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Abstract. We use a single foraminifera enabled, holistic hydroclimate-to-sediment transient
modelling approach to fundamentally evaluate the efficacy of discrete-depth individual foraminifera
analysis (IFA) for reconstructing past sea surface temperature (SST) variability from deep-sea
sediment archives, a method that has been used for, amongst other applications, reconstructing El
Nifio Southern Oscillation (ENSO). The computer model environment allows us to strictly control for
variables such as , foraminifera species abundance response to SST,
as well as depositional processes such as sediment accumulation rate (SAR) and bioturbation depth
(BD), and subsequent laboratory processes such as sample size and machine error. Examining a
number of best-case scenarios, we find that IFA-derived reconstructions of past SST variability are
sensitive to all of the aforementioned variables. Running 100 ensembles for each scenario, we find
that the influence of bioturbation upon IFA-derived SST reconstructions, combined with typical
samples sizes employed in the field, produces noisy SST reconstructions with poor correlation to the
original SST distribution in the water. This noise is especially apparent for values near the of
the SST distribution, which is the distribution region of particular interest for, e.g., ENSO. The noise
is further increased in the case of increasing machine error, decreasing SAR and decreasing sample
size. We also find poor agreement between ensembles, underscoring the need for replication studies in
the field to confirm findings at particular sites and time periods. Furthermore, we show that a species’
abundance response to SST could in theory bias IFA-derived SST reconstructions, which can have
consequences when comparing IFA-derived SST from markedly different mean climate states. We
provide a number of idealised simulations spanning a number of SAR, sample size, machine error and
species abundance scenarios, which can help assist researchers in the field to determine under which

conditions they could expect to retrieve significant results.
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1.0 Introduction
1.1 Background

One of the most-studied palaeoclimate signal carrier vessels within deep-sea sediment cores is the
carbonate shells of planktonic foraminifera (microscopic, single-celled organisms), which can record
the conditions of the ambient water that the foraminifera lived in. These organisms have a lifespan of
~1 month, after which their shells sink to, and are deposited on, the sea-floor. Their short lifespan
means that foraminifera microfossil populations retrieved from deep-sea sediment archives can, in
principle, reflect past monthly SST dynamics, which is key for reconstructing decadal scale climate

processes, such as El Nifio Southern Oscillation (ENSO). However, the technical limits associated

with isotope ratio mass spectrometry analysis of foraminifera has traditionally required that
many tens of single foraminifera shells to produce a viable measurement, thus
averaging out any monthly SST signal. Advances in have allowed for the

analysis of single foraminifera shells sizes typically found in planktonic populations (Oba and
Uomonoto, 1989; Spero and Williams, 1990), which has encouraged researchers to carry out a method
commonly referred to as individual foraminifera analysis (IFA) to reconstruct SST variability
associated with, e.g., ENSO (Koutavas et al., 2006; Leduc et al., 2009). This method can, in principle,
allow for the extraction of a range of monthly SST values from a given interval of a deep-sea
sediment archive (i.e. 1 cm discrete depths from a given sediment core). Using the IFA method, a
number of foraminifera are sub-sampled from a discrete-depth’s foraminifera population, after which
some form of SST proxy method is applied to each foraminifera’s carbonate shell to infer individual
SST wvalues. Subsequently, an SST distribution can be inferred, and used to indicate past SST

variability.

The IFA method depends upon a major assumption, namely that the SST distribution generated from
the sub-sampled foraminifera is a faithful representation of the true distribution of monthly water SST
values for a given time interval (i.e. a decadal/centennial/millennial period). However, the ability of
discrete-depth IFA to accurately reproduce a time period’s true water SST distribution can be clouded
by a number of environmental, biological and logistical issues, which can occur in the water domain

(pre-deposition), sediment archive domain (post-deposition) and laboratory domain (post-retrieval).

Regarding issues in the water domain, it is possible that a foraminifera species may not continually
inhabit a single surface water location or water depth, thus giving a non-continuous record of SST,

‘ which can have consequences for, e.g., ENSO reconstructions (Metcalfe et al., 2020
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). Secondly, a species' abundance through time is not constant and can be
influenced by SST itself, which may bias IFA-derived SST distribution reconstructions, which is
especially relevant in the case of ENSO, which itself influences SST. Similarly, long-term absolute
shifts in the overall range of SST (e.g. from a glacial to an interglacial world) may cause the water’s
SST range to shift from one that partially overlaps with a species’ preferred temperature range to one
that fully overlaps with a species’ preferred temperature range. In practical terms, this could lead to an
IFA-derived artefactual shift from a relatively narrow apparent SST distribution to a relatively wider
apparent SST distribution, with potential for incorrect interpretation regarding glacial-interglacial SST

dynamics.

