

- 1 29 Jul 2021
- 2 Fractionation of stable carbon isotopes during acetate consumption by
- 3 methanogenic and sulfidogenic microbial communities in rice paddy soils
- 4 and lake sediments
- 5
- Ralf Conrad¹, Pengfei Liu^{1,2}, Peter Claus¹
 7
- ¹Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg,
 Germany
- 10
- ²Center for Pan-third Pole Environment, Lanzhou University, Tianshuinanlu 222, Lanzhou,
 730000, China
- 13
- 14 Correspondence to: Ralf Conrad (<u>Conrad@mpi-marburg.mpg.de</u>)
- 15
- 16 **Running head:** Isotope fractionation by anaerobic acetate consumption
- 17
- 18

19	Abstract. Acetate is an important intermediate during the degradation of organic matter in
20	anoxic flooded soils and sediments. Acetate is disproportionated to CH4 and CO2 by
21	methanogenic or is oxidized to CO2 by sulfate-reducing microorganisms. These reactions
22	result in carbon isotope fractionation, depending on the microbial species and their particular
23	carbon metabolism. To learn more about the magnitude of the isotopic enrichment factors (ϵ)
24	involved, acetate conversion to CH4 and CO2 was measured in anoxic paddy soils from
25	Vercelli (Italy) and the International Rice Research Institute (IRRI, the Philippines) and in
26	anoxic lake sediments from the north east (NE) and the south west (SW) basins of Fuchskuhle
27	(Germany). Acetate consumption was measured using samples of paddy soil or lake sediment
28	suspended in water or in phosphate buffer (pH 7.0), both in the absence and presence of
29	sulfate (gypsum), and of methyl fluoride (CH3F), an inhibitor of aceticlastic methanogenesis.
30	Under methanogenic conditions, values of ϵ_{ac} for acetate consumption were always in a range
31	of -21‰ to -17‰, but higher in the lake sediment from the SW basin (-11‰). Under
32	sulfidogenic conditions ε_{ac} values tended to be slightly lower (-26‰ to -19‰) especially
33	when aceticlastic methanogenesis was inhibited. Again, ϵ_{ac} in the lake sediment of the SW
34	basin was higher (-18‰ to -14‰). Determination of ϵ_{CH4} from the accumulation of ^{13}C in
35	CH_4 resulted in much lower values (-37‰ to -27‰) than from the depletion of ^{13}C in acetate
36	(-21‰ to -17‰), especially when acetate degradation was measured in buffer suspensions.
37	The microbial communities were characterized by sequencing the bacterial 16S rRNA genes
38	as well as the methanogenic mcrA and sulfidogenic dsrB genes. The microbial communities
39	were quite different between lake sediments and paddy soils, but were similar in the
40	sediments of the two lake basins and in the soils from Vercelli and IRR, and were similar after
41	preincubation without and with addition of sulfate (gypsum). The different microbial
42	compositions could hardly serve for the prediction of the magnitude of enrichment factors.

