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Abstract. Oceanic particulate organic carbon (POC) is a relatively small (~4 Pg C) but dynamic component of the global 

carbon cycle with fast mean turnover rates compared to other oceanic, continental and atmospheric carbon stocks. 

Biogeochemical models historically focused on reproducing the sinking flux of POC driven by large fast-sinking particles 10 

(bPOC). However, suspended and slow-sinking particles (sPOC) typically represent 80–90% of the POC stock, and can 

make important seasonal contributions to vertical fluxes through the mesopelagic layer (200–1000 m). Recent developments 

in the parameterization of POC reactivity in the PISCES model (PISCESv2_RC) have greatly improved its ability to capture 

sPOC dynamics. Here we evaluated this model by matching 3D and 1D simulations with BGC-Argo and satellite 

observations in globally representative ocean biomes, building on a refined scheme for converting particulate backscattering 15 

profiles measured by BGC-Argo floats to POC. We show that PISCES captures the major features of sPOC and bPOC as 

seen by BGC-Argo floats across a range of spatiotemporal scales, from highly resolved profile time series to biome-

aggregated climatological profiles. Our results also illustrate how the comparison between the model and observations is 

hampered by (1) the uncertainties in empirical POC estimation, (2) the imperfect correspondence between modelled and 

observed variables, and (3) the bias between modelled and observed physics. Despite these limitations, we identified 20 

characteristic patterns of model-observations misfits in the mesopelagic layer of subpolar and subtropical gyres. These 

misfits likely result from both suboptimal model parameters and model equations themselves, pointing to the need to 

improve the model representation of processes with a critical influence on POC dynamics, such as sinking, remineralization, 

(dis)aggregation and zooplankton activity. Beyond model evaluation results, our analysis identified inconsistencies between 

current estimates of POC from satellite and BGC-Argo data, as well as POC partitioning into phytoplankton, heterotrophs 25 

and detritus deduced from in situ bio-optical data. Our approach can help constrain POC stocks, and ultimately budgets, in 

the epipelagic and mesopelagic ocean. 
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1 Introduction 30 

The biological carbon pump (BCP) is the ensemble of processes that transfer the organic matter produced by plankton in the 

sunlit ocean surface to deeper layers (Volk and Hoffert, 1985). This vertical flux plays a central role in the Earth’s climate, 

as it influences the oceans’ capacity to absorb and ultimately store atmospheric CO2 over centennial or millennial time scales 

(Kwon et al., 2009). The BCP is also central to biogeochemical functioning of the ocean, as it determines the quality and 

quantity of organic matter available to the ocean interior (Arístegui et al., 2009; Hernández-León et al., 2020) and the 35 

seafloor. Organic matter respiration in the ocean interior influences the distribution of oxygen, inorganic carbon and 

remineralized nutrients (Duteil et al., 2012; Oschlies et al., 2018; Weber et al., 2016), and their return pathways to the 

surface. Sinking particles are also efficient trace metal scavengers (Hayes et al., 2015). In consequence, the BCP is 

intimately linked to, and feeds back on, upper ocean productivity. 

 40 

Over the last decades, BCP research has placed emphasis on understanding the ecological and physical factors that control 

export efficiency (the fraction of net primary production exported below the euphotic layer) and transfer efficiency (Teff; the 

fraction of export production that reaches a given depth below the euphotic layer), both of which vary widely across ocean 

biomes and along the seasonal cycle (Buesseler and Boyd, 2009; Buesseler et al., 2020). Therefore, biogeochemical models 

have been built, and their parameters tuned, to be able to reproduce sparse observations of export production and vertical 45 

carbon flux attenuation (Guidi et al., 2015; Henson et al., 2011; Laws et al., 2000), sometimes reaching apparently 

contradictory results (Marsay et al., 2015). In comparison, the models’ ability to represent marine particle concentrations has 

received less attention (Lam et al., 2011). 

 

Marine particles are mainly composed of living microbial plankton cells, living metazoans and detritus (“marine snow” 50 

aggregates, fecal pellets, zooplankton feeding structures), whose size ranges from <1 µm to several mm (Stemmann and 

Boss, 2012). Indeed, these particles also feature wide variations in shape, density, chemical composition and reactivity 

towards microbial degradation (Kharbush et al., 2020). Building on the overall increase in gravitational sinking speed with 

particle size (Cael and White, 2020; Stemmann et al., 2004a), particle populations are usually partitioned into a few 

functional size classes: big particles, typically defined as larger than 50 or 100 µm, which sink at several tens or hundreds of 55 

m d-1; and small particles, including suspended and slow-sinking (<10 m d-1) particles. In this study, the particulate organic 

carbon (POC) is divided into small POC (sPOC) and big POC (bPOC), with a nominal cutoff at 100 µm (Table 1; section 

2.2.2). 
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The traditional BCP paradigm posits that bPOC controls the vertical carbon flux (Sarmiento and Gruber, 2006). However, a 60 

wider paradigm has emerged during the last decade, shifting our attention to carbon export processes other than gravitational 

sinking. These processes were collectively termed “particle injection pumps”, and include both the “active flux” mediated by 

the vertical migration of metazoans and the physical “particle injection pumps” resulting from oceanic convection and water-

mass subduction at various scales (Boyd et al., 2019). In parallel, the role of dissolved organic carbon in vertical carbon 

export has been widely recognized (Jiao et al., 2010; Legendre et al., 2015). 65 

 

One aspect that has recently received considerable attention is the role of suspended and slow-sinking particles. Owing to 

their longer residence time, small particles represent the majority of the POC stock (Aumont et al., 2017; Baker et al., 2017) 

and may support a proportional fraction of the respiration (Baltar et al., 2010a, 2010b; Belcher et al., 2016; Iversen and 

Ploug, 2010). Small POC can drive vertical POC fluxes across the mesopelagic layer during episodes of convection (Bishop 70 

et al., 1986; Dall’Olmo and Mork, 2014; Lacour et al., 2019) or subduction (Llort et al., 2018; Omand et al., 2015; 

Resplandy et al., 2019), potentially making large contributions to POC export (Alonso-Gonzalez et al., 2010; Henson et al., 

2015). Sources of sPOC to the mesopelagic layer and below it are not limited to gravitational sinking or detrainment from 

the surface, because sPOC can be produced through the fragmentation of sinking bPOC, caused by physical disaggregation, 

bacterial solubilization and zooplankton activity (Briggs et al., 2020; Goldthwait et al., 2004; Mayor et al., 2020; Stemmann 75 

et al., 2004b), and also through bacterial chemosynthesis (Arístegui et al., 2009). Altogether, these findings illustrate how 

our limited knowledge of POC characteristics and cycling hampers mechanistic understanding of the BCP and mesopelagic 

carbon budgets (Burd et al., 2010; Giering et al., 2014; Steinberg et al., 2008). 

 

Biogeochemical models designed to capture only gravitational POC sinking fail to represent POC stocks in the ocean 80 

interior. Aumont et al. (2017) recently showed that the Pelagic Interactions Scheme for Carbon and Ecosystem Studies 

model  (PISCESv2; Aumont et al., 2015) underestimated POC by one order-of-magnitude or more below the epipelagic 

layer. This pitfall is likely common to any state-of-the-art model with similar structure (Laufkötter et al., 2016; Séférian et 

al., 2020). Aumont’s work also showed that the implementation of a variable reactivity scheme for POC improved 

dramatically the fit to observed deep-ocean POC concentrations, without harming vertical POC flux estimation. This 85 

parameterization treats detrital particles, both small and big, as a mixture of particles distributed along a reactivity continuum 

(RC). The most labile fractions are rapidly consumed below the productive illuminated surface layer, such that vertically 

exported POC becomes progressively more refractory. This results in enhanced preservation of sPOC in the model and a 

much more realistic fraction of sPOC with respect to total POC (tPOC) in the ocean interior. 

 90 

Despite this breakthrough in the representation of POC fractions in PISCESv2_RC (hereafter “PISCES”), the new 

parameterization was evaluated using only sparse in-situ measurements. During the last decade, the launching of the 

biogeochemical Argo (BGC-Argo) program of robotic observations has revolutionized the study of particles in the ocean 
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interior (Claustre et al., 2020). BGC-Argo floats provide vertical profiles of temperature, salinity, bio-optics and chemical 

variables between 0–1000 m every 1 to 10 days in near-real time, and are thus especially well suited to study particles in the 95 

mesopelagic layer, where the strongest POC gradient occurs. The rapidly growing fleet of BGC-Argo floats equipped with 

bio-optical sensors enables comparison between models and observations at global scales with enhanced spatiotemporal 

resolution. Unfortunately, BGC-Argo floats measure only a bio-optical proxy of POC, the particulate backscattering 

coefficient (usually at 700 nm, bbp700) and empirical conversion factors are needed to estimate POC from bbp700 (Cetinić et al., 

2012; Stramski et al., 2008). 100 

 

In this study we compare sPOC and bPOC concentrations estimated from BGC-Argo floats to their PISCES-simulated 

counterparts, as well as satellite-retrieved surface POC. The comparison is enabled by a novel empirical algorithm to convert 

bbp700 to POC. Observations and simulations are matched in 3D (biome-wide climatological scale) and 1D (at defined 

locations over an annual cycle). These complementary strategies allow us to evaluate the skill of PISCES at simulating POC 105 

stocks and fractions, and indirectly the drivers of POC export and mesopelagic POC budgets, in globally representative 

biomes. 

2 Methods 

2.1 Definition of vertical and horizontal domains 

Studies of the BCP usually decompose the ocean into vertical domains: a surface layer where autotrophic activities 110 

dominate, and one or several ocean interior layers where heterotrophic processes dominate. Functional definitions based on 

light penetration, peak export production, vertical mixing or long-term carbon sequestration are usually the most appropriate 

ones for process studies (Buesseler and Boyd, 2009; Buesseler et al., 2020; Guidi et al., 2015; Palevsky and Doney, 2018). 

Because this paper is mainly descriptive and combines observations and simulations, we will refer to layers defined by fixed 

depths: epipelagic (0–200 m), mesopelagic (200–1000 m) and bathypelagic (1000–4000 m). 115 

 

Over the horizontal dimensions, our comparisons between observations and model results rely on the ocean biomes defined 

by Fay and McKinley (2014). These authors subdivided each ocean basin (Atlantic, Pacific, Indian, and Southern Ocean) 

into different biomes on the basis of observed variables, namely: sea surface temperature, spring/summer chlorophyll a 

concentrations (Chla), ice fraction, and maximum mixed layer depth (MLD), all on a 1°×1° grid. This division resulted in 17 120 

regions ascribed to one of the following five biomes: the ice biome, the subpolar seasonally stratified biome, the subtropical 

seasonally stratified biome, the subtropical permanently stratified biome, and the equatorial biome. The analyses reported 

herein focus on the following four biomes (Fig. 1): the seasonally stratified North Atlantic subpolar gyre (NASPG); the 

permanently stratified Atlantic and Pacific subtropical gyres, which were grouped together (STG); the seasonally stratified 

Southern Ocean (Subantarctic); and the Mediterranean Sea, which was added here owing to the abundance of BGC-Argo 125 
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data, and represents a seasonally stratified subtropical biome. Fay and McKinley’s definition allows biome boundaries to 

change from one year to another. Here we analysed only data from the core of each biome, defined as the grid cells that 

never changed classification during the 1998–2010 satellite observation periods. 

