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Abstract.  We use  a  single  foraminifera  enabled,  holistic  hydroclimate-to-sediment  transient

modelling approach  to fundamentally evaluate the efficacy of discrete-depth individual foraminifera

analysis  (IFA)  for  reconstructing  past  sea  surface  temperature  (SST)  variability  from  deep-sea

sediment archives, a method that has been used for, amongst other applications, reconstructing El

Niño Southern Oscillation (ENSO). The computer model environment allows us to strictly control for

variables such as SSTsea surface temperature (SST), foraminifera species abundance response to SST,

as well as depositional processes such as sediment accumulation rate (SAR) and bioturbation depth

(BD),  and subsequent  laboratory processes  such  as  sample  size  and machine error.  Examining a

number of best-case scenarios, we find that IFA-derived reconstructions of past SST variability  are

sensitive to all of the aforementioned variables. Running 100 ensembles for each scenario, we find

that  the  influence  of  bioturbation  upon  IFA-derived  SST  reconstructions,  combined  with  typical

samples sizes employed in the field, produces noisy SST reconstructions with poor correlation to the

original SST distribution in the water. This noise is especially apparent for values near the  tailsedge of

the SST distribution, which is the distribution region of particular interest for, e.g., ENSO. The noise

is further increased in the case of increasing machine error, decreasing SAR and decreasing sample

size. We also find poor agreement between ensembles, underscoring the need for replication studies in

the field to confirm findings at particular sites and time periods. Furthermore, we show that a species’

abundance response to SST could in theory bias IFA-derived SST reconstructions, which can have

consequences when comparing IFA-derived SST from markedly different mean climate states. We

provide a number of idealised simulations spanning a number of SAR, sample size, machine error and

species abundance scenarios, which can help assist researchers in the field to determine under which

conditions they could expect to retrieve significant results.
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1.0 Introduction

1.1 Background

One of the  most-studied palaeoclimate signal carrier vessels within deep-sea sediment cores is the

carbonate shells of planktonic foraminifera (microscopic, single-celled organisms), which can record

the conditions of the ambient water that the foraminifera lived in. These organisms have a lifespan of

~1 month, after which their shells sink to, and are deposited on, the sea-floor. Their short lifespan

means that foraminifera  microfossil  populations retrieved from deep-sea sediment archives can, in

principle, reflect past monthly SST dynamics, which is key for reconstructing decadal scale climate

processes, such as El Niño Southern Oscillation (ENSO). However, the technical limits associated

with isotope ratio mass spectrometry (IRMS) analysis of foraminifera has traditionally required that

many  tens  of  single  foraminifera  shells  are  combined to  produce  a  viable  measurement,  thus

averaging out any monthly SST signal. Advances in  mass spectrometryIRMS have allowed for the

analysis  of  single  foraminifera  shells  sizes  typically  found  in  planktonic  populations  (Oba  and

Uomonoto, 1989; Spero and Williams, 1990), which has encouraged researchers to carry out a method

commonly  referred  to  as  individual  foraminifera  analysis  (IFA)  to  reconstruct  SST  variability

associated with, e.g., ENSO (Koutavas et al., 2006; Leduc et al., 2009). This method can, in principle,

allow for  the  extraction  of  a  range  of  monthly  SST values  from a given  interval  of  a  deep-sea

sediment archive (i.e. 1 cm discrete depths from a given sediment core). Using the IFA method, a

number of foraminifera are sub-sampled from a discrete-depth’s foraminifera population, after which

some form of SST proxy method is applied to each foraminifera’s carbonate shell to infer individual

SST  values.  Subsequently,  an  SST  distribution  can  be  inferred,  and  used  to  indicate  past  SST

variability.

The IFA method depends upon a major assumption, namely that the SST distribution generated from

the sub-sampled foraminifera is a faithful representation of the true distribution of monthly water SST

values for a given time interval (i.e. a decadal/centennial/millennial period). However, the ability of

discrete-depth IFA to accurately reproduce a time period’s true water SST distribution can be clouded

by a number of environmental, biological and logistical issues, which can occur in the water domain

(pre-deposition), sediment archive domain (post-deposition) and laboratory domain (post-retrieval). 

1.2 Challenges in the water domain

Regarding issues in the water domain, it is possible that a foraminifera species may not continually 

inhabit a single surface water location or water depth, thus giving a non-continuous record of SST, 

which can have consequences for, e.g., ENSO reconstructions (Metcalfe et al., 2020; Roche et al., 
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2018). Secondly, a species' foraminiferal abundance through time is not constant and can be 

influenced by SST itself, which may bias IFA-derived SST distribution reconstructions, which is 

especially relevant in the case of ENSO, which itself influences SST. Similarly, long-term absolute 

shifts in the overall range of SST (e.g. from a glacial to an interglacial world) may cause the water’s 

SST range to shift from one that partially overlaps with a species’ preferred temperature range to one 

that fully overlaps with a species’ preferred temperature range. In practical terms, this could lead to an

IFA-derived artefactual shift from a relatively narrow apparent SST distribution to a relatively wider 

apparent SST distribution, with potential for incorrect interpretation regarding glacial-interglacial SST

dynamics.

1.3 Challenges in the sediment domain

Issues associated with the sediment archive domain can further cloud IFA-derived SST distributions.

Specifically, systematic bioturbation of deep-sea sediment archives means that individual foraminifera

with vastly different ages are mixed into single discrete-depth sediment intervals, which is a particular

challenge in the current state-of-the-art in IFA, which still relies on the ‘average age’ of a particular

sediment  interval  (i.e.  it  is  not  yet  feasible  to decouple  single  planktonic  foraminifera from their

discrete depth by systematically dating individual specimens). This practical limitation in turn places

an interpretive constraint upon IFA; when foraminifera from vastly different long-term climate states

(i.e.  multi-millennial) are mixed into the same sediment interval,  the IFA-derived SST variability

reconstructed from that  sediment interval cannot be exclusively assigned to decadal  or centennial

changes in inter-annual and intra-annual SST variability (Killingley et al., 1981). For these reasons, it

is  important  to  understand the  age  distribution  of  foraminifera  contained  within  a  discrete-depth

sediment  interval.  For  example,  it  is  often  assumed  that  a  sediment  archive  with  a  sediment

accumulation rate (SAR) of, e.g., 5 cm ka-1 will have a temporal resolution of 1000/5 = 200 yr cm -1.