43 1 Introduction

44	Organic matter degradation under anaerobic conditions results in the production of CO ₂ ,
45	when electron acceptors such sulfate (sulfidogenic conditions) are available, and in the
46	production of CH ₄ and CO ₂ , when they are absent (methanogenic conditions). Carbon dioxide
47	is not only end product, but can also serve as an intermediate. It can for example be converted
48	by chemolithotrophic microorganisms to CH4 or to acetate. These conversion reactions of
49	CO_2 have an isotope effect and result in products that are strongly depleted in $^{13}\mathrm{C}$, expressing
50	isotope enrichment factors (ϵ) being on the order of -70 to -50‰ (Blaser and Conrad, 2016).
51	However, the conversion of acetate to CO_2 by sulfidogenic reactions or to CH_4 plus CO_2 by
52	methanogenic reactions can also have quite substantial enrichment factors, often being on the
53	order of about -20‰ (Goevert and Conrad, 2009; Goevert and Conrad, 2010).
54	Knowledge of enrichment factors is important for the quantification of the pathways
55	involved in anaerobic degradation of organic matter. For example, the relative contribution of
56	hydrogenotrophic and aceticlastic methanogenesis to total CH4 production can be determined
57	in situ from analytical values of 13 C in organic matter, CO ₂ and CH ₄ , if the enrichment factors
58	(ϵ) are known for the reduction of CO ₂ to CH ₄ (hydrogenotrophic methanogenesis) and the
59	cleavage of acetate to CH_4 and CO_2 (aceticlastic methanogenesis)(Conrad, 2005). While ϵ of
60	the former reaction can be experimentally determined by incubation in the presence of CH_3F
61	(Chan et al., 2005; Conrad et al., 2007; Holmes et al., 2014; Penning et al., 2006b), that of the
62	latter reaction is not so easy to determine. So far reference values are mainly available from
63	relatively few experiments with pure microbial cultures. This is true for both aceticlastic
64	methanogenic archaea (Gelwicks et al., 1994; Goevert and Conrad, 2009; Krzycki et al.,
65	1987; Penning et al., 2006a; Valentine et al., 2004; Zyakun et al., 1988) and acetate-oxidizing
66	sulfidogenic bacteria (Goevert and Conrad, 2008; Goevert and Conrad, 2010; Londry and
67	DesMarais, 2003).
68	There are hardly studies of environmental samples, in which ε values of acetate
69	consumption were determined together with the composition of the methanogenic and
70	sulfidogenic microbial communities (Blair and Carter Jr., 1992; Chidthaisong et al., 2002;

71 Conrad et al., 2009; Goevert and Conrad, 2009; Penning et al., 2006a). In order to constrain

- 72 the magnitude of such ε values, we decided to investigate the stable carbon isotope
- 73 fractionation during consumption of acetate in methanogenic and sulfidogenic rice paddy soils
- 74 and anaerobic lake sediments.
- 75

76 2 Materials and Methods

77 2.1 Environmental samples

The soil samples were from the research stations in Vercelli, Italy and the International Rice research Institute (IRRI) in the Philippines. Sampling and soil characteristics were described before (Liu et al., 2018b). The lake sediments (top 10 cm layer) were from the NE and SW basins of Lake Fuchskuhle (Casper et al., 2003). They were sampled in July 20016 using a gravity core sampler as described before (Kanaparthi et al., 2013).

83

84 2.2 Paddy soils

Two different experimental setups were used using soil suspensions in water (unbuffered 85 86 suspensions) or in 20 mM potassium phosphate buffer (pH 7.0)(buffered suspensions). For the 87 unbuffered suspensions, paddy soil was mixed with autoclaved anoxic H₂O at a ratio of 1:1 88 and incubated under N₂ at 25°C for 4 weeks. Then, 5 ml preincubated soil slurry was 89 incubated at 25°C with 45 ml 5.6 mM sodium acetate in a 150-ml bottle under an atmosphere 90 of N₂. The bottles were (i) unamended; (ii) amended with 4.5 ml CH₃F; (iii) amended with 91 200 µl of a gypsum (CaSO_{4.2}H₂O) suspension (corresponding to a concentration of 2.5 M 92 sulfate) giving a final concentration of 10 mM sulfate. The experiment was performed in 4 93 replicates.

For the buffered suspensions, paddy soil was mixed with autoclaved anoxic H₂O at a ratio of 1:1 and incubated under N₂ at 25°C for 4 weeks. In a second incubation, paddy soil was mixed with autoclaved anoxic H₂O at a ratio of 1:1, was amended with 0.07 g CaSO₄.2H₂O, and then incubated under N₂ at 25°C for 4 weeks. These two preincubated soil slurries were sampled and stored at -20°C for later molecular analysis. The preincubated soil slurries were also used (in 3 replicates) for the following incubation experiments. Three different sets of incubations were prepared. In the first set (resulting in methanogenic conditions), 5 ml soil