Issues associated with the sediment archive domain can further cloud IFA-derived SST distributions.
Specifically, systematic bioturbation of deep-sea sediment archives means that individual foraminifera
with vastly different ages are mixed into single discrete-depth sediment intervals, which is a particular
challenge in the current state-of-the-art in IFA, which still relies on the ‘average age’ of a particular
sediment interval (i.e. it is not yet feasible to decouple single planktonic foraminifera from their
discrete depth by systematically dating individual specimens). This practical limitation in turn places
an interpretive constraint upon IFA; when foraminifera from vastly different long-term climate states
(i.e. multi-millennial) are mixed into the same sediment interval, the [FA-derived SST variability
reconstructed from that sediment interval cannot be exclusively assigned to decadal or centennial
changes in inter-annual and intra-annual SST variability (Killingley et al., 1981). For these reasons, it
is important to understand the age distribution of foraminifera contained within a discrete-depth
sediment interval. For example, it is often assumed that a sediment archive with a sediment
accumulation rate (SAR) of, e.g., 5 cm ka™ will have a temporal resolution of 1000/5 = 200 yr cm™.
This assumption is deceptively supported by the observation that the mean age of such a sediment
archive increases by ~200 yr every cm. However, downcore increase of discrete-depth mean age is
not the same concept as discrete-depth age variance. The distribution of the age contained within a
single centimetre of sediment core is governed not only by the SAR, but also by the bioturbation
depth (BD), the uppermost depth of the sediment within which bottom-dwelling organisms actively
mix the sediment. Following established understanding of bioturbation processes (Berger and Heath,
1968; Pisias, 1983; Schiffelbein, 1984), the 16 age value for a single cm of sediment core can be
approximated, in the example of a 5 cm ka™ sediment core with a representative BD of 10 cm (Trauth
et al.,, 1997; Boudreau, 1998), as 10/5x1000 = 2000 yr. In idealised conditions, the corresponding

shape of the age distribution for a discrete-depth interval of sediment core will be characterised by an
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exponential distribution with long tail towards older ages. The average age of the sediment at the top
of the sediment archive will also be similar to the 16 age value, as exhibited in “C dates of deep-sea
core tops which support a BD of between 5 and 10 cm (Trauth et al., 1997; Henderiks et al., 2002),
including for the Pacific (Peng et al., 1979; White et al., 2018). It is additionally important to consider
the shape of this distribution when comparing IFA-derived SST from an interval of sediment core
(subsampled from a population with a exponential age distribution with a long tail towards older ages)
to observational or model SST from specific periods of climate history (i.e. a uniform interval of

time).

1.4 Analvtical challenges

{2 Experi 1 Desi

Finally, issues in the laboratory domain, such as sample size and analytical error, can serve to reduce
the reproducibility the reconstructed SST distribution and cause interpretive constraints (Killingley et
al., 1981 Schiffelbein and Hills, 1984:; Thirumalai et al., 2013 Fraass and Lowery, 2017; Dolman and
Laepple, 2018; Lougheed. 2020). Some fields, such as foraminifera ecology, recommend a sample

size of at least 300 specimens for sufficient reproducibility to capture an accurate picture of, e.g.
species assemblage (Dryden, 1931; Patterson and Fishbein, 1989). In the case of IFA, the required

sample size will be sensitive to the research question. For example. when reconstructing, e.g.. ENSO

sample sizes that are too small may lead to an interpretation based on insufficient data, i.e. brief

climate intervals represented by single foraminifera may be over- or undersampled in the sample

when compared to their true frequency of occurence in history. These challenges highlight the need to

carry out a simple modelling approach that incorporates conditions at a particular location (SAR, BD

sample size). which can be done either before or following sample collection.
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2.0 Method

2.1 Experimental Design
21-Approach-synopsis-and-medel-setup

Here, we use a computer modelling approach, which uniquely allows all parameters to be known and
strictly controlled for, thereby allowing us to create an idealised experimental design with minimised

degrees of freedom. Such an approach offers advantages over field-based testing of IFA. where

multiple dynamic parameters are unknown, thus leading to increased degrees of freedom and limiting
the ability to make interpretative conclusions about the influence of isolated parameters. Our
comprehensive modelling approach incorporates quantitative parameterisations of climate, sediment

and laboratory processes. Such a controlled computer model environment allows us to directly

compare a known input water SST distribution to a reconstructed SST distribution derived from the

corresponding simulated sediment-based IFA. In this way, we can objectively quantify how well
discrete-depth IFA functions in a number of strictly controlled, best-case scenarios, allowing its
interpretive capacity for the reconstruction of decadal scale SST variability to be evaluated at the most

fundamental level.

2.2 Approach synopsis and model setup

We carry out a holistic hydroclimate-to-sediment transient modelling approach to test the suitability
of discrete-depth IFA for the reconstruction of SST variability. Crucially, our approach includes a
quantified representation of both sediment processes (in particular bioturbation) and species
abundance, thus building upon previous models and simulation estimations of IFA accuracy where
such information was not yet included (Leduc et al., 2009; Thirumalai et al., 2013; Fraass and
Lowery, 2017). Our modelling approach is carried out using an offline coupling of two transient
models: a single-foraminifera sediment accumulation simulator (SEAMUS; (Lougheed, 2020)) run at

a monthly timestep resolution, forced with monthly SST from the TRACE-21ka climate model (He,
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2011). We investigate a number of best-case scenarios, concentrating on the time period spanning
from 20 ka (BP 1950) up to and including 1989 CE, assuming a hypothetical sediment core location
(Fig. 1) at the centre of the Nifio 3.4 ENSO region that is used to calculate the Oceanic Nifio Index

. While the TRACE-21ka climate model does not necessarily fully capture ENSO processes, we
choose this location in the model because of its dynamic SST (Fig. 1), which make it an interesting

location to test how inputted monthly SST is reconstructed by the simulated IFA method

In this study, simulated single foraminifera are incorporated into synthetic sediment archives, the
latter of which employ best-case sedimentation conditions whereby representative values for SAR and
BD are both kept temporally constant. We assume a best-case scenario where foraminifera perfectly
record monthly SST (in this case the TRACE-21ka SST), and we also assume the existence of an
ideal proxy method that allows for perfect retrieval of SST data from the single foraminifera. In
reality, foraminifera may not continuously record the water temperature at the surface or indeed at the
same water depth in general, which further complicates IFA reconstructions of SST dynamics in
practice, however, here we seek to test best-case conditions. After carrying out the sediment archive
and bioturbation simulation, synthetic single foraminifera are randomly picked from each discrete-
depth cm interval of simulated core, thereby resulting in virtual IFA. The output of the best-case
virtual IFA retrieved from the sediment depth domain can subsequently be directly compared to the
inputted SST in the time domain (i.e. TRACE-21ka SST), allowing us to evaluate the current state-of-
the-art in IFA at the most fundamental level.

