

1 11 Nov 2021

2 **Fractionation of stable carbon isotopes during acetate consumption by**
3 **methanogenic and sulfidogenic microbial communities in rice paddy soils**
4 **and lake sediments**

5

6 Ralf Conrad¹, Pengfei Liu^{1,2}, Peter Claus¹

7

8 ¹Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg,
9 Germany

10

11 ²Center for Pan-third Pole Environment, Lanzhou University, Tianshuihanlu 222, Lanzhou,
12 730000, China

13

14 Correspondence to: Ralf Conrad (Conrad@mpi-marburg.mpg.de)

15

16 **Running head:** Isotope fractionation by anaerobic acetate consumption

17

18

19 **Abstract.** Acetate is an important intermediate during the degradation of organic matter in
20 anoxic flooded soils and sediments. Acetate is disproportionated to CH₄ and CO₂ by
21 methanogenic or is oxidized to CO₂ by sulfate-reducing microorganisms. These reactions
22 result in carbon isotope fractionation, depending on the microbial species and their particular
23 carbon metabolism. To learn more about the magnitude of the isotopic enrichment factors (ϵ)
24 involved, acetate conversion to CH₄ and CO₂ was measured in anoxic paddy soils from
25 Vercelli (Italy) and the International Rice Research Institute (IRRI, the Philippines) and in
26 anoxic lake sediments from the north east (NE) and the south west (SW) basins of Fuchskuhle
27 (Germany). Acetate consumption was measured using samples of paddy soil or lake sediment
28 suspended in water or in phosphate buffer (pH 7.0), both in the absence and presence of
29 sulfate (gypsum), and of methyl fluoride (CH₃F), an inhibitor of aceticlastic methanogenesis.
30 Under methanogenic conditions, values of ϵ_{ac} for acetate consumption were always in a range
31 of -21‰ to -17‰, but higher in the lake sediment from the SW basin (-11‰). Under
32 sulfidogenic conditions ϵ_{ac} values tended to be slightly lower (-26‰ to -19‰) especially
33 when aceticlastic methanogenesis was inhibited. Again, ϵ_{ac} in the lake sediment of the SW
34 basin was higher (-18‰ to -14‰). Determination of ϵ_{CH_4} from the accumulation of ¹³C in
35 CH₄ resulted in much lower values (-37‰ to -27‰) than from the depletion of ¹³C in acetate
36 (-21‰ to -17‰), especially when acetate degradation was measured in buffer suspensions.
37 The microbial communities were characterized by sequencing the bacterial 16S rRNA genes
38 as well as the methanogenic *mcrA* and sulfidogenic *dsrB* genes. The microbial communities
39 were quite different between lake sediments and paddy soils, but were similar in the
40 sediments of the two lake basins and in the soils from Vercelli and IRR, and were similar after
41 preincubation without and with addition of sulfate (gypsum). The different microbial
42 compositions could hardly serve for the prediction of the magnitude of enrichment factors.

43 **1 Introduction**

44 Organic matter degradation under anaerobic conditions results in the production of CO₂,
45 when electron acceptors such sulfate (sulfidogenic conditions) are available, and in the
46 production of CH₄ and CO₂, when they are absent (methanogenic conditions). Carbon dioxide
47 is not only end product, but can also serve as an intermediate. It can for example be converted
48 by chemolithotrophic microorganisms to CH₄ or to acetate. These conversion reactions of
49 CO₂ have an isotope effect and result in products that are strongly depleted in ¹³C, expressing
50 isotope enrichment factors (ϵ) being on the order of -70 to -50‰ (Blaser and Conrad, 2016).
51 However, the conversion of acetate to CO₂ by sulfidogenic reactions or to CH₄ plus CO₂ by
52 methanogenic reactions can also have quite substantial enrichment factors, often being on the
53 order of about -20‰ (Goevert and Conrad, 2009; Goevert and Conrad, 2010).

54 Knowledge of enrichment factors is important for the quantification of the pathways
55 involved in anaerobic degradation of organic matter. For example, the relative contribution of
56 hydrogenotrophic and aceticlastic methanogenesis to total CH₄ production can be determined
57 in situ from analytical values of ¹³C in organic matter, CO₂ and CH₄, if the enrichment factors
58 (ϵ) are known for the reduction of CO₂ to CH₄ (hydrogenotrophic methanogenesis) and the
59 cleavage of acetate to CH₄ and CO₂ (aceticlastic methanogenesis)(Conrad, 2005). While ϵ of
60 the former reaction can be experimentally determined by incubation in the presence of CH₃F
61 (Chan et al., 2005; Conrad et al., 2007; Holmes et al., 2014; Penning et al., 2006b), that of the
62 latter reaction is not so easy to determine. So far reference values are mainly available from
63 relatively few experiments with pure microbial cultures. This is true for both aceticlastic
64 methanogenic archaea (Gelwicks et al., 1994; Goevert and Conrad, 2009; Krzycki et al.,
65 1987; Penning et al., 2006a; Valentine et al., 2004; Zyakun et al., 1988) and acetate-oxidizing
66 sulfidogenic bacteria (Goevert and Conrad, 2008; Goevert and Conrad, 2010; Londry and
67 DesMarais, 2003).

68 There are quite some studies of methanogenic and sulfidogenic microbial communities in
69 environmental samples, notably in paddy soils from Italy and the Philippines (Liu et al., 2019;
70 Liu et al., 2018a; Liu et al., 2018b; Wörner et al., 2016) and in sediments from Lake
71 Fuchskuhle (Chan et al., 2002). However, there are hardly studies of environmental samples,

72 in which ε values of acetate consumption were determined together with the composition of
73 the methanogenic and sulfidogenic microbial communities (Blair and Carter Jr., 1992;
74 Chidthaisong et al., 2002; Conrad et al., 2009; Goevert and Conrad, 2009; Penning et al.,
75 2006a). In order to constrain the magnitude of such ε values, we decided to investigate the
76 stable carbon isotope fractionation during consumption of acetate in methanogenic and
77 sulfidogenic rice paddy soils and anaerobic lake sediments.

78

79 **2 Materials and Methods**

80 *2.1 Environmental samples*

81 The soil samples were from the research stations in Vercelli, Italy and the International
82 Rice research Institute (IRRI) in the Philippines. Sampling and soil characteristics were
83 described before (Liu et al., 2018b). The lake sediments (top 10 cm layer) were from the NE
84 and SW basins of Lake Fuchskuhle (Casper et al., 2003). They were sampled in July 2016
85 using a gravity core sampler as described before (Kanaparthi et al., 2013).

86

87 *2.2 Paddy soils*

88 Two different experimental setups were used using soil suspensions in water (unbuffered
89 suspensions) or in 20 mM potassium phosphate buffer (pH 7.0)(buffered suspensions). For the
90 unbuffered suspensions, paddy soil was mixed with autoclaved anoxic H₂O at a ratio of 1:1
91 and incubated under N₂ at 25°C (which is close to the in-situ temperature) for 4 weeks. Then,
92 5 ml preincubated soil slurry was incubated at 25°C with 45 ml 5.6 mM sodium acetate in a
93 150-ml bottle under an atmosphere of N₂. The bottles were (i) unamended; (ii) amended with
94 4.5 ml CH₃F; (iii) amended with 200 μ l of a gypsum (CaSO₄.2H₂O) suspension
95 (corresponding to a concentration of 2.5 M sulfate) giving a final concentration of 10 mM
96 sulfate. The experiment was performed in 4 replicates.