101	slurry preincubated without sulfate was incubated at 25°C with 40 ml 20 mM potassium
102	phosphate buffer (pH 7.0) in a 150-ml bottle under an atmosphere of N_2 . The bottles were the
103	amended with (i) 5 ml H ₂ O; (ii) 5 ml H ₂ O + 4.5 ml CH ₃ F; (iii) 5 ml 50 mM sodium acetate;
104	(iv) 5 ml 50 mM sodium acetate $+$ 4.5 ml CH ₃ F. In the second set (resulting in mainly
105	methanogenic conditions), again 5 ml soil slurry preincubated without sulfate was incubated
106	at 25°C with 40 ml 20 mM potassium phosphate buffer (pH 7.0) in a 150-ml bottle under an
107	atmosphere of $N_2.$ The amendments were the same as above, but with the addition of 200 μl
108	of a CaSO ₄ suspension giving a final concentration of 10 mM sulfate. In the third set
109	(resulting in sulfidogenic conditions), 5 ml soil slurry preincubated with sulfate was incubated
110	at 25°C with 40 ml 20 mM potassium phosphate buffer (pH 7.0) in a 150-ml bottle under an
111	atmosphere of $N_2.$ The amendments were the same as above, but with the addition of 200 μl of
112	a CaSO ₄ suspension corresponding to a concentration of 2.5 M (giving a final concentration
113	of 10 mM sulfate).

114

115 2.3 Lake sediments

116 For methanogenic conditions, 5 ml lake sediment was incubated in 3 replicates at 10°C 117 with 45 ml 20 mM potassium phosphate buffer (pH 7.0) in a 150-ml bottle under an 118 atmosphere of N₂. The bottles were the amended with (i) 5 ml H₂O; (ii) 5 ml H₂O + 4.5 ml 119 CH₃F; (iii) 5 ml 50 mM sodium acetate; (iv) 5 ml 50 mM sodium acetate + 4.5 ml CH₃. Part 120 of the lake sediment was preincubated with sulfate by adding 0.1 g CaSO₄.2H₂O (gypsum) to 121 50 ml sediment and incubating at 10°C for 4 weeks. For sulfidogenic conditions 5 ml of the 122 preincubated sediment was incubated at 10°C with 40 ml 20 mM potassium phosphate buffer 123 (pH 7.0) in a 150-ml bottle under an atmosphere of N₂. The bottles were amended as above, 124 but in addition also with 200 µl of a CaSO₄ suspension giving a final concentration of 10 mM 125 sulfate. Samples for later molecular analysis were taken from the original lake sediment and 126 from the lake sediment preincubated with sulfate. The samples were stored at -20°C. 127

129 2.4 Extraction of DNA and amplicon sequencing

130	The lake sediments or paddy soils in phosphate buffer were collected by centrifugation
131	(11000 \times g, 4°C, 5 min). Genomic DNA were extracted with NucleoSpin Soil Kit (Macherey-
132	Nagel, Düren, Germany) by following the user's manufacture. DNA were checked by gel
133	electrophoresis (1% agarose in TEA buffer, stained with GelRed) and quantified by Qubit 2.0.
134	The amplification of 16S rRNA, mcrA and dsrB gene were done as described previously (Liu
135	and Conrad, 2017). In brief, First step PCR, for 16S rRNA, h515-Y / h926R primers were
136	used with the following PCR protocol: 94°C for 3 min; 15 cycles with 94°C for 30 s, 52°C for
137	30 s and 68°C for 60 s; 68°C for 10 min and hold at 8°C. For mcrA, hmlas-mod-F / hmcra-
138	rev-R primers were used with the following PCR protocol: 94°C for 4 min; 15-18 cycles with
139	94°C for 30 s , 60 by 1°C to 55°C for 30 s and 68°C for 60 s; 68°C for 10 min and hold at
140	8°C. For dsrB hDSR1762Fmix / hDSR2010Rmix primers were used with the following PCR
141	protocol: 94°C for 3 min; 25 cycles with 94°C for 30 s, 60°C by 1°C to 50 °C for 30 s and
142	68°C for 60 s; 68°C for 10 min and hold at 8°C.
143	In the second step PCR, barcode-head primers were used for the PCR products of 16S
144	rRNA, mcrA and <i>dsrB</i> obtained from the first step with the following PCR protocol: 94°C for
145	3 min; 10-20 cycles with 94°C for 30 s, 52°C for 30 s and 68°C for 60 s; 68°C for 10 min and
146	hold at 8°C.
147	PCR amplicons were purified by AMP xx for both the first and second step PCR. After
148	quantification, the individual barcoded amplicons of 16S rRNA gene and dsrB were mixed in
149	equimolar concentrations, with 16S rRNA gene amplicons added in double amounts. Library
150	was sequenced on an ILLUMINA HISEQ 2000 system using 2×250 cycle combination mode
151	by Max Planck-Genome-Centre (Cologne, Germany). For mcrA, individual barcoded
152	amplicons were mixed in equimolar concentrations and library was sequenced on an
153	ILLUMINA MISEQ system using 2×300 cycle combination mode by Max Planck-Genome-
154	Centre (Cologne, Germany).
155	