2.2 BGC-Argo observations 

The global dataset acquired by the array of BGC-Argo floats was downloaded on 14 January 2020 from the Global Data 130 

Assembly Center hosted by Ifremer (ftp://ftp.ifremer.fr/ifremer/argo/dac/) (Argo, 2000). We selected floats equipped with at 

least a Chla fluorometer and a sensor for optical backscattering at 700 nm (bbp700), in addition to the conductivity‐

temperature‐depth (CTD) probe. The downloaded measurements had undergone the standard processing, which includes the 

application of calibration equations to raw sensor output and the performance of near-real-time quality control to both CTD 

(Wong et al., 2021) and Chla measurements (Schmechtig et al., 2018). Since no specific quality control procedure has been 135 

established yet for bbp700 profiles, the latter were only flagged according to the general criteria (Schmechtig et al., 2016). 

Thus, we used all bbp700 measurements with quality control flag ≤ 3 (equivalent results were obtained with flag ≤ 2). Two 

different processing pipelines were applied to different subsets of the BGC-Argo data, as described below. 

2.2.1 Global gridded climatologies (3D approach) 

The global dataset acquired between 2010 and 2019 was used to produce global gridded monthly and seasonal climatologies 140 

for bbp700 and Chla. The measurements were binned onto the ORCA2_L31 grid used for NEMO-PISCES simulations (see 

2.4.1), which has an horizontal resolution of about 2° that increases to 0.5° in the meridional direction in the equatorial 

domain, and 30 oceanic vertical levels between the surface and the ocean bottom. The thickness of the vertical bins increases 

progressively from 10 m at the surface to 339 m in the 22nd bin (870–1209 m), the deepest one containing BGC-Argo data. 

In each grid element, the average, median, range and data counts were computed. Profiles from the CSIRO and INCOIS data 145 

assembly centers were not used because, at the time of download, they had not taken into consideration the new calibration 

files provided by the manufacturer.  A total of 72460 profiles were used to calculate the global gridded climatologies.  

2.2.2 Profile time series for individual floats sampling at higher resolution (1D approach) 

A subset of the floats, deployed mostly by the projects NAOS, remOcean and Bio-Argo France (model NKE PROVOR 

CTS‐4), were programmed to sample at higher temporal and vertical resolution than the Argo defaults (10 days and 10 m). 150 

These floats made vertical profiles between 1,000 m and the surface every 2, 5 or 10 days with a vertical resolution of 10 m 

between 1,000 and 250 (or 350) m, 1 m between 250 (or 350) and 10 m, and 0.2 m between 10 m and the sea surface. We 

processed this dataset with a dedicated pipeline to extract additional information on POC size fractions and their dynamics. 

Along each vertical profile we computed depth, conservative temperature, absolute salinity, σθ and spiciness (Flament, 2002) 

from the calibrated pressure, temperature and salinity using the R package oce (Kelley, 2011). The MLD was calculated as 155 

the shallowest depth where σθ exceeded the surface reference value by 0.03 kg m-3. The surface reference corresponded to 
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the σθ at 5 m after applying a 5-point running mean to the top 10 m of the profile. Eleven additional MLD criteria were also 

calculated to assess the robustness of the approach (Fig. S1). Following Briggs et al. (2011, 2020), each bbp700 vertical profile 

was smoothed with sequential 11-point running-minimum and running-maximum filters to separate the baseline from the 

spikes. The baseline signal corresponds to the bulk population of small particles, whose diameter is smaller than 100 µm and 160 

mostly between 0.5 and 30 µm (Dall’Olmo et al., 2009; Organelli et al., 2018). Each spike reflects the passage of a particle 

(organism or aggregate) larger than about 100 µm in front of the sensor window. Unlike Briggs et al. (2020), we did not 

subtract from the baseline profile the 850–900 m signal, which in that study was attributed to a background of small 

refractory particles with constant concentration. The baseline and spike signals were converted to sPOC and bPOC, 

respectively, as described in the next section. All measurements were subsequently averaged into 18 vertical bins of 165 

progressively increasing thickness, such that the deepest bins contained at least 10 measurements. Finally, each profile was 

interpolated onto the L75 vertical grid commonly used in NEMO simulations. This grid has 46 bins between the surface (0–1 

m) and the deepest layer considered here (901–996 m). The profile time series was temporally binned into 5-day periods. 

 

For the comparison to PISCES 1D simulations, BGC-Argo time series were cut into one-year periods (shifted by 6 months in 170 

the Southern hemisphere), which we will call coherent annual time series (CATS) hereafter. The CATS fulfilled the 

following conditions: (1) sampling dates spanned at least between days of year 25 and 340; (2) the float remained in the 

same region and did not cross major oceanic fronts according to the vertical-temporal evolution of temperature, salinity, σθ 

and spiciness; (3) bottom depth was > 1000 m for all profiles (bathymetry obtained from the 15 arc-second GEBCO 2019 

product; https://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_2019/gebco_2019_info.html); and (iv) 175 

the Chla and bbp700 sensors were stable according to both the vertical profiles and the continuous measurements acquired 

during drift at 1000 m between profiles. A total of 50 CATS from 28 different floats were selected, with 10–16 CATS in 

each biome, 32 (18) in the Northern (Southern) hemisphere (Table S1). 

2.3 Conversion of bbp700 to POC 

To convert the profiles of the backscattering coefficient at 700 nm (bbp700) to POC we developed an empirical algorithm, 180 

whose behaviour is summarized in Fig. 2, building on previous studies (Bol et al., 2018; Evers-King et al., 2017). The 

variability of POC/bbp700 enclosed in this algorithm results from processes that alter the size distribution, dominant shapes, 

and chemical composition of the particle assemblage, and ultimately its bulk optical properties, as discussed in section 4.2. 

Further details are provided in the Appendix. The algorithm estimates the POC/bbp700 ratio along the vertical profile between 

0 and 1000 m, and proceeds in two steps. First, the POC/bbp700 ratio is calculated by prescribing a POC/bbp700 ratio in the 185 

surface layer (zsurf,biome) and an exponential decrease with depth in the underlying water column, which converges 

asymptotically towards a constant deep value (c): 

 

POC/bbp,700(z) = c + abiome*exp(-b*(z-zsurf,biome)*0.001),     z > zsurf,biome                 (1) 
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 190 

The abiome coefficient is biome-specific, whereas the asymptote at depth is fixed at c = 1000 mmol C m-3 m. The zsurf,biome 

corresponds to the 5% quantile of the climatological MLD in summer in a given biome. The POC/bbp,700 ratios at zsurf,biome, 

corresponding to abiome + c in Eq. 1, are taken from the literature and range between 2600 and 4900 mmol C m-3 m (Fig. 2; 

Table A1). Second, the POC/bbp,700 profile derived from Eq. 1 is modified by extrapolating a constant POC/bbp,700 value, 

taken from a reference depth, zref, to the sea surface. In each vertical profile, zref is defined as the deepest of zsurf,biome and the 195 

MLD: 

 

POC/bbp700(z) = POC/bbp700(zref),    z ≤ zref;        zref = max(zsurf,biome, MLD)                 (2) 

 

The exponential decrease prescribed by Eq. 1 is similar to that proposed by Bol et al. 2018, except for the inclusion of the 200 

constant term c that prevents the ratio from becoming 0 at depth. The slope of the exponential decrease (b = -6.57) is 

constant in all biomes and based on our fit to the Cetinić et al. (2012) dataset, using the same depth bins as Bol et al. (2018), 

but additionally forcing the curve towards c at 1000 m. 

 

The uncertainty of regional bbp700-POC conversion factors in the epipelagic is typically <10% according to the standard error 205 

of the POC vs. bbp700 linear regression slopes (Table A1). The few available measurements in the mesopelagic suggest a 

POC/bbp700 uncertainty lower than a factor of two. Through this study, we will assume that model/observation ratios 

larger/smaller than 2/0.5 can safely be regarded as model over/underestimates, which possibly is a conservative criterion for 

the epipelagic layer. 

 210 

The conversion of bbp700 to POC was done using different MLD data for the global climatologies and the CATS. For the 

global climatologies we used the Monthly Isopycnal & Mixed-layer Ocean Climatology (MIMOC) of Schmidtko et al. 

(2013), downloaded from https://www.pmel.noaa.gov/mimoc/, which was reprojected onto the ORCA2 horizontal grid. 

Although MIMOC is based on an algorithm that evaluates several MLD criteria, it has been shown to be globally consistent 

with the MLD based on a 0.03 kg m-3 σθ threshold (Holte and Talley, 2009; Sallée et al., 2021). For the float time series, we 215 

used the MLD defined by a 0.03 kg m-3 threshold computed for each individual profile. 

2.4 Ocean color satellite data 

Satellite observations for the 1997–2019 period were downloaded from GlobColour (https://www.globcolour.info), a merged 

multisensor dataset, on 2 March 2020. Monthly sea-surface POC fields based on the algorithm of Stramski et al. (2008) were 

used to compute monthly climatologies that were subsequently reprojected onto the ORCA2 grid. 220 
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2.5 PISCES simulations and matching with observations 

Simulations were run using the ocean biogeochemistry model PISCESv2 (Aumont et al., 2015) with the RC parameterization 

for detrital POC (Aumont et al., 2017). The configuration of PISCES used here has 24 tracers: two classes of phytoplankton 

(“nanophytoplankton” and diatoms), detrital particles (small and big), and zooplankton (micro- and mesozooplankton), plus 

18 additional tracers that comprise dissolved inorganic macronutrients and iron, inorganic carbon chemistry variables, 225 

dissolved organic carbon (DOC), and different particulate stocks of iron and silica. Phytoplankton growth depends on light, 

inorganic nitrogen, phosphorus and iron, with an additional silicate requirement for diatoms. Microzooplankton and 

mesozooplankton consume the two classes of phytoplankton and detrital particles with different preferences, and 

mesozooplankton also predate on microzooplankton. Detrital particles are produced through the mortality of phytoplankton 

and zooplankton (which are routed to small and big particles in different proportions), zooplankton sloppy feeding, and DOC 230 

coagulation. Production of large detritus also results from enhanced diatom mortality upon bloom collapse, aggregation of 

small detritus, and zooplankton mortality and fecal pellet production (the latter two derived from a closure term that accounts 

for unresolved higher trophic levels). Small and big detrital particles are nominally smaller/larger than 100 µm and sink, 

respectively, at 2 and 50 m d-1. Both small and big detritus are remineralized by implicit bacterial activity, and consumed by 

flux-feeding mesozooplankton. Remineralization follows first-order kinetics with an initial specific rate “k” of 0.035 d-1 (at 235 

0°C) for freshly produced detritus in the upper mixed layer. This “k” decreases with depth as an emergent result of the RC 

parameterization. The flux feeding rate depends on the particles’ sinking flux, and thus attenuates the flux of large particles 

more strongly. Additionally, a small fraction of the large detritus intercepted by flux feeders is fragmented into small 

detritus. Phytoplankton growth rates and remineralization rates increase with temperature with a Q10 of 1.9, whereas 

zooplankton growth rates have a Q10 of 2.14. 240 

 

To evaluate PISCES simulations against in situ POC measurements or their proxies, the correspondence between PISCES 

tracers (in italics) and observed POC fractions has to be established. In this study we assumed that sPOC corresponds to the 

sum of PISCES-simulated nanophytoplankton (PHY), diatoms (PHY2), small detrital particles (POC) and microzooplankton 

(ZOO), whereas bPOC corresponds to the sum of PISCES-simulated big detrital particles (GOC) and mesozooplankton 245 

(ZOO2) (Table 1). Total POC (tPOC) corresponds to the sum of those six PISCES tracers or, what is the same, sPOC + 

bPOC. Heterotrophic prokaryotes (BACT) are not a prognostic tracer in PISCES, and are not explicitly included in our 

analysis. The correspondence between observed and simulated POC fractions, explicit and implicit, is discussed in section 

4.3. 