We sum up the sediment model component (SEAMUS) in Section 2.3+, and the climate component
(TRACE-21ka) in Section 2.42. An overview of our various best-case scenario simulations, as well as

their associated run parameters, can be found in Section 2.
2.3+ Sediment model component

We model the sedimentation history of single foraminifera using the the SEAMUS sediment
accumulation model (Lougheed, 2020). This stochastic model uses the same established
understanding of bioturbation (Berger and Heath, 1968; Pisias, 1983; Bard, 2001) that is also
incorporated into previous sediment accumulation models (Trauth, 1998, 2013; Dolman and Laepple,
2018), but differs in model execution in that it is explicitly designed for the purpose of modelling
single foraminifera, thus making it a suitable sediment model for use in this IFA evaluation study.

stochastic nature of the model 1s ideal
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for simulating bioturbation of single foraminifera, which is in itself a stochastic process. Furthermore,
this bioturbation model is capable of receiving temporally dynamic input for all parameters. Our

period of interest spans 20 ka BP to 1989 CE, so we have run the SEAMUS model from 30 ka BP to

1989 CE to provide sufficient model spin-up for our period of interest. The model is run using a
monthly timestep resolution , whereby single
synthetic foraminifera are generated at each time-step and added to the top of the sediment

archive after which the BD of the sediment archive is uniformly mixed. All simulations are run with
an appropriate BD of 10 cm, following previous studies (Trauth et al., 1997; Boudreau, 1998). Some
of our model run scenarios assume a temporally constant foraminiferal abundance, in such cases we
assign a constant per timestep foraminiferal abundance that results in 10* foraminifera per cm of
sediment (i.e. the prescribed per timestep abundance is higher in the case of higher SAR and vice-
versa). In the case of model runs with temporally dynamic foraminiferal abundance, the amount of
foraminfiera per cm that will result in 100 foraminifera per timestep (i.e. month) for the given SAR is
simulated, allowing temporal (i.e. monthly) changes in abundance to be modelled with sufficient
statistical power (i.e. if relative abundance of the species drops from 0.56 to 0.55 then it will result in
one less foraminifera of the species being simulated for a timestep). All of our model run scenarios
are carried out using 100 ensemble runs in SEAMUS, thus fully capturing (for 100 percentiles) the
stochastic nature of bioturbation (i.e. the fact that no two sediment archives formed under the same
conditions will be exactly alike). Subsequently, four separate randomised ‘picking’ scenarios are
carried out on each of the 100 ensembles, whereby 50, 100, 500 or 10* synthetic foraminifera are
randomly picked from each discrete 1 cm depth slice of the synthetic core, whereby the picker is
assumed to have perfectly identified the species in all cases, thus avoiding challenges associated with

species mis-identification (Pracht et al., 2019)

. Finally, in some scenarios we add Gaussian noise of £1°C to the SST of all simulated
foraminifera, to mimic proxy uncertainty. All ensemble runs were performed using a Linux computer
cluster provided by the Swedish National Infrastructure for Computing (SNIC) at the Uppsala
Multidisciplinary Centre for Advanced Computational Science (UPPMAX).

2.42 Climate model component

Monthly SST forcing for the SEAMUS model is sourced from the TRACE-21ka transient climate
simulation (He, 2011), specifically using the surface temperature data for the TRACE-21ka grid cell
centred on the coordinates 1.86° N and 146.25° W. This grid cell, at the centre of the Nifio 3.4 ENSO

region used for calculating the , 1s ideal for our synthetic core
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simulation as it is characterised by large variation in the model's inter-annual seasonal surface
temperature (Fig. 1a), somewhat analogous to, e.g., ENSO. Furthermore, the grid cell also captures
the glacial-interglacial SST transition (Fig. 1b), as well as typical TRACE-21ka transient changes in
ENSO-like SST variability, as shown by the 1.5-7 yr filtered 100 and 1000 year moving 1o of SST
(Fig. 1c). This filtering approach has previously been used to identify ENSO-like variability in
TRACE-21ka for the Nifio 3.4 region (Liu et al., 2014). While the model variability is itself of course
not a true replication of the real ENSO signal, it nonetheless offers an interesting analogous timeseries
of inter-annual changes in SST variability with which to test the efficacy of the IFA method in
reproducing said SST variability.