155

156 2.5 Amplicon sequence data processing

157	Amplicon Sequence data were analyzed according to pipeline as described previously (Liu
158	and Conrad, 2017). In brief, paired-end reads were first merged by USEARCH and 16S rRNA
159	gene and dsrB datasets were separated by primer sequences using CUTADAPT and
160	demultiplexed using QIIME1. Datasets of mcrA were demultiplexed using QIIME1 directly.
161	All reads were subjected to quality control, de novo chimera filtering, singleton filtering and
162	OTU clustering according to the UPARSE pipeline. Species level OTUs for 16S rRNA gene
163	were obtained at 97% sequence identity. Approximate species-level dsrB and mcrA OTUs
164	were obtained with the gene-specific OTU threshold 0.90 (Pelikan et al., 2016) and 0.84
165	(Yang et al., 2014). Taxonomic identities of the OTUs of 16S rRNA gene were assigned with
166	the Ribosomal Database Project Classifier against the SILVA 123 SSU Ref database (Pruesse
167	et al., 2007). Nucleotide sequences of dsrB and mcrA were initially translated into amino acid
168	sequences using FrameBot (Wang et al., 2013). For dsrB gene, amino acid sequences were
169	aligned to the DsrAB reference sequence alignment (Pelikan et al., 2016) using MAFFT
170	(Katoh and Standley, 2013). Subsequently, the taxonomic classification of each dsrB OTU
171	was analysed using the Evolutionary Placement Algorithm (EPA) in RAXML (Berger et al.,
172	2011). For mcrA gene, amino acid sequences of each OTUs and updated full length mcrA
173	amino acid sequences from NCBI were imported into a mcrA reference ARB database
174	developed by Angel et al. (2012). The taxonomic classification of each mcrA OTU was
175	analysed by phylogenetic tree construction using Maximum parsimony implemented in ARB
176	software (Ludwig et al., 2004).
177	
178	2.6 Chemical and isotopic analyses

Chemical and isotopic analyses were performed as described in detail previously (Goevert
and Conrad, 2009). Methane was analyzed by gas chromatography (GC) with flame
ionization detector. Carbon dioxide was analyzed after conversion to CH₄ with a Ni catalyst.
Stable isotope analyses of ¹³C/¹²C in gas samples were performed using GC-combustion
isotope ratio mass spectrometry (GC-C-IRMS). Acetate was measured using highperformance liquid chromatography (HPLC) linked via a Finnigan LC IsoLink to an IRMS.