97 For the buffered suspensions, paddy soil was mixed with autoclaved anoxic H₂O at a ratio
98 of 1:1 and incubated under N₂ at 25°C for 4 weeks. In a second incubation, paddy soil was
99 mixed with autoclaved anoxic H₂O at a ratio of 1:1, was amended with 0.07 g CaSO₄.2H₂O,
100 and then incubated under N₂ at 25°C for 4 weeks. These two preincubated soil slurries were

101 sampled and stored (in one replicate) at -20°C for later molecular analysis. The preincubated
102 soil slurries were also used (in 3 replicates) for the following incubation experiments. Three
103 different sets of incubations were prepared. In the first set (resulting in methanogenic
104 conditions), 5 ml soil slurry preincubated without sulfate was incubated at 25°C with 40 ml 20
105 mM potassium phosphate buffer (pH 7.0) in a 150-ml bottle under an atmosphere of N₂. The
106 bottles were the amended with (i) 5 ml H₂O; (ii) 5 ml H₂O + 4.5 ml CH₃F; (iii) 5 ml 50 mM
107 sodium acetate; (iv) 5 ml 50 mM sodium acetate + 4.5 ml CH₃F. In the second set (resulting
108 in mainly methanogenic conditions), again 5 ml soil slurry preincubated without sulfate was
109 incubated at 25°C with 40 ml 20 mM potassium phosphate buffer (pH 7.0) in a 150-ml bottle
110 under an atmosphere of N₂. The amendments were the same as above, but with the addition of
111 200 µl of a CaSO₄ suspension giving a final concentration of 10 mM sulfate. In the third set
112 (resulting in sulfidogenic conditions), 5 ml soil slurry preincubated with sulfate was incubated
113 at 25°C with 40 ml 20 mM potassium phosphate buffer (pH 7.0) in a 150-ml bottle under an
114 atmosphere of N₂. The amendments were the same as above, but with the addition of 200 µl of
115 a CaSO₄ suspension corresponding to a concentration of 2.5 M (giving a final concentration
116 of 10 mM sulfate).

117

118 2.3 Lake sediments

119 The lake sediments (NE and SW basins) of Lake Fuchskuhle were sampled and stored (in
120 one replicate) at -20°C for later molecular analysis. For methanogenic conditions, 5 ml lake
121 sediment was incubated in 3 replicates at 10°C (which is close to the in-situ temperature) with
122 45 ml 20 mM potassium phosphate buffer (pH 7.0) in a 150-ml bottle under an atmosphere of
123 N₂. The bottles were the amended with (i) 5 ml H₂O; (ii) 5 ml H₂O + 4.5 ml CH₃F; (iii) 5 ml
124 50 mM sodium acetate; (iv) 5 ml 50 mM sodium acetate + 4.5 ml CH₃F.

125 Part of the lake sediments were preincubated with sulfate by adding 0.1 g CaSO₄.2H₂O
126 (gypsum) to 50 ml sediment and incubating at 10°C for 4 weeks. The preincubated lake
127 sediments were sampled and stored (in one replicate) at -20°C for later molecular analysis.
128 For sulfidogenic conditions, 5 ml of the preincubated sediment was incubated in 3 replicates
129 at 10°C with 40 ml 20 mM potassium phosphate buffer (pH 7.0) in a 150-ml bottle under an

130 atmosphere of N₂. The bottles were amended as above, but in addition also with 200 µl of a
131 CaSO₄ suspension giving a final concentration of 10 mM sulfate. Samples for later molecular
132 analysis were taken from the original lake sediment and from the lake sediment preincubated
133 with sulfate. The samples were stored at -20°C.

134

135

136 *2.4 Extraction of DNA and amplicon sequencing*

137 The lake sediments or paddy soils in phosphate buffer were collected by centrifugation
138 (11000 × g, 4°C, 5 min). Genomic DNA were extracted with NucleoSpin Soil Kit (Macherey-
139 Nagel, Düren, Germany) by following the user's manufacture. DNA were checked by gel
140 electrophoresis (1% agarose in TEA buffer, stained with GelRed) and quantified by Qubit 2.0.
141 The amplification of 16S rRNA, *mcrA* and *dsrB* gene were done as described previously (Liu
142 and Conrad, 2017). **This publication also shows in Table S9 all the primers used.** In brief,
143 First step PCR, for 16S rRNA, h515-Y / h926R primers were used with the following PCR
144 protocol: 94°C for 3 min; 15 cycles with 94°C for 30 s, 52°C for 30 s and 68°C for 60 s; 68°C
145 for 10 min and hold at 8°C. For *mcrA*, hmlas-mod-F / hmcra-rev-R primers were used with
146 the following PCR protocol: 94°C for 4 min; 15-18 cycles with 94°C for 30 s, 60 by 1°C to
147 55°C for 30 s and 68°C for 60 s; 68°C for 10 min and hold at 8°C. For *dsrB* hDSR1762Fmix /
148 hDSR2010Rmix primers were used with the following PCR protocol: 94°C for 3 min; 25
149 cycles with 94°C for 30 s, 60°C by 1°C to 50 °C for 30 s and 68°C for 60 s; 68°C for 10 min
150 and hold at 8°C.

151 In the second step PCR, barcode-head primers were used for the PCR products of 16S
152 rRNA, *mcrA* and *dsrB* obtained from the first step with the following PCR protocol: 94°C for
153 3 min; 10-20 cycles with 94°C for 30 s, 52°C for 30 s and 68°C for 60 s; 68°C for 10 min and
154 hold at 8°C.

155 PCR amplicons were purified by AMP xx for both the first and second step PCR. After
156 quantification, the individual barcoded amplicons of 16S rRNA gene and *dsrB* were mixed in
157 equimolar concentrations, with 16S rRNA gene amplicons added in double amounts. Library
158 was sequenced on an ILLUMINA HISEQ 2000 system using 2×250 cycle combination mode

159 by Max Planck-Genome-Centre (Cologne, Germany). For *mcrA*, individual barcoded
160 amplicons were mixed in equimolar concentrations and library was sequenced on an
161 ILLUMINA MISEQ system using 2 × 300 cycle combination mode by Max Planck-Genome-
162 Centre (Cologne, Germany).

163

164 *2.5 Amplicon sequence data processing*

165 Amplicon Sequence data were analyzed according to pipeline as described previously (Liu
166 and Conrad, 2017). In brief, paired-end reads were first merged by USEARCH and 16S rRNA
167 gene and *dsrB* datasets were separated by primer sequences using CUTADAPT and
168 demultiplexed using QIIME1. Datasets of *mcrA* were demultiplexed using QIIME1 directly.
169 All reads were subjected to quality control, *de novo* chimera filtering, singleton filtering and
170 OTU clustering according to the UPARSE pipeline. Species level OTUs for 16S rRNA gene
171 were obtained at 97% sequence identity. Approximate species-level *dsrB* and *mcrA* OTUs
172 were obtained with the gene-specific OTU threshold 0.90 (Pelikan et al., 2016) and 0.84
173 (Yang et al., 2014). Taxonomic identities of the OTUs of 16S rRNA gene were assigned with
174 the Ribosomal Database Project Classifier against the SILVA 123 SSU Ref database (Pruesse
175 et al., 2007). Nucleotide sequences of *dsrB* and *mcrA* were initially translated into amino acid
176 sequences using FrameBot (Wang et al., 2013). For *dsrB* gene, amino acid sequences were
177 aligned to the DsrAB reference sequence alignment (Pelikan et al., 2016) using MAFFT
178 (Katoh and Standley, 2013). Subsequently, the taxonomic classification of each *dsrB* OTU
179 was analysed using the Evolutionary Placement Algorithm (EPA) in RAXML (Berger et al.,
180 2011). For *mcrA* gene, amino acid sequences of each OTUs and updated full length *mcrA*
181 amino acid sequences from NCBI were imported into a *mcrA* reference ARB database
182 developed by Angel et al. (2012). The taxonomic classification of each *mcrA* OTU was
183 analysed by phylogenetic tree construction using Maximum parsimony implemented in ARB
184 software (Ludwig et al., 2004).

