assess past and current states of the BGC ocean, produce short-term to 33 
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seasonal forecasts as well as climate projections. However, these models are far from being 1 

flawless, mostly because there are still huge knowledge gaps in the understanding of key 2 

BGC processes and, as a result, the mathematical functions that describe BGC fluxes, and 3 

ecosystems dynamics are too simplistic (Schartau et al., 2017). For instance, most models do 4 

not include a radiative component for the penetration of solar radiation in the ocean. It has 5 

been nevertheless shown that coupling such a component with a BGC model improves the 6 

representation of the dynamics of phytoplankton in the lower euphotic zone (Dutkiewicz et 7 

al., 2015; Álvarez et al., 2022). Additionally, the parameterization of the mathematical 8 

functions generally results from laboratory experiments on a few representative species and 9 

may not be suitable for extrapolation to ocean simulations that need to represent the large 10 

range of organisms present in oceanic ecosystems (Schartau et al., 2017; Ward et al., 2010). 11 

Furthermore, the assimilation of physical data in coupled physical-BGC models that improves 12 

the physical ocean state can paradoxically degrade the simulation of the BGC state of the 13 

ocean (Fennel et al., 2019; Park et al., 2018; Gasparin et al., 2021). A rigorous assessment of 14 

BGC models is thus essential to test their predictive skills, their ability to reproduce BGC 15 

processes and estimate confidence intervals on model predictions (Doney et al., 2009; Stow et 16 

al., 2009). 17 

 18 

However, the evaluation of BGC models is limited by the availability of data. It relies 19 

principally on  a combination of different data sets from satellite (such as chlorophyll-a 20 

concentration), cruises observations,  permanent oceanic stations from large databases such as 21 

the World Ocean Database (e.g., Doney et al., 2009; Dutkiewicz et al., 2015; Lazzari et al., 22 

2012, 2016; Lynch et al., 2009; Séférian et al., 2013; Stow et al., 2009). All these datasets 23 

have neither a sufficient vertical or temporal resolution, nor a synoptic view, nor provide all 24 

variables necessary to evaluate how models represent climate-relevant processes such as the 25 

air-sea CO2 fluxes, the biological carbon pump, ocean acidification or deoxygenation.  26 

 27 

In 2016, the Biogeochemical-Argo (BGC-Argo) program was launched with the goal to 28 

operate a global array of 1000 BGC-Argo floats equipped with oxygen (O2), chlorophyll a 29 

(Chla) and nitrate (NO3) concentrations, particulate backscattering (bbp), pH and downwelling 30 

irradiance sensors (Biogeochemical-Argo Planning Group, 2016; Claustre et al., 2020). 31 

Although the planned number of 1000 floats has not been reached yet, the BGC-Argo 32 

program has already provided a large number of quality-controlled vertical profiles of O2, 33 

Chla, NO3, bbp, and pH (Fig. 1). With respect to O2, Chla, NO3, and bbp, the North Atlantic 34 
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and the Southern Ocean are reasonably well sampled whereas pH is well sampled only in the 1 

Southern Ocean. At the regional scale, the Mediterranean Sea is also fairly well sampled by 2 

BGC-Argo floats (Salon et al., 2019; Terzić et al., 2019; D’Ortenzio et al., 2020).  However, 3 

there are still large under-sampled areas like the Arctic Ocean, subtropical gyres and the sub-4 

polar North Pacific. Thanks to machine learning based methods (Bittig et al., 2018; Sauzède 5 

et al., 2017), floats equipped with O2 sensors can be additionally used to derive vertical 6 

profiles of NO3, phosphate (PO4), silicate (Si), alkalinity (Alk), dissolved inorganic carbon 7 

(DIC), pH and pCO2.  8 

 9 

The BGC-Argo data set represents a significant improvement for the assessment of models 10 

compared to large databases such as the World Ocean Database (Boyer et al., 2013) or the 11 

Copernicus Marine Service in situ dataset (European Union-Copernicus Marine Service, 12 

2015). Large databases are composed of data collected from various instrument types with 13 

heterogenous data sampling methodologies. Therefore, for a given variable, the accuracy 14 

numbers are not the same and change depending on the instrument type (European Union-15 

Copernicus Marine Service, 2019). Consequently, this affects the overall accuracy over time 16 

due to the changing proportion of instrument types over the years. On the other hand, the 17 

BGC-Argo data set is an homogenous data set with strict and uniform sampling 18 

methodologies and data Quality-Control (QC) procedures. As a result, the BGC-Argo data set 19 

has a satisfactory level of accuracy, which remains stable over time (Johnson et al., 2017; 20 

Mignot et al., 2019). Moreover, the number of quality-controlled observations collected every 21 

year by the BGC-Argo fleet is now greater than any other data set (Claustre et al., 2020). 22 

Using the BGC-Argo data set as the single evaluation data set is therefore a way to ensure 23 

consistent accuracy.   24 

 25 

The BGC-Argo floats provide multivariate observations at high vertical and temporal 26 

resolutions and for long periods of time providing nearly continuous time series of the vertical 27 

distribution of several biogeochemical variables. This is not possible with discrete, univariate 28 

vertical samplings provided by cruise cast in situ measurements or from climatological values 29 

derived from the World Ocean Atlas. All these specificities overcome the limitations of 30 

previous datasets, especially with respect to their univariate nature, as well as their limited 31 

vertical and temporal resolutions. This opens new perspectives for the evaluation of BGC 32 

models (Gutknecht et al., 2019; Salon et al., 2019; Terzić et al., 2019).  33 

 34 
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The development of BGC models, coupled with the ongoing increase in spatial and vertical 1 

resolutions, has resulted in a significant rise in the volume of model outputs. Simplification 2 

techniques are therefore required to provide decipherable information on model predictive 3 

skill. Allen et al. (2007) proposed a methodology for reducing the spatial dimensions in model 4 

assessment exercises, thereby providing concise information about the model performance. 5 

They use an unsupervised learning algorithm to classify the southern North Sea into 5 6 

coherent BGC regions based on modelled time series of temperature, NO3, PO4, and Si 7 

concentrations. Then, they evaluated the predictive capabilities of the model in each BGC 8 

region (instead of each grid point), thus greatly reducing the number of points to be validated. 9 

An additional method for reducing the dimensions of model-data comparison is the use of 10 

assessment metrics (Hipsey et al., 2020; Russell et al., 2018). In particular, metrics such as 11 

depth-averaged state variables (e.g., mixed layer averaged Chla, NO3, O2, etc…), mass fluxes 12 

and process rates (e.g., primary production or division rates), or emergent properties (e.g., 13 