This assumption is deceptively supported  by  the  observation that the mean age of such a sediment

archive increases by ~200 yr every cm. However, downcore increase of discrete-depth mean age is

not the same concept as discrete-depth age variance.  The distribution of the age contained within a

single centimetre of sediment core is governed not only by the SAR, but also by the bioturbation

depth (BD), the uppermost depth of the  sediment within which bottom-dwelling organisms actively

mix the sediment. Following established understanding of bioturbation processes (Berger and Heath,

1968; Pisias, 1983; Schiffelbein, 1984), the 1σ age value for a single cm of sediment core can be

approximated, in the example of a 5 cm ka-1 sediment core with a representative BD of 10 cm (Trauth

et al., 1997; Boudreau, 1998), as 10/5×1000 = 2000 yr. In idealised conditions, the corresponding

shape of the age distribution for a discrete-depth interval of sediment core will be characterised by an
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exponential distribution with long tail towards older ages. The average age of the sediment at the top

of the sediment archive will also be similar to the 1σ age value, as exhibited in 14C dates of deep-sea

core tops which support a BD of between 5 and 10 cm (Trauth et al., 1997; Henderiks et al., 2002),

including for the Pacific (Peng et al., 1979; White et al., 2018). It is additionally important to consider

the shape of this distribution when comparing IFA-derived SST from an interval of sediment core

(subsampled from a population with a exponential age distribution with a long tail towards older ages)

to observational or model SST from specific periods of climate history (i.e. a uniform interval of

time).

Finally, issues in the laboratory domain, such as sample size and analytical error, can serve to increase

the noisiness of the reconstructed SST distribution and cause interpretive constraints (Killingley et al.,

1981; Schiffelbein and Hills, 1984; Thirumalai et al., 2013; Fraass and Lowery, 2017; Dolman and

Laepple, 2018; Lougheed, 2020). Consequently, it is important to also consider these processes when

considering results derived from discrete-depth IFA analysis.

1.4 Analytical challenges

1.2 Experimental Design

Finally, issues in the laboratory domain, such as sample size and analytical error, can serve to reduce

the reproducibility the reconstructed SST distribution and cause interpretive constraints (Killingley et

al., 1981; Schiffelbein and Hills, 1984; Thirumalai et al., 2013; Fraass and Lowery, 2017; Dolman and

Laepple, 2018; Lougheed, 2020).  Some fields, such as foraminifera ecology, recommend a sample

size of at least 300 specimens for sufficient reproducibility to capture an accurate picture of,  e.g.

species assemblage  (Dryden, 1931; Patterson and Fishbein, 1989). In the case of IFA, the required

sample size will be sensitive to the research question. For example, when reconstructing, e.g., ENSO,

sample sizes that are too small may lead to an interpretation based on insufficient data, i.e.  brief

climate intervals represented by single foraminifera may be over- or  undersampled in the sample

when compared to their true frequency of occurence in history. These challenges highlight the need to

carry out a simple modelling approach that incorporates conditions at a particular location (SAR, BD,

sample size), which can be done either before or following sample collection. 

Here, we use a computer modelling approach, which uniquely allows all parameters to be known and

strictly controlled for, thereby allowing us to create an idealised experimental design with minimised

degrees  of  freedom.  Such an  approach offers  advantages  over  field-based  testing  of  IFA,  where

multiple dynamic parameters are unknown, thus leading to increased degrees of freedom and limiting

the  ability  to  make  interpretative  conclusions  about  the  influence  of  isolated  parameters.  Our
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comprehensive modelling approach incorporates quantatitive parameterisations of climate, sediment

and  laboratory  processes.  Such  a  controlled  computer  model  environment  allows  us  to  directly

compare a known input water SST distribution to a reconstructed SST distribution derived from the

corresponding simulated sediment-based IFA.  In this way,  we can objectively quantify how well

discrete-depth  IFA functions  in  a  number  of  strictly  controlled,  best-case  scenarios,  allowing its

interpretive capacity for the reconstruction of decadal scale SST variability to be evaluated at the most

fundamental level.

2.0 Method

2.1 Experimental Design

2.1 Approach synopsis and model setup

Here, we use a computer modelling approach, which uniquely allows all parameters to be known and

strictly controlled for, thereby allowing us to create an idealised experimental design with minimised

degrees  of  freedom.  Such an  approach offers  advantages  over  field-based  testing  of  IFA,  where

multiple dynamic parameters are unknown, thus leading to increased degrees of freedom and limiting

the  ability  to  make  interpretative  conclusions  about  the  influence  of  isolated  parameters.  Our

comprehensive modelling approach incorporates quantitative parameterisations of climate, sediment

and  laboratory  processes.  Such  a  controlled  computer  model  environment  allows  us  to  directly

compare a known input water SST distribution to a reconstructed SST distribution derived from the

corresponding simulated sediment-based IFA.  In this way,  we can objectively quantify how well

discrete-depth  IFA functions  in  a  number  of  strictly  controlled,  best-case  scenarios,  allowing its

interpretive capacity for the reconstruction of decadal scale SST variability to be evaluated at the most

fundamental level.