185	The isotopic values are reported in the delta notation (δ^{13} C) relative to the Vienna Peedee
186	Belemnite standard having a ${}^{13}C/{}^{12}C$ ratio (R _{standard}) of 0.01118: $\delta^{13}C = 10^3$ (R _{sample} /R _{standard} -
187	1). The precision of the GC-C-IRMS was \pm 0.2‰, that of the HPLC-IRMS was \pm 0.3‰. The
188	carbon of the sodium acetate that was used in the incubation experiments had the following
189	δ^{13} C values: total acetate, -24.4‰; acetate-methyl, -27.9‰; acetate-carboxyl, -20.9‰.
190	
191	2.7 Calculations
192	Fractionation factors for reaction A \rightarrow B are defined after Hayes (Hayes, 1993) as:
193	$\alpha_{A/B} = (\delta_A + 1000) / (\delta_B + 1000) \tag{1}$
194	also expressed as $\epsilon\equiv 1000~(1-\alpha)$ in permil. The carbon isotope enrichment factor ϵ_{ac}
195	associated with acetate consumption was calculated from the temporal change of $\delta^{13}C$ of
196	acetate as described by Mariotti et al. (Mariotti et al., 1981) from the residual reactant
197	$\delta_{\rm r} = \delta_{\rm ri} + \varepsilon \left[\ln(1 - f) \right] \tag{2}$
198	and from the product formed
199	$\delta_{\rm p} = \delta_{\rm ri} - \varepsilon (1 - f) [\ln(1 - f)]/f \tag{3}$
200	where δ_{ri} is the isotopic composition of the reactant (acetate) at the beginning, δ_r is the
201	isotopic composition of the residual acetate and $% \delta _{p}$ that of the product (CH4), both at the
202	instant when f is determined. f is the fractional yield of the products based on the
203	consumption of acetate (0 < f < 1). Linear regression of δ^{13} C of acetate against ln(1 – f) yields
204	ε_{ac} as the slope of best fit lines. Similarly, linear regression of $\delta^{13}C$ of CH ₄ against $(1 - f)$
205	$[\ln(1-f)]/f$ yields ε_{CH4} as the slope of best fit lines. The regressions of $\delta^{13}C$ of acetate were
206	done for data in the range of $f < 0.5$. The linear regressions of δ^{13} C of CH ₄ were done either
207	for the entire data range of again only for $f < 0.5$. The linear regressions were done
208	individually for each experimental replicate (n = 3-4) and were only accepted if $r^2 > 0.8$ for
209	paddy soils or $r^2 > 0.7$ for lake sediments. The ϵ values resulting from the replicate
210	experiments were then averaged (\pm SE).
211	For mass balance calculations, total inorganic carbon (TIC) was calculated as the sum of
212	gaseous CO ₂ , dissolved CO ₂ and bicarbonate using the measured data of gaseous CO ₂ , the pH

and the relevant solubility and equilibrium constants (Stumm and Morgan, 1996).

214

215	3 Results
216	3.1 Incubation of unbuffered suspensions of rice field soils
217	Incubation of unbuffered suspensions (soil + H_2O) of rice field soil from the International
218	Rice Research Institute (IRRI) of the Philippines with acetate under anoxic conditions
219	resulted in the depletion of acetate and the release of CH_4 and CO_2 (Fig. 1A, C). In the
220	presence of CH ₃ F, an inhibitor of aceticlastic methanogenesis (Janssen and Frenzel, 1997),
221	acetate was no longer consumed, and production of CH_4 and CO_2 was inhibited. However,
222	addition of sulfate had only little effect on acetate consumption and the production of $\ensuremath{\text{CH}}_4$ and
223	CO_2 (Fig. 1A, C). Both in the presence and the absence of sulfate, $\delta^{13}C$ of the residual acetate
224	and the produced CH ₄ increased, whereas $\delta^{13}C$ in CO ₂ stayed relatively stable (Fig. 1B, D). In
225	the presence of CH ₃ F, the δ^{13} C in CH ₄ was much more negative than in the absence. The
226	results were similar for soil from the Rice Research Station in Vercelli (Italy) (Fig.S1).
227	Mariotti plots of the ${}^{13}C$ of acetate as function of the fractions (f) of acetate consumed
228	resulted in similar curves for all four replicates of the incubations of IRRI soil without (Fig.
229	2A) and with (Fig. 2B) sulfate amendment. The lines were straight for $f < 0.5$ (<50% of
230	acetate consumed). The same was the case for Mariotti plots of ¹³ CH ₄ , the product of acetate
231	consumption (Fig. 2C, D). The enrichment factors $\boldsymbol{\epsilon},$ which were calculated from the Mariotti
232	plots were in a range of -22‰ to -19‰, irrespectively whether they were determined in the
233	presence or the absence of sulfate and whether they were determined from acetate depletion
234	or from CH ₄ formation (Fig. 3; Table S1). Similar Mariotti plots were obtained for Vercelli
235	soil (Fig. S2), which resulted in ϵ values ranging between -20‰ to -17‰, except the ϵ
236	determined for CH ₄ production in the presence of sulfate, which was only -14 \pm 1.4% (Fig.
237	3).
238	Mass balance calculations showed that on a molar basis the accumulated CH_4 amounted to
239	about 90% of the consumed acetate (the methyl group) in the absence and to about 71% in the
240	presence of sulfate in the IRRI soil and to 97% and 76%, respectively, in the Vercelli soil.