Deep Chlorophyll Maximum (DCM), or Oxygen Minimum Zone (OMZ)) are particularly 14 

useful to reduce the number of model’s vertical layers to be compared with the observations.  15 

 16 

The objectives of the present study are twofold. Our first aim is to propose a methodology 17 

that uses the BGC-Argo data set, an unsupervised learning algorithm and assessment metrics 18 

to simplify marine BGC model-data comparisons, and thus inform, in a concise way, about 19 

model performances. The second objective is to use this methodology to also identify ocean 20 

regions where the model-observations misfit is larger than the variability of the BGC-Argo 21 

data and thus inform the BGC-Argo observing system of regions that should be better 22 

sampled. The first step of the method consists in defining 23 assessment metrics that are used 23 

both to construct the BGC regions and then to compare the model outputs with the BGC-Argo 24 

data. Second, following the approach of Allen et al. (2007), we use an unsupervised learning 25 

algorithm, specifically a K-means clustering technique, to classify the global ocean into 8 26 

coherent BGC regions based on the climatological modelled time series of the 23 assessments 27 

metrics. In the last step, the skill of the model in predicting the assessment metrics is 28 

evaluated in each BGC-region, using the model efficiency statistical score. Unlike other 29 

statistical metrics such the correlation coefficient, the bias or the root mean square difference, 30 

that does not quantify objectively whether the model performance is acceptable or not; the 31 

model efficiency calculates whether the model outperforms an observational climatology 32 

(Fennel et al., 2022). Finally, the method is implemented using the global ocean BGC analysis 33 
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and forecasting system of the Copernicus Marine Service (European Union-Copernicus 1 

Marine Service, 2019). 2 

 3 

The paper is organised as follows: section 2 presents the data sets used in the study. In section 4 

3, we define the assessment metrics and we detail the K-means algorithm as well as the model 5 

efficiency statistical score. In section 4, we present and discuss the results. Finally, section 5 6 

concludes the study. 7 

 8 

2. Data 9 

 10 

a. BGC-Argo floats observations 11 

 12 

The float data were downloaded from the Argo Coriolis Global Data Assembly Centre in 13 

France (ftp://ftp.ifremer.fr/argo, last accessed in January 2023). The CTD and trajectory data 14 

were quality controlled using the standard Argo protocol (Wong et al., 2015). The raw BGC 15 

signals were transformed to biogeochemical variables (i.e., O2, Chla, NO3, bbp, and pH) and 16 

quality-controlled according to international BGC-Argo protocols (Johnson et al., 2018b, a; 17 

Schmechtig et al., 2015, 2018; Thierry et al., 2018; Thierry and Bittig, 2018).  18 

 19 

In the Argo data-system, the data are available in three data modes: “Real-Time”, ”Adjusted” 20 

and ”Delayed” (Bittig et al., 2019). In the “Real-time” mode, the raw data are converted into 21 

state variables and an automatic quality-control is applied to “flag” gross outliers. In the 22 

“Adjusted” mode, the “Real-time” data receive a calibration adjustment in an automated 23 

manner. In the “Delayed” mode, the “Adjusted” data are adjusted and validated by a scientific 24 

expert. While the “Real-Time” and “Adjusted” data are considered acceptable for operational 25 

application (data assimilation), the “Delayed” mode is designed for scientific exploitation and 26 

represent the highest quality of data with the ultimate goal, when time-series with sufficient 27 

duration will have been acquired, to possibly extract climate-related trends (Bojinski et al., 28 

2014). However, for some variables, only a limited fraction of data is accessible in “Delayed” 29 

mode. Consequently, for each variable, we selected the highest level of data modes, where at 30 

least 80 % of the data are available (see Table 1). Note that this criterion is not applied to O2, 31 

where only “Delayed” mode data were selected in order to generate the pseudo-observations 32 

from CANYON-B neural network (see after). We removed data with missing location or time 33 
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information and flagged as “Bad data” (flag =4). Depending on the parameter and the 1 

associated data mode, we also excluded data flagged as “potentially bad data” (flag=3) (see 2 

Table 1). Finally, it should be noted that the status of the different modes of adjustment for bbp 3 

is still very inhomogeneous in the global BGC-Argo database. A quality control procedure in 4 

“Real-Time” has just been proposed to the Argo Data Management Team but is not yet 5 

operationally implemented in the database (Dall'Olmo et al. 2022). Since there is no current 6 

official consensus for the qualification of bbp data we decided to use for this study all data 7 

modes but to remove the data that are flagged as “Bad data” (see details in Table 1). 8 

 9 

Particulate Organic Carbon (POC) concentrations were derived from bbp observations. First, 10 

three consecutive low-pass filters were applied on the vertical profiles of  bbp  to remove 11 

spikes (Briggs et al., 2011): a 2-point running median followed by a 5-point running 12 

minimum and 5-point running maximum. Then, the filtered bbp profiles were converted into 13 

POC (mgC m-3) using a simplified version of the empirical POC/bbp  algorithm developed by 14 

Gali et al. (2022), i.e , for depths larger than the mixed layer depth (MLD): 15 

 16 
𝑃𝑂𝐶
𝑏!"

= 𝑐 + 𝑎 ∙ 𝑒#$.$$&∙!∙()#*+,),														(1) 17 

𝑧 > 𝑀𝐿𝐷, 18 

 19 

  where c  is a constant deep value and, b, the slope of the exponential decrease, sets to 12010 20 

mgC m-3 m and -6.57, respectively, as proposed by Gali et al. (2022). The global coefficient 21 

a, is set to 37990  mgC m-3 m to be consistent with a relationship, developed for global 22 

applications (i.e, POC= 38687.27* bbp 0.95) (European Union-Copernicus Marine Service, 23 

2020). In the Mixed Layer (ML), z is fixed at z = MLD, and the Eq. (1) simplifies to 24 

    	25 
𝑃𝑂𝐶
𝑏!"