2.2 Approach synopsis and model setup

We carry out a holistic hydroclimate-to-sediment transient modelling approach to test the suitability

of discrete-depth IFA for the reconstruction of SST variability. Crucially,  our approach includes a

quantified  representation  of  both  sediment  processes  (in  particular  bioturbation)  and  species

abundance, thus building upon previous models and simulation estimations of IFA accuracy where

such  information  was  not  yet  included  (Leduc  et  al.,  2009;  Thirumalai  et  al.,  2013;  Fraass  and

Lowery,  2017). Our modelling approach is carried out using an offline coupling of two transient

models: a single-foraminifera sediment accumulation simulator (SEAMUS; (Lougheed, 2020)) run at

a monthly timestep resolution, forced with monthly SST from the TRACE-21ka climate model (He,
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2011). We investigate a number of best-case scenarios, concentrating on the time period spanning

from 20 ka (BP 1950) up to and including 1989 CE, assuming a hypothetical sediment core location

(Fig. 1) at the centre of the Niño 3.4 ENSO region that is used to calculate the Oceanic Niño Index

(ONI). While the TRACE-21ka climate model does not necessarily fully capture ENSO processes, we

choose this location in the model because of its dynamic SST (Fig. 1), which make it an interesting

location to test how inputted monthly SST is reconstructed by the simulated IFA method. In reality it

may or may not be possible to retrieve a foraminifera-rich sediment core from this site, but here for

the purposes of this theoretical, best-case modelling scenario, we assume that it would be possible.

In this study,  simulated single foraminifera are incorporated into synthetic sediment archives,  the

latter of which employ best-case sedimentation conditions whereby representative values for SAR and

BD are both kept temporally constant. We assume a best-case scenario where foraminifera perfectly

record monthly SST (in this case the TRACE-21ka SST), and we also assume the existence of an

ideal  proxy method that  allows for perfect  retrieval  of  SST data from the single foraminifera.  In

reality, foraminifera may not continuously record the water temperature at the surface or indeed at the

same water depth in general,  which further complicates IFA reconstructions of SST dynamics in

practice, however, here we seek to test best-case conditions. After carrying out the sediment archive

and bioturbation simulation, synthetic single foraminifera are randomly picked from each discrete-

depth cm interval of simulated core, thereby resulting in virtual IFA. The output of the best-case

virtual IFA retrieved from the sediment depth domain can subsequently be directly compared to the

inputted SST in the time domain (i.e. TRACE-21ka SST), allowing us to evaluate the current state-of-

the-art in IFA at the most fundamental level.

We sum up the sediment model component (SEAMUS) in Section 2.31, and the climate component

(TRACE-21ka) in Section 2.42. An overview of our various best-case scenario simulations, as well as

their associated run parameters, can be found in Section 2.53.

2.31 Sediment model component

We  model  the  sedimentation  history  of  single  foraminifera  using  the  the  SEAMUS  sediment

accumulation  model  (Lougheed,  2020).  This  stochastic  model  uses  the  same  established

understanding  of  bioturbation  (Berger  and  Heath,  1968;  Pisias,  1983;  Bard,  2001) that  is  also

incorporated into previous sediment accumulation models (Trauth, 1998, 2013; Dolman and Laepple,

2018), but differs in model execution in that it is explicitly designed for the purpose of modelling

single foraminifera, thus making it a suitable sediment model for use in this IFA evaluation study.

Furthermore, the The stochastic nature of the model, combined with an ensemble approach,  is ideal
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for simulating bioturbation of single foraminifera, which is in itself a stochastic process. Furthermore,

this bioturbation model  is  capable of receiving temporally dynamic input  for all  parameters.  Our

period of interest spans 20 ka BP to 1989 CE, so we have run the SEAMUS model from 30 ka BP to

1989 CE to provide sufficient model spin-up for our period of interest. The model is run here using a

monthly  timestep  resolution (to  match  the  timestep  resolution  of  TRACE-21ka),  whereby single

synthetic foraminifera are generated at each monthly time-step and added to the top of the sediment

archive after which the BD of the sediment archive is uniformly mixed. All simulations are run with

an appropriate BD of 10 cm, following previous studies (Trauth et al., 1997; Boudreau, 1998). Some

of our model run scenarios assume a temporally constant foraminiferal abundance, in such cases we

assign a constant  per timestep foraminiferal  abundance that  results  in 104  foraminifera per cm of

sediment (i.e. the prescribed per timestep abundance is higher in the case of higher SAR and vice-

versa). In the case of model runs with temporally dynamic foraminiferal abundance, the amount of

foraminfiera per cm that will result in 100 foraminifera per timestep (i.e. month) for the given SAR is

simulated,  allowing temporal  (i.e.  monthly) changes in abundance to be modelled with sufficient

statistical power (i.e. if relative abundance of the species drops from 0.56 to 0.55 then it will result in

one less foraminifera of the species being simulated for a timestep). All of our model run scenarios

are carried out using 100 ensemble runs in SEAMUS, thus fully capturing (for 100 percentiles) the

stochastic nature of bioturbation (i.e. the fact that no two sediment archives formed under the same

conditions  will  be  exactly  alike).  Subsequently,  four  separate  randomised  ‘picking’  scenarios  are

carried out on each of the 100 ensembles, whereby 50, 100, 500 or 104 synthetic foraminifera are

randomly picked from each discrete 1 cm depth slice of the synthetic core, whereby the picker is

assumed to have perfectly identified the species in all cases, thus avoiding challenges associated with

species mis-identification (Pracht et al., 2019). The 104   picking scenario is intentionally included as an

unrealistically large sample size, essentially acting as a reference scenario virtually free of sample size

noise.  Finally,  in  some  scenarios  we  add  Gaussian  noise  of  ±1°C  to  the  SST  of  all  simulated

foraminifera, to mimic proxy uncertainty. All ensemble runs were performed using a Linux  computer

cluster  provided  by  the  Swedish  National  Infrastructure  for  Computing  (SNIC)  at  the  Uppsala

Multidisciplinary Centre for Advanced Computational Science (UPPMAX).