242 3.2 Incubation of buffered suspensions of rice field soils

243	The experiments with rice field soils were repeated using soil slurries suspended in
244	phosphate buffer. This was done to run the experiment at a constant pH 7.0. In Vercelli soil,
245	acetate was consumed and CH ₄ and CO ₂ were produced (Fig. 4A, C, E). The $\delta^{13}C$ of the
246	residual acetate and the produced CH_4 increased as acetate consumption proceeded (Fig. 4B,
247	D). The δ^{13} C of the produced CO ₂ first decreased and later increased (Fig. 4F). This happened
248	also, when the soil suspensions were incubated in the presence of sulfate after preincubation
249	with sulfate (Fig. 4F), but CH ₄ production was lower and CO ₂ production was higher in the
250	presence than in the absence of sulfate (Fig. 4C, E). Production of CH4 ceased in the presence
251	of sulfate after about 10 d (Fig. 4C). Addition of CH ₃ F completely inhibited CH ₄ production
252	both in the presence and absence of sulfate (Fig. 4C). It also inhibited CO ₂ production but
253	only in the absence of sulfate (Fig. 4E). In the presence of sulfate, CH ₃ F only delayed but did
254	not inhibit acetate consumption and CO ₂ production (Fig. 4A, E), and also did not prevent the
255	increase of δ^{13} C in the residual acetate (Fig. 4B).
256	Mass balance calculations showed that while acetate (the methyl group) was almost
257	completely degraded to CH4 in the absence of sulfate, it accounted, after a delayed inhibition,
258	for only about a third in the presence of sulfate (Fig. 5). When the soil suspensions were
259	incubated in the presence of sulfate but without preincubation, CH4 production was only
260	slightly less than in the incubations without sulfate (Fig. 5). The complete set of these
261	experiments is shown in Fig. S3. When CH ₄ production was inhibited, CO ₂ production
262	apparently was a substitute, since the consumed acetate was always rather well balanced by
263	the production of both CH_4 and TIC together (Fig. S4). The same experimental setup was
264	used for IRRI soil. The results were similar and are shown in the supplementary (Fig. S5, S6,
265	S7). In IRRI soil suspensions, the mass balance between the production of $CH_4 + TIC$ and the
266	acetate consumed was improved when the production was corrected with the background
267	production in a control without addition of acetate (Fig. S8).
268	Mariotti plots of acetate consumption and CH4 production in both Vercelli soil (Fig. S9)
269	and IRRI soil (Fig. S10) could be created for all the different incubation conditions, in which

270 acetate was consumed, i.e. in the absence of sulfate (control), in the presence of sulfate, and in

271

272 for fractions of acetate consumption with f < 0.5 (Fig. 3; Table S1). The ε values for acetate 273 consumption were similar for the experiments without and with sulfate and ranged between -274 21‰ and -17‰. However, the ε values for CH₄ production were systematically lower, 275 ranging between -37‰ and -23‰ (Fig. 3; Table S1). Since acetate consumption in the 276 presence of sulfate was also possible when CH₄ production was inhibited by CH₃F, Mariotti 277 plots could also be created for these conditions (Fig. S11). The resulting ε values were similar 278 than those in the absence of sulfate and ranged for Vercelli soil between -24‰ and -22‰ 279 (Fig. 3; Table S1). Only in the IRRI soil ε values were higher (-10‰), but only when the soil 280 had been preincubated with sulfate (Fig. 3; Table S1). 281

the presence of sulfate after preincubation with sulfate. Enrichment factors (ϵ) were calculated