2.5.1 PISCES 3D simulations vs. biome-aggregated observations 250 

For the global-scale comparison between PISCES outputs and observations from BGC-Argo and satellites, we used the 

simulation presented by Aumont et al. (2017), which was forced by pre-computed dynamical fields from a pre-industrial run 
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of the ocean circulation model NEMO. Global monthly climatological fields of the PISCES tracers were used to compute 

seasonal climatologies of modeled sPOC, bPOC and tPOC. To enable direct comparison to the BGC-Argo observations, 

model output was resampled at locations where BGC-Argo profiles were available over the 2010–2019 period. Prior to 255 

comparison with modeled fields, BGC-Argo observations were further screened to remove “outliers” in each biome and 

season. Outliers were defined as grid cells where the mean bbp700 in the upper 50 m was above the 95% percentile or greater 

than 0.008 m-1 (Briggs et al., 2020). The same resampling was applied to satellite-retrieved POC. 

2.5.2 PISCES 1D simulations vs. BGC-Argo coherent annual time series (CATS) 

A more detailed comparison was undertaken by matching each of the CATS from individual BGC-Argo floats with a 260 

PISCES water-column (“PISCES 1D”) simulation. The match was based on the coherence between the seasonal cycle of 

MLD observed by the float and the turbulent layer simulated by NEMO. The pre-computed dynamical fields used to 

evaluate the match-ups were obtained from an ocean-only historical simulation (NEMO v3.6) at 1-degree resolution with 75 

vertical levels (ORCA1_L75 grid) forced with the JRA-55 atmospheric reanalysis that covered the 1958–2018 period 

(Tsujino et al., 2020) following the OMIP2 protocol (Griffies et al., 2016). The float-observed MLD and the NEMO-265 

simulated turbocline depth (defined by turbulent diffusivity > 5·10-4 m2 s-1) were compared over the entire annual cycle in all 

the model grid cells that had been visited by the float on a given year. The best model grid cell was selected on the basis of 

model-observations correlation, root-mean-square error, and time lag in the onset date of summer stratification. An example 

of the metrics used to match NEMO dynamical fields and BGC-Argo MLD is provided in Fig. S1-S4. 

 270 

PISCES 1D offline simulations were forced using the dynamical fields from the selected model grid cells. The same annual 

forcing, corresponding to the year of the BGC-Argo observations, was repeated over 5 simulation years. After 4 years of 

spin-up, the output from year 5 at 5-days resolution was used for the comparison to the BGC-Argo CATS. Initial conditions 

(climatological fields of inorganic nutrients and carbon chemistry variables) and boundary conditions (atmospheric 

deposition) were the same used for PISCES 3D (Aumont et al., 2015, 2017). Nutrient fields were restored towards the mean 275 

annual profile below 300 m. This procedure avoided drift in nutrient stocks by replenishing the upper ocean with the same 

amount of nutrients each year, resulting in regular seasonal cycles after one year and identical cycles from year 4 onwards. 

3 Results 

3.1 Climatological POC fields 

This section describes the comparison among tPOC fields estimated from BGC-Argo and satellite observations and PISCES 280 

simulations across four ocean biomes. Fig. 3 compares monthly climatologies at the sea surface (0–20 m), Fig. 4 compares 

seasonal climatologies between 0–1000 m, and Fig. 5 displays skill metrics (Pearson’s correlation, model/observations ratio 

and bias) for the vertical profiles shown in Fig. 4, as well as for the 1D simulations matched to BGC-Argo CATS. 
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3.1.1 Seasonally stratified subpolar biomes 

In the subpolar biomes, near-surface tPOC ranged between ~1 mmol m-3 in the winter months and around 5 (Subantarctic) or 285 

10 (NASPG) mmol m-3 in early summer. In these biomes, PISCES-simulated tPOC was within the 2.5–97.5% bounds of 

BGC-Argo observations for the majority of months (Fig. 3). During the apex of the bloom (months 5–7), however, median 

PISCES estimates exceeded those obtained from BGC-Argo (by ~80%) and satellites (by ~15%). In the Subantarctic, this 

pattern extended through the fall. Satellite tPOC was in poor agreement with both PISCES and BGC-Argo tPOC outside the 

apex of the bloom, as discussed in section 4.1. 290 

 

PISCES reproduced the vertical decrease of tPOC concentration down to 1000 m (Fig. 4) with generally good skill (Fig. 5), 

but some misfits were observed. In the North Atlantic subpolar gyre (NASPG), PISCES underestimated tPOC through the 

epipelagic and the upper mesopelagic during the winter by ~40% (Fig. 4) as a result of too vigorous convection in the 

NEMO dynamical fields that kept phytoplankton under insufficient light exposure. In the Subantarctic biome, simulated 295 

tPOC exceeded BGC-Argo estimates in the upper portion of the mesopelagic layer in spring, and the overestimation pattern 

propagated downwards through the summer and fall. A similar but smaller overestimation pattern was observed in the 

NASPG in summer and fall. 

3.1.2 Permanently and seasonally stratified subtropical biomes 

In the oligotrophic biomes, monthly median surface tPOC displayed low seasonal amplitude. Total POC concentrations 300 

estimated from BGC-Argo data typically oscillated around 2 mmol m-3, with a maximum/minimum ratio of around 1.6 in the 

Mediterranean and 1.3 in the Atlantic and Pacific subtropical gyres (STG). In the STG, satellite and BGC-Argo tPOC were 

in good agreement, which could be expected because bbp700-POC conversion factors and satellite POC are based on the same 

study (Stramski et al., 2008). On the contrary, PISCES tPOC exceeded BGC-Argo tPOC by around twofold in the STG. In 

the Mediterranean, satellite tPOC exceeded BGC-Argo tPOC by ~80%, pointing to the differences in the respective POC 305 

estimation algorithms. PISCES tPOC was nearly fourfold higher than BGC-Argo tPOC at the surface in the Mediterranean, 

an overestimation that results from unrealistic physics in that basin caused by the coarse (2°) model grid (see 3.3 and 4.3). 

Vertical tPOC profiles evidenced the shortcomings of PISCES simulations in the oligotrophic gyres. Compared to BGC-

Argo profiles, PISCES simulations produced too-sharp deep POC maxima and underestimated tPOC in the waters above and 

below (Fig. 4). Overall, these patterns prompted us to examine in greater detail the seasonal cycles of POC in different 310 

biomes. 

3.2 Coherent annual time series of sPOC and bPOC: case studies 

In this section we describe two CATS from BGC-Argo floats and their PISCES 1D counterparts (section 3.2.1). The floats, 

identified by their World Meteorological Organization (WMO) number, are the 6901486 in the NASPG (year 2015) and the 
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6901660 in the South Pacific STG (year 2017). The float 6901486 represents the most productive conditions of our dataset, 315 

with annual median (maximum) Chla of 0.60 (10.7) mg m-3 and tPOC of 5.5 (16.7) mmol m-3 in the near-surface layer (0–20 

m). By contrast, float 6901660 represents the most oligotrophic waters, with annual median (maximum) Chla of 0.011 

(0.036) mg m-3 and tPOC of 1.8 (2.5) mmol m-3 in the near-surface layer. In Fig. S5–S10 we provide additional examples of 

the CATS-PISCES 1D match-ups in the four biomes and in two subregions within the NASPG. 

3.2.1 Labrador Sea (North Atlantic subpolar gyre) 320 

Float 6901486 was deployed in June 2013 close to the Reykjanes Ridge in the Irminger Sea, NW Atlantic subpolar gyre. 

After drifting SW carried by the East Greenland Current, the float was trapped in the Labrador Sea cyclonic circulation 

between 2014 and July 2017, when it stopped communication after completing 344 profiles (cycles). During its multi-year 

sampling in the Labrador Sea (56-60°N latitude and 48–54°W longitude), over a bottom depth of around 3500 m, the float 

showed stable physical and bio-optical records at 1000 m, broken only by winter convection events, and recurring annual 325 

patterns of spring-summer phytoplankton blooming and vertical carbon export as depicted by Chla and POC profiles. Here 

we describe the year 2015 (Fig. 6), characterized by deep convection during February and March, when the MLD generally 

exceeded 1000 m (Fig. S1). Epipelagic tPOC increased rapidly upon water-column re-stratification in mid-April and peaked 

in mid-May. A secondary bloom peaked in late June after a transient MLD deepening caused by stormy weather. Epipelagic 

tPOC decreased progressively thereafter until a small bloom was observed in October linked to pycnocline erosion. This 330 

bloom terminated rapidly and epipelagic tPOC reached the baseline level in late December. The sPOC fraction dominated 

epipelagic tPOC all year round, and highest bPOC fractions of nearly 20% were recorded at the apex of the spring-summer 

blooms. Distinct vertical particle export events were observed in May and June, matching the surface phytoplankton blooms, 

and August, when nutrient limitation likely triggered bloom collapse. These export pulses produced synchronous increases in 

sPOC and bPOC through the mesopelagic layer, though with different magnitudes. After reaching relative minima in 335 

October, mesopelagic sPOC and tPOC increased again in November, but they showed different vertical patterns. 

 

The matching PISCES 1D simulation captured with good skill the patterns of sPOC and bPOC in the epipelagic and, to a 

lesser extent, the mesopelagic layer (Fig. 6). Excellent correlation (r = 0.92) and bias (-0.5%) between BGC-Argo and 

PISCES were found for vertically integrated epipelagic tPOC (Fig. 6i). A delayed start of the bloom was observed in the 340 

simulation, which can be partly attributed to a delay of around one week in the onset of permanent stratification in the 

model. It is also plausible that modelled phytoplankton reacted too weakly to the cessation of deep convection, which was 

captured by alternative MLD metrics in BGC-Argo profiles (Fig. 6a and b). Despite the general good agreement between 

observed and simulated sPOC, the model produced a conspicuous plume of sPOC that sank from the surface spring bloom 

into the mesopelagic layer, at the prescribed constant rate of 2 m d-1, which was not found in the observations. In the core of 345 

this plume, PISCES POC exceeded BGC-Argo sPOC by more than twofold. A similar model-observations mismatch was 

observed in all the northern and southern subpolar CATS as well as in some CATS in the Mediterranean (Figures S5-S8 and 
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S10). On average, simulated bPOC exceeded BGC-Argo bPOC by 36% and 96% in the epi- and mesopelagic layers, 

respectively. The largest overestimation was observed during the midsummer export event. On the other hand, bPOC 

underestimation was found during the May bloom between 0–400 m. 350 

 

PISCES qualitatively reproduced the late summer peak of mesopelagic bPOC, which was observed in all the subpolar North 

Atlantic CATS. On the contrary, it failed to reproduce both the decrease of sPOC and bPOC in fall between 600-800m and 

the bPOC increase below 800 m. The latter occurred in 6 out of 11 CATS in the NASPG, all located in the Labrador Sea. 