2.42 Climate model component

Monthly SST forcing for the SEAMUS model is sourced from the  TRACE-21ka transient climate

simulation (He, 2011), specifically using the surface temperature data for the TRACE-21ka grid cell

centred on the coordinates 1.86° N and 146.25° W. This grid cell, at the centre of the Niño 3.4 ENSO

region  used  for  calculating  the  Oceanic  Niño  IndexONI-index,  is  ideal  for  our  synthetic  core

7

195

200

205

210

215

220

225



simulation  as  it  is  characterised  by  large  variation  in  the  model's  inter-annual  seasonal  surface

temperature (Fig. 1a), somewhat  analogous to, e.g., ENSO. Furthermore, the grid cell also captures

the glacial-interglacial SST transition (Fig. 1b), as well as typical TRACE-21ka transient changes in

ENSO-like SST variability, as shown by the 1.5-7 yr filtered 100 and 1000 year moving 1σ of SST

(Fig.  1c).  This  filtering  approach  has  previously  been  used  to  identify  ENSO-like  variability in

TRACE-21ka for the Niño 3.4 region (Liu et al., 2014). While the model variability is itself of course

not a true replication of the real ENSO signal, it nonetheless offers an interesting analogous timeseries

of  inter-annual  changes in  SST  variability with which to  test  the  efficacy of  the  IFA method in

reproducing said SST variability.

The  TRACE-21ka  dataset  is  the  result  of  a  fully-coupled  Community  Climate  System  Model

(CCSM3)  simulation  with  T31_gx3  grid  resolution  that  uses  transient  forcing  changes  in  both

greenhouses gases, orbital driven insolation variations, ice sheet evolution (ICE-5G) and associated

meltwater fluxes for a non-accelerated atmosphere-ocean-sea ice-land surface coupling. The TRACE-

21ka dataset begins at 22 ka, whereas our SEAMUS run starts at 30 ka. The reason for this difference

is that we provide an extra 10 ka of spin-up time for the SEAMUS model, which is important in cases

of very low SAR (e.g. ≤ 5 cm ka-1). In order to provide SST data for synthetic foraminifera generated

between  30  ka  and  22  ka,  the  oldest  1500 years  contained  within  the  TRACE-21ka  dataset  are

repeated from 22 ka to 30 ka. Such an approach obviously does not represent an accurate picture of

the climate between 30 ka and 22 ka, but it has no practical consequences for the particular purpose of

our study, which is to compare a given climate input signal in the time domain to the subsequent

signal recorded by single foraminifera in the sediment depth domain. Furthermore, our period of study

interest spans the past 20 ka.

2.53 Model run settings

We carry out a number of best-case scenarios, with each scenario being subject to 100 ensemble runs

to  capture  the  full  stochastic  range  resulting  from  the  sedimentation,  bioturbation  and  picking

processes.  We run SAR scenarios  for  5,  10 and 40  cm ka-1.  In  the  figures  in  the  main text,  we

concentrate on the 10 cm ka-1 scenarios only. The corresponding figures for the 40 cm ka-1 and 5 cm

ka-1 scenarios, the  latter of which may be more realistic for  many partsmuch of the Pacific, can be

found in the supplement. Each of the three SAR scenarios is first subjected to 100 ensemble runs with

constant foraminifera abundance and a perfect SST proxy, a second set of 100 ensemble runs is then

carried out with constant abundance and added ±1°C Gaussian noise on the SST proxy, a third set of

100 ensemble runs is carried out with dynamic abundance and a perfect SST proxy, and a final set of

100 ensemble runs is  carried out  with dynamic abundance and ±1°C Gaussian noise on the SST
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proxy. All of the aforementioned 1200 ensembles are each subjected to randomised picking for 50,

100, 500 and 104 foraminifera per cm of sediment core depth.

As described in the previous paragraph,  some of our scenarios incorporate dynamic foraminiferal

abundance  in  order  to  investigate  the  effect  of  changes  in  species  abundance  upon IFA-derived

reconstructions. In these scenarios, we use a hypothetical transfer function (Fig. 2a) to assign a per

timestep abundance to our simulated foraminifera species. This theoretical transfer function is purely

demonstrational,  and is used to gain insight into how a given abundance response influences IFA

reconstructions of SST variability. Timestep abundance is calculated as a by applying the function to

the corresponding TRACE-21ka SST for the timestep. This approach allows us to quantify how a

known species abundance response to SST could systematically bias an IFA-derived SST distribution.

Consider, for example, a theoretical time interval whereby the true monthly SST data are normally

distributed, as in the theoretical example in Fig. 2b. In such a case, an IFA-derived SST distribution

using  a  species  characterised  by  our  SST  transfer  function  would  be  biased  towards  warmer

temperatures and, furthermore, the shape of the IFA-derived SST distribution would be skewed, as

shown in the abundance-modified profile in Fig. 2b.

3.0 Results & Discussion

3.1 Downcore, discrete-depth IFA standard deviation

Numerous studies have concentrated on subsampling numerous individual foraminifera from the same

discrete-depth interval of a sediment core, from which the 1σ value of the SST (or a proxy equivalent

thereof)  of  those  foraminifera  is  calculated  to  infer  SST variability for  a  particular  time  period,

whereby a greater  1σ value is  assumed to indicate increased  SST variability due to,  e.g.,  ENSO

(Koutavas  et  al.,  2006;  Koutavas  and  Joanides,  2012;  Rustic  et  al.,  2015).  To  evaluate  such  an

approach, we compare the 1.5-7 yr filtered 1000 year moving 1σ of SST in the time domain (Fig. 1c)

to ensembles of SEAMUS runs carried out under various sediment and picking conditions within a 10

cm ka-1 scenario (Fig. 3 and Fig. 4). The equivalent figures for the 40 cm ka-1 and 5 cm ka-1 scenarios,

the latter of which may be more representative for the open ocean areas of the Pacific (Olson et al.,

2016; Metcalfe et al., 2020), can be found in the supplement.