= 𝑐 + 𝑎,																		(2) 26 

𝑧 ≤ 𝑀𝐿𝐷. 27 

 28 

Finally, we complemented the existing BGC-Argo dataset with pseudo-observations of NO3, 29 

PO4, Si, Alk, and DIC concentrations as well as pH and pCO2 using the CANYON-B neural 30 

network (Bittig et al., 2018). CANYON-B estimates vertical profiles of nutrients as well as 31 

the carbonate system variables from concomitant measurements of float pressure, 32 
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temperature, salinity, and O2 qualified in “Delayed” mode together with the associated 1 

geolocalization and date of sampling. CANYON-B was trained and validated using the 2 

GLODAPv2 data set (Key et al., 2015). The CANYON-B estimates of NO3 and pH were 3 

merged with measured values on the rationale that CANYON-B estimates have RMS errors 4 

(NO3 = 0.7 µmol kg-1, pH = 0.013) (Bittig et al., 2018) that are of the same order of 5 

magnitude as those of the BGC-Argo observations errors (NO3 = 0.5 µmol kg-1, pH = 0.07) 6 

(Mignot et al., 2019; Johnson et al., 2017) .  7 

 8 

Finally, we verified that the RMS errors of BGC-Argo data (both measured and from 9 

CANYON-B estimates) are lower than the RMS difference between the model and BGC-10 

Argo data, so that the comparison of simulated properties with the BGC-Argo data leads to a 11 

meaningful evaluation of the model performance. We believe it is reasonable to draw 12 

conclusions on the model uncertainty from BGC-Argo data as long as the BGC-Argo errors 13 

are much lower than the model-observations RMS difference. 14 

 15 

 16 

b. Global Ocean BGC analysis and forecasting system of the 17 

Copernicus Marine Service 18 

 19 

The global model simulation used in this study (see Appendix A.1) originates from the global 20 

ocean hydrodynamic-biogeochemical coupled system, based on NEMO-PISCES model, 21 

implemented and operated by Mercator Ocean for the Marine Service of the EU’s earth 22 

observation programme Copernicus (CMEMS, 2020). The BGC component is constrained by 23 

the assimilation of satellite Chla concentrations, and a climatological-damping is applied to 24 

nitrate, phosphate, oxygen, silicate - with World Ocean Atlas 2013 - to dissolved inorganic 25 

carbon and alkalinity – with GLODAPv2 climatology (Key et al., 2015) - and to dissolved 26 

organic carbon and iron - with a 4000-year PISCES climatological run. The BGC model is 27 

forced in offline mode by daily averages of ocean physics, sea ice and atmospheric 28 

conditions. The ocean physics and sea ice forcing come from the global ocean physics 29 

analysis and forecasting system at 1⁄12° (Lellouche et al., 2018) that assimilates along-track 30 

altimeter data, satellite Sea Surface Temperature and Sea-Ice Concentration, and in situ 31 

temperature and salinity vertical profiles. The BGC model has a 1/4° horizontal resolution, 50 32 
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vertical levels (with 22 levels in the upper 100 m, the vertical resolution is 1 m near the 1 

surface and decreases to 450 m resolution near the bottom).  2 

 3 

We used daily outputs of Chla, NO3, PO4, Si, O2, pH, DIC and Alk, and weekly outputs of the 4 

wo size classes of phytoplankton, the small detrital particles and microzooplankton 5 

(resampled offline from weekly to daily frequency through constant interpolation) from 2009 6 

to 2020. Note that the method of linear resampling, while artificially increasing the number of 7 

data, could potentially bias the statistical results, especially in regions with poor data 8 

coverage. As suggested by Gali et al. (2022), the POC concentration was computed offline by 9 

adding together the two size classes of phytoplankton, the small detrital particles and 10 

microzooplankton modelled by PISCES. This particular combination of phytoplanktonic and 11 

non-phytoplanktonic organisms has been shown to match the small POC observed by the 12 

floats. The partial pressures of CO2 values were extrapolated in the mixed layer from the 13 

surface value estimated by the model. The Black Sea was not considered in the present 14 

analysis because the model solutions are of poor quality. Finally, the daily model outputs 15 

were collocated in time and space the closest to the BGC-Argo floats positions, and they were 16 

interpolated to the sampling depth of the float observations. The characteristics of the model 17 

are further detailed in the appendix. 18 

 19 

3. Methods 20 

a. Assessment metrics 21 

 22 

In this section, we present 23 metrics used for the clustering of the ocean and for the 23 

assessment of the model simulation with BGC-Argo data. The metrics are associated with the 24 

carbonate chemistry, the biological carbon pump, and oxygen levels. Most of the metrics 25 

evaluate the model state accuracy through the comparison of simulated state variables with 26 

BGC-Argo observations depth-averaged in the mixed (hereinafter indicated with the subscript 27 

mixed) and mesopelagic (hereinafter indicated with the subscript meso) layers. This two-layer 28 

comparison between model and BGC-Argo data provides an indirect evaluation of the key 29 

processes and fluxes associated with the carbonate chemistry, biological carbon pump and 30 

oxygen levels in the mixed and mesopelagic layers. In addition, some of the metrics assess the 31 

skill of the model in capturing emergent properties, such as the nitracline, the DCMs and the 32 

OMZs. The metrics are described below and summarized in Table 2. The definition of the 33 



 10 

metrics is the same for the model and the BGC-Argo data. The MLD is computed, following 1 

De Boyer et al. (2004), as the depth at which the change in potential density from its value at 2 

10 m exceeded 0.03 kg m-3. Dall’Olmo and Mork (2014) define the mesopelagic layer as the 3 

region between the deeper of either the euphotic layer depth or the MLD, and a depth of 1000 4 

meters. However, for ease of use, we adopt a simplified definition that considers the 5 

mesopelagic layer to be the region between the MLD and a depth of 1000 meters. To ensure 6 

the accuracy of the metrics calculation, we have checked the representation of the MLDs in 7 

the model. The model's MLDs closely match the observed data, as indicated by an overall 8 

mean square difference of approximately 30% of the total variance in the observations. 9 

 10 

i. Carbonate chemistry 11 

 12 

The uptake of ~26 % anthropogenic CO2 by the global ocean (Friedlingstein et al., 2022)  has 13 

altered the oceanic carbonate chemistry over the past few decades (Iida et al., 2020). 14 

Assessing how models correctly represent the oceanic carbonate chemistry is therefore critical 15 

if we aim to derive accurate climate projections on their future change. The classical variables 16 

for the study of carbonate chemistry are DIC, Alk, pH and pCO2 (Williams and Follows, 17 