The apparent decoupling of deep mesopelagic bPOC from the overlying water column may be related to the insufficient 355 

temporal resolution of BGC-Argo profiling during that period compared to bPOC sinking speed, or reflect bPOC export 

events from surface waters areas not located vertically over the float (Siegel and Deuser, 1997). 

3.2.2 South Pacific subtropical gyre 

Float 6901660 was deployed in March 2015 in the western South Pacific STG, and drifted westwards until it deflected SW 

while approaching Tahiti. As of March 2021, the float was still active and had completed 244 cycles with stable continuous 360 

records at the 1000 m drift depth. Between July 2017 and June 2018 (18-21°S latitude and 148-157°E longitude), the period 

selected for the CATS analysis, the BGC-Argo profiles portrayed a stably stratified water column typical of the core of the 

subtropical gyres (Fig. 7). Vertical mixing events that reached a depth of around 100 m were observed in July, August and 

October. However, their effect on surface sPOC was hardly noticeable, indicating that turbulent entrainment of nutrients was 

too weak to stimulate new production significantly. A deep Chla maximum was present all year round between 150 and 200 365 

m as identified by the maximum Chla gradient. This Chla maximum did not translate into a deep POC maximum. The 

fraction bPOC/tPOC was consistently around 6% in the epipelagic and 12% in the mesopelagic according to the vertically 

integrated stocks. The vertical-temporal distribution of bPOC was patchy in the lower mesopelagic (500–1000 m), perhaps 

reflecting the difficulty to detect rare aggregates from bbp700 spikes. 

 370 

The epipelagic tPOC stock (driven by sPOC) simulated by PISCES matched well the observations, with a high temporal 

correlation coefficient (r = 0.69; Fig. 7i) despite the low seasonal variability in this tropical setting. The low mean bias of 

epipelagic sPOC (9%) resulted from mutually compensating biases, as PISCES overestimated sPOC between the base of the 

mixed layer and the deep Chla maximum, and underestimated sPOC below it. In the mesopelagic layer, vertically integrated 

PISCES sPOC was on average 45% lower than BGC-Argo sPOC, and showed low negative temporal correlation to the 375 

observations. Regarding bPOC, the simulated stock was nearly twice as large as BGC-Argo estimates in the epipelagic, with 

the largest overestimation seen in the deep Chla maximum. In the mesopelagic, PISCES bPOC exceeded BGC-Argo 

estimates by 25% on average. Despite model-observations discrepancies in terms of bPOC concentration, PISCES 

simulations supported the increase in the bPOC/tPOC fraction between the epipelagic and the mesopelagic layers. 
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3.3 Coherent annual time series of sPOC and bPOC: generalized approach 380 

Although each of the 50 CATS included in this study has unique features, some of the misfit patterns between PISCES and 

BGC-Argo data described in the previous section are common to the majority of CATS in a given biome or, more broadly, in 

subpolar vs. subtropical biomes. In this section we generalize the quantitative comparison between the 50 BGC-Argo CATS 

and their PISCES 1D counterparts across the four biomes. We consider separately the epipelagic and mesopelagic domains, 

focusing on mean annual sPOC and bPOC standing stocks (Fig. 8), the sPOC/tPOC fraction (Fig. 9), and the mesopelagic 385 

Teff of sPOC and bPOC (Fig. 10). 

 

Epipelagic sPOC stocks ranged between 193–425 mmol C m-2 and 282–537 mmol C m-2, respectively, according to BGC-

Argo observations and PISCES 1D simulations. Although the ranges of the different biomes overlapped, smaller stocks were 

usually found in the more oligotrophic (STG and Mediterranean) biomes. The agreement between simulated and observed 390 

epipelagic sPOC was better in the STG and NASPG biomes, whereas simulated epipelagic sPOC exceeded observations by 

around 50% in the Mediterranean and Subantarctic biomes. Still, a significantly positive correlation between simulated and 

observed stocks (r = 0.45, p = 9·10-4) was found overall. 

 

In the mesopelagic domain, observed and simulated sPOC stocks ranged between 145–283 mmol C m-2 and 105–308 mmol 395 

C m-2, respectively, and the correlation between simulated and observed mesopelagic sPOC stocks was not significant (r = -

0.08, p = 0.55). PISCES sPOC was similar to or slightly higher than BGC-Argo sPOC in the subpolar biomes, but up to two-

fold lower in the STG and Mediterranean biomes (as already shown in Fig. 4 and 7). 

 

Epipelagic bPOC stocks were smaller and showed wider inter-biome variability than sPOC stocks, with around twofold 400 

higher bPOC in subpolar biomes. The positive correlation between simulated and observed bPOC was highly significant (r = 

0.78, p = 2·10-11). Yet, PISCES bPOC (range 19–83 mmol C m-2) typically exceeded BGC-Argo bPOC (range 27–119 mmol 

C m-2) by around 50%, and up to threefold for some CATS. A lower but still highly significant correlation was found in the 

mesopelagic (r = 0.64, p = 5·10-7), where PISCES bPOC was usually within a factor of 1.5 of observations, except for the 

NASPG biome where it exceeded BGC-Argo bPOC by around twofold. 405 

 

The sPOC/tPOC fraction showed low variability in the epipelagic layer (Fig. 9), with a median (range) of 89% (84–94%) 

and 85% (75–91%) for BGC-Argo and PISCES, respectively. The simulated sPOC/tPOC fraction was within ±10% of BGC-

Argo estimates for all biomes except the NASPG, where PISCES tended to underestimate the observed percentage of sPOC. 

A significant positive correlation (r = 0.56, p = 2·10-5) was found between simulations and observations in the epipelagic 410 

layer. The sPOC/tPOC fraction was lower in the mesopelagic layer according to both BGC-Argo (75–90%) and PISCES 

(66–85%) estimates. In this case, CATS from the Subantarctic biome showed excellent model-observations agreement, 
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whereas PISCES was 20% lower than BGC-Argo estimates in the other three biomes. No significant correlation was found 

between the simulated and observed sPOC/tPOC fraction in the mesopelagic. 

 415 

Transfer efficiency (Teff; Fig. 10) was computed as the ratio between the sPOC or bPOC concentrations in the depth bins 

centered at 697 m (range 662–734 m) and 200 m (range 190–210 m). The shallowest bin corresponds to the bottom of the 

epipelagic layer, and the 500 m interval was chosen following previous studies (Lam et al., 2011; Dall'Olmo and Mork, 

2014). Different depth ranges between 180 and 800 m gave similar Teff patterns. Analysis of Teff yielded some important 

insights: 420 

1. Small and big POC showed similar Teff, both in the observations (medians of 0.39–0.41) and in the model 

(medians of 0.27–0.29). Similar patterns were found when each biome was considered separately. 

2. BGC-Argo Teff usually exceeded PISCES Teff and spanned a wider range. The best agreement was generally 

found in the STG and the Subantarctic biomes, and the poorest agreement occurred in the Mediterranean where 

BGC-Argo Teff was typically twice the modelled Teff. 425 

3. Distinct patterns were found for four CATS in the Labrador Sea (NASPG) characterized by high epipelagic tPOC 

(>440 mmol C m-2). In this subset, PISCES and BGC-Argo Teff were in good agreement for sPOC (median 0.40 for 

both) whereas, for bPOC, PISCES Teff (0.36–0.45) doubled BGC-Argo Teff (0.12–0.28), which had some of the 

lowest values of the dataset. These CATS showed a bPOC minimum at 600–800 m in fall, which PISCES could not 

reproduce (section 3.2.1). 430 

4. PISCES and BGC-Argo Teff showed a weak positive correlation for sPOC (r = 0.26, p = 0.07), with some 

improvement when the Labrador Sea “outliers” were removed (r = 0.34, p = 0.02). A negative correlation between 

simulations and observations was found in the case of bPOC Teff (r = -0.29, p = 0.04), which became non-

significant without the Labrador Sea “outliers” (r = 0.04, p = 0.81). 

 435 

Our observational estimates are sensitive to the choice of bbp700-POC conversion factors. These factors are especially 

uncertain in the mesopelagic due to data scarcity, which prompted us to use a constant global value for “c” in Eq 1. (Fig. 2); 

c = 1000 mmol C m-2 is the asymptotic POC-bbp700 conversion factor below 1000 m, taken from Cetinić et al. (2012). To 

address this uncertainty, we conducted sensitivity tests where c was halved or doubled. The resulting range of 500–2000 

mmol C m-2 is probably generous, as our indirect estimates based on the study of Bishop et al. (1999) suggest a plausible 440 

range of 815–1630 mmol C m-2 (Appendix A). As expected, changing c had little effect on epipelagic POC, a larger effect on 

mesopelagic POC and Teff, and no effect on the sPOC/tPOC fraction (because the same conversion factor is used to estimate 

sPOC and bPOC). Halving c resulted in steeper POC profiles, which brought mesopelagic sPOC closer to the 1:1 line in the 

STG and Mediterranean, at the expense of increasing the sPOC bias in the subpolar biomes and that of bPOC everywhere 

(Fig. S11). Doubling c caused a less steep vertical decrease of BGC-Argo POC, which overall worsened the model-445 

observations agreement in the mesopelagic (Fig. S12) for sPOC stocks, bPOC stocks (except in the NASPG) and Teff. 
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4. Discussion 

4.1 Towards a globally consistent picture of POC fields in observations and models 

Global quantification of POC stocks through the water column has been elusive until recently. On the one hand, direct 

chemical measurements (Lam et al., 2011) and indirect bio-optical observations from ships (Bishop et al., 1999; Gardner et 450 

al., 2006) were sparse, and the ocean interior was severely undersampled compared to the euphotic layer. On the other hand, 

biogeochemical models were unable to capture even the order-of-magnitude POC concentration in the meso- and 

bathypelagic layers (Aumont et al., 2017). Our joint analysis of PISCES simulations, satellite observations and over 70,000 

BGC-Argo vertical profiles reveals a globally consistent picture across the epi- and mesopelagic layers (Fig. 3-10). PISCES-

simulated tPOC concentration is on average within a factor of 1.56 (1.42) of BGC-Argo estimates for the median (mean) 455 

seasonal biome profiles shown in Fig. 4 (Mediterranean excluded). Aumont et al. (2017) reported a similar reliability index 

of 1.6 for the comparison between PISCES and in situ chemically determined POC profiles. Thus, our evaluation lends 

further confidence to the POC reactivity continuum parameterization implemented in PISCES, which represents both sPOC 

and bPOC as a mixture of fractions with different lability (Aumont et al., 2017), in globally representative biomes. 