We find that the discrete-depth, downcore 1σ value reconstructed using IFA analysis for the simulated

10 cm ka-1  /ka scenarios varies greatly between all of the 100 ensemble runs in the case of IFA sample

sizes  typically  used  in  the  field,  i.e.  between  50  foraminifera  (Fig.  3a-b;  Fig.  4a-b)  and  100

foraminifera  (Fig.  3c-d;  Fig.  4c-d)  individual  foraminifera  being  picked  per  cm.  This  poor

reproducibility  between  ensemble  runs  is  a  result  of  noise  generated  by  small  sample  sizes  in
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combination with systematic bioturbation. The practical consequence of this  poor reproducibility  is

that, in the case of typical sample sizes used in the field (50-100 foraminifera), none or very few of

the 100 ensemble runs result a significant and strong correlation correlation (defined here as r2  ≥ 0.6

and p  ≤ 0.05)  between the IFA-derived downcore 1σ SST signal and the 1.5-7 yr filtered TRACE-

21ka 1000 year moving 1σ (Table 2), for the period 18 ka to 12 ka, a period of dynamic ENSO-like

variation in the TRACE-21ka SST.  We define a significant and strong correlation here as as r2   ≥ 0.6

and p ≤ 0.05 (ɑ=5%), i.e. that the correlation is strong enough such that 60% of the variation is shared

between the two variables, with significance defined using an ɑ of 5%. Furthermore, the wide 95.4%

band  of ensemble  downcore  1σ  SST  values  demonstrates  a  practical  challenge  for  studies  that

compare decadal and centennial SST variability from two distinct time periods by comparing, e.g., a

late glacial sediment slice’s 1σ SST value to a late Holocene sediment slice’s 1σ SST value. In such

cases, our model results suggest that, for the aforementioned typical sample sizes deployed in the field

(50-100  foraminifera),  random  chance  may  lead  to  any  number  of  possible  apparent  outcomes

regarding the relative apparent SST variablity of the late glacial and the late Holocene.

We do find, however, that greatly increased sample size, higer SAR and reduced measurement error

can all significantly  improve the probability of a given ensemble’s IFA-derived downcore 1σ  SST

exhibiting significant correlation with the TRACE-21ka  SST variation (Table  2).  We must  stress,

however, that our best-case scenarios involve constant SAR and BD, whereas real world conditions in

the field are inherently dynamic and would, therefore, be more challenging. Additionally, we note that

the improved correlation in the case of larger samples size does not correspond to a good reproduction

of  the  absolute values  of  the  SST variation  as  indicated  by  the  TRACE-21ka  SST ENSO-type

variation. Even in the case of an extreme best-case scenario where it is possible to find, pick and

analyse 104 foraminifera per cm, the absolute values of the ENSO-type variation derived from IFA are

systematically greater than that of the TRACE-21ka SST ENSO-type variation (Fig. 3g and Fig. 4g),

despite good correlation (Table 2). This offset in absolute values can be due to the fact that the 1.5-7

yr filtered, 1000 year smoothed TRACE-21ka standard deviation is reflecting a different integration

of the time than the 1σ data retrieved from discrete-depth IFA. The former is based on a smooth of

uniform time,  whereas the latter  is  represents a population of foraminifera with a long-tailed  age

distribution. The absolute offset between the two signals is further increased in the case of machine

error on the IFA SST analysis (Fig. 3h and Fig. 4h), thus highlighting the importance of accurately

quantifying uncertainties in the analytical process.

3.2 Discrete-depth IFA distribution analysis
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Many IFA studies have gone beyond studying a discrete depth’s 1σ SST value and have branched into

more forensic studies of a discrete depth’s IFA-derived SST distribution. These studies have focussed

on analysing the shape of said distribution using various statistical tools, including skewness analysis

of histograms (Leduc et al., 2009; Khider et al., 2011), as well as quantile-quantile (Q-Q) plots (Ford

et al., 2015; White et al., 2018; Thirumalai et al., 2019; Rongstad et al., 2020; White and Ravelo,

2020).  Such analysis  can  reveal  apparent  shifts  in  the  shape  of  the  downcore,  IFA-derived  SST

distribution, which the aforementioned studies have attributed to changes SST changes in the water

caused by  ENSO-type climate variability.

Here, we compare the monthly TRACE-21ka SST data for the 18 ka to 17 ka period to our 100

ensembles of simulated IFA SST for our 10 cm ka -1 scenario, taking in each ensemble the 1 cm

discrete-depth with a median age closest to 17.5 ka. We show 100 ensembles with no analytical error

and constant abundance (Fig. 5), 100 ensembles with ±1° C analytical error and constant abundance

(Fig.  6),  100  ensembles  with  ±1°  C  analytical  error  and  dynamic  abundance  (Fig.  7),  and  100

ensembles with ±1° C analytical error and dynamic abundance (Fig. 8). In all cases in our 10 cm ka -1

scenario, we find that sample sizes typically associated with IFA in the field (50-100 foraminifera)

produce high levels of noise, leading to low reproducibility from one ensemble to the next (panels a

and d in Figs. 5-8). As expected, the 5 and 40 cm ka-1 scenarios (see supplemental figures) result in

lower and higher reproducibility, respectably. In practical terms, these results suggest that if one were

to, at the same coring location, retrieve multiple sediment cores and carry out discrete-depth IFA, it is

possible that different outcomes would be produced each time, each with sub-optimal correspondence

to the true SST distribution in the water. Furthermore, as the level of noise increases with lower SAR,

one has to be additionally careful when comparing IFA results from sites with markedly different

SAR.