185

186 2.6 Chemical and isotopic analyses

187 Chemical and isotopic analyses were performed as described in detail previously (Goever
188 and Conrad, 2009). Methane was analyzed by gas chromatography (GC) with flame
189 ionization detector. Carbon dioxide was analyzed after conversion to CH₄ with a Ni catalyst.
190 Stable isotope analyses of ¹³C/¹²C in gas samples were performed using GC-combustion
191 isotope ratio mass spectrometry (GC-C-IRMS). Acetate was measured using high-
192 performance liquid chromatography (HPLC) linked via a Finnigan LC IsoLink to an IRMS.
193 The isotopic values are reported in the delta notation ($\delta^{13}\text{C}$) relative to the Vienna PeeDee
194 Belemnite standard having a ¹³C/¹²C ratio (R_{standard}) of 0.01118: $\delta^{13}\text{C} = 10^3 (R_{\text{sample}}/R_{\text{standard}} -$
195 1). The precision of the GC-C-IRMS was $\pm 0.2\text{\textperthousand}$, that of the HPLC-IRMS was $\pm 0.3\text{\textperthousand}$. The
196 carbon of the sodium acetate that was used in the incubation experiments had the following
197 $\delta^{13}\text{C}$ values: total acetate, -24.4‰; acetate-methyl, -27.9‰; acetate-carboxyl, -20.9‰.
198

199 2.7 Calculations

200 Fractionation factors for reaction A → B are defined after Hayes (Hayes, 1993) as:

201 $\alpha_{\text{A/B}} = (\delta_{\text{A}} + 1000) / (\delta_{\text{B}} + 1000)$ (1)

202 also expressed as $\varepsilon \equiv 1000 (1 - \alpha)$ in permil. The carbon isotope enrichment factor ε_{ac}
203 associated with acetate consumption was calculated from the temporal change of $\delta^{13}\text{C}$ of
204 acetate as described by Mariotti et al. (Mariotti et al., 1981) from the residual reactant

205 $\delta_{\text{r}} = \delta_{\text{ri}} + \varepsilon [\ln(1 - f)]$ (2)

206 and from the product formed

207 $\delta_{\text{p}} = \delta_{\text{ri}} - \varepsilon (1 - f) [\ln(1 - f)]/f$ (3)

208 where δ_{ri} is the isotopic composition of the reactant (acetate) at the beginning, δ_{r} is the
209 isotopic composition of the residual acetate and δ_{p} that of the product (CH₄), both at the
210 instant when f is determined. f is the fractional yield of the products based on the
211 consumption of acetate ($0 < f < 1$). Linear regression of $\delta^{13}\text{C}$ of acetate against $\ln(1 - f)$ yields
212 ε_{ac} as the slope of best fit lines. Similarly, linear regression of $\delta^{13}\text{C}$ of CH₄ against $(1 - f)$
213 $[\ln(1 - f)]/f$ yields $\varepsilon_{\text{CH}_4}$ as the slope of best fit lines. The regressions of $\delta^{13}\text{C}$ of acetate were
214 done for data in the range of $f < 0.5$. The linear regressions of $\delta^{13}\text{C}$ of CH₄ were done either

215 for the entire data range or again only for $f < 0.5$. The linear regressions were done
216 individually for each experimental replicate ($n = 3-4$) and were only accepted if $r^2 > 0.8$ for
217 paddy soils or $r^2 > 0.7$ for lake sediments. The ε values resulting from the replicate
218 experiments were then averaged (\pm SE).

219 For mass balance calculations, total inorganic carbon (TIC) was calculated as the sum of
220 gaseous CO_2 , dissolved CO_2 and bicarbonate using the measured data of gaseous CO_2 , the pH
221 and the relevant solubility and equilibrium constants (Stumm and Morgan, 1996).

222

223 **3 Results**

224 *3.1 Incubation of unbuffered suspensions of rice field soils*

225 Incubation of unbuffered suspensions (soil + H_2O) of rice field soil from the International
226 Rice Research Institute (IRRI) of the Philippines with acetate under anoxic conditions
227 resulted in the depletion of acetate and the release of CH_4 and CO_2 (Fig. 1A, C). In the
228 presence of CH_3F , an inhibitor of aceticlastic methanogenesis (Janssen and Frenzel, 1997),
229 acetate was no longer consumed, and production of CH_4 and CO_2 was inhibited. However,
230 addition of sulfate had only little effect on acetate consumption and the production of CH_4 and
231 CO_2 (Fig. 1A, C). Both in the presence and the absence of sulfate, $\delta^{13}\text{C}$ of the residual acetate
232 and the produced CH_4 increased, whereas $\delta^{13}\text{C}$ in CO_2 stayed relatively stable (Fig. 1B, D). In
233 the presence of CH_3F , the $\delta^{13}\text{C}$ in CH_4 was much more negative than in the absence. The
234 results were similar for soil from the Rice Research Station in Vercelli (Italy) (Fig.S1).

235 Mariotti plots of the ^{13}C of acetate as function of the fractions (f) of acetate consumed
236 resulted in similar curves for all four replicates of the incubations of IRRI soil without (Fig.
237 2A) and with (Fig. 2B) sulfate amendment. The lines were straight for $f < 0.5$ (<50% of
238 acetate consumed). The same was the case for Mariotti plots of $^{13}\text{CH}_4$, the product of acetate
239 consumption (Fig. 2C, D). The enrichment factors ε , which were calculated from the Mariotti
240 plots were in a range of -22‰ to -19‰, irrespectively whether they were determined in the
241 presence or the absence of sulfate and whether they were determined from acetate depletion
242 or from CH_4 formation (Fig. 3; Table S1). Similar Mariotti plots were obtained for Vercelli
243 soil (Fig. S2), which resulted in ε values ranging between -20‰ to -17‰, except the ε

244 determined for CH₄ production in the presence of sulfate, which was only -14 ± 1.4‰ (Fig.
245 3).

246 Mass balance calculations showed that on a molar basis the accumulated CH₄ amounted to
247 about 90% of the consumed acetate (the methyl group) in the absence and to about 71% in the
248 presence of sulfate in the IRRI soil and to 97% and 76%, respectively, in the Vercelli soil.

249

250 *3.2 Incubation of buffered suspensions of rice field soils*

251 The experiments with rice field soils were repeated using soil slurries suspended in
252 phosphate buffer. This was done to run the experiment at a constant pH 7.0. In Vercelli soil,
253 acetate was consumed and CH₄ and CO₂ were produced (Fig. 4A, C, E). The δ¹³C of the
254 residual acetate and the produced CH₄ increased as acetate consumption proceeded (Fig. 4B,
255 D). The δ¹³C of the produced CO₂ first decreased and later increased (Fig. 4F). This happened
256 also, when the soil suspensions were incubated in the presence of sulfate after preincubation
257 with sulfate (Fig. 4F), but CH₄ production was lower and CO₂ production was higher in the
258 presence than in the absence of sulfate (Fig. 4C, E). Production of CH₄ ceased in the presence
259 of sulfate after about 10 d (Fig. 4C). Addition of CH₃F completely inhibited CH₄ production
260 both in the presence and absence of sulfate (Fig. 4C). It also inhibited CO₂ production but
261 only in the absence of sulfate (Fig. 4E). In the presence of sulfate, CH₃F only delayed but did
262 not inhibit acetate consumption and CO₂ production (Fig. 4A, E), and also did not prevent the
263 increase of δ¹³C in the residual acetate (Fig. 4B).