 460 

PISCES simulates a global tPOC stock of 4 Pg C, shared in a proportion of 39% (1.6 Pg C), 25% (1 Pg C) and 36% (1.4 Pg 

C) between the epi-, meso- and bathypelagic layers (Table 2). The PISCES-derived estimate for the epipelagic layer, 1.6 Pg 

C, lies well within the range of previous estimates based on satellite observations. Gardner et al. (2006) estimated the global 

POC stock within the first attenuation depth using a compilation of in-situ POC and cp measurements leveraged by ocean 

color satellite data. They obtained a global stock of 0.43 Pg C, and invoked some scaling arguments to estimate that the total 465 

POC stock down to middle-mesopelagic “background levels” would range 1–2 Pg C. Stramska (2009) obtained a global 

epipelagic POC stock of 1.8–2.3 Pg C using the algorithm of Stramski et al. (2008). Our analysis of the match-ups between 

BGC-Argo and satellite observations indicates that the latter algorithm overestimates POC at high latitudes outside of the 

summer season (Fig. 3). Potential explanations are the satellite algorithm being calibrated mostly against samples from lower 

latitudes (50°N–30°S), or its sensitivity to the differential atmospheric attenuation of the blue and green wavelengths at low 470 

solar elevation (i.e. at high latitudes in winter). Recently, Evers-King et al. (2017) calculated the global mixed-layer POC 

stock using several satellite algorithms (including that of Stramski et al., 2008) and indicated that 0.77–1.3 Pg C was a 

plausible range. Our PISCES-based estimate for the mixed-layer POC stock, using the same MLD climatology (Schmidtko 

et al., 2013), is 0.58 Pg C. In this case, the lower PISCES-derived estimate may arise from the combination of POC 

overestimation by some satellite algorithms, discussed above, with PISCES' tendency to underestimate mixed-layer POC in 475 

oligotrophic areas. This negative bias in PISCES is compensated by POC overestimation in deep Chla maxima below the 

MLD (Fig. 4 and 7), resulting in good agreement between BGC Argo and PISCES over the entire epipelagic layer in the 

STG biome (Fig. 8 and S13). Given the limited coverage of in situ seawater sampling and satellite observations in some 
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regions and seasons (Evers-King et al., 2017), further intercomparison between those observations, BGC-Argo data and 

models is needed to better constrain epipelagic POC stocks. 480 

 

POC in the lower mesopelagic and below has been traditionally treated as a “background” signal (Bellacicco et al., 2019; 

Gardner et al., 2006; Loisel and Morel, 1998). This approach is convenient for studies that focus solely on upper-ocean 

processes because POC concentration decreases exponentially with depth. Yet, our global estimates and several previous 

studies highlight the need to turn our attention to the large POC stocks (>2 Pg C) that reside in the mesopelagic and below it, 485 

whose dynamics are still poorly understood. In line with previous studies (Dall’Olmo and Mork, 2014; Poteau et al., 2017), 

we showed that mesopelagic POC exhibits clear seasonal cycles in productive regions (Fig. 6, S5–S7 and S10), owing to 

their connection with the upper-ocean through numerous biological and physical processes (Boyd et al., 2019; Briggs et al., 

2020). Despite being less reactive on average than upper-ocean POC, meso- and bathypelagic organic particles are microbial 

hotspots that host key biogeochemical functions, from enzymatic decomposition of macromolecules (Arnosti et al., 2012; 490 

Baltar et al., 2010a, 2010b) to aerobic and anaerobic respiration (e.g., Karthäuser et al., 2021) and chemosynthesis (Arístegui 

et al., 2009; Pachiadaki et al., 2017). Moreover, mesopelagic particles are consumed by upper trophic levels that sustain 

fisheries (Bode et al., 2021; Woodstock et al., 2021). 

 

In situ bio-optical measurements are poised to play a key role in monitoring marine POC stocks in layers that cannot be 495 

accessed by remote sensing. For example, Sauzède et al. (2020) illustrated the power of merging BGC-Argo and satellite 

observations to obtain a dynamic 3D view of particle backscattering. Using a data-driven machine learning approach, they 

were able to predict the profiles of log10bbp700 measured by two BGC-Argo floats in the NASPG and STG biomes (R2 of 

around 0.85 and MAPD of around 12%) from the sole knowledge of physical properties of the water column and surface 

ocean color (remote sensing reflectance). Their approach was recently extended to provide POC estimates (Sauzède et al., 500 

2021), which can be of great utility for constraining biogeochemical models. Here we took an entirely different approach, 

based on converting bbp700 to POC with a simple empirical algorithm (Fig. 2) and then comparing it to the outputs of the 

PISCES model. Our PISCES-based estimates obtained a median R2 = 0.86 and MAPD = 38% for 5-day depth-binned 

log10POC for 28 globally distributed floats. This good skill is remarkable because neither the empirical POC estimates nor 

PISCES were tuned to maximize their mutual agreement. Still, our study shows that the comparison of bio-optics-derived 505 

POC measurements and PISCES is affected by different types of uncertainty that we analyze in the four sections below. 

4.2 Bio-optical underpinnings of POC fields based on BGC-Argo observations 

Accurate interconversion between bio-optical variables and concentrations is key for constraining ocean particle dynamics 

and their model representation (Bishop et al., 2004; Gardner et al., 2006). The variability in bbp700-POC conversion factors is 

shaped by several concurrent processes that alter particle abundance, size distribution, shape, composition, and ultimately 510 
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optical properties. Below we discuss the processes that appear to drive, to first order, the variability of the POC/bbp700 ratios 

embodied in Eq. 1 and 2 (Fig. 2; Appendix A), and the main strengths and weaknesses of our scheme. 

 

Changes in the trophic status appear as the primary driver POC/bbp700 variability in the epipelagic layer (Cetinić et al., 2012; 

Figure A1). Productive waters host greater absolute and relative abundance of diatoms (Uitz et al., 2006) (see also Table 2), 515 

which have lower POC per cell volume (Menden-Deuer and Lessard, 2000) and are covered with silica frustules that may 

scatter light more efficiently than naked cells (Twardowski et al., 2001), altogether resulting in lower POC content per unit 

bbp700 (Cetinić et al., 2012; Oubelkheir et al., 2005). The proportions of different autotrophic and heterotrophic organisms and 

detritus are also likely to vary with upper ocean productivity (see 4.3). If the mass-specific backscattering coefficients of 

these components were better known, their systematic variation patterns could be used to develop a continuous formulation 520 

for POC/bbp700, rather than the regionalized conversion factors used here. However, POC/bbp700 is influenced by other 

seawater constituents whose occurrence is less predictable. Foremost, biogenic calcite (e.g. from coccolithophores) and 

desert dust (Claustre, 2002; Loisel et al., 2011), both of which enhance bbp700. In our data set, we detected a CATS (float 

WMO 6901647, year 2016) that was strongly affected by coccolith backscattering in the Iceland Basin, an area known for its 

massive coccolithophore blooms (Moore et al., 2012). This CATS was an obvious outlier in our model-observations 525 

scatterplots (Fig. S13), likely because coccolith-enhanced bbp700 resulted in spuriously high observed tPOC, and was 

therefore removed from the analysis. 

 

The decrease in POC/bbp700 along the vertical axis (Fig. 2) reflects the increase in the particles’ index of refraction, hence the 

backscattering ratio (Cetinić et al., 2012; Nencioli et al., 2010). This change is likely caused by the remineralization of 530 

organic materials (Martin et al., 1987) that leaves a higher mineral fraction (Honjo et al., 2008; Lam et al., 2011), and 

the  increase in the structural complexity of aggregates with depth (Organelli et al., 2018). According to our sensitivity 

analysis (Fig. S11 and S12), the prescribed exponential decrease of POC/bbp700 towards a constant POC/bbp700 (c = 1000 

mmol C m-2) at depths >1000 m provides a good compromise globally, given the limited knowledge of mesopelagic 

POC/bbp700 and its variability across regions. However, the comparison between simulated and observed mesopelagic sPOC 535 

(and thus tPOC) is more favorable in subpolar than in subtropical biomes. In the latter, better model-observations agreement 

was found when POC/bbp700 was halved (c = 500 mmol C m-2). A lower c would also bring the simulated Teff for sPOC and 

bPOC closer to BGC-Argo estimates. It is tempting to hypothesize that lower latitudes have lower mesopelagic POC/bbp700 

owing to the greater proportion of calcite (Francois et al., 2002; Honjo et al., 2008; Lam et al., 2011, 2015). These 

hypotheses need further verification. 540 

 

Finally, the decrease of surface POC/bbp700 with deeper vertical mixing imposed by Eq. 2 reflects the dilution of surface 

particle assemblages by entrainment of deeper waters (Lacour et al., 2019) with lower POC/bbp700 (Bol et al., 2018). 

Modulation of POC/bbp700 by vertical mixing improves the agreement between PISCES and BGC-Argo data in regions with 
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wide seasonal MLD amplitude such as the NASPG. Note also that if POC/bbp700 in the mixed layer was constant, it would 545 

have to decrease abruptly below the mixed layer to meet the low POC/bbp700 in the mesopelagic. On the other hand, the 

behavior prescribed by Eq. 2 may not be appropriate for situations when vertical mixing cannot erode the seasonal 

thermocline or pycnocline, because in such cases it will entrain water from the deep Chla maximum, and not mesopelagic 

water, to the upper mixed layer. 

 550 

Our POC-bbp700 conversion algorithm omits several aspects that may have caused further uncertainty. Foremost, it assumes 

that sPOC and bPOC have the same POC/bbp700 ratio, which largely corresponds to that of the more abundant sPOC (Fig. 6–

8). In addition, the in-situ data used to parameterize Eq. 1 and 2 are not free of uncertainty (Cetinić et al., 2012; Lam et al., 

2011; Morán et al., 1999; Organelli et al., 2018; Strubinger Sandoval et al., 2021). While the development of more 

sophisticated POC-bbp700 interconversion schemes is desirable, the POC-bbp700 conversion scheme used here provides POC 555 

estimates that are generally consistent with PISCES (Fig. 8) and with previous assessments (Aumont et al., 2017). Moreover, 

this scheme allowed us to identify potential shortcomings of satellite-based assessments (Evers-King et al., 2017; Stramski et 

al., 2008). Indeed, bio-optical estimates of POC, and more generally BCP studies, would greatly benefit from the 

measurement of mass-specific bio-optical properties of various seawater constituents across different ocean basins and 

depths. 560 

4.3 Correspondence between observed and simulated POC fractions 

An additional source of uncertainty in our analysis is the imperfect match between the PISCES tracers and the observable 

POC fractions (Table 1). A positive aspect of our evaluation is the reasonable agreement between the simulated sPOC/tPOC 

fraction and the BGC-Argo estimates based on the bbp700 spike signal (Fig. 9). Our estimates converge to a global median 

value of 85%, with 95% of the data between 69–92%, fully within the range of size-fractionated chemical POC 565 

determination (Aumont et al., 2017 and references therein). Our sPOC/tPOC estimates can also be compared to the 

suspended POC estimated with the marine snow catcher during spring in subpolar epipelagic and upper mesopelagic waters 

(Baker et al., 2017). The slow-sinking POC measured by the marine snow catcher should not be included in this comparison 

because it sinks at around 18 m d-1, a range more typical of particles > 100 µm (Giering et al., 2016). The median 94% of 

suspended (non-sinking) POC reported by Baker et al. is higher than the 86% (81%) sPOC/tPOC estimated here from BGC-570 

Argo (PISCES) in the subpolar biome, suggesting further comparison between different approaches is needed. The tendency 

of sPOC/tPOC to decrease between the epipelagic and the mesopelagic, found in both PISCES and BGC-Argo data (Fig. 9, 

Table 2), was also reported in previous studies (Aumont et al., 2017 and references therein; Organelli et al., 2020), lending 

further confidence to our estimates. On the other hand, the simulated partitioning of sPOC and bPOC into different living 

and detrital compartments is probably less realistic, as discussed in greater detail below. 575 
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A problematic aspect in the current representation of sPOC in PISCES is the partitioning between phytoplankton and non-

phytoplanktonic (detrital + heterotrophic) POC in the upper ocean. This partitioning is far from being well established, 

neither from bio-optical observations nor from direct determination. Starting with bio-optical approaches, Oubelkheir et al. 