We also find that the IFA method has a tendency for noisy over- or undersampling of the tails of the

true SST distribution in the case of typical sample sizes (50-100 specimens) used in the field (panels b

and e in Fig. 5-8). This effect can be attributed to the fact that there is a low occurrence of individual

foraminifera within the population that record more extreme SST, and small sample sizes are likely to

either miss such foraminifera altogether (i.e., −-100% oversampling), or, in the case of a single such

foraminifera being picked within the sample,  significantly over-represent  extreme SST within the

sample (in some cases >500% oversampling, i.e. an extreme SST is represented in the sample at five

times the rate is occurs in reality). This effect has practical consequences for interpretations made

within  IFA  studies,  seeing  as  the  tails  of  the  SST  distribution  are  the  region  of  interest  when

reconstructing the presence of, e.g., extreme ENSO events (Koutavas et al., 2006; Rustic et al., 2015;
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Glaubke  et  al.,  2021).  This  noisy  under-  or  oversampling  of  the  distribution  tails  by  IFA  also

translates directly to sample Q-Q plots (panels c and f in Fig. 5-8), which are commonly used in IFA

studies to investigate the population distribution (Ford et al., 2015; Rongstad et al., 2020). This level

of noise in the tails increases substantially in the case of increased analytical error, i.e. when one

compares panels a-f  in Fig 5 (without  simulated analysis error)  and Fig.  6 (with ±1°C simulated

analysis error). We furthermore find that even larger sample sizes involving 500 foraminifera are also

prone to noisy under- or oversampling in the tails, especially in the case of analytical error (panels g,

h, and i in Fig. 6). We also note that the tendency for under- and oversampling in the tails is greatly

increased  in  the  case  of  lower  SAR  and  somewhat  reduced  in  the  case  of  higher  SAR  (see

supplemental figures for 5 cm ka-1 and 40 cm ka-1 SAR scenarios). Even in the case of sample sizes of

104 foraminifera in our 10 cm ka-1 scenario (panels j, k and l in Figs. 5 and 6) we also find sub-optimal

agreement with the TRACE-21ka SST distribution in the tails. This disagreement is not due to noise,

but due to the fact that we emulate the current state of the art, whereby model SST from a uniform

interval of time (in our case 18 ka to 17 ka) is compared to a sample of foraminifera retrieved from

sediment with a population characterised not by a uniform distribution of time, but an exponential

distribution of time with a long tail towards older ages.

Finally, we investigate the influence of temperature-induced species abundance changes upon IFA-

derived SST distributions.  Our  10  cm ka-1 simulations  that  have  been run using the temperature

abundance transfer function in Fig. 2a are shown in Fig. 7 (without analytical noise) and Fig. 8 (with

analytical noise). We find that in all cases, the IFA-derived SST distribution is biased towards too

warm values when compared to the TRACE-21ka SST distribution (panels a, d, g and j in Fig. 7 and

Fig. 8). This bias can also be visualised as an oversampling of warmer values (panels b, e, h, k in Fig.

7 and Fig. 8), or bias in a Q-Q plot (panels c, f, i, l in Fig. 7 and Fig. 8). We demonstrate that a

species’ abundance response to temperature can inherently bias IFA-derived reconstructions of SST

distribution, which could have practical consequences for studies in the field. For example, the results

in studies that compare IFA-derived SST distributions from significantly differing mean climate states

(White et al., 2018; White and Ravelo, 2020), may be (partially) attributable to a species’ temperature

abundance response to the dominating SST profile associated with the differing climate states. Our

results  demonstrate  the  importance  of  incorporating  understanding  of  past  temporal  changes  of

species abundance and how they can be influenced by SST itself. While here we model a theoretical

species that is biased towards warmer temperatures, the same principle would hold true for a species

biased towards colder temperatures, i.e. the IFA-derived SST distribution could show a bias towards

colder temperaturesits relationship to past SST.
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4.0 Conclusion & Outlook

Our best-case modelling study reveals a number of challenges which inhibit the efficacy of discrete-

depth IFA in producing reconstructions of past SST distribution, the latter of which is paramount in

reconstructing, e.g., past ENSO-type climate dynamics. Firstly, we find that bioturbation of sediment

archives, combined with typical sample sizes employed in IFA-based studies, can lead to noisy IFA-

derived SST distribution reconstructions. This noise leads to poor reproducibility with a potential for

artefactual  results.  We would like to reiterate that  our best-case model  scenarios are possibly not

representative for field studies that have been carried out,  and it  is  entirely possible that existing

studies have been retrieved from areas with a BD that is significantly more or less than the global

average of 10 cm. Consequently, our model results may either over- or understate challenges relevant

to  IFA at  particular  locations.  We  propose,  therefore,  that  studies  in  the  field  can  improve

quantification of the total error on IFA- reconstructions at their particular locations using three main

approaches:  (1)  Quantification  of  real-world  sedimentological  parameters  (SAR,  BD)  and

foraminiferal  parameters (abundance,  temperature sensitivity) at the core site.  (2)  Ensemble-based

forward  model  studies,  as  detailed  in  this  study using  best-case  scenarios,  can  be  run  using  the

sediment and foraminiferal parameters present at the core site. This approach will help estimate the

total stochastic error associated with the IFA-derived reconstruction. Care must be taken to include

uncertainties  regarding  time-domain  estimations  of  SAR,  BD,  species  abundance,  and  analytical

uncertainty. (3) Replication studies in the field (essentially a real-world ensemble approach) to help to

further understand of the the stochastic noise involved with IFA reconstructions.

We furthermore have shown in our best-case study that a species’ abundance response to SST can

inherently bias IFA-derived reconstructions of past SST variability. We propose that the coupling of a

single foraminifera  sediment model  approach to  foraminiferal  ecological  models  (Lombard et  al.,

2011; Roche et al., 2018; Metcalfe et al., 2020) could further help to constrain the total uncertainty

associated with IFA-derived SST reconstructions.