2011). These variables are assessed in the mixed (DICmixed, Alkmixed, pHmixed and pCO2 mixed) 18 

and mesopelagic (DICmeso, Alkmeso, pHmeso) layers. The partial pressure of CO2 is only 19 

assessed in the mixed layer as the evaluation of pCO2 mixed plays a critical role to assess the 20 

skill of BGC models to correctly represent the air-sea CO2 flux. 21 

 22 

ii. Biological carbon pump 23 

 24 

The biological carbon pump is the transformation of nutrients and dissolved inorganic carbon 25 

into organic carbon in the upper part of the ocean through phytoplankton photosynthesis and 26 

the subsequent transfer of this organic material into the deep ocean. The functioning of this 27 

pump relies on key pools of nutrients and carbon as well as several processes that control 28 

mass fluxes between the pools. Changes in the biological carbon pump are now manifesting 29 

globally (Capuzzo et al., 2018; Osman et al., 2019; Roxy et al., 2016). 30 

 31 
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One way to indirectly evaluate the model's ability to accurately capture essential processes 1 

related to the biological carbon pump in the ocean's upper layer, such as primary production, 2 

respiration, and grazing, is to compare various ML pools [here the nutrients (NO3 mixed, PO4 3 

mixed, Simixed), Chlmixed and POCmixed] with BGC-Argo observations.  Similarly, the assessment 4 

of the mesopelagic nutrients, and POC concentration (hereinafter denoted NO3 meso, PO4 meso, 5 

Simeso, and POCmeso) provides an indirect evaluation of the key mesopelagic layer processes, 6 

such as export production, respiration, etc.  7 

 8 

In stratified systems, a DCM is formed at the base of the euphotic layer (Barbieux et al., 2019; 9 

Cullen, 2015; Letelier et al., 2004; Mignot et al., 2014, 2011). It has been suggested that the 10 

DCM plays a key role in the synthesis of organic carbon by phytoplankton (Macías et al., 11 

2014). DCMs are therefore key features to be assessed in BGC models with respect to 12 

processes involved in the biological carbon pump such as the primary production. However, 13 

the DCM layer generally escapes detection by remote sensing. Furthermore, the DCM is also 14 

an emergent feature that develops in response to complex physical and biogeochemical 15 

interactions (Cullen, 2015). Thus, its evaluation provides critical information regarding the 16 

accuracy of the model in capturing complex patterns of key ecosystem processes. The depth 17 

and magnitude of DCM (HDCM and ChlDCM) are helpful metrics for the assessment of DCM 18 

dynamics. The depth of the DCM is calculated as the depth where the maximum of Chla 19 

occurs in the profile with the criterion that HDCM should be deeper than the MLD. The 20 

magnitude of the DCM corresponds to the Chla value at HDCM.  21 

 22 

NO3 is often depleted in the surface layers and is a limiting factor for phytoplankton growth in 23 

most oceanic regions. The vertical supply of NO3 to the surface layers depends, among other 24 

factors, on the vertical gradient of NO3 (the nitracline), and, in particular, on its depth (the 25 

nitracline depth) (Cermeno et al., 2008; Omand and Mahadevan, 2015). Therefore, the 26 

comparison of the simulated nitracline depth (Hnit) with BGC-Argo observations allows for an 27 

indirect assessment of the model performance in reproducing vertical fluxes of NO3. 28 

Following previous studies (Cermeno et al., 2008; Lavigne et al., 2013; Richardson and 29 

Bendtsen, 2019), the depth of the nitracline is identified as the first depth where NO3 is 30 

detected. A detection threshold of 1 µmol kg-1 is used, which is an upper estimate of the 31 

accuracy of BGC-Argo NO3 data (Johnson et al., 2017; Mignot et al., 2019). 32 

 33 
iii. Oxygen levels  34 
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 1 

Oxygen levels in the global and coastal waters have declined over the whole water column 2 

over the past decades (Schmidtko et al., 2017) and OMZs are expanding (Stramma et al., 3 

2008). Assessing how models correctly represent ocean oxygen levels as well as the OMZs is 4 

therefore critical to monitor their change over time. Similar to the assessment of DCMs, 5 

evaluating Oxygen Minimum Zones (OMZs) provides insight into how the model represents 6 

emergent dynamics resulting from intricate physical and biogeochemical interactions 7 

(Paulmier and Ruiz-Pino, 2009). Oxygen levels are evaluated in the mixed (O2mixed) and 8 

mesopelagic (O2meso) layers. OMZs are defined as oceanic regions where O2 levels are lower 9 

than 20 µmol kg-1 (Paulmier and Ruiz-Pino, 2009). OMZs are characterized by their depths 10 

(HO2min) and their concentrations (O2min). 11 

 12 
b. Bioregionalization of the global ocean 13 

 14 

In this study, we use the K-means clustering algorithm (Hartigan and Wong, 1979) to 15 

regionalize the ocean based on the modelled climatological monthly time series of the 23 16 

metrics described previously. The K-means clustering algorithm is an unsupervised machine 17 

learning technique that groups similar objects together in a way that maximizes similarity 18 

between objects within a group and minimizes similarity between objects in different groups. 19 

This clustering tool has been successfully used to classify marine BGC regions in different 20 

oceanic basins based on the seasonal cycle of satellite chlorophyll (Kheireddine et al., 2021; 21 

Mayot et al., 2016; Lacour et al., 2015; D’Ortenzio and d’Alcala, 2009) . The step-by-step 22 

methodology, used in this study, is described in the next section. 23 

 24 

The first step in the analysis involved computing monthly climatological time series for the 23 25 

metrics at each model grid cell. These time series were derived from the monthly 26 

climatological time series of state variables predicted by the model from 2009 to 2020. To 27 

account for the log-normal distribution and the wide range of values for metrics in units of 28 

Chla or POC, a log-10 transformation was applied to these metrics. Second, to take into 29 

consideration the 6-months shift in seasons between the northern and southern hemispheres, 30 

the dates for grid cells located in the Southern Hemisphere were shifted by 6 months (Bock et 31 

al., 2022). Third, to classify model grid cells based on the seasonality and amplitude of the 23 32 

metrics, each metric was standardized by subtracting the global mean and dividing by the 33 
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global standard deviation. This ensured that each metric had a mean of 0 and a standard 1 

deviation of 1, enabling comparison across metrics with different units. Fourth, to reduce the 2 

dimensionality of the data set, a principal component analysis was applied to the scaled data. 3 

Only the components that explain 99 % of the variance in the data set were kept, reducing 4 

thereby the dimensions of the data set by 85 %. A K-means clustering analysis was then 5 

performed on the resulting data set. Following Kheireddine et al. (2021), the number of 6 

clusters was determined based on a silhouette analysis (Rousseeuw, 1987), which yielded a 7 

value of 8 for the number of clusters. 8 

 9 

c. Model efficiency 10 

 11 

To quantify the model predictive skill, a model efficiency statistical score (𝑚.) was computed 12 

for each metric and in each BGC region: 13 

 14 

𝑚. = 1 −
∑ (𝑚/ − 𝑜/)01
/2&

∑ (𝑜/ − 𝑜̅)01
/2&

,																		(3) 15 

 16 

 where 𝑚/ and 𝑜/ are the model and BGC-Argo matched values, respectively, 𝑜̅ is the BGC-17 