264 Mass balance calculations showed that while acetate (the methyl group) was almost
265 completely degraded to CH₄ in the absence of sulfate, it accounted, after a delayed inhibition,
266 for only about a third in the presence of sulfate (Fig. 5). When the soil suspensions were
267 incubated in the presence of sulfate but without preincubation, CH₄ production was only
268 slightly less than in the incubations without sulfate (Fig. 5). The complete set of these
269 experiments is shown in Fig. S3. When CH₄ production was inhibited, CO₂ production
270 apparently was a substitute, since the consumed acetate was always rather well balanced by
271 the production of both CH₄ and TIC together (Fig. S4). The same experimental setup was
272 used for IRRI soil. The results were similar and are shown in the supplementary (Fig. S5, S6,

273 S7). In IRRI soil suspensions, the mass balance between the production of CH₄ + TIC and the
274 acetate consumed was improved when the production was corrected with the background
275 production in a control without addition of acetate (Fig. S8).

276 Mariotti plots of acetate consumption and CH₄ production in both Vercelli soil (Fig. S9)
277 and IRRI soil (Fig. S10) could be created for all the different incubation conditions, in which
278 acetate was consumed, i.e. in the absence of sulfate (control), in the presence of sulfate, and in
279 the presence of sulfate after preincubation with sulfate. Enrichment factors (ε) were calculated
280 for fractions of acetate consumption with $f < 0.5$ (Fig. 3; Table S1). The ε values for acetate
281 consumption were similar for the experiments without and with sulfate and ranged between -
282 21‰ and -17‰. However, the ε values for CH₄ production were systematically lower,
283 ranging between -37‰ and -23‰ (Fig. 3; Table S1). Since acetate consumption in the
284 presence of sulfate was also possible when CH₄ production was inhibited by CH₃F, Mariotti
285 plots could also be created for these conditions (Fig. S11). The resulting ε values were similar
286 than those in the absence of sulfate and ranged for Vercelli soil between -24‰ and -22‰
287 (Fig. 3; Table S1). Only in the IRRI soil ε values were higher (-10‰), but only when the soil
288 had been preincubated with sulfate (Fig. 3; Table S1).

289

290 *3.3 Incubation of buffered suspensions of lake sediments*

291 Experiments with lake sediments were done analogous to those with rice filed soils.
292 Slurries of sediment from the NE and SW basins of Lake Fuchskuhle were suspended in
293 phosphate buffer pH 7.0 in the absence and the presence of sulfate (after preincubation with
294 sulfate) and without and with addition of CH₃F. In the sediment from the NE basin acetate
295 was consumed after a lag phase, first (after about 40 d) in the incubations with sulfate, then
296 (after about 60 d) also in the incubations without sulfate (Fig. 6A). Addition of CH₃F only
297 partially inhibited the acetate consumption in the absence of sulfate, and did not at all inhibit
298 the acetate consumption in the presence of sulfate (Fig. 6A). However, CH₃F almost
299 completely inhibited the production of CH₄, and also inhibited almost completely the increase
300 of the $\delta^{13}\text{C}$ in the residual acetate when sulfate was absent (Fig. 6B). Presence of sulfate also
301 strongly inhibited CH₄ production (Fig. 6C). The small amounts of CH₄ produced showed a

302 rather constant $\delta^{13}\text{C}$ of about -40‰ in the absence and of -90 to -80‰ in the presence of
303 CH_3F (Fig. 6D). Without sulfate, by contrast, the $\delta^{13}\text{C}$ in CH_4 was first about -70‰ and then
304 with acetate consumption progressively increased to about -40‰ in the absence and decreased
305 to about -90‰ in the presence of CH_3F (Fig. 6D). Mass balance calculations showed that CH_4
306 production in the presence of sulfate accounted on a molar basis only for about 5% of the
307 acetate consumed, while in the absence of sulfate CH_4 production accounted for about 45%
308 (Fig. 5). In the sediment from the SW basin, the contribution of CH_4 production to acetate
309 consumption was even lower (about 30%) (Fig. 5). These low values are noteworthy in
310 comparison to those found in the rice field soils (Fig. 5). In the presence of sulfate, acetate
311 was almost exclusively converted to CO_2 , which strongly increased during the time of acetate
312 consumption exhibiting a relatively good mass balance (Fig. S4, S8). This was also the case in
313 the incubations without sulfate, indicating that a rather large fraction of the acetate was
314 converted to CO_2 rather than CH_4 (Fig. S4, S8). The $\delta^{13}\text{C}$ of the produced CO_2 strongly
315 decreased from about -30‰ to about -55‰ during the period of acetate consumption (Fig. 6F)
316 and then slowly increased back to -30‰, when about 50% of the acetate had been consumed
317 (Fig. 6A). The experimental results were similar in the incubations with sediment from the
318 SW basin, which are shown in the supplement (Fig. S12, S13).

319 Mariotti plots of acetate consumption could be generated for all incubation conditions both
320 in the NE and in the SW basin of Lake Fuchskuhle (Fig. S14, S15). These plots allowed the
321 calculation of ϵ values, which were generally higher (-20‰ to -19‰) in the NE (-20‰ to -
322 19‰) than the SW basin (-14‰ to -11‰). For CH_4 production, useful Mariotti plots could
323 only be generated for incubations without sulfate resulting in ϵ values, which were higher (-
324 28‰ to -27‰) than those calculated from acetate consumption (Fig. 3; Table S1). Mariotti
325 plots of acetate consumption could be generated for incubations with sulfate, in which the
326 very low CH_4 production was further inhibited by CH_3F (Fig. S16). The ϵ values of these
327 incubations (NE and the SW basin, respectively) were lower (-26‰, and -24‰) than those
328 without CH_3F (-20‰ and -14‰) (Fig. 3; Table S1).

329

330 *3.4 Microbial community composition*

331 The composition of the microbial communities was determined at the beginning of
332 incubation, after preincubation without and with sulfate in the rice field soil and lake sediment
333 suspensions by targeting three different genes, i.e., *mcrA* (methyl CoM reductase), *dsrB*
334 (dissimilatory sulfate reductase), and the bacterial 16S rRNA gene. The compositions of
335 microorganisms represented by all three genes were quite different between the rice field soils
336 and the lake sediments, while the differences within the individual samples of either soils or
337 sediments were smaller (Fig. 7).

338 In the sediments of both basins of Lake Fuchskuhle, the methanogenic archaea
339 (represented by *mcrA*) were dominated by *Methanomicrobiales* and *Methanosaetaceae*, while
340 *Methanomassiliicoccales* and *Methanoscincaceae* contributed less (Fig. 7A). In the rice field
341 soils, the methanogenic taxa were more diverse comprising 6 different orders or families, with
342 putatively aceticlastic *Methanoscincaceae* being relatively more abundant than
343 *Methanosaetaceae*. In addition, *Methanomicrobiales* contributed only little compared to
344 *Methanobacteriales* and especially *Methanocellales*. In general, there was only a marginal
345 difference in composition between the incubations in the absence and the presence of sulfate.
346 **A statistical analysis of these marginal differences was not warranted and was also not**
347 **possible due to the fact that only one replicate each was assayed.**

348 The composition of putative sulfate reducers (represented by *dsrB*) was also only little
349 different between the incubations with and without sulfate addition (Fig. 7B). However, the
350 composition between rice field soils and lake sediments was completely different. While rice
351 field soils were dominated by members of the uncultured-family-level lineages 9 and 5, the
352 lake sediments were dominated by the *Desulfobacca acetoxidans* lineage. Compared to IRRI
353 soil the relative abundance of *Syntrophobacteraceae* was larger in Vercelli soil, where it
354 increased upon treatment with sulfate. In the lake sediments, the relative abundances of
355 *Syntrophobacteraceae* and members of environmental superclusters were similar. In the lake
356 sediments there was only some minor quantitative difference between the two basins, while
357 the difference between Vercelli and IRRI soil was more pronounced. For example, compared

358 to IRRI soil the relative abundance of *Syntrophobacteraceae* was larger in Vercelli soil,
359 where it increased upon preincubation with sulfate.