(2005) found that detritus accounted for around 60% of POC across a wide range in ocean productivity, and 70–85% of POC 580 

was assigned to detritus + heterotrophs. These percentages accord well with those found by Claustre et al. (1999) in the 

tropical Pacific (their Table 1; see also Organelli et al., 2020). By contrast, Bellacicco et al. (2020) suggested that the non-

phytoplanktonic bbp700 fraction varies widely, between <10% in the productive NASPG to >80% in subtropical gyres. Given 

the similar refractive indexes of living cells and organic detritus, hence similar POC/bbp700, the latter and former estimates are 

hardly compatible when compared in POC units. Estimates based on direct POC stock determinations across wide 585 

productivity gradients are also conflicting. Gasol et al. (1997) found a general increase in the autotrophic/heterotrophic ratio 

with productivity, with ratios as low as 0.1 at low autotrophic biomass. By contrast, Graff et al. (2015) found that 

phytoplankton accounted for between 15–85% of POC, with decreasing phytoplankton contributions at lower POC or Chla 

concentration (their figures 4 and 7), leaving no room for heterotrophs and detritus. Indeed, the two latter studies agree in the 

wide scatter in large-scale POC partitioning patterns, may further confound in situ bio-optical estimates. The low fraction of 590 

detrital POC in PISCES near the sea surface, 15–31% (Fig. 4; Table 2) is at odds with most observations, and suggests too 

slow transfer of planktonic biomass to detritus and/or too fast detrital POC removal, especially in oligotrophic waters. 

 

PISCES bias may also arise from inappropriate representation of some POC reservoirs, such as heterotrophic prokaryotes 

(bacteria and archaea, BACT in PISCES), which have long been recognized as important contributors to the suspended POC 595 

(Morel and Ahn, 1990; Gasol et al., 1997). However, BACT are not explicitly modelled in PISCES as prognostic tracers, 

meaning they are not interacting fully with other tracers. Instead, they are diagnosed in the productive surface layer from 

zooplankton biomass, based on an old model version that had interactive BACT. Below this layer, BACT biomass is 

propagated downwards with a power function based on Arístegui et al. (2009), which resembles a Martin curve (Martin et 

al., 1987) and is therefore very sensitive to the reference depth (Z0) (Buesseler et al., 2020). We find two main arguments 600 

against the inclusion of PISCES-estimated BACT in our POC estimates with the current model configuration. First, the 

empirical BACT estimation in PISCES has not been validated, to our knowledge, and may introduce noise in the 

comparisons. Second, PISCES-simulated POC already includes heterotrophic prokaryotes, because their biomass was not 

removed from the in situ POC measurements used to adjust the POC parameters in PISCESv2 (Aumont et al., 2017). In 

consequence, adding BACT to sPOC causes overestimation of mesopelagic POC (Fig. S14–S16) and can produce unrealistic 605 

temporal patterns (Fig. S15). Nevertheless, we believe that inclusion of prognostic bacteria would enable more realistic 

simulation of POC stocks, with the potential side effect of improving the simulation of element fluxes in PISCES. 

 

The comparison between simulated and observed bPOC is a novel contribution of our study.  The method of Briggs et al. 

(2011, 2020), originally developed to study intense POC export events, was here extended to estimate sPOC and bPOC 610 
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separately over the full annual cycle through the epi- and mesopelagic domains. Our analysis shows that, despite the 

mismatch in terms of concentration, the bPOC derived from the spikes of high-resolution bio-optical profiles is strongly 

correlated to the PISCES-simulated bPOC (r = 0.78, r2 = 0.61) along a wide trophic gradient (Fig. 8). This result is 

encouraging and supports the more widespread deployment of instruments that perform high-resolution bio-optical sampling 

to shed light on the spatiotemporal dynamics of large aggregates and particles (Briggs et al., 2020; Lampitt et al., 1993; 615 

Stemmann et al., 2008). On the other hand, it is unclear to what extent the bPOC inferred from the bbp700 spike signal is 

capturing mesozooplankton biomass, in addition to aggregates. Exclusion of PISCES mesozooplankton (ZOO2) from the 

comparison increases model-observations mismatch, with BGC-Argo bPOC exceeding PISCES estimates by around 

twofold, although the correlation remains nearly unchanged (r = 0.76, p < 10-10). Imaging devices mounted on BGC-Argo 

floats may provide more accurate quantification of bPOC, allowing for the separation of detrital bPOC (Trudnowska et al., 620 

2021) from mesozooplankton and micronekton (Haëntjens et al., 2020). 

4.4 Importance of realistic physics and model evaluation across scales 

In Fig. 5, PISCES simulations and BGC-Argo observations are compared using an array of skill metrics computed on the 

seasonal vertical profiles of tPOC between 0–1000 m. Starting with the 3D seasonal climatology, we observed that the 

correlation between the median (aggregated) profiles was generally better than the correlation between the spatially 625 

collocated (non-aggregated) profiles within a given biome and season (Fig. 5a), whereas no differences were found in terms 

of dispersion metrics (Fig. 5b and c). The difference in correlation was larger in subpolar biomes, suggesting that the model-

observations spatial mismatch was magnified in regions with more energetic ocean dynamics and sharper physical and 

biogeochemical gradients, whose real-world location may not be well reproduced by the ocean circulation model used to 

force PISCES. For PISCES 1D simulations, their correlation coefficients with their CATS counterparts was usually in the 630 

high range of the correlation coefficients obtained by the biome-median PISCES 3D profiles. In terms of dispersion metrics, 

the ensemble of PISCES 1D simulations showed wider dispersion, but the best 1D simulations clearly outperformed the 3D 

simulation in a given region and season. The better skill of 1D simulations was more evident during spring, a season 

characterized by the onset of stable stratification after deep winter vertical mixing in middle and high latitudes. The greatest 

difference between 3D and 1D simulations was found in the Mediterranean, highlighting the more realistic vertical mixing 635 

and upper ocean productivity in the 1D simulations. 

 

Our cross-scale evaluation indicates how crucial it is to evaluate model physics before extracting conclusions on 

biogeochemical model performance (Doney et al., 2004; Kriest et al., 2020; Löptien and Dietze, 2019). In our 1D CATS 

approach, the skill of PISCES simulations was maximized by carefully matching observed and modelled vertical mixing 640 

(Fig. S1–S4), which is a key driver of upper ocean ecosystems. This approach has a subjective component, and may also 

suffer from the idealized assumption that BGC-Argo profiles reflect mostly vertical-scale processes, disregarding horizontal 

advection (Alonso-González et al., 2009). Yet, the similar misfit patterns encountered for different CATS within a given 
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biome support the robustness of the 1D matching approach (compare Fig. 6 versus S6, and Fig. 7 versus S9). To further 

evaluate this issue, we matched different neighboring NEMO grid cells to the same in situ CATS. Again, this exercise 645 

indicated that our main conclusions are not sensitive to the choices made for 1D model-observations matching (compare Fig. 

6 and Fig. S5). Indeed, alternative matching approaches can be devised, each of which with advantages and pitfalls, for 

example: (1) sampling the outputs of biogeochemical models at the locations visited by BGC-Argo floats, which may require 

high resolution models; (2) deploying virtual BGC-Argo floats (van Sebille et al., 2018) and comparing them statistically to 

observations; or (3) forcing 1D biogeochemical simulations with observed physical fields, e.g. vertical mixing (Llort et al., 650 

2015) or light (Terzić et al., 2019). As a general rule, the good skill of the best PISCES 1D simulations (Fig. 5) indicates that 

our CATS approach can be used to tease apart model-observations misfits caused by model physics from those caused by the 

parametric uncertainty and the structure of the biogeochemical model, opening up new avenues for parameter optimization 

(Falls et al., submitted) and model development. 

 655 

Our cross-scale evaluation is also informative as to the spatiotemporal scales that can be addressed with a given model setup. 

This matter was recently tackled by Bisson et al. (2019) using the export production model of Siegel et al. (2014), which is 

forced by satellite-derived primary production. In particular, they showed that this diagnostic model could be optimized to 

reproduce global climatological patterns, but exhibited poor skill when faced with non-climatological datasets, which reflect 

local snapshots of ecosystem functioning. Model evaluation at climatological scales provides an incomplete picture, 660 

especially in productive regions where much POC export can take place during intense but short-lived events (Briggs et al., 

2020). Such events are smoothed out when climatologies are computed, and their coherence with the physical forcing is lost. 

Our work shows that a prognostic model like PISCES can afford both event-scale and climatological scale predictions. This 

capability is important to test our process-level understanding, which underpins climate change projections. 

4.5 Joint use of BGC-Argo and models for process-level understanding 665 

Properly representing POC stocks is crucial for constraining epi- and mesopelagic carbon budgets and, ultimately, estimating 

the strength of the BCP and predicting its future evolution. The mismatch patterns between simulated and observed POC 

profiles (Fig. 4, 6 and 7) indicate different types of model shortcomings in subpolar and subtropical latitudes. The poorest 

agreement between PISCES and BGC-Argo data is found when their respective estimates of mesopelagic Teff are compared 

(Fig. 10), which should prompt further research on this key descriptor of the BCP, both in terms of POC fluxes (Buesseler et 670 

al., 2020) and stocks (Lam et al., 2011; this study), and their relationship with the structure and productivity of the upper 

ocean ecosystem. 