Argo climatology and N is the number of matchups. Assuming that the spatial variations are 18 

small in a given BGC-region, 𝑜̅ represents the temporal average and ∑ (𝑜/ − 𝑜̅)01
/2&  represents 19 

the variance due to temporal fluctuations. The model efficiency tests whether the model 20 

outperforms the BGC-Argo climatology (0 < 𝑚. < 1, Fennel et al., 2022), or stated 21 

differently, if the model-data mean square difference is lower than the observation variance, 22 

i.e.,  &
1
∑ (𝑚/ − 𝑜/)01
/2& <	 &

1
∑ (𝑜/ − 𝑜̅)01
/2& 	. To ensure the robustness of 𝑚., we verified that 23 

the number of matchups for each metric and in each BGC-region was greater than 100, then 24 

outliers were removed using Tukey’s fences (Tukey, 1977).   25 

 26 

4. Results and discussion 27 

 28 

a. BGC-regions of the Global Ocean 29 

 30 
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The K-means clustering algorithm identified 8 distinct BGC-regions (Figure 2).  6 of the 8 1 

BGC-regions correspond to well-defined spatial regions and are, thus, named accordingly, 2 

i.e., the Arctic, Equatorial (Equ.), Mediterranean Sea (Med. Sea), OMZs, Subtropical Gyres  3 

(Sub. Gyres) and Southern Oceans BGC-regions. The other two BGC-regions are located in 4 

the North Atlantic and North Pacific oceans, as well as in the lower latitudes of the Southern 5 

Oceans. These two BGC-regions correspond to ocean basins that experience a phytoplankton 6 

bloom in the springtime (Westberry et al., 2016).  The main difference between these regions 7 

is that in one of them, macronutrients such as nitrate and phosphate are abundant throughout 8 

the year due to phytoplankton growth being mainly limited by iron (Williams and Follows, 9 

2011). Finally, it should be noted that outlier grid cells were not removed from the analysis; 10 

these outliers are mainly present in grid cells close to the coast. Additionally, grid cells with 11 

bathymetry shallower than 1000 m were not included in the clustering analysis as metrics 12 

associated with mesopelagic processes cannot be calculated in these shallow grid cells. 13 

 14 

The BGC-regions found in our study are overall coherent with the biomes estimated in Fay 15 

and McKinley (2014) (hereinafter denoted FM2014). The Arctic and Southern Oceans 16 

correspond to the FM2014 ice biome. The Sub. Gyres correspond to the FM2014 subtropical 17 

permanently stratified biome. The Equatorial BGC-region represents a larger area than the 18 

Equatorial biome in FM2014. The Low Nut. and High Nut. Bloom regions correspond to 19 

FM2014 subtropical seasonally stratified and subpolar seasonally stratified biomes, 20 

respectively. These two BGC-regions are coherent in the North Pacific and in the Southern 21 

Oceans in both studies. They differ, however, in the North Atlantic. In FM2014, the subpolar 22 

North Atlantic is divided between the subtropical seasonally stratified and subpolar seasonally 23 

stratified biomes, whereas in our study this area is only represented by one BGC-region; the 24 

Low Nut. Bloom. Finally, the Med. Sea and OMZs BGC-regions are not represented in 25 

FM2014. The main differences between our study and FM2014 are due to differences in the 26 

methodology used to identify BGC-regions. In our study, we used 23 input variables to 27 

identify BGC-regions, while in FM2014, clustering was based on only one BGC input 28 

variable (Chla) and three physical variables (sea surface temperature, MLD, and sea-ice 29 

fraction). Our method allows for the identification of specific BGC-regions whose function is 30 

mainly characterized by variables other than Chla, such as OMZs. Furthermore, our method 31 

includes coastal areas, and identifies the Med. Sea as a BGC-region, which is not included in 32 

FM2014 because it is considered a coastal region. 33 

 34 



 15 

b. Model performance 1 

 2 

Figures 3-5 display the model efficiency (me) calculated for each assessment metric and BGC 3 

region. To enhance clarity, the me values are grouped by process, namely carbonate 4 

chemistry, biological carbon pump, and oxygen levels. The results are presented as bubble 5 

plots (panels b), where the size of the bubble is proportional to the me value. A bar plot 6 

(panels c) shows the median me value for a given assessment metric across all BGC regions, 7 

while another bar plot (panels a) shows the median me value for a given BGC region across 8 

all assessment metrics. Due to the limited number of assessment metrics associated with 9 

oxygen levels in most regions (i.e., 2), the mean is used instead of the median. The x and y 10 

axes in panels b are arranged in descending order based on the median me value across all 11 

assessment metrics (as shown in panels a) and the median me value across all BGC regions 12 

(as shown in panel b), respectively. 13 

 14 

i. Carbonate chemistry 15 

 16 

The model demonstrates improved performance in predicting certain carbonate chemistry 17 

metrics (i.e., Alkmeso, DICmixed, Alkmixed, DICmeso, and pHmeso) compared to the BGC-Argo 18 

climatology, as indicated by median me values significantly greater than 0 (Figs. 3b and c). 19 

However, the model's ability to reproduce instantaneous variability in pHmixed is more limited, 20 

with a me value close to 0, indicating no improvement over a simple average of observed 21 

values. Furthermore, the model underperforms the BGC-Argo climatology for pCO2mixed 22 

across all regions. Despite these limitations, the model provides an overall better estimate of 23 

carbonate chemistry dynamics in all BGC regions compared to the BGC-Argo climatology, as 24 

evidenced by Figure 3a. 25 

ii. Biological carbon pump 26 

 27 

The efficiency of the model in estimating the biological carbon pump metrics varies across 28 

both metrics and regions (Fig. 4a-c). The model outperforms the BGC-Argo climatology in 29 

estimating PO4 and NO3 in the mesopelagic and mixed layer, as well as Simeso and HNit. 30 

However, the model’s ability to predict Si decreases significantly as one moves from the 31 

mesopelagic to the mixed layer. Additionally, the metrics associated with the first trophic 32 

level, such as Chlmixed, HDCM, ChlDCM, POCmixed, and POCmeso, are systematically 33 
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outperformed by the BGC-Argo climatology, with median me values less than 0 in nearly all 1 