360 The composition of Bacteria in general (represented by the 16S rRNA gene) was again
361 most different between rice field soils and lake sediments, while differences between Vercelli
362 and IRRI soils and also between sediments from the NE and SW lake basins were much less,
363 and differences between preincubations without and with sulfate were marginal (Fig. 7C).

364 While in rice field soils Clostridia were the most abundant group followed by
365 Deltaproteobacteria, it was the other way round in the lake sediments. Rice field soils
366 contained *Bacilli*, while Lake sediments contained *Spirochaetes*, which were respectively
367 negligible.

368

369 **4 Discussion**

370 *4.1 Methanogenic conditions*

371 We measured ε_{ac} values in anaerobic environmental samples, which consumed acetate
372 almost exclusively by methanogenesis. Predominance of methanogenesis occurred in the
373 absence of sulfate, in some incubations of the rice field soils even in the presence of sulfate
374 provided there was no prior incubation in the presence of sulfate. In the rice field soils, CH_4
375 carbon accounted for more than 90% of the consumed acetate carbon, and CH_3F completely
376 inhibited acetate consumption, the increase of $\delta^{13}\text{C}$ in the residual acetate, and also inhibited
377 most of CH_4 production. In conclusion, acetate was exclusively consumed by aceticlastic
378 methanogenesis and only little CH_4 was produced from other sources than acetate,
379 presumably from background organic carbon via hydrogenotrophic methanogenesis as
380 indicated by the negative $\delta^{13}\text{C}$ of the produced CH_4 . The increase of $\delta^{13}\text{C}$ in the residual
381 acetate was expected due to preferred utilization of isotopically light acetate carbon. Such
382 patterns of CH_4 production and change in ^{13}C isotopic signatures have been observed by us
383 before in rice field soils and lake sediments (Conrad et al., 2010; Conrad et al., 2009; Fu et al.,
384 2018; Ji et al., 2018). They are in agreement with the presence of a diverse methanogenic
385 archaeal community consisting of putatively hydrogenotrophic and aceticlastic methanogenic
386 archaea, which have been found in both Vercelli and IRRI soils (Liu et al., 2019; Liu et al.,

387 2018b). The aceticlastic methanogens consisted of species of the genera *Methanosarcina* and
388 *Methanosaeta* (or *Methanothrix* (Oren, 2014)), which differ in the mechanism of acetate
389 activation and the affinity towards acetate (Jetten et al., 1990).

390 Both genera of methanogens were also present in the sediments of Lake Fuchskuhle, which
391 exhibited a similar pattern of acetate consumption and CH₄ production as the anaerobic rice
392 field soils, thus confirming and extending earlier studies (Chan et al., 2002; Conrad et al.,
393 2010). Notably, CH₃F addition again almost completely inhibited CH₄ production from
394 acetate and was accompanied by highly negative $\delta^{13}\text{C}$ in the small amounts of residual CH₄,
395 which was presumably produced by hydrogenotrophic methanogenesis. Addition of CH₃F did
396 not completely inhibit acetate consumption, indicating consumption by oxidation rather than
397 aceticlastic methanogenesis. However, CH₃F almost completely inhibited the increase of $\delta^{13}\text{C}$
398 in the residual acetate, indicating only a negligible isotope effect. Also, CH₄ production
399 accounted only for less than 50% of the consumed acetate, as production of CH₄ was replaced
400 by CO₂. Hence, part of the acetate was apparently consumed by oxidative processes, even
401 without addition of sulfate. We assume that the oxidation consumption process was driven by
402 humic acids (Lovley et al., 1996). Notably, imbalance in the stoichiometry between CH₄ and
403 consumed acetate is reflected by the fact that the SW basin has a higher humic acid content
404 than the NE basin (Casper et al., 2003).

405 Values of ε_{ac} measured in cultures of methanogenic archaea differ depending on the genus
406 and the corresponding mechanism of acetate activation. Thus, methanogenic archaea of the
407 genus *Methanosarcina*, which activate acetate with acetate kinase and phosphotransacetylase
408 have a relatively negative ε_{ac} with values ranging between -35‰ and -21‰ (Gelwicks et al.,
409 1994; Goevert and Conrad, 2009; Krzycki et al., 1987; Zyakun et al., 1988). By contrast,
410 those of the genus *Methanosaeta*, which activate acetate with acetyl-CoA synthetase, have
411 less negative ε_{ac} with values ranging between -14‰ and -10‰ (Penning et al., 2006a;
412 Valentine et al., 2004). The ε_{ac} values in methanogenic rice field soils were all in a range of -
413 21‰ to -17‰, which is at the less negative end or even a bit less negative than the values
414 reported for pure cultures of *Methanosarcina* but is more negative than the values reported for
415 *Methanosaeta*. Therefore, it is reasonable to conclude that in the methanogenic rice field soils,

416 acetate was consumed mainly by *Methanosarcina* species and only to a minor extent by
417 *Methanosaeta* species. This conclusion is in agreement with the composition of the soil
418 methanogenic archaeal communities, which consisted of both genera. A similar conclusion
419 has been reached in methanogenic rice field soil (Goevert and Conrad, 2009). A similar
420 enrichment factor for acetate consumption has also been measured in the anoxic sediment of
421 Lake Wintergreen (Gelwicks et al., 1994) and again in the present study of the NE basin of
422 Lake Fuchskuhle. However, the sediment of the SW basin of Lake Fuchskuhle exhibited a
423 less negative ϵ_{ac} of about -11‰, which would be consistent with the activity of aceticlastic
424 *Methanosaeta* species. Indeed, *mcrA* genes of *Methanosaeta* species were much more
425 abundant in the sediments of Lake Fuchskuhle than *mcrA* genes of *Methanosarcina* species.
426 Also in Lake Dagow sediments (located in the same region of Germany), methanogenic
427 archaea were dominated by *Methanosaeta* species and exhibited a relatively high ϵ_{ac} of about
428 -13‰ (Penning et al., 2006a). However, the sediment of the NE basin of Lake Fuchskuhle,
429 which was also dominated by *Methanosaeta* species exhibited more negative ϵ_{ac} values of
430 about -19‰.