We have also demonstrated that observed or model SST from uniform periods of time (as humans are

accustomed to using) cannot directly be compared to IFA-derived SST which is  retrieved from a

population  with  an  age  distribution  characterised  by  an  exponential  distribution  with  a  long tail

towards older ages. Subsequently, we propose that researchers adjust observational or model SST data

to integrate an exponential representation of time when comparing to IFA-derived SST.
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Table 1. Overview of SAR and number of picked specimens in select IFA studies (including non-

ENSO studies). Region codes are as follows: WEP – Western Equatorial Pacific; CEP – Central 

Equatorial Pacific; EEP – Eastern Equatorial Pacific; EEI – Eastern Equatorial Indian Ocean; SIO – 

Southern Indian Ocean; ARA – Arabian Sea. We have estimated the 1σ value of age in 1 cm of 

sediment based on the SAR and a BD of 10 cm (Boudreau, 1998), using the following calculation 

based on (Berger and Heath, 1968): BD/SAR×1000, where SAR is entered in cm ka-1 and BD in cm.

Core(s) Study Region Approximate 

SAR

(cm ka-1)

Estimated 1σ

value of age 

in 1 cm (yr)

Specimens picked

 per discrete

interval (#)

MGL1208-

14MC and

12GC

(White et al., 2018) CEP ~2.5 4000 70 ~ 90

ODP 806 (Ford et al., 2015) WEP ~ 3 3300 60 ~ 70

ODP 849
(Ford et al., 2015)

(White and Ravelo, 2020)
EEP ~ 4 2500 60 ~ 70

KNR195-5

MC42
(Rustic et al., 2015) EEP ~12 830 55

MD02-2529 (Leduc et al., 2009) EEP ~40 250 65 ~ 90

V21-30
(Koutavas et al., 2006)

(Koutavas and Joanides, 2012)
EEP ~12 830 50

MD98-2177 (Khider et al., 2011) WEP ~70 150 60 ~ 90

SO189-119KL (Thirumalai et al., 2019) EEI ~20 500 55 ~ 65

SO189-39KL (Thirumalai et al., 2019) EEI ~ 37 270 55 ~ 65

GeoB 10038-4 (Thirumalai et al., 2019) EEI ~9 1100 55 ~ 65

GeoB 10053-7 (Thirumalai et al., 2019) EEI ~35 290 55 ~ 65
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NIOP 905P (Ganssen et al., 2011) ARA ~20 500 30 ~ 40

 64PE-174P13 (Scussolini et al., 2013) SIO ~ 1.2 8330 20 ~ 30
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Table  2.  Statistical testing of the ability of the downcore sediment 1σ record to reflect millennial-

scale temporal trends in palaeo-ENSO. Shown in the table, for each scenario, is the number of the 100

ensemble runs whereby the Pearson correlation coefficient between the downcore sediment 1σ record

and the 1.5-7 yr filtered, 1000 year smoothed TRACE-21ka standard deviation exhibits an r2 ≥ 0.6 and

p ≤ 0.05. Correlations are carried out for the 18 ka to 12 ka period, a period of dynamic signal for the

1.5-7 yr filtered, 1000-year smoothed TRACE-21ka standard deviation.

Constant foraminifera abundance Dynamic foraminifera abundance

#

forams

picked

5 cm ka-1

BD 10 cm

no error

5 cm ka-1

BD 10 cm

±1°C err.

10 cm ka-1

 BD 10 cm

no error

10 cm ka-1

BD 10 cm

±1°C error

40 cm ka-1

 BD 10 cm

no error

40 cm ka-1

 BD 10 cm

±1°C error

5 cm ka-1

BD 10 cm

no error

5 cm ka-1

BD 10 cm

±1°C error

10 cm ka-1

BD 10 cm

no error

10 cm ka-1

BD 10 cm

±1°C error

40 cm ka-1

 BD 10 cm

no error

40 cm ka-1

 BD 10

cm

±1°C error

50 0 0 0 0 0 0 0 0 4 0 28 0

100 0 0 6 0 100 5 1 1 49 3 100 55

500 6 2 100 93 100 100 60 21 100 100 100 100

104 100 99 100 100 100 100 100 100 100 100 100 100
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Figure 1. Overview of the modelled core site location and associated TRACE-21ka data. Panel a: The

lcation of the modelled sediment core site superimposed upon the standard deviation of annualised

SST from the TRACE-21ka for the 500 year period between 1490 CE and 1989 CE. Also shown for

reference are the Niño regions 1+2, 3, 3.4 and 4. Panel b: 100 year (1200 month) and 1000 year

(12000 month) moving mean the monthly TRACE-21ka SST data for the modelled sediment core site.

Also shown in light blue and light grey are the moving ±1σ envelopes respectively associated with the

moving 100 year (1200 month) and 1000 year (12000 month) windows. Panel c: 100 year (1200

month) and 1000 year (12000 month) moving 1σ of the 1.5-7 year filtered monthly SST data.
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Figure 2. Panel a: The dynamic species abundance function applied to some of the simulations in this

study. Panel b: An theoretical example of how the dynamic species abundance would bias recording

of SST by individual foraminifera. In blue, a normally distributed theoretical SST profile. In green,

the signal that would be recorded by a species affected by the dynamic species abundance function.
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Figure 3. Simulated downcore, discrete 1 cm depth 1σ SST values of simulated single foraminifera

from various 10 cm ka-1 SAR scenarios with 10 cm BD, each with 100 ensembles of SEAMUS runs.

In each panel, each ensemble is shown using a coloured line. The solid black lines represent the 95%

interval of the ensemble runs at each discrete 1 cm depth. Also shown for reference as a thick grey

line is the 1000 year (12000 month) moving 1σ of the 1.5-7 year filtered monthly SST data (as also

shown in Fig. 1c.) The left panels (a, c, e and g) show the output of scenarios with 50, 100, 500 and

104 randomly picked foraminifera per discrete 1 cm depth, all with constant species abundance and no

assumed analytical error. The right panels (b, d, f and h) show the output of scenarios with 50, 100,

500  and  104 randomly  picked  foraminifera  per  discrete  1  cm  depth,  all  with  constant  species

abundance and an assumed analytical error of ±1°C in SST.
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Figure 4. Simulated downcore, discrete 1 cm depth 1σ SST values of simulated single foraminifera

from various 10 cm ka-1 SAR scenarios with 10 cm BD, each with 100 ensembles of SEAMUS runs.