BGC regions (Figure 4b). Regional analysis of the median me values  (Figure 4a) shows that 2 

the model performs better than the observational mean (median me values greater than 0) in 3 

only a few regions (i.e., the High Nut. Bloom, the Low Nut. Bloom, the Med. Sea, and the 4 

OMZs) indicating that the model performs relatively well in these regions, but may not be as 5 

accurate in the other regions. 6 

 7 

iii. Oxygen levels 8 

 9 

The model provides better estimates of mixed and mesopelagic O2 concentrations in most 10 

BGC regions compared to the BGC-Argo climatology, as evidenced by consistently positive 11 

me values in Figure 5b. However, the BGC-Argo climatology provides a better representation 12 

of the magnitude of O2min compared to the model, while the model performs better than the 13 

climatology in predicting HO2min, but only in the OMZs BGC-region. These results suggest 14 

that while the model performs well in estimating mixed and mesopelagic O2 concentrations in 15 

most BGC regions, it doesn’t accurately capture the depth and magnitude of OMZs. 16 

 17 

iv.  Discussion 18 

 19 

The model outperforms the BGC-Argo climatology for DIC, Alk, NO3, PO4, in the 20 

mesopelagic layer and mixed layers and Si in the mesopelagic layer.  We attribute this good 21 

performance to the effective application of climatological damping. As described in the 22 

Appendix, the climatological damping mitigates the effects of physical data assimilation in 23 

the offline coupled hydrodynamic-biogeochemical system, which can lead to unrealistic drift 24 

of various biogeochemical variables. Specifically, we used the World Ocean Atlas 2013 25 

(Garcia et al., 2013, 2014) for NO3, PO4, O2, and Si, and the Global Ocean Data Analysis 26 

Project version 2 (GLODAPv2) climatology (Key et al., 2015) for DIC and Alk. However, 27 

our analysis revealed that the model's performance in estimating Si in the mixed layer is 28 

significantly degraded comparing to the mesopelagic layer, indicating the presence of 29 

additional factors affecting the model's ability to accurately estimate this variable. Further 30 

investigation is required to identify these factors and improve the model's performance in 31 

estimating Si in the mixed layer. 32 

 33 
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For the three Chla-related metrics, the model performs worse than the BGC-Argo 1 

climatology. This is unexpected, as the model incorporates a reduced-order Kalman filter 2 

Lellouche et al., 2013)  that assimilates daily L4 remotely sensed surface Chla, providing a 3 

mixed-layer correction to the modeled Chla (see Appendix). We verified that the assimilation 4 

of satellite Chla improves the model's ability to predict Chla, as the model-BGC-Argo data 5 

misfit is lower compared to a simulation without assimilation (not shown). Furthermore, the 6 

model-satellite misfit was also found to be lower than the variability of the satellite data 7 

(European Union-Copernicus Marine Service, 2019). These results suggest that discrepancies 8 

between the assimilated satellite Chla product and the BGC-Argo data may be responsible for 9 

the observed model-BGC-Argo data misfit. Therefore, we suggest that future studies 10 

investigate the consistency between ocean colour products and BGC-Argo Chla products on a 11 

global scale, as these two products are expected to be assimilated together in future 12 

operational BGC systems (Ford, 2021). 13 

 14 

Overall, the model also performs worse or no better than the BGC-Argo climatology in 15 

predicting POC concentrations, the magnitude and depth of OMZs, pHmixed and pCO2 mixed. 16 

The poor performance of PISCES-based simulations relative to BGC-Argo POC observations 17 

has been extensively studied in Gali et al. (2022). They pointed out that the large model-data 18 

misfit could be the result of an imperfect BGC-Argo POC-bbp conversion factor, unsuitable 19 

model parameters associated with POC dynamics and missing processes in the model 20 

structure. Similarly, the poor model skill in capturing the OMZs dynamics has also already 21 

been documented in several studies (Busecke et al., 2022; Schmidt et al., 2021; Cabré et al., 22 

2015). All these studies suggested that improving the ocean circulation in physical models 23 

may be the most important factor to improve the accuracy of OMZs model predictions. 24 

Finally, the negative model efficiencies for pHmixed and pCO2 mixed can be attributed to the fact 25 

that these variables are driven by DIC, Alk, temperature, and salinity. Therefore, even small 26 

uncertainties in the model estimates of DIC, Alk (as shown in Figure 3b), temperature, and 27 

salinity (Lellouche et al., 2018) can result in poor model performance in capturing the 28 

variability of pH and pCO2. This highlights the importance of accurately modelling these four 29 

variables to improve model estimates of pH and pCO2. 30 

 31 

 32 
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c. Recommendation for the design of the BGC-Argo 1 

observing system 2 

 3 

Observing System Simulation Experiments (OSSE) have been the primary tool to inform 4 

about the design of the BGC-Argo observing system (Ford, 2021; Biogeochemical-Argo 5 

Planning Group, 2016). OSSEs typically comprises a realistic “nature run”, which represents 6 

“the truth” from which synthetic observations are sampled. The synthetic observations 7 

represent the observing system to be designed. To test its impact on improving model’s 8 

predictive skill, the synthetic observations are then assimilated in an “assimilative run”. The 9 

accuracy of the “assimilative run” is then evaluated against the “nature run”. Here, we use the 10 

real BGC-Argo observations to inform about the design of the BGC-Argo network. More 11 

specifically, our aim is to inform about the regions where the model errors are greater than the 12 

variability of the BGC-Argo data, and consequently where BGC-Argo observations should be 13 

enhanced to improve the model accuracy through BGC-Argo data assimilation or process-14 

oriented assessment studies.  15 

 16 

For a given BGC-region, we compute a single multivariate score corresponding to the median 17 

of the 23 me associated with each assessment metric (Fig. 6). This is consistent with the fact 18 

that the BGC-Argo floats, that are now deployed, observe the 5 variables used to derive the 19 

assessment metrics, i.e., O2, Chla, NO3, bbp and pH. In the Arctic and in the Southern Ocean 20 

BGC-regions (typically North of 60°N and South of 60°S), the median me is barely greater 21 

than 0, suggesting that in these regions, the model performs no better than a simple mean of 22 

the observed values. In these two regions, the model is not well constrained by the 23 

assimilation of remotely sensed Chla because satellite observations of ocean colour are not 24 

possible for most of the year due to ubiquitous cloud cover. In addition, the lack of in situ 25 

observations makes the climatological forcing less efficient in these regions. Together, these 26 

factors are likely to lead to poorer model performance compared to other regions. 27 