The TRACE-21ka dataset is the result of a fully-coupled Community Climate System Model
(CCSM3) simulation with T31 gx3 grid resolution that uses transient forcing changes in both
greenhouses gases, orbital driven insolation variations, ice sheet evolution (ICE-5G) and associated
meltwater fluxes for a non-accelerated atmosphere-ocean-sea ice-land surface coupling. The TRACE-
21ka dataset begins at 22 ka, whereas our SEAMUS run starts at 30 ka. The reason for this difference
is that we provide an extra 10 ka of spin-up time for the SEAMUS model, which is important in cases
of very low SAR (e.g. <5 cm ka™). In order to provide SST data for synthetic foraminifera generated
between 30 ka and 22 ka, the oldest 1500 years contained within the TRACE-21ka dataset are
repeated from 22 ka to 30 ka. Such an approach obviously does not represent an accurate picture of
the climate between 30 ka and 22 ka, but it has no practical consequences for the particular purpose of
our study, which is to compare a given climate input signal in the time domain to the subsequent
signal recorded by single foraminifera in the sediment depth domain. Furthermore, our period of study

interest spans the past 20 ka.
2.53 Model run settings

We carry out a number of best-case scenarios, with each scenario being subject to 100 ensemble runs
to capture the full stochastic range resulting from the sedimentation, bioturbation and picking
processes. We run SAR scenarios for 5, 10 and 40 cm ka'. In the figures in the main text, we
concentrate on the 10 cm ka™ scenarios only. The corresponding figures for the 40 cm ka™' and 5 cm
ka' scenarios, the latter of which may be more realistic for of the Pacific, can be
found in the supplement. Each of the three SAR scenarios is first subjected to 100 ensemble runs with
constant foraminifera abundance and a perfect SST proxy, a second set of 100 ensemble runs is then
carried out with constant abundance and added +1°C Gaussian noise on the SST proxy, a third set of
100 ensemble runs is carried out with dynamic abundance and a perfect SST proxy, and a final set of

100 ensemble runs is carried out with dynamic abundance and +1°C Gaussian noise on the SST

8
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proxy. All of the aforementioned 1200 ensembles are each subjected to randomised picking for 50,

100, 500 and 10* foraminifera per cm of sediment core depth.

As described in the previous paragraph, some of our scenarios incorporate dynamic foraminiferal
abundance in order to investigate the effect of changes in species abundance upon IFA-derived
reconstructions. In these scenarios, we use a hypothetical transfer function (Fig. 2a) to assign a per
timestep abundance to our simulated foraminifera species. This theoretical transfer function is purely
demonstrational, and is used to gain insight into how a given abundance response influences IFA
reconstructions of SST variability. Timestep abundance is calculated by applying the function to
the corresponding TRACE-21ka SST for the timestep. This approach allows us to quantify how a
known species abundance response to SST could systematically bias an IFA-derived SST distribution.
Consider, for example, a theoretical time interval whereby the true monthly SST data are normally
distributed, as in the theoretical example in Fig. 2b. In such a case, an IFA-derived SST distribution
using a species characterised by our SST transfer function would be biased towards warmer
temperatures and, furthermore, the shape of the IFA-derived SST distribution would be skewed, as

shown in the abundance-modified profile in Fig. 2b.
3.0 Results & Discussion
3.1 Downcore, discrete-depth IFA standard deviation

Numerous studies have concentrated on subsampling numerous individual foraminifera from the same
discrete-depth interval of a sediment core, from which the 1o value of the SST (or a proxy equivalent
thereof) of those foraminifera is calculated to infer SST wvariability for a particular time period,
whereby a greater 1o value is assumed to indicate increased SST variability due to, e.g., ENSO
(Koutavas et al., 2006; Koutavas and Joanides, 2012; Rustic et al., 2015). To evaluate such an
approach, we compare the 1.5-7 yr filtered 1000 year moving 1o of SST in the time domain (Fig. 1c)
to ensembles of SEAMUS runs carried out under various sediment and picking conditions within a 10
cm ka! scenario (Fig. 3 and Fig. 4). The equivalent figures for the 40 cm ka™ and 5 cm ka™' scenarios,
the latter of which may be more representative for the open ocean areas of the Pacific (Olson et al.,

2016; Metcalfe et al., 2020), can be found in the supplement.

We find that the discrete-depth, downcore 1o value reconstructed using IFA analysis for the simulated
10 cm scenarios varies greatly between all of the 100 ensemble runs in the case of I[FA sample
sizes typically used in the field, i.e. between 50 foraminifera (Fig. 3a-b; Fig. 4a-b) and 100
foraminifera (Fig. 3c-d; Fig. 4c-d) individual foraminifera being picked per cm. This poor

reproducibility between ensemble runs is a result of noise generated by small sample sizes in

9
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combination with systematic bioturbation. The practical consequence of this poor reproducibility is
that, in the case of typical sample sizes used in the field (50-100 foraminifera), none or very few of
the 100 ensemble runs result a significant

between the IFA-derived downcore 16 SST signal and the 1.5-7 yr filtered TRACE-
21ka 1000 year moving 1o (Table 2), for the period 18 ka to 12 ka, a period of dynamic ENSO-like
variation in the TRACE-21ka SST

. Furthermore, the wide 95.4%
band of ensemble downcore 1o SST values demonstrates a practical challenge for studies that
compare decadal and centennial SST variability from two distinct time periods by comparing, e.g., a
late glacial sediment slice’s 16 SST value to a late Holocene sediment slice’s 16 SST value. In such
cases, our model results suggest that, for the aforementioned typical sample sizes deployed in the field
(50-100 foraminifera), random chance may lead to any number of possible apparent outcomes

regarding the relative apparent SST variablity of the late glacial and the late Holocene.