282 3.3 Incubation of buffered suspensions of lake sediments

283 Experiments with lake sediments were done analogous to those with rice filed soils. 284 Slurries of sediment from the NE and SW basins of Lake Fuchskuhle were suspended in 285 phosphate buffer pH 7.0 in the absence and the presence of sulfate (after preincubation with 286 sulfate) and without and with addition of CH₃F. In the sediment from the NE basin acetate 287 was consumed after a lag phase, first (after about 40 d) in the incubations with sulfate, then 288 (after about 60 d) also in the incubations without sulfate (Fig. 6A). Addition of CH_3F only 289 partially inhibited the acetate consumption in the absence of sulfate, and did not at all inhibit 290 the acetate consumption in the presence of sulfate (Fig. 6A). However, CH₃F almost 291 completely inhibited the production of CH4, and also inhibited almost completely the increase 292 of the δ^{13} C in the residual acetate when sulfate was absent (Fig. 6B). Presence of sulfate also 293 strongly inhibited CH₄ production (Fig. 6C). The small amounts of CH₄ produced showed a 294 rather constant δ^{13} C of about -40% in the absence and of -90 to -80% in the presence of 295 CH₃F (Fig. 6D). Without sulfate, by contrast, the δ^{13} C in CH₄ was first about -70‰ and then 296 with acetate consumption progressively increased to about -40% in the absence and decreased 297 to about -90% in the presence of CH₃F (Fig. 6D). Mass balance calculations showed that CH₄ 298 production in the presence of sulfate accounted on a molar basis only for about 5% of the 299 acetate consumed, while in the absence of sulfate CH₄ production accounted for about 45%

300	(Fig. 5). In the sediment from the SW basin, the contribution of CH ₄ production to acetate
301	consumption was even lower (about 30%)(Fig. 5). These low values are noteworthy in
302	comparison to those found in the rice field soils (Fig. 5). In the presence of sulfate, acetate
303	was almost exclusively converted to CO ₂ , which strongly increased during the time of acetate
304	consumption exhibiting a relatively good mass balance (Fig. S4, S8). This was also the case in
305	the incubations without sulfate, indicating that a rather large fraction of the acetate was
306	converted to CO ₂ rather than CH ₄ (Fig. S4, S8). The δ^{13} C of the produced CO ₂ strongly
307	decreased from about -30‰ to about -55‰ during the period of acetate consumption (Fig. 6F)
308	and then slowly increased back to -30‰, when about 50% of the acetate had been consumed
309	(Fig. 6A). The experimental results were similar in the incubations with sediment from the
310	SW basin, which are shown in the supplement (Fig. S12, S13).
311	Mariotti plots of acetate consumption could be generated for all incubation conditions both
	I G
312	in the NE and in the SW basin of Lake Fuchskuhle (Fig. S14, S15). These plots allowed the
312	in the NE and in the SW basin of Lake Fuchskuhle (Fig. S14, S15). These plots allowed the
312 313	in the NE and in the SW basin of Lake Fuchskuhle (Fig. S14, S15). These plots allowed the calculation of ε values, which were generally higher (-20‰ to -19‰) in the NE (-20‰ to -
312 313 314	in the NE and in the SW basin of Lake Fuchskuhle (Fig. S14, S15). These plots allowed the calculation of ε values, which were generally higher (-20‰ to -19‰) in the NE (-20‰ to -19‰) than the SW basin (-14‰ to -11‰). For CH ₄ production, useful Mariotti plots could
312313314315	in the NE and in the SW basin of Lake Fuchskuhle (Fig. S14, S15). These plots allowed the calculation of ε values, which were generally higher (-20‰ to -19‰) in the NE (-20‰ to -19‰) than the SW basin (-14‰ to -11‰). For CH ₄ production, useful Mariotti plots could only be generated for incubations without sulfate resulting in ε values, which were higher (-
 312 313 314 315 316 	in the NE and in the SW basin of Lake Fuchskuhle (Fig. S14, S15). These plots allowed the calculation of ε values, which were generally higher (-20‰ to -19‰) in the NE (-20‰ to -19‰) than the SW basin (-14‰ to -11‰). For CH ₄ production, useful Mariotti plots could only be generated for incubations without sulfate resulting in ε values, which were higher (-28‰ to -27‰) than those calculated from acetate consumption (Fig. 3; Table S1). Mariotti
 312 313 314 315 316 317 	in the NE and in the SW basin of Lake Fuchskuhle (Fig. S14, S15). These plots allowed the calculation of ε values, which were generally higher (-20‰ to -19‰) in the NE (-20‰ to -19‰) than the SW basin (-14‰ to -11‰). For CH ₄ production, useful Mariotti plots could only be generated for incubations without sulfate resulting in ε values, which were higher (-28‰ to -27‰) than those calculated from acetate consumption (Fig. 3; Table S1). Mariotti plots of acetate consumption could be generated for incubations with sulfate, in which the
 312 313 314 315 316 317 318 	in the NE and in the SW basin of Lake Fuchskuhle (Fig. S14, S15). These plots allowed the calculation of ε values, which were generally higher (-20‰ to -19‰) in the NE (-20‰ to -19‰) than the SW basin (-14‰ to -11‰). For CH ₄ production, useful Mariotti plots could only be generated for incubations without sulfate resulting in ε values, which were higher (-28‰ to -27‰) than those calculated from acetate consumption (Fig. 3; Table S1). Mariotti plots of acetate consumption could be generated for incubations with sulfate, in which the very low CH ₄ production was further inhibited by CH ₃ F (Fig. S16). The ε values of these