431 Methanogenic consumption results in disproportionation of the acetate molecule with
432 oxidation of the carboxyl group to CO₂ and reduction of the methyl group to CH₄. In context
433 of the isotope fractionation during the conversion of acetate to CH₄ it is the isotopic
434 enrichment factor of the methyl group, $\epsilon_{ac\text{-methyl}}$, which matters. Studies of fractionation of the
435 acetate-methyl in pure culture studies of aceticlastic methanogenic archaea have shown that
436 $\epsilon_{ac\text{-methyl}}$ was always a few permil less negative than ϵ_{ac} . This difference was due to a larger
437 isotope effect for the conversion of acetate-carboxyl than acetate-methyl (Gelwicks et al.,
438 1994; Goevert and Conrad, 2009; Penning et al., 2006a; Valentine et al., 2004). Alternatively
439 to $\epsilon_{ac\text{-methyl}}$ the enrichment factor for the conversion of acetate-methyl to CH₄ can also be
440 measured from the isotopic composition in CH₄, i.e., ϵ_{CH_4} . Most of the studies of pure
441 methanogenic cultures resulted in ϵ_{CH_4} being similar to $\epsilon_{ac\text{-methyl}}$ (Gelwicks et al., 1994;
442 Goevert and Conrad, 2009; Penning et al., 2006a), but occasionally ϵ_{CH_4} was a few permil
443 more negative than $\epsilon_{ac\text{-methyl}}$, both in pure culture (Valentine et al., 2004) and in environmental
444 samples (Goevert and Conrad, 2009). Similarly, values of ϵ_{CH_4} in the unbuffered suspensions

445 of rice field soils were only slightly more negative than values of ε_{ac} . However, in the
446 buffered suspensions of both rice field soils and lake sediments, values of ε_{CH_4} were much
447 more negative than those of ε_{ac} , the difference amounting to 9-17‰. These results indicate
448 that the isotope effect for the conversion of the acetate-methyl to CH_4 was much stronger than
449 that for the conversion of acetate-carboxyl to CO_2 , which is completely opposite to the results
450 obtained in cultures of methanogenic archaea. This discrepancy in the results is presently
451 without conclusive explanation. The possibility of effects by bicarbonate or CO_2
452 concentrations, being different in the pure microbial cultures, the unbuffered and buffered soil
453 suspensions, or of phosphate effects should be considered. Effects of CO_2 concentrations and
454 buffer systems on fractionation factors have for example been observed in cultures of
455 chemolithoautotrophic *Thermoanaerobacter kivui* (Blaser et al., 2015).

456

457 4.2 Sulfidogenic conditions

458 We also measured ε_{ac} values in anaerobic environmental samples, which consumed acetate
459 by sulfate reduction. These conditions were achieved (only in the buffered suspensions) by
460 preincubation with gypsum and measurement of acetate consumption in the presence of
461 sulfate (gypsum). Preincubation was required because of delayed sulfate reduction (Liu et al.,
462 2018a). The relative abundance of both *dsrB* genes and genes of bacterial 16S rRNA were
463 only marginally different between samples preincubated under methanogenic and sulfidogenic
464 conditions, similarly as observed before (Wörner et al., 2016). It is probably the induction of
465 the sulfate reduction activity, which delayed sulphidogenic conditions (Liu et al., 2018a).
466 Sulfidogenic conditions were verified by showing that methanogenesis was almost completely
467 inhibited while acetate consumption operated, also with respect to increase of $\delta^{13}C$ in the
468 residual acetate, and that CH_3F , which is rather specific for acetoclastic methanogenesis, had
469 only a marginal effect on these sulfidogenic activities. Finally, sulfidogenic conditions were
470 verified by the stoichiometry of acetate conversion, which showed only very little CH_4
471 production.

472 Values of ε_{ac} measured in cultures of sulfate-reducing bacteria differ depending on the
473 genus and the corresponding mechanism of acetate dissimilation. Experiments with cultures

474 of sulfate reducers showed that *Desulfobacca acetoxidans*, which dissimilates acetate via the
475 acetyl-CoA pathway, exhibits of about -19‰ being similar to the ϵ_{ac} values of aceticlastic
476 *Methanosarcina* species. By contrast, cultures of *Desulfobacter* species, which dissimilate
477 acetate via the tricarbonic acid cycle, exhibited ϵ_{ac} values of about +2‰ (Goevert and Conrad,
478 2008). The ϵ_{ac} values measured in sulfidogenic anoxic paddy soils were in a range of -24‰ to
479 -22‰, but were only -24‰ to -10‰, when measured in the presence of CH₃F, which
480 guarantees that all aceticlastic methanogenic activities were inhibited. This range of ϵ_{ac} values
481 compares rather well with the value of -19‰ measured in *Desulfobacca acetoxidans*, which
482 however, was of only low relative abundance in the rice field soil incubations. However, it is
483 well possible that uncultured-family-level lineages, which were the major sulfate reducers,
484 dissimilated by similar pathway than *Desulfobacca acetoxidans* and thus, exhibited similar ϵ_{ac}
485 values. Also *Syntrophobacteraceae*, which have been found to act as major acetate-utilizing
486 sulfate reducers in Vercelli soil (Liu et al., 2018a) increased in relative abundance after
487 preincubation with sulfate. The lake sediments, by contrast, exhibited a high relative
488 abundance of *Desulfobacca acetoxidans*, and ϵ_{ac} values (including those with CH₃F) were in a
489 range of -26‰ to -14‰. Unfortunately, there is, to our knowledge, only a paucity of ϵ_{ac} values
490 measured in cultures of sulfate reducers (Goevert and Conrad, 2008). Therefore, it is not
491 possible to have a better resolution of the role of different taxa and metabolic types of sulfate-
492 reducing bacteria on the fractionation of acetate carbon.

493

494 5 Conclusions

495 ~~In order to learn about the factors that affect the magnitude of $\delta^{13}\text{C}$ isotope fractionation~~
496 ~~during anaerobic acetate consumption, we studied acetate consumption under methanogenic~~
497 ~~and sulfidogenic conditions in four different environmental samples, two rice field soils and~~
498 ~~two lake sediments, by quantifying the conversion of acetate to CH₄ and CO₂ and by~~
499 ~~measuring the $\delta^{13}\text{C}$ in these compounds, and also determined the composition of the microbial~~
500 ~~communities.~~ Despite a relatively wide variety of environmental conditions and microbial
501 community compositions, the range of fractionation factors (isotopic enrichment factors ϵ_{ac}
502 for the fractionation of total acetate) was quite moderate. The observed ϵ_{ac} values were

503 basically within the range that is known from studies of pure cultures of sulfate-reducing
504 bacteria and methanogenic archaea, with a predominance of ε_{ac} values around -20‰, which is
505 consistent with acetate fractionation in both aceticlastic *Methanosarcina* species and acetate-
506 dissimilating sulfate reducers using the acetyl-CoA pathway. In few cases ε_{ac} values were
507 close to -10‰, being consistent with a predominance of aceticlastic *Methanosaeta* species.
508 However, there is a paucity of data from cultures of acetate-dissimilating sulfate reducing
509 bacteria, for example from *Syntrophobacteraceae*, which presently limits the potential for
510 predicting fractionation of acetate carbon by knowing the microbial community composition.
511 Another point of concern is the use of buffered growth media, which may affect isotope
512 fractionation, such as indicated by the observation that ε_{CH4} values were much more negative
513 than ε_{ac} values when using suspensions in phosphate buffer rather than in water.

514

515 Acknowledgements

516 We thank Dres Peter Casper and Dheeraj Kanaparthi for providing sediment samples from
517 Lake Fuchskuhle. We thank the Fonds der Chemischen Industrie Deutschland for financial
518 support.

519

520 References

521

522 Angel, R., Claus, P., Conrad, R., 2012, Methanogenic archaea are globally
523 ubiquitous in aerated soils and become active under wet anoxic conditions.
524 ISME J. 6, 847-862.

525 Berger, S. A., Krompass, D., Stamatakis, A., 2011, Performance, accuracy, and
526 web server for evolutionary placement of short sequence reads under maximum
527 likelihood. Syst. Biol. 60, 291-302.

528 Blair, N. E. and Carter Jr., W. D., 1992, The carbon isotope biogeochemistry of
529 acetate from a methanogenic marine sediment. Geochim. Cosmochim. Acta 56,
530 1247-1258.