We do find, however, that greatly increased sample size, higer SAR and reduced measurement error
can all significantly improve the probability of a given ensemble’s IFA-derived downcore 1o SST
exhibiting significant correlation with the TRACE-21ka SST variation (Table 2). We must stress,
however, that our best-case scenarios involve constant SAR and BD, whereas real world conditions in
the field are inherently dynamic and would, therefore, be more challenging. Additionally, we note that
the improved correlation in the case of larger samples size does not correspond to a good reproduction
of the absolute values of the SST variation as indicated by the TRACE-21ka SST ENSO-type
variation. Even in the case of an extreme best-case scenario where it is possible to find, pick and
analyse 10* foraminifera per cm, the absolute values of the ENSO-type variation derived from IFA are
systematically greater than that of the TRACE-21ka SST ENSO-type variation (Fig. 3g and Fig. 4g),
despite good correlation (Table 2). This offset in absolute values can be due to the fact that the 1.5-7
yr filtered, 1000 year smoothed TRACE-21ka standard deviation is reflecting a different integration
of the time than the 1o data retrieved from discrete-depth IFA. The former is based on a smooth of
uniform time, whereas the latter is—represents a population of foraminifera with a long-tailed age
distribution. The absolute offset between the two signals is further increased in the case of machine
error on the IFA SST analysis (Fig. 3h and Fig. 4h), thus highlighting the importance of accurately

quantifying uncertainties in the analytical process.

3.2 Discrete-depth IFA distribution analysis

10
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Many IFA studies have gone beyond studying a discrete depth’s 16 SST value and have branched into
more forensic studies of a discrete depth’s IFA-derived SST distribution. These studies have focussed
on analysing the shape of said distribution using various statistical tools, including skewness analysis
of histograms (Leduc et al., 2009; Khider et al., 2011), as well as quantile-quantile (Q-Q) plots (Ford
et al., 2015; White et al., 2018; Thirumalai et al., 2019; Rongstad et al., 2020; White and Ravelo,
2020). Such analysis can reveal apparent shifts in the shape of the downcore, IFA-derived SST
distribution, which the aforementioned studies have attributed to changes SST changes in the water

caused by ENSO-type climate variability.

Here, we compare the monthly TRACE-21ka SST data for the 18 ka to 17 ka period to our 100
ensembles of simulated IFA SST for our 10 ¢m ka™ scenario, taking in each ensemble the 1 ¢cm
discrete-depth with a median age closest to 17.5 ka. We show 100 ensembles with no analytical error
and constant abundance (Fig. 5), 100 ensembles with +1° C analytical error and constant abundance
(Fig. 6), 100 ensembles with +£1° C analytical error and dynamic abundance (Fig. 7), and 100
ensembles with £1° C analytical error and dynamic abundance (Fig. 8). In all cases in our 10 cm ka™'
scenario, we find that sample sizes typically associated with IFA in the field (50-100 foraminifera)
produce high levels of noise, leading to low reproducibility from one ensemble to the next (panels a
and d in Figs. 5-8). As expected, the 5 and 40 cm ka™ scenarios (see supplemental figures) result in
lower and higher reproducibility, respectably. In practical terms, these results suggest that if one were
to, at the same coring location, retrieve multiple sediment cores and carry out discrete-depth IFA, it is
possible that different outcomes would be produced each time, each with sub-optimal correspondence
to the true SST distribution in the water. Furthermore, as the level of noise increases with lower SAR,
one has to be additionally careful when comparing IFA results from sites with markedly different

SAR.

We also find that the IFA method has a tendency for noisy over- or undersampling of the tails of the
true SST distribution in the case of typical sample sizes (50-100 specimens) used in the field (panels b
and e in Fig. 5-8). This effect can be attributed to the fact that there is a low occurrence of individual
foraminifera within the population that record more extreme SST, and small sample sizes are likely to
either miss such foraminifera altogether (i.e., —-100% oversampling), or, in the case of a single such
foraminifera being picked within the sample, significantly over-represent extreme SST within the
sample (in some cases >500% oversampling

). This effect has practical consequences for interpretations made
within [FA studies, seeing as the tails of the SST distribution are the region of interest when

reconstructing the presence of, e.g., extreme ENSO events (Koutavas et al., 2006; Rustic et al., 2015

11
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). This noisy under- or oversampling of the distribution tails by IFA also
translates directly to sample Q-Q plots (panels ¢ and f in Fig. 5-8), which are commonly used in IFA
studies to investigate the population distribution (Ford et al., 2015; Rongstad et al., 2020). This level
of noise in the tails increases substantially in the case of increased analytical error, i.e. when one
compares panels a-f in Fig 5 (without simulated analysis error) and Fig. 6 (with £1°C simulated
analysis error). We furthermore find that even larger sample sizes involving 500 foraminifera are
prone to noisy under- or oversampling in the tails, especially in the case of analytical error (panels g,
h, and i in Fig. 6). We also note that the tendency for under- and oversampling in the tails is greatly
increased in the case of lower SAR and somewhat reduced in the case of higher SAR (see
supplemental figures for 5 cm ka™' and 40 cm ka™' SAR scenarios). Even in the case of sample sizes of
10* foraminifera in our 10 cm ka™ scenario (panels j, k and 1 in Figs. 5 and 6) we also find sub-optimal
agreement with the TRACE-21ka SST distribution in the tails. This disagreement is not due to noise,
but due to the fact that we emulate the current state of the art, whereby SST from a uniform
interval of time (in our case 18 ka to 17 ka) is compared to a sample of foraminifera retrieved from
sediment with a population characterised not by a uniform distribution of time, but an exponential

distribution with a long tail towards older ages.