 

In the subpolar biomes, we find discrepancies between the patterns of sPOC and bPOC vertical export triggered by the 

intense surface phytoplankton blooms typical of these waters (Fig. 6, S5–S7 and S10). The observed rapid sPOC increase at 675 

depth cannot be explained by the sPOC gravitational sinking, and fragmentation of rapidly sinking bPOC has to be invoked 
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(Briggs et al., 2020). This fragmentation is most likely caused by zooplankton feeding (Mayor et al., 2020; Stemmann et al., 

2004a, 2004b; Stukel et al., 2019) and swimming (Goldthwait et al., 2004), combined with bacterial hydrolysis of aggregate-

binding polymers (Arnosti et al., 2012; Baltar et al., 2010a). In relative terms, mesopelagic sPOC increases less strongly than 

bPOC during blooms (Fig. 6i), which is consistent with sPOC being a byproduct of the transformation of less-abundant 680 

bPOC. Fragmentation processes may supply fresher sPOC to the mesopelagic, enhancing the coexistence of suspended 

particles with variable freshness (Alonso-Gonzalez et al., 2010; Aumont et al., 2017) and overall contributing to POC 

remineralization (Giering et al., 2014; Mayor et al., 2020). 

 

In the subtropical gyres and the most oligotrophic Mediterranean waters, PISCES underestimates tPOC between 0–1000 m 685 

except for the deep Chla maximum, where it overestimates tPOC. The prominent deep POC maximum simulated by PISCES 

is generally not found in observations from the STG biome (Fig. 7 and S9), where deep Chla maxima generally reflect 

phytoplankton photoacclimation, not enhanced phytoplankton biomass (Cornec et al., 2021). Thus, PISCES possibly 

overestimates the productivity of deep Chla maxima globally, indirectly causing stronger nutrient limitation at the surface. 

Between the deep Chla maximum and 200 m, POC pools decrease more steeply in PISCES than in BGC-Argo observations. 690 

Between 200 and 700 m, by contrast, simulated sPOC and bPOC Teff are only 10% lower than observations, well within 

observation uncertainty. Thus, the mesopelagic sPOC deficit simulated by PISCES in the STG originates mostly through the 

insufficient vertical POC export at 200 m depth. The Mediterranean represents a different case, whereby the large 

disagreement between PISCES and BGC-Argo Teff may result from either poorly constrained POC/bbp700, simulated POC 

dynamics, or both. Thus, this region may provide a good testbed for studying the role of the mineral fraction in the BCP, 695 

including the controversial ballast hypothesis (Francois et al., 2002; Klaas and Archer, 2002; Passow, 2004). 

 

In summary, the mismatch with observations suggests the need to improve the representation of sPOC–bPOC 

interconversion in PISCES. The size distribution of POC along the vertical axis is a key variable for constraining POC 

budgets, because it reflects the interplay between gravitational sinking, remineralization, trophic transfer and 3D dynamics 700 

including horizontal POC advection (Alonso-González et al., 2009; Boyd et al., 2019). In many instances (Fig. 9), our 

analysis suggests that better model performance in the mesopelagic may be achieved by increasing the net transfer of bPOC 

to sPOC and the Teff of both fractions, which may require further balancing the interplay between various mechanisms of 

POC export and flux attenuation. The vertical model-observations mismatch patterns observed here emphasize that POC 

budgets have to be computed with the highest vertical resolution affordable, or otherwise an apparent POC budget balance 705 

may result from compensating imbalances in different horizons (Giering et al., 2014; Marsay et al., 2015). The detailed level 

of information available from BGC-Argo floats may prove to be extremely valuable to help improve the POC schemes 

embedded in models such as PISCES. 
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5. Conclusions and outlook 

In this study we compared globally distributed POC observations between 0–1000 m made by BGC-Argo floats to the 710 

predictions made by the PISCES model (PISCESv2). A subset of BGC-Argo floats profiling at high vertical resolution 

enabled us to analyze small and big POC separately. The comparisons rely on a proposed new scheme for converting a bio-

optical measurement (bbp700) to POC. Although PISCES recreates with good skill the main features observed in subpolar and 

subtropical biomes, the comparison is still hampered by: (1) spatial and temporal variability in POC/bbp700 conversion 

factors, (2) mismatches in observed and simulated physics, and (3) imperfect correspondence between observed and 715 

simulated POC fractions. Evaluation of these uncertainties allowed us to detect limitations of the biogeochemical model 

parameterizations, which may arise from both suboptimal model parameters and model structure. Therefore, the descriptive 

work and model-data matching strategies presented here pave the way towards the use of BGC-Argo observations for data 

assimilation and model parameter optimization (Falls et al., submitted) and, ultimately, model development. 

 720 

Widespread use of BGC-Argo data for understanding POC budgets and the BCP can complement classical model constraints 

based on vertical POC fluxes and ocean-interior nutrient remineralization. Merging of BGC-Argo and satellite data streams 

through data-driven approaches —which allow for great flexibility—, and mechanistic models —which provide process-

level understanding—, can soon provide us with a high-resolution 4D view of the oceanic carbon cycle. Further work is 

granted to investigate POC dynamics through combination of PISCES2 and autonomous observations. 725 

 

Below we list several research priorities, whose implementation would advance the study of the biological carbon pump 

through the synergies between BGC-Argo observations and modelling. 

• Observations: 

o High-resolution bio-optical profiles are indispensable for process-level understanding. Combination of 730 

low- and high-resolution sampling in separate or individual floats (e.g. burst sampling) may provide a good 

compromise between float lifetime and observation capabilities. 

o More in situ collocated measurements of chemical and bio-optical variables are needed to constrain bbp700-

POC conversion factors, especially in meso- and bathypelagic waters. 

o Inclusion of new sensors (e.g. Claustre et al. (2020) and extension of measurements into the bathypelagic 735 

(Deep-Argo; e.g. Roemmich et al., 2019) hold high potential for advancing BCP research. 

o Further developments in BGC-Argo data processing are needed, with the final goal of supplying a wide 

public with user-friendly data products in near real time. 

• Models: 

o Evaluating model skill at resolving POC stocks, in addition to fluxes, is key to ensure that models 740 

reproduce observed fluxes for the right reasons. 
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o Evaluation against globally consistent datasets is critical to avoid model overtuning towards small, sparse 

datasets, such as vertical POC fluxes. 

o Continuous development of schemes representing particle dynamics across the entire size spectrum is 

needed to constrain ecologically, climatically and economically relevant element fluxes. 745 

o Extension of prognostic modelling of bio-optical properties (Dutkiewicz et al., 2019) into the meso- and 

bathypelagic layers would enable direct matching with measurements made from autonomous platforms, 

facilitating their assimilation by models. 

• Joint planning of field observation and modelling projects, from their very conception and through their entire 

development, is key to fully exploit the capabilities of each approach. 750 
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Appendix A: Calculation of POC/bbp700 ratios and related optical considerations 

POC/bbp700 ratios at the sea surface were obtained from the slope of the linear regression between POC and bbp700 (Table A1). 

Our approach essentially follows the literature compilation made by Cetinić et al. (2012). The linear regressions generally 

yielded small and non-significant y intercepts for sea-surface data. Therefore, we assumed the slopes were equal to the 775 

POC/bbp700 ratio. When the bbp measurements were made at another wavelength, we converted them to bbp700 assuming an 

exponent η = 0.41 (Cetinić et al., 2012), according to the equation: 

bbp(λ1) = bbp(λ0) * (λ1/λ0)η                                            (A1) 

For measurements taken at 555 nm, which was the wavelength used in two studies (Table A1), this resulted in 10% lower 

bbp700 compared to bbp555, thus higher POC/bbp700 ratios. 780 

 

The dataset of Cetinić et al. (2012) was the only one showing a significant negative intercept of the POC vs. bbp700 linear 

regression. Unlike the other datasets, where the POC vs. bbp700 relationship reflected mostly sea-surface variability in a given 

biome, this was the only dataset that included data collected between the sea surface and 600 m. Bol et al. (2018) 

reprocessed this dataset by computing the linear regression between POC and bbp700 in different depth bins, forcing the 785 

intercept through zero. The slope of the POC vs. bbp700 regressions, and therefore the POC/bbp700 ratio, decreased by more 

than twofold between the surface and the 600 m bins. These results suggest that the POC vs. bbp700 relationship may be better 

modelled with nonlinear equations, as done for surface data in some previous studies (Balch et al., 2010; Johnson et al., 

2017; Stramski et al., 1999). However, one must keep in mind that the ecosystem processes that define POC/bbp700 ratios in 

the surface layer may be different from those occurring in the mesopelagic (see Discussion, 4.2). 790 

 

The conversion between POC and particulate beam attenuation at 660 nm, cp, in the surface ocean has been analyzed on 

more occasions than its bbp700 counterpart. The backscattering ratio, bbp/bp, relates particulate backscattering to the total 

particulate scattering, and is directly related to the refractive index of the particle assemblage (Babin et al., 2003; Dall’Olmo 

et al., 2009; Loisel et al., 2011; Organelli et al., 2018; Stramski and Kiefer, 1991; Stramski et al., 1999; Twardowski et al., 795 

2001; Ulloa et al., 1994). Light absorption by particles is negligible in the 650-700 nm spectral region, such that total beam 

attenuation cp is a good approximation of the scattering coefficient bp. Thus, once the known absorption and scattering 

coefficients of seawater are removed, bbp/cp is a good approximation of the backscattering ratio, and can be used to compare 

the relationships between POC vs. cp and POC vs. bbp700. 

 800 

The observed POC/bbp700 variability in the surface layer across biomes reflected in our POC estimation algorithm is 

analogous to that found for the relationship between POC/cp by Cetinić et al. (2012), as shown in Figure A1, although fewer 

POC-bbp700 datasets are available. The POC content per unit bbp700 decreases with the maximum bbp700 of each dataset, which 

may be related to the structure and species composition of upper-ocean ecosystems (see Discussion, 4.3). Given that the 
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backscattering coefficient is sensitive mostly to particles smaller than 30 µm (Organelli et al., 2018), it is also plausible that 805 

the portion of POC that contributes to backscattering varies across sites, further enhancing POC/bbp700 variability. 

 

The number of studies that tackled POC vs. bio-optical conversion in the mesopelagic layer is much smaller than those that 

focused on the epipelagic layer. Besides Cetinić et al. (2012) in the subpolar North Atlantic, we are only aware of the study 

of Bishop et al. (1999) in the northeast Subarctic Pacific. The latter study found a POC vs. cp slope of 16.3±0.49 mmol C m-2 810 

(= mmol C m-3 / m-1) over the 0–1000 m depth range (the positive regression y-intercept in that study corresponds to 

absorption by seawater). This slope lies in the low range of the compilation shown in Fig. A1a (196±5.9 mg C m-2 in mass 

units). A close-up into the lower measurement range (Fig. 5 of Bishop et al., 1999) shows that the slope was not clearly 

distinct for POC concentration < 0.5 mmol m-3, typical of the mesopelagic layer. If we assume that the backscattering ratio 

was likely between 1 and 2% in the mesopelagic, then we obtain a POC/bbp700 ratio of 815-1630. This range is compatible 815 

with the POC/bbp700 of ~1000 mmol C m-2 found at 600 m by Bol. et al. 2018, which we used as the asymptotic deep 

POC/bbp700 ratio in Eq. 1. Note that the linear relationship between cp and POC is compatible with the nonlinear relationship 

between POC and bbp700 along the vertical profile if the backscattering ratio also increases with depth, as found by Cetinić et 

al. (2012). The latter study found an increase in the backscattering ratio (bbp700/cp653) from around 1.2% at the surface to 

around 1.5% in the upper mesopelagic. The bbp700/cp653 ratio was more variable in deeper layers and values > 2% were not 820 

rare (see also Nencioli et al., 2010; Organelli et al., 2018; Twardowski et al., 2001). 