531 Blaser, M. and Conrad, R., 2016, Stable carbon isotope fractionation as tracer of
532 carbon cycling in anoxic soil ecosystems. Curr. Opinion Biotechnol. 41, 122-
533 129.

534 Blaser, M. B., Dreisbach, L. K., Conrad, R., 2015, Carbon isotope fractionation of
535 *Thermoanaerobacter kivui* in different growth media and at different total
536 inorganic carbon concentrations. Org. Geochem. 81, 45-52.

537 Casper, P., Chan, O. C., Furtado, A. L. S., Adams, D. D., 2003, Methane in an
538 acidic bog lake: The influence of peat in the catchment on the biogeochemistry
539 of methane. *Aquat. Sci.* 65, 36-46.

540 Chan, O. C., Claus, P., Casper, P., Ulrich, A., Lueders, T., Conrad, R., 2005,
541 Vertical distribution of structure and function of the methanogenic archaeal
542 community in Lake Dagow sediment. *Environ. Microbiol.* 7, 1139-1149.

543 Chan, O. C., Wolf, M., Hepperle, D., Casper, P., 2002, Methanogenic archaeal
544 community in the sediment of an artificially partitioned acidic bog lake. *FEMS*
545 *Microbiol. Ecol.* 42, 119-129.

546 Chidthaisong, A., Chin, K. J., Valentine, D. L., Tyler, S. C., 2002, A comparison
547 of isotope fractionation of carbon and hydrogen from paddy field rice roots and
548 soil bacterial enrichments during CO₂/H₂ methanogenesis. *Geochim.*
549 *Cosmochim. Acta* 66, 983-995.

550 Conrad, R., 2005, Quantification of methanogenic pathways using stable carbon
551 isotopic signatures: a review and a proposal. *Org. Geochem.* 36, 739-752.

552 Conrad, R., Chan, O. C., Claus, P., Casper, P., 2007, Characterization of
553 methanogenic *Archaea* and stable isotope fractionation during methane
554 production in the profundal sediment of an oligotrophic lake (Lake Stechlin,
555 Germany). *Limnol. Oceanogr.* 52, 1393-1406.

556 Conrad, R., Claus, P., Casper, P., 2010, Stable isotope fractionation during the
557 methanogenic degradation of organic matter in the sediment of an acidic bog
558 lake, Lake Grosse Fuchskuhle. *Limnol. Oceanogr.* 55, 1932-1942.

559 Conrad, R., Klose, M., Claus, P., Dan, J. G., 2009, Activity and composition of
560 the methanogenic archaeal community in soil vegetated with wild versus
561 cultivated rice. *Soil Biol. Biochem.* 41, 1390-1395.

562 Fu, B., Conrad, R., Blaser, M., 2018, Potential contribution of acetogenesis to
563 anaerobic degradation in methanogenic rice field soils. *Soil Biol. Biochem.*
564 119, 1-10.

565 Gelwicks, J. T., Risatti, J. B., Hayes, J. M., 1994, Carbon isotope effects
566 associated with aceticlastic methanogenesis. *Appl. Environ. Microbiol.* 60,
567 467-472.

568 Goevert, D. and Conrad, R., 2008, Carbon isotope fractionation by sulfate-
569 reducing bacteria using different pathways for the oxidation of acetate.
570 *Environ. Sci. Technol.* 42, 7813-7817.

571 Goevert, D. and Conrad, R., 2009, Effect of substrate concentration on carbon
572 isotope fractionation during acetoclastic methanogenesis by *Methanosarcina*
573 *barkeri* and *M. acetivorans* and in rice field soil. *Appl. Environ. Microbiol.* 75,
574 2605-2612.

575 Goevert, D. and Conrad, R., 2010, Stable isotope fractionation by acetotrophic
576 sulfur-reducing bacteria. *FEMS Microbiol. Ecol.* 71, 218-225.

577 Hayes, J. M., 1993, Factors controlling ^{13}C contents of sedimentary organic
578 compounds: principles and evidence. *Mar. Geol.* 113, 111-125.

579 Holmes, M., Chanton, J. P., Bae, H. S., Ogram, A., 2014, Effect of nutrient
580 enrichment on $\delta^{13}\text{CH}_4$ and the methane production pathway in the Florida
581 Everglades. *J. Geophys. Res. -Biogeosci.* 119, 1267-1280.

582 Janssen, P. H. and Frenzel, P., 1997, Inhibition of methanogenesis by methyl
583 fluoride - studies of pure and defined mixed cultures of anaerobic bacteria and
584 archaea. *Appl. Environ. Microbiol.* 63, 4552-4557.

585 Jetten, M. S. M., Stams, A. J. M., Zehnder, A. J. B., 1990, Acetate threshold and
586 acetate activating enzymes in methanogenic bacteria. *FEMS Microbiol. Ecol.*
587 73, 339-344.

588 Ji, Y., Liu, P., Conrad, R., 2018, Change of the pathway of methane production
589 with progressing anoxic incubation of paddy soil. *Soil Biol. Biochem.* 121,
590 177-184.

591 Kanaparthi, D., Pommerenke, B., Casper, P., Dumont, M. G., 2013,
592 Chemolithotrophic nitrate-dependent Fe(II)-oxidizing nature of actinobacterial
593 subdivision lineage TM3. *ISME J.* 7, 1582-1594.

594 Katoh, K. and Standley, D. M., 2013, MAFFT multiple sequence alignment
595 software version 7: improvements in performance and usability. *Mol. Biol.*
596 *Evol.* 30, 772-780.

597 Krzycki, J. A., Kenealy, W. R., DeNiro, M. J., Zeikus, J. G., 1987, Stable carbon
598 isotope fractionation by *Methanosarcina barkeri* during methanogenesis from
599 acetate, methanol, or carbon dioxide-hydrogen. *Appl. Environ. Microbiol.* 53,
600 2597-2599.

601 Liu, P., Klose, M., Conrad, R., 2019, Temperature-dependent network modules of
602 soil methanogenic bacterial and archaeal communities. *Frontiers Microbiol.* 10,
603 496-doi: 10.3389/fmicb.2019.00496.

604 Liu, P., Pommerenke, B., Conrad, R., 2018a, Identification of
605 *Syntrophobacteraceae* as major acetate-degrading sulfate reducing bacteria in
606 Italian paddy soil. *Environ. Microbiol.* 20, 337-354.

607 Liu, P. F. and Conrad, R., 2017, *Syntrophobacteraceae*-affiliated species are
608 major propionate-degrading sulfate reducers in paddy soil. *Environ. Microbiol.*
609 19, 1669-1686.

610 Liu, P. F., Klose, M., Conrad, R., 2018b, Temperature effects on structure and
611 function of the methanogenic microbial communities in two paddy soils and
612 one desert soil. *Soil Biol. Biochem.* 124, 236-244.

613 Londry, K. L. and DesMarais, D. J., 2003, Stable carbon isotope fractionation by
614 sulfate-reducing bacteria. *Appl. Environ. Microbiol.* 69, 2942-2949.

615 Lovley, D. R., Coates, J. D., Blunt-Harris, E. L., Phillips, E. J. P., Woodward, J.
616 C., 1996, Humic substances as electron acceptors for microbial respiration.
617 *Nature* 382, 445-448.

618 Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar,
619 Buchner, A., Lai, T., Steppi, S., Jobb, G., Förster, W., Brettske, I., Gerber, S.,
620 Ginhart, A. W., Gross, O., Grumann, S., Hermann, S., Jost, R., König, A., Liss,
621 T., Lüssmann, R., May, M., Nonhoff, B., Reichel, B., Strehlow, R., Stamatakis,
622 A., Stuckmann, N., Vilbig, A., Lenke, M., Ludwig, T., Bode, A., Schleifer, K.
623 H., 2004, ARB: a software environment for sequence data. *Nucleic Acids Res.*
624 32, 1363-1371.