Consequently, we strongly recommend enhancing the Arctic region where BGC-Argo 28 

observations are scarce (Fig.1), and where the winter-spring months are particularly under-29 

sampled (not shown). We also recommend maintaining the already-high-density of BGC-30 

Argo observations in the Southern Ocean. These observations are critical to better constrain 31 

the model in these two regions where the constraint of models by assimilation of satellite 32 

observations is not possible for most of the year. 33 



 19 

 1 

5. Conclusion 2 

 3 

In this study, we propose a method based on the global data set of BGC-Argo observations, a 4 

K-means clustering algorithm and 23 assessment metrics to simplify model-data comparison 5 

and inform on Copernicus Marine Service forecasting system predictive skill and the design 6 

of the BGC-Argo observing system. The K-means algorithm identified 8 BGC-regions in the 7 

model simulation that are consistent with Fay and McKinley (2014) study. Within each BGC-8 

region and for each assessment metric, we compute a model efficiency statistical score that 9 

quantifies whether the model outperforms the BGC-Argo climatology by comparing the 10 

model-BGC-Argo data mean square difference with the observation variance.  11 

 12 

Overall, the model surpasses the BGC-Argo climatology in predicting pH, DIC, Alk, O2, NO3 13 

and PO4 in the mesopelagic and the mixed layers, as well as, Si in the mesopelagic layer. For 14 

the other metrics, whose model predictions are outperformed by the BGC-Argo climatology, 15 

we provide suggestions to reduce the model-data misfit and thus to increase the model 16 

efficiency.  Regarding the estimation of Si in the mixed layer, we suggest the presence of 17 

additional factors that may affect the model's ability to accurately estimate this variable. 18 

Further investigation is necessary to identify these factors and improve the model's 19 

performance in this regard. For Chla-related metrics, we recommend to check the consistency 20 

between ocean colour products and BGC-Argo Chla products at the global scale as it may 21 

explain part of the misfit between the model, that assimilates satellite Chla, and BGC-Argo 22 

observations. The discrepancies between modelled and observed POC and OMZs have been 23 

already investigated in previous studies. It has been suggested that improving the BGC-Argo 24 

POC-bbp conversion factor, tuning the model parameters and implementing missing processes 25 

in the model structure could decrease the model-data inconsistencies associated with POC 26 

dynamics. Similarly, improving the ocean circulation in physical models should improve the 27 

accuracy of OMZ model predictions. Finally, pHmixed and pCO2 mixed should be better 28 

modelled if the uncertainties associated with DIC, Alk, temperature and salinity in the mixed 29 

layer are reduced. 30 

 31 

The proposed method can also be used to optimize the design of the BGC-Argo network. In 32 

particular, the regions where BGC-Argo observations should be enhanced to reduce the 33 
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model-data misfit through the assimilation of BGC-Argo data or process-oriented assessment 1 

studies. We strongly recommend enhancing the observation density in the Arctic region and 2 

maintaining the already high density of observations in the Southern Oceans. These are two 3 

regions where the model error is barely less than the variability of BGC-Argo observations, 4 

and where it is not possible to use satellite observations to constrain the models through 5 

assimilation most of the year.    6 
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Tables 1 

 2 

Table 1. Data mode and QC flags of the BGC-Argo observations used in this study. In the 3 

Argo data-system, the data are available in three data modes: “Real-Time”, ”Adjusted” and 4 

”Delayed”. See section 2a for a brief description of each data mode.  The flags “3” and “4” 5 

refer to “potentially bad data”  and “bad data”, respectively. See also Bittig et al. (2019), for a 6 

more detailed description of Argo data modes and flags. 7 

 8 

Parameter Data mode  Data mode of 

associated pressure, 

temperature and 

salinity profiles 

QC flags 

Chla Adjusted and Delayed Real time, Adjusted 

and Delayed 
• Real time (P,T,S): All flags 

except 4  

• Adjusted or Delayed: All 

flags except 3 and 4 

 

O2 Delayed Delayed • All flags except 3 and 4 

 

NO3 Adjusted and Delayed Real time, Adjusted 

and Delayed 
• Real time (P,T,S): All flags 

except 4  

• Adjusted or Delayed: All 

flags except 3 and 4 

 

pH Adjusted and Delayed Real time, Adjusted 

and Delayed 
• Real time (P,T,S): All flags 

except 4  

• Adjusted or Delayed: All 

flags except 3 and 4 

 

bbp Adjusted and Delayed  Real time, Adjusted 

and Delayed 
• Real time (P,T,S): All flags 

except 4  

• Adjusted or Delayed 

(P,T,S): All flags except 3 

and 4 
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• Adjusted or Delayed (bbp): 

All flags except 4 

  1 
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 1 

Table 2. Assessment metrics used to assess the model simulation with BGC-Argo data. For 2 

each metric, the level of assessment, as described in Hipsey et al. (2020) is also indicated. 3 

 4 

Process Metric Definition units Assessment 

level 

Carbonate 

chemistry 

pCO2 mixed Depth-averaged 

pCO2 in the mixed 

layer 

µatm State variable 

 DICmixed Depth-averaged DIC 

in the mixed layer 

µmol kg-1 State variable 

 Alkmixed Depth-averaged Alk 

in the mixed layer 

µmol kg-1 State variable 

 DICmeso Depth-averaged DIC 

in the mesopelagic 

layer 

µmol kg-1 State variable 

 Alkmeso Depth-averaged Alk 

in the mesopelagic 

layer 

µmol kg-1 State variable 

 pHmixed Depth-averaged pH 

in the mixed layer 

total State variable 

 pHmeso Depth-averaged pH 

in the mesopelagic 

layer 

total State variable 

Biological 

carbon pump 

Chlmixed Depth-averaged 

Chla in the mixed 

layer 

mg m-3 State variable 

 NO3 mixed  Depth-averaged NO3 

in the mixed layer 

µmol kg-1 State variable 

 PO4 mixed  Depth-averaged PO4 

in the mixed layer 

µmol kg-1 State variable 

 Simixed Depth-averaged Si 

in the mixed layer 

µmol kg-1 State variable 



 24 

 NO3 meso Depth-averaged NO3 

in the mesopelagic 

layer 

µmol kg-1 State variable 

 PO4 meso Depth-averaged PO4 

in the mesopelagic 

layer 

µmol kg-1 State variable 

 Simeso Depth-averaged Si 

in the mesopelagic 

layer 

µmol kg-1 State variable 

 POCmixed Depth-averaged 

POC in the mixed 

layer 

mg m-3 State variable 

 POCmeso Depth-averaged 

POC in the 

mesopelagic layer 

mg m-3 State variable 

 ChlDCM Magnitude of DCM  mg m-3 Emergent 

property  

 HDCM Depth of DCM m Emergent 

property 

 Hnit Depth of nitracline m Emergent 

property 

Oxygen levels  O2 mixed Depth-averaged O2 

in the mixed layer 

µmol kg-1 State variable 

 O2 meso Depth-averaged O2 

in the mesopelagic 

layer 

µmol kg-1 State variable 

 O2min value of O2 

minimum 

µmol kg-1 Emergent 

property 

 HO2min Depth of O2 

minimum 

m Emergent 

property 

 1 

  2 
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Figures 1 

 2 

 3 
Figure 1. Spatial and temporal coverage of BGC-Argo quality- controlled pH, NO3, Chla, O2 4 

and bbp profiles. (a) Number of quality-controlled profiles for the entire period per 4°x4° bin. 5 