Finally, we investigate the influence of temperature-induced species abundance changes upon IFA-
derived SST distributions. Our 10 cm ka' simulations that have been run using the temperature
abundance transfer function in Fig. 2a are shown in Fig. 7 (without analytical noise) and Fig. 8 (with
analytical noise). We find that in all cases, the IFA-derived SST distribution is biased towards too
warm values when compared to the TRACE-21ka SST distribution (panels a, d, g and j in Fig. 7 and
Fig. 8). This bias can also be visualised as an oversampling of warmer values (panels b, e, h, k in Fig.
7 and Fig. 8), or bias in a Q-Q plot (panels c, f, i, 1 in Fig. 7 and Fig. 8). We demonstrate that a
species’ abundance response to temperature can inherently bias IFA-derived reconstructions of SST
distribution, which could have practical consequences for studies in the field. For example, the results
in studies that compare IFA-derived SST distributions from significantly differing mean climate states
(White et al., 2018; White and Ravelo, 2020), may be (partially) attributable to a species’ temperature
abundance response to the dominating SST profile associated with the differing climate states. Our
results demonstrate the importance of incorporating understanding of past temporal changes of

species abundance and
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4.0 Conclusion & Outlook

Our best-case modelling study reveals a number of challenges which inhibit the efficacy of discrete-
depth IFA in producing reconstructions of past SST distribution, the latter of which is paramount in
reconstructing, e.g., past ENSO-type climate dynamics. Firstly, we find that bioturbation of sediment
archives, combined with typical sample sizes employed in IFA-based studies, can lead to noisy IFA-
derived SST distribution reconstructions. This noise leads to poor reproducibility with a potential for
artefactual results. We would like to reiterate that our best-case model scenarios are possibly not
representative for field studies that have been carried out, and it is entirely possible that existing
studies have been retrieved from areas with a BD that is significantly more or less than the global
average of 10 cm. Consequently, our model results may either over- or understate challenges relevant
to IFA . We propose, therefore, that studies in the field can improve
quantification of the total error on IFA- reconstructions using three main
approaches: (1) Quantification of real-world sedimentological parameters (SAR, BD) and
foraminiferal parameters (abundance, temperature sensitivity) at the core site. (2) Ensemble-based
forward model studies, as detailed in this study using best-case scenarios, can be run using the
sediment and foraminiferal parameters present at the core site. This approach will help estimate the
total stochastic error associated with the IFA-derived reconstruction. Care must be taken to include
uncertainties regarding time-domain estimations of SAR, BD, species abundance, and analytical
uncertainty. (3) Replication studies in the field (essentially a real-world ensemble approach) to help to

further understand of the the stochastic noise involved with IFA reconstructions.

We furthermore have shown in our best-case study that a species’ abundance response to SST can
inherently bias IFA-derived reconstructions of past SST variability. We propose that the coupling of a
single foraminifera sediment model approach to foraminiferal ecological models (Lombard et al.,
2011; Roche et al., 2018; Metcalfe et al., 2020) could further help to constrain the total uncertainty

associated with IFA-derived SST reconstructions.

We have also demonstrated that observed or model SST from uniform periods of time (as humans are
accustomed to using) cannot directly be compared to IFA-derived SST which is retrieved from a
population with an age distribution characterised by an exponential distribution with a long tail
towards older ages. Subsequently, we propose that researchers adjust observational or model SST data

to integrate an exponential representation of time when comparing to IFA-derived SST.
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Table 1. Overview of SAR and number of picked specimens in select IFA studies (including non-

ENSO studies). Region codes are as follows: WEP — Western Equatorial Pacific, CEP — Central

Equatorial Pacific; EEP — Eastern Equatorial Pacific; EEI — Eastern Equatorial Indian Ocean; SIO —

Southern Indian Ocean; ARA — Arabian Sea. We have estimated the 1o value of age in 1 cm of

sediment based on the SAR and a BD of 10 cm (Boudreau, 1998), using the following calculation
based on (Berger and Heath, 1968): BD/SARx1000, where SAR is entered in cm ka™ and BD in cm.

Core(s) Study Region | Approximate | Estimated lo | Specimens picked
SAR value of age per discrete
(cmka™) in 1 cm (yr) interval (#)
MGL1208-
14MC and | (White et al., 2018) CEP ~2.5 4000 70 ~ 90
12GC
ODP 806 (Ford et al., 2015) WEP ~3 3300 60 ~ 70
(Ford et al., 2015)
ODP 849 EEP ~4 2500 60 ~ 70
(White and Ravelo, 2020)
KNR195-5
(Rustic et al., 2015) EEP ~12 830 55
MC42
MDO02-2529 | (Leduc et al., 2009) EEP ~40 250 65~90
(Koutavas et al., 2006)
V21-30 EEP ~12 830 50
(Koutavas and Joanides, 2012)
MD98-2177 | (Khider et al., 2011) WEP ~70 150 60 ~90
SO189-119KL |(Thirumalai et al., 2019) EEI ~20 500 55~65
SO189-39KL | (Thirumalai et al., 2019) EEI ~37 270 55~65
GeoB 10038-4 | (Thirumalai et al., 2019) EEI ~9 1100 55~ 65
GeoB 10053-7 | (Thirumalai et al., 2019) EEI ~35 290 55 ~65
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435

NIOP 905P

(Ganssen et al., 2011)

ARA

~20

500

30~40

64PE-174P13

(Scussolini et al., 2013)

SIO

~12

8330

20 ~30
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Table 2. Statistical testing of the ability of the downcore sediment 16 record to reflect millennial-
scale temporal trends in palaco-ENSO. Shown in the table, for each scenario, is the number of the 100
ensemble runs whereby the Pearson correlation coefficient between the downcore sediment 16 record
and the 1.5-7 yr filtered, 1000 year smoothed TRACE-21ka standard deviation exhibits an r*> 0.6 and

440 p < 0.05. Correlations are carried out for the 18 ka to 12 ka period, a period of dynamic signal for the
1.5-7 yr filtered, 1000-year smoothed TRACE-21ka standard deviation.