 

Beyond the natural variability, the interconversion between POC and bio-optical proxies is also confounded by 

methodological, most of which were not fully addressed in the studies compiled here. Measurement of POC in the lower 

mesopelagic (below 500 m) requires filtration of large sample volumes in the m3 range (Bishop et al., 1999), otherwise POC 825 

concentration rapidly approaches the detection limit with procedures and filtration volumes used for the epipelagic and the 

upper mesopelagic (Cetinić et al., 2012; Strubinger-Sandoval et al., 2021). 
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Figures 

 
 1155 

Figure 1. Global distribution and abundance of BGC-Argo profiles between 2010 and 2019. Grid cells (1°x1°) with at least 1 profile 
of the backscattering coefficient at 700 nm (bbp700) are marked with black dots, and those with at least 20 profiles are marked with 
yellow-filled circles. The gray contours indicate the 1000 m isobath. Color shading indicates ocean biomes (see text), whose names 
are indicated on top of the bottom histograms. For each biome, light color indicates its average extent over 13 years of satellite 
observations (1998-2010), whereas the darker color indicates the “core” grid cells that never changed biome classification during 1160 
the same period. Bottom panels (b-f) show the number of BGC-Argo bbp700 profiles per year in the four selected biomes and in 
the global ocean. 
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Figure 2. Empirical model used to convert the backscattering coefficient at 700 nm (bbp700) to particulate organic carbon (POC). 1165 
Black dots and error bars show the dataset of Cetinić et al. (2012) as binned by Bol et al. (2018). The black curve shows the 
exponential fit of Bol et al. (2018) to the Cetinić dataset. The blue curve shows our fit to the same dataset (NASPG: North Atlantic 
Subpolar Gyre), forced to converge to a nonzero minimum value at depth. The remaining curves show similar functions with the 
same exponential slope (b = -6.57) as the NASPG fit, but with different surface values derived from the following studies: Loisel et 
al. (2001) for the Mediterranean Sea; Stramski et al. (2008) for the ensemble of subtropical and tropical areas excluding equatorial 1170 
upwellings (STG); and Johnson et al. (2017) for the Southern Ocean (Subantarctic). The depth of the homogeneous surface layer, 
zsurf,biome in Eq. 1 and 2, corresponds to the 5% quantile of the climatological MLD in summer in a given biome: 15 m in the 
NASPG, 14 m in the MED, 21 m in the STG and 41 m in the SO. The dotted green line, shown for the SO case only, illustrates the 
behavior of the algorithm for a mixed layer depth of 150 m.  

 1175 
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Figure 3. Monthly sea-surface particulate organic carbon (POC) concentration. Shown are POC estimates based on BGC-Argo 
(derived from the backscattering coefficient at 700 nm, bbp700), satellite (GlobColour) and PISCES. PISCES tPOC results from 
the addition of the detritus (D), phytoplankton (P) and zooplankton (Z) tracers (Table 1), which are shown here as cumulative 1180 
sums. 
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Figure 4. Seasonal 0–1000 m particulate organic carbon (POC) profiles. BGC-Argo observations (based on the backscattering 
coefficient at 700 nm, bbp700) are represented with the median and the 0.025–0.975 quantiles within each biome. PISCES tPOC 1185 
results from the addition of the detritus (D), phytoplankton (P) and zooplankton (Z) tracers (Table 1), which are shown here as 
cumulative sums. 
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Figure 5. Summary of skill metrics for the comparison between PISCES and BGC-Argo particulate organic carbon (POC) profiles 1190 
in different biomes and seasons. Pearson’s correlation coefficient, mean model/data quotient, and mean bias (mmol m-3) are 
computed in linear space (untransformed data). Horizontal black lines show the benchmark values for each statistic. Symbols 
represent different types of simulations and data aggregation levels. In the case of the PISCES 3D climatological simulation, the 
statistics are computed at two spatial aggregation levels: using all the grid cells with matching BGC-Argo profiles in a given biome 
(circles); and after averaging all the documented grid cells within the biome (empty triangles), as displayed in Fig. 4. In the case of 1195 
the PISCES 1D simulations, statistics are computed for each individual CATS separately (small crosses), and the biome-season 
median is also shown (small filled triangles).  

 

https://doi.org/10.5194/bg-2021-201
Preprint. Discussion started: 18 August 2021
c© Author(s) 2021. CC BY 4.0 License.



42 
 

 
Figure 6. Temporal evolution of small POC (sPOC) and big POC (bPOC) concentrations in the North Atlantic subpolar gyre 1200 
(NASPG). Panels a and d show observations from the BGC-Argo float WMO 6901486, which drifted in the Labrador Sea during 
the year 2015. Panels b and e show the corresponding PISCES 1D simulation. Panels c and f show the ratio between the model and 
the observations and the corresponding correlation coefficient and RMSE in log10 scale. Solid lines depict the observed MLD (a, d) 
and the simulated turbocline depth (b, e). In panels c and f, the observed MLD is shown in gray to avoid confusion. In panels a and 
d, dashed lines show the depths of the maximum chlorophyll fluorescence gradient (green) and an alternative MLD estimated with 1205 
a 0.005 density threshold to capture weak stratification. The bottom panels show the vertically integrated sPOC and bPOC stocks 
in different layers: 0–200 m or epipelagic (g), 200–1000 m or mesopelagic (g) and 0–1000 m (i). On top of panels g–i we show the 
correlation and bias between BGC-Argo and PISCES total POC (tPOC). 
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 1210 
Figure 7. Temporal evolution of small and big POC concentrations (sPOC and bPOC, respectively) in the South Pacific 
subtropical gyre (STG). Panels a and d show observations from the BGC-Argo float WMO 6901660, which drifted westwards near 
Tahiti, during the year 2016. Panels b and e show the corresponding PISCES 1D simulation. Panels c and f show the ratio between 
the model and the observations and the corresponding correlation coefficient and RMSE in log10 scale. Solid lines depict the 
observed MLD (a, d) and the simulated turbocline depth (b, e). In panels c and f, the observed MLD is shown in gray to avoid 1215 
confusion. In panels a and d, dashed lines show the depths of the maximum chlorophyll fluorescence gradient (green) and an 
alternative MLD estimated with a 0.005 density threshold to capture weak stratification. The bottom panels show the vertically 
integrated sPOC and bPOC stocks in different layers: 0–200 m or epipelagic (g), 200–1000 m or mesopelagic (g) and 0–1000 m (i). 
On top of panels g–i we show the correlation and bias between BGC-Argo and PISCES total POC (tPOC). 

 1220 
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Figure 8. Mean annual POC stocks. BGC-Argo versus PISCES scatterplots are shown for small POC (sPOC) and big POC 
(bPOC) in the epi- and mesopelagic layers. Reference lines indicate a range of model:data ratios, from 1:1 (perfect 
correspondence) to a factor of 3 or its inverse. Biomes are distinguished with different colors, and the size of the circles is 
proportional to the correlation between BGC-Argo and PISCES stocks (as shown in the bottom panels of Figures 6 and 7). 1225 
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Figure 9. Mean annual sPOC/tPOC fractions. BGC-Argo versus PISCES scatterplots are shown for small POC (sPOC) and big 
POC (bPOC) in the epi- and mesopelagic layers. Reference lines indicate a range of model:data ratios, from 1:1 (perfect 
correspondence) to a factor of 1.5 or its inverse. Biomes are distinguished with different colors, and the size of the circles is 1230 
proportional to the annual mean tPOC stock in the epipelagic layer, an indicator of productivity. 
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 1235 
Figure 10. Mean annual POC transfer efficiency between 200 and 700 m. BGC-Argo versus PISCES scatterplots are shown for 
small POC (sPOC) and big POC (bPOC). Reference lines indicate a range of model:data ratios, from 1:1 (perfect correspondence) 
to a factor of 3  or its inverse. Biomes are distinguished with different colors, and the size of the circles is proportional to the 
annual mean tPOC stock in the epipelagic layer, an indicator of productivity. 

 1240 
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Figure A1. Coherent patterns in the conversion factors between POC and bio-optical variables. The left panel reproduces figure 8 
from Cetinić et al. (2012), which shows the relationship between the POC versus cp slope and the maximum cp in a given dataset. 1245 
The right panel shows the analogous relationship for bbp700, as used in our study. Linear fits are only illustrative. 
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Table 2. Global and regional POC stocks, concentrations and fractions in different layers as simulated by PISCESv2. 

Variable Depth range 
(m) 

Open-ocean biomes Globald 

Ice SPSSa STSSb STPSc Equatorial 

Area (%) 6.5 14.3 12.0 46.0 9.2 100 

tPOC (Tg C) 0–200 73 281 263 263 154 1590 

200–1000 57 221 173 397 90 1006 

1000–5000 80 274 237 633 144 1438 

tPOC (mmol 
C m-3) 

0–200 1.18 2.22 2.57 1.66 1.99 1.85 

200–1000 0.29 0.48 0.44 0.25 0.29 0.33 

1000–5000 0.14 0.18 0.17 0.10 0.13 0.13 

sPOCe (%) 0–200 72 81 79 89 84 81 

200–1000 75 75 70 79 71 75 

1000–5000 81 80 77 79 75 79 

Phytof (%) 0–20 45 45 41 58 49 50 

Diatomsg 
(%) 

0–20 28 21 14 3 4 14 

Detritush 
(%) 

0–20 15 25 31 26 31 24 

0–200 36 43 48 44 50 42 

200–1000 62 67 70 78 78 70 

a Subpolar seasonally stratified 
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b Subtropical seasonally stratified 
c Subtropical permanently stratified 
d Larger than the sum of biomes because the latter do not include coastal areas. 5 
e sPOC / tPOC. 
f (PHY + PHY2) / tPOC. 
g PHY2 / tPOC. 
h PISCES detritus (POC+GOC) divided by tPOC. Heterotrophic prokaryotes are de facto included. 
  10 
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Table A1. Compilation of studies that analyzed the relationship between POC and bbp700 in the euphotic layer of the oceans. 

Location Reference N Depth range Slope (mg C 
m-2 m) 

Intercept Comments 

North Atlantic 
Subpolar Gyre  

Cetinić et 
al., 2012 

321 0-600 35422 ± 
1754 

- 14.4 ± 5.8 Downcast 

321 0-600 43317 ± 
2092 

- 18.4 ± 5.8 Upcast 

Bol et al., 
2018 

n.a. a 0-10 41550 forced 
through 0 

Subset of 
Cetinić et al., 
2012 at the 
surface 

Mediterranean Loisel et al., 
2001 

N/A N/A 41305 1.43 Original 
measurement
s at 555 nm 

Subtropical 
and tropical 
Pacific and 
Atlantic 
(upwellings 
excluded) 

Stramski et 
al., 2008 

54 4-8 58968 
 

2.75 Original 
measurement
s at 555 nm 

Subantarctic Johnson et 
al., 2017 

67 0-100 31200 ± 
2470 

3.0 ± 6.8  

a n.a. = not available 
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