625 Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieu, A.,
626 Tardieu, P., 1981, Experimental determination of nitrogen kinetic isotope
627 fractionation: some principles; illustration for the denitrification and
628 nitrification processes. *Plant and Soil* 62, 413-430.

629 Oren, A., 2014, The family *Methanotrichaceae*. In: Rosenberg, E., DeLong, E. F.,
630 Lory, S., Stackebrandt, E., Thompson, F. (Eds.), *The Prokaryotes*, Springer,
631 Berlin, 298-306.

632 Pelikan, C., Herbold, C. W., Hausmann, B., Mueller, A. L., Pester, M., Loy, A.,
633 2016, Diversity analysis of sulfite- and sulfate-reducing microorganisms by
634 multiplex *dsrA* and *dsrB* amplicon sequencing using new primers and mock
635 community-optimized bioinformatics. *Environ. Microbiol.* 18, 2994-3009.

636 Penning, H., Claus, P., Casper, P., Conrad, R., 2006a, Carbon isotope
637 fractionation during acetoclastic methanogenesis by *Methanosaeta concilii* in
638 culture and a lake sediment. *Appl. Environ. Microbiol.* 72, 5648-5652.

639 Penning, H., Tyler, S. C., Conrad, R., 2006b, Determination of isotope
640 fractionation factors and quantification of carbon flow by stable isotope
641 signatures in a methanogenic rice root model system. *Geobiology* 4, 109-121.

642 Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J.,
643 Glöckner, F. O., 2007, SILVA: a comprehensive online resource for quality
644 checked and aligned ribosomal RNA sequence data compatible with ARB.
645 *Nucleic Acids Res.* 35, 7188-7196.

646 Stumm, W. and Morgan, J. J., 1996, *Aquatic Chemistry*, 3. ed. Wiley, New York.

647 Valentine, D. L., Chidthaisong, A., Rice, A., Reeburgh, W. S., Tyler, S. C., 2004,
648 Carbon and hydrogen isotope fractionation by moderately thermophilic
649 methanogens. *Geochim. Cosmochim. Acta* 68, 1571-1590.

650 Wang, Q., Quensen, J. F., Fish, J. A., Lee, T. K., Sun, Y. N., Tiedje, J. M., Cole,
651 J. R., 2013, Ecological patterns of *nifH* genes in four terrestrial climatic zones
652 explored with targeted metagenomics using FrameBot, a new informatics tool.
653 *Mbio* 4, e00592-13-doi:10.1128/mBio.00592-13.

654 Wörner, S., Zecchin, S., Dan, J. G., Todorova, N. H., Loy, A., Conrad, R., Pester,
655 M., 2016, Gypsum amendment to rice paddy soil stimulated bacteria involved

656 in sulfur cycling but largely preserved the phylogenetic composition of the total
657 bacterial community. Environ. Microbiol. Reports 8, 413-423.

658 Yang, S., Liebner, S., Alawi, M., Ebenhöh, O., Wagner, D., 2014, Taxonomic
659 database and cut-off value for processing *mcrA* gene 454 pyrosequencing data
660 by MOTHUR. J. Microbiol. Methods 103, 3-5.

661 Zyakun, A. M., Bondar, V. A., Laurinavichus, K. S., Shipin, O. V., Belyaev, S. S.,
662 Ivanov, M. V., 1988, Fractionation of carbon isotopes under the growth of
663 methane-producing bacteria on various substrates. Mikrobiologiceskij Zhurnal
664 50, 16-22.

665

666

667 **Figure legends**

668 Fig. 1: Acetate conversion to CH₄ and CO₂ in unbuffered suspensions of paddy soil from the
669 IRRI (the Philippines) without additions (water control), with gypsum, and with CH₃F.
670 The panels show the temporal change of (A) concentrations of acetate; (B) δ¹³C of
671 acetate; (C) partial pressures of CH₄ and CO₂ (1 ppmv = 10⁻⁶ bar); (D) δ¹³C of CH₄
672 and CO₂. Means ± SE, n = 2.

673 Fig. 2: Mariotti plots of (A, B) acetate consumption and (C, D) CH₄ production in (A, C) the
674 absence (control) and (B, D) the presence of gypsum (+ sulfate) in 4 replicates of
675 unbuffered suspensions of paddy soil from the IRRI.

676 Fig. 3: Isotopic enrichment factors (ε_{ac} or $\varepsilon_{\text{CH}_4}$, given as negative values) of unbuffered soil
677 suspensions (Vercelli-soil, IRRI-soil) and buffered suspensions of paddy soil
678 (Vercelli, IRRI) or sediments of Lake Fuchskuhle (NE and SW basin). The values of
679 ε_{ac} (acetate) and $\varepsilon_{\text{CH}_4}$ (CH₄) were measured without addition of sulfate (methanogenic
680 conditions), with addition of sulfate during preincubation and the experiment
681 (sulfidogenic conditions) and with sulfate but the preincubation without sulfate
682 (mostly methanogenic conditions). Mean ± SE, n = 3-4.

683 Fig. 4: Acetate conversion to CH₄ and CO₂ in phosphate-buffered (pH 7.0) suspensions of
684 paddy soil from Vercelli (Italy) without additions (control); with CH₃F; with gypsum
685 (preincubation and experiment); with gypsum (preincubation and experiment) + CH₃F.
686 The panels show the temporal change of (A) concentrations of acetate; (B) δ¹³C of
687 acetate; (C) partial pressures of CH₄ (1 ppmv = 10⁻⁶ bar); (D) δ¹³C of CH₄; (E) partial
688 pressures of CO₂ (1 ppmv = 10⁻⁶ bar); (D) δ¹³C of CO₂. Means ± SE, n = 3.

689 Fig. 5: Balance of CH₄ produced against acetate consumed in phosphate-buffered suspensions
690 of paddy soil from Vercelli and IRRI, and of sediments from the NE and SW basin of
691 Lake Fuchskuhle. The figures show individual replicates (n = 3) of the unamended
692 control (methanogenic conditions); of the experiment plus gypsum (CaSO₄-1); of
693 preincubation and experiment plus gypsum (CaSO₄-2). The diagonal line indicates
694 stoichiometric conversion (disproportionation) of acetate to CH₄ + CO₂.

695 Fig. 6: Acetate conversion to CH₄ and CO₂ in phosphate-buffered (pH 7.0) suspensions of
696 sediment from the NE basin of Lake Fuchskuhle without additions (control); with
697 CH₃F; with gypsum (preincubation and experiment); with gypsum (preincubation and
698 experiment) + CH₃F. The panels show the temporal change of (A) concentrations of
699 acetate; (B) $\delta^{13}\text{C}$ of acetate; (C) partial pressures of CH₄ (1 ppmv = 10⁻⁶ bar); (D) $\delta^{13}\text{C}$
700 of CH₄; (E) partial pressures of CO₂ (1 ppmv = 10⁻⁶ bar); (D) $\delta^{13}\text{C}$ of CO₂. Means \pm
701 SE, n = 3.

702 Fig. 7: Relative abundance of (A) *mcrA* (methanogens), (B) *dsrB* (sulfate reducers), (C)
703 bacterial 16S rRNA genes; The DNA was extracted after preincubation of phosphate-
704 buffered suspensions of paddy soils (Vercelli, IRRI) and sediments of Lake
705 Fuchskuhle (NE, SW basin) without additions (methanogenic conditions) or
706 preincubated and incubated in the presence of sulfate (sulfidogenic conditions).
707