In each panel, each ensemble is shown using a coloured line. The solid black lines represent the 95%

interval of the ensemble runs at each discrete 1 cm depth. Also shown for reference as a thick grey

line is the 1000 year (12000 month) moving 1σ of the 1.5-7 year filtered monthly SST data (as also

shown in Fig. 1c. The left panels (a, c, e and g) show the output of scenarios with 50, 100, 500 and 104

randomly picked foraminifera per discrete 1 cm depth, all with dynamic species abundance (following

Fig. 2a) and no assumed analytical error. The right panels (b, d, f and h) show the output of scenarios

with 50, 100, 500 and 104 randomly picked foraminifera per discrete 1 cm depth, all with dynamic

species abundance (following Fig. 2a) and an assumed analytical error of ±1°C in SST.
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Figure 5. Simulated single foraminifera SST distributions from 100 ensembles of SEAMUS runs,

with SAR of 10 cm ka-1, BD of 10 cm, no analytical errror and constant abundance. In each ensemble,

the single foraminifera SST distribution from a single discrete depth with a simulated median age of

17.5 ka is shown, and compared to the TRACE-21ka SST distribution for the 18 ka to 17 ka period.

The left panels (a, d, g and j) show the 100 SEAMUS ensembles as coloured lines in the case of 50,

100, 500 and 104 randomly picked foraminifera, with the TRACE-21ka SST distribution is shown as a

black line. The middle panels (b, e, h and k) show the the rate of over/undersampling for each of the

100 SEAMUS ensembles (coloured lines) relative to the TRACE-21ka SST distribution (black line) in

the case of 50, 100, 500 and 104 randomly picked foraminifera. The right panels (c, f, i and l) show Q-

Q plots of the 100 SEAMUS ensemble quantiles vs the TRACE-21ka quantiles as coloured lines in
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the case of 50, 100, 500 and 104 randomly picked foraminifera, with a perfect 1:1 correspondence to

TRACE-21ka shown for reference as a black line.

28



Figure 6. Simulated single foraminifera SST distributions from 100 ensembles of SEAMUS runs,

with SAR of 10 cm ka-1,  BD of 10 cm, ±1 °C analytical errror and constant  abundance. In each

ensemble,  the  single  foraminifera SST distribution from a single  discrete depth with a simulated

median age of 17.5 ka is shown, and compared to the TRACE-21ka SST distribution for the 18 ka to

17 ka period. The left panels (a, d, g and j) show the 100 SEAMUS ensembles as coloured lines in the

case of 50, 100, 500 and 104 randomly picked foraminifera, with the TRACE-21ka SST distribution is

shown as a black line. The middle panels (b, e, h and k) show the the rate of over/undersampling for

each of the 100 SEAMUS ensembles (coloured lines) relative to the TRACE-21ka SST distribution

(black line) in the case of 50, 100, 500 and 104 randomly picked foraminifera. The right panels (c, f, i

and l) show Q-Q plots of the 100 SEAMUS ensemble quantiles vs the TRACE-21ka quantiles as
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coloured lines in the case of 50, 100, 500 and 104 randomly picked foraminifera, with a perfect 1:1

correspondence to TRACE-21ka shown for reference as a black line.
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Figure 7. Simulated single foraminifera SST distributions from 100 ensembles of SEAMUS runs,

with SAR of 10 cm ka-1, BD of 10 cm, no analytical errror and dynamic abundance (following Fig.

2a). In each ensemble, the single foraminifera SST distribution from a single discrete depth with a

simulated median age of 17.5 ka is shown, and compared to the TRACE-21ka SST distribution for the

18 ka to 17 ka period. The left panels (a, d, g and j) show the 100 SEAMUS ensembles as coloured

lines in the case of 50, 100, 500 and 104 randomly picked foraminifera, with the TRACE-21ka SST

distribution  is  shown  as  a  black  line.  The  middle  panels  (b,  e,  h  and  k)  show  the  the  rate  of

over/undersampling for each of the 100 SEAMUS ensembles (coloured lines) relative to the TRACE-

21ka SST distribution (black line) in the case of 50, 100, 500 and 104 randomly picked foraminifera.

The right  panels  (c,  f,  i  and l)  show Q-Q plots  of  the  100 SEAMUS ensemble quantiles  vs  the
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TRACE-21ka  quantiles  as  coloured  lines  in  the  case  of  50,  100,  500  and  10 4 randomly  picked

foraminifera, with a perfect 1:1 correspondence to TRACE-21ka shown for reference as a black line.
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Figure 8. Simulated single foraminifera SST distributions from 100 ensembles of SEAMUS runs,

with SAR of 10 cm ka-1, BD of 10 cm, ±1 °C analytical errror and dynamic abundance (following Fig.

2a). In each ensemble, the single foraminifera SST distribution from a single discrete depth with a

simulated median age of 17.5 ka is shown, and compared to the TRACE-21ka SST distribution for the

18 ka to 17 ka period. The left panels (a, d, g and j) show the 100 SEAMUS ensembles as coloured

lines in the case of 50, 100, 500 and 104 randomly picked foraminifera, with the TRACE-21ka SST

distribution  is  shown  as  a  black  line.  The  middle  panels  (b,  e,  h  and  k)  show  the  the  rate  of

over/undersampling for each of the 100 SEAMUS ensembles (coloured lines) relative to the TRACE-

21ka SST distribution (black line) in the case of 50, 100, 500 and 104 randomly picked foraminifera.

The right  panels  (c,  f,  i  and l)  show Q-Q plots  of  the  100 SEAMUS ensemble quantiles  vs  the

TRACE-21ka  quantiles  as  coloured  lines  in  the  case  of  50,  100,  500  and  10 4 randomly  picked

foraminifera, with a perfect 1:1 correspondence to TRACE-21ka shown for reference as a black line.
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