Constant foraminifera abundance Dynamic foraminifera abundance

# S5cmka’ | Scmka’ | 10cmka’ | 10cmka! | 40cmka’ |40 cmka' | 5cmka’ | Scmka' | 10cmka! | 10cmka” | 40 cmka™! | 40 cm ka™!

forams | BD 10cm | BD 10cm | BD 10cm | BD 10ecm | BD 10ecm | BD 10cm | BD 10cm | BD 10 ecm | BD 10ecm | BD 10ecm | BD 10ecm|  BD 10

picked noerror | £1°Cerr. | noerror |+1°Cerror| noerror |+1°Cerror| noerror |+1°Cerror| noerror |+1°C error| no error cm

+1°C error
50 0 0 0 0 0 0 0 0 4 0 28 0
100 0 0 6 0 100 5 1 1 49 3 100 55
500 6 2 100 93 100 100 60 21 100 100 100 100
10* 100 99 100 100 100 100 100 100 100 100 100 100
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TRACE-21ka annualised surface temperature variability (1490 CE to 1989 CE)
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| Figure 1. Overview of the modelled core site location and associated TRACE-21ka data. Panel a: The
Ication of the modelled sediment core site superimposed upon the standard deviation of annualised
SST from the TRACE-21ka for the 500 year period between 1490 CE and 1989 CE. Also shown for
reference are the Nifio regions 142, 3, 3.4 and 4. Panel b: 100 year (1200 month) and 1000 year
(12000 month) moving mean the monthly TRACE-21ka SST data for the modelled sediment core site.
Also shown in light blue and light grey are the moving 16 envelopes respectively associated with the
moving 100 year (1200 month) and 1000 year (12000 month) windows. Panel c: 100 year (1200
month) and 1000 year (12000 month) moving 1o of the 1.5-7 year filtered monthly SST data.
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Figure 2. Panel a: The dynamic species abundance function applied to some of the simulations in this
study. Panel b: An theoretical example of how the dynamic species abundance would bias recording
of SST by individual foraminifera. In blue, a normally distributed theoretical SST profile. In green,

the signal that would be recorded by a species affected by the dynamic species abundance function.
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Ensemble of 100 SEAMUS core simulations Ensemble of 100 SEAMUS core simulations
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and constant abundance and constant abundance
Discrete 1 cm depth median age (ka) Discrete 1 cm depth median age (ka)
0 5 10 15 20 0 5 10 15 20
. 2 : . . . 2
O 50 foraminifera picked per cm )
= 1.5 T |kl | =
b &
g 1% £
[&] [&]
~ 05 v
— T ' =
O 100 foraminifera picked per cm O
~ 15 g
S e
e 1¢ £
[&] [&]
= 05 —
= 2 .
(@) @]
< " 2
) Z d e
— | i 1 —
- () c
L . . 0.5
. 2 T - 2 =
© 10" foraminifera picked per cm ©
- 3 Jn\ﬂ; 1.5 -~
b SRR S
= 1 w 1 e
e =
[&] [&]
g ——— hy — ~— Ll
0 5 10 15 200 5 10 15 20

Discrete 1 cm depth median age (ka) Discrete 1 cm depth median age (ka)

Figure 3. Simulated downcore, discrete 1 cm depth 1o SST values of simulated single foraminifera
from various 10 cm ka' SAR scenarios with 10 cm BD, each with 100 ensembles of SEAMUS runs.
In each panel, each ensemble is shown using a coloured line. The solid black lines represent the 95%
interval of the ensemble runs at each discrete 1 cm depth. Also shown for reference as a thick grey
line is the 1000 year (12000 month) moving 1c of the 1.5-7 year filtered monthly SST data (as also
shown in Fig. 1c.) The left panels (a, c, e and g) show the output of scenarios with 50, 100, 500 and
10* randomly picked foraminifera per discrete 1 cm depth, all with constant species abundance and no
assumed analytical error. The right panels (b, d, f and h) show the output of scenarios with 50, 100,
500 and 10* randomly picked foraminifera per discrete 1 cm depth, all with constant species

abundance and an assumed analytical error of +£1°C in SST.
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Ensemble of 100 SEAMUS core simulations Ensemble of 100 SEAMUS core simulations