(b) Number of quality-controlled profiles per year. Note that this study only uses data from 6 

2009 to 2020 to evaluate model performance.  7 
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 1 
Figure 2.  Spatial distribution of the 8 BGC-regions obtained with a K-means clustering 2 

method applied to a dataset of modelled climatological monthly time series of the 23 3 

assessment metrics. 4 

 5 

  6 
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 1 
Figure 3. Bubble plot of model efficiency statistical score (me) as a function of BGC-regions 2 

and assessment metrics associated with the carbonate chemistry (b). The size of a bubble is 3 

proportional to the value of  me. For a given assessment metric, the median values of me over 4 

all BGC regions are represented as a bar plot (c). Similarly, for a given BGC region, the 5 

median values of  me across all assessment metrics are represented as a bar plot (a). In (b), 6 

The x and y axes are arranged in descending order of the median value of  me over all 7 

assessment metrics (panels a) and the median value of  me over all BGC regions, respectively. 8 

The blue and orange colours correspond to a positive and negative me . 9 

  10 
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 1 
Figure 4. Same as Figure 3 but for assessment metrics associated with the biological carbon 2 

pump. 3 

  4 
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 1 
Figure 5. Same as Figure 3 but for assessment metrics associated with the oxygen levels. 2 

Note that in (a), the bar plot represents the mean value of  me over all assessment metrics.  3 

  4 
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 1 
Figure 6. Median of the 23 me associated with each assessment metric by BGC-region.  2 
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Appendix 1 

 2 

A.1  The CMEMS global hydrodynamic-biogeochemical model  3 

 4 

The model used in this study features the offline coupled NEMO–PISCES model, with a 1/4° 5 

horizontal resolution 50 vertical levels (with 22 levels in the upper 100 m, the vertical 6 

resolution is 1m near the surface and decreases to 450m resolution near the bottom) and daily 7 

temporal resolution, covering the period from 2009 to 2017. 8 

 9 

The biogeochemical model PISCES v2 (Aumont et al., 2015) is a model of intermediate 10 

complexity designed for global ocean applications, and is part of NEMO modelling platform.  11 

It features 24 prognostic variables and includes five nutrients that limit phytoplankton growth 12 

(nitrate, ammonium, phosphate, silicate and iron) and four living compartments: two 13 

phytoplankton size classes (nanophytoplankton and diatoms, resp. small and large) and two 14 

zooplankton size classes (microzooplankton and mesozooplankton, resp. small and large); the 15 

bacterial pool is not explicitly modelled. PISCES distinguishes three non-living detrital pools 16 

for organic carbon, particles of calcium carbonate and biogenic silicate. Additionally, the 17 

model simulates the carbonate system and dissolved oxygen. PISCES has been successfully 18 

used in a variety of biogeochemical studies, both at regional and global scale (Bopp et al., 19 

2005; Gehlen et al., 2006, 2007; Gutknecht et al., 2019; Lefèvre et al., 2019; Schneider et al., 20 

2008; Séférian et al., 2013; Steinacher et al., 2010; Tagliabue et al., 2010).  21 

 22 

The dynamical component is the latest Mercator Ocean global 1/12° high-resolution ocean 23 

model system, extensively described and validated in Lellouche et al. (2013, 2018). This 24 

system provides daily and 1/4°-coarsened fields of horizontal and vertical current velocities, 25 

vertical eddy diffusivity, mixed layer depth, sea ice fraction, potential temperature, salinity, 26 

sea surface height, surface wind speed, freshwater fluxes and net surface solar shortwave 27 

irradiance that drive the transport of biogeochemical tracers. This system also features a 28 

reduced-order Kalman filter based on the Singular Evolutive Extended Kalman filter (SEEK) 29 

formulation introduced by Pham et al. (1998), that assimilates, on a 7-day assimilation cycle, 30 

along-track altimeter data, satellite Sea Surface Temperature and Sea-Ice Concentration from 31 
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OSTIA, and in situ temperature and salinity vertical profiles from the CORA 4.2 in situ 1 

database. 2 

 3 

In addition, the biogeochemical component of the coupled system also embeds a reduced 4 

order Kalman filter (similar to the above mentioned) that operationally assimilates daily L4 5 

remotely sensed surface chlorophyll (European Union-Copernicus Marine Service, 2022). 6 

Thanks to a multivariate formulation of model error covariances, the system is able to provide 7 

a 3D correction to the nanophytoplankton, diatoms and nitrates model concentrations, from 8 

the surface chlorophyll data provided by satellite observations.  9 

In parallel, a climatological-damping is applied to nitrate, phosphate, oxygen, silicate - with 10 

World Ocean Atlas 2013 - to dissolved inorganic carbon and alkalinity – with GLODAPv2 11 

climatology (Key et al., 2015) - and to dissolved organic carbon and iron - with a 4000-year 12 

PISCES climatological run. This relaxation is set to mitigate the impact of the physical data 13 

assimilation in the offline coupled hydrodynamic-biogeochemical system, leading significant 14 

rises of nutrients in the Equatorial Belt area, and resulting in an unrealistic drift of various 15 

biogeochemical variables e.g. chlorophyll, nitrate, phosphate (Fennel et al., 2019; Park et al., 16 

2018). The time-scale associated with this climatological damping is set to 1 year and allows 17 

a smooth constraint that has been shown to be efficient to reduce the model drift.  18 

  19 
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Data availability. The BGC model data can be downloaded from the Copernicus Marine 1 

Environmental Monitoring Service 2 

(https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=GLOB3 

AL_ANALYSIS_FORECAST_BIO_001_028). The BGC-Argo data were downloaded from 4 

the Argo Global Data Assembly Centre in France (ftp://ftp.ifremer.fr/argo/).   5 
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