322 3.4 Microbial community composition

The composition of the microbial communities was determined at the beginning of incubation, after preincubation without and with sulfate in the rice field soil and lake sediment suspensions by targeting three different genes, i.e., *mcrA* (methyl CoM reductase), *dsrB* (dissimilatory sulfate reductase), and the bacterial 16S rRNA gene. The compositions of microorganisms represented by all three genes were quite different between the rice field soils

328

329 sediments were smaller (Fig. 7). 330 In the sediments of both basins of Lake Fuchskuhle, the methanogenic archaea 331 (represented by mcrA) were dominated by Methanomicrobiales and Methanosaetaceae, while 332 Methanomassiliicoccales and Methanosarcinaceae contributed less (Fig. 7A). In the rice field soils, the methanogenic taxa were more diverse comprising 6 different orders or families, with 333 334 putatively aceticlastic Methanosarcinaceae being relatively more abundant than 335 Methanosaetaceae. In addition, Methanomicrobiales contributed only little compared to 336 Methanobacteriales and especially Methanocellales. In general, there was only a marginal 337 difference in composition between the incubations in the absence and the presence of sulfate. 338 The composition of putative sulfate reducers (represented by dsrB) was also only little 339 different between the incubations with and without sulfate addition (Fig. 7B). However, the 340 composition between rice field soils and lake sediments was completely different. While rice 341 field soils were dominated by members of the uncultured-family-level lineages 9 and 5, the 342 lake sediments were dominated by the Desulfobacca acetoxidans lineage. Compared to IRRI 343 soil the relative abundance of Syntrophobacteraceae was larger in Vercelli soil, where it 344 increased upon treatment with sulfate. In the lake sediments, the relative abundances of 345 Syntrophobacteraceae and members of environmental superclusters were similar. In the lake 346 sediments there was only some minor quantitative difference between the two basins, while 347 the difference between Vercelli and IRRI soil was more pronounced. For example, compared 348 to IRRI soil the relative abundance of Syntrophobacteraceae was larger in Vercelli soil, 349 where it increased upon preincubation with sulfate. 350 The composition of Bacteria in general (represented by the 16S rRNA gene) was again 351 most different between rice field soils and lake sediments, while differences between Vercelli 352 and IRRI soils and also between sediments from the NE and SW lake basins were much less, and differences between preincubations without and with sulfate were marginal (Fig. 7C). 353 354 While in rice field soils Clostridia were the most abundant group followed by 355 Deltaproteobacteria, it was the other way round in the lake sediments. Rice field soils

and the lake sediments, while the differences within the individual