SAR: 10 cm ka™', BD: 10 cm, no error SAR: 10 cmka™', BD: 10 ¢m, £1°C etror
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Figure 4. Simulated downcore, discrete 1 cm depth 1o SST values of simulated single foraminifera
from various 10 cm ka' SAR scenarios with 10 cm BD, each with 100 ensembles of SEAMUS runs.
In each panel, each ensemble is shown using a coloured line. The solid black lines represent the 95%
interval of the ensemble runs at each discrete 1 cm depth. Also shown for reference as a thick grey
line is the 1000 year (12000 month) moving 1c of the 1.5-7 year filtered monthly SST data (as also
shown in Fig. 1c. The left panels (a, c, e and g) show the output of scenarios with 50, 100, 500 and 10*
randomly picked foraminifera per discrete 1 cm depth, all with dynamic species abundance (following
Fig. 2a) and no assumed analytical error. The right panels (b, d, f and h) show the output of scenarios
with 50, 100, 500 and 10* randomly picked foraminifera per discrete 1 cm depth, all with dynamic

species abundance (following Fig. 2a) and an assumed analytical error of £1°C in SST.
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Figure 5. Simulated single foraminifera SST distributions from 100 ensembles of SEAMUS runs,

with SAR of 10 cm ka™!, BD of 10 cm, no analytical errror and constant abundance. In each ensemble,

the single foraminifera SST distribution from a single discrete depth with a simulated median age of

17.5 ka is shown, and compared to the TRACE-21ka SST distribution for the 18 ka to 17 ka period.

The left panels (a, d, g and j) show the 100 SEAMUS ensembles as coloured lines in the case of 50,
100, 500 and 10* randomly picked foraminifera, with the TRACE-21ka SST distribution is shown as a

black line. The middle panels (b, e, h and k) show the the rate of over/undersampling for each of the
100 SEAMUS ensembles (coloured lines) relative to the TRACE-21ka SST distribution (black line) in

the case of 50, 100, 500 and 10* randomly picked foraminifera. The right panels (c, f, i and 1) show Q-
Q plots of the 100 SEAMUS ensemble quantiles vs the TRACE-21ka quantiles as coloured lines in
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the case of 50, 100, 500 and 10* randomly picked foraminifera, with a perfect 1:1 correspondence to

TRACE-21ka shown for reference as a black line.
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Figure 6. Simulated single foraminifera SST distributions from 100 ensembles of SEAMUS runs,

with SAR of 10 cm ka”, BD of 10 cm, £1 °C analytical errror and constant abundance. In each

ensemble, the single foraminifera SST distribution from a single discrete depth with a simulated

median age of 17.5 ka is shown, and compared to the TRACE-21ka SST distribution for the 18 ka to
17 ka period. The left panels (a, d, g and j) show the 100 SEAMUS ensembles as coloured lines in the
case of 50, 100, 500 and 10* randomly picked foraminifera, with the TRACE-21ka SST distribution is

shown as a black line. The middle panels (b, e, h and k) show the the rate of over/undersampling for

each of the 100 SEAMUS ensembles (coloured lines) relative to the TRACE-21ka SST distribution

(black line) in the case of 50, 100, 500 and 10* randomly picked foraminifera. The right panels (c, f, i
and 1) show Q-Q plots of the 100 SEAMUS ensemble quantiles vs the TRACE-21ka quantiles as
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coloured lines in the case of 50, 100, 500 and 10* randomly picked foraminifera, with a perfect 1:1

correspondence to TRACE-21ka shown for reference as a black line.
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Ensemble of 100 SEAMUS runs compared to TRACE21ka for period spanning 18 ka to 17 ka.
SAR: 10 cm ka“1, BD: 10 cm, no analysis error and dynamic abundance
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Figure 7. Simulated single foraminifera SST distributions from 100 ensembles of SEAMUS runs,

with SAR of 10 ¢cm ka™', BD of 10 cm, no analytical errror and dynamic abundance (following Fig.

2a). In each ensemble, the single foraminifera SST distribution from a single discrete depth with a

simulated median age of 17.5 ka is shown, and compared to the TRACE-21ka SST distribution for the
18 ka to 17 ka period. The left panels (a, d, g and j) show the 100 SEAMUS ensembles as coloured
lines in the case of 50, 100, 500 and 10* randomly picked foraminifera, with the TRACE-21ka SST

distribution is shown as a black line. The middle panels (b, e, h and k) show the the rate of

over/undersampling for each of the 100 SEAMUS ensembles (coloured lines) relative to the TRACE-
21ka SST distribution (black line) in the case of 50, 100, 500 and 10 randomly picked foraminifera.
The right panels (c, f, i and 1) show Q-Q plots of the 100 SEAMUS ensemble quantiles vs the
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TRACE-21ka quantiles as coloured lines in the case of 50, 100, 500 and 10* randomly picked

520 foraminifera, with a perfect 1:1 correspondence to TRACE-21ka shown for reference as a black line.
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Figure 8. Simulated single foraminifera SST distributions from 100 ensembles of SEAMUS runs,
with SAR of 10 cm ka™', BD of 10 ¢m, £1 °C analytical errror and dynamic abundance (following Fig.
2a). In each ensemble, the single foraminifera SST distribution from a single discrete depth with a
simulated median age of 17.5 ka is shown, and compared to the TRACE-21ka SST distribution for the
18 ka to 17 ka period. The left panels (a, d, g and j) show the 100 SEAMUS ensembles as coloured
lines in the case of 50, 100, 500 and 10* randomly picked foraminifera, with the TRACE-21ka SST
distribution is shown as a black line. The middle panels (b, e, h and k) show the the rate of
over/undersampling for each of the 100 SEAMUS ensembles (coloured lines) relative to the TRACE-
21ka SST distribution (black line) in the case of 50, 100, 500 and 10* randomly picked foraminifera.
The right panels (c, f, i and 1) show Q-Q plots of the 100 SEAMUS ensemble quantiles vs the
TRACE-21ka quantiles as coloured lines in the case of 50, 100, 500 and 10* randomly picked

foraminifera, with a perfect 1:1 correspondence to TRACE-21ka shown for reference as a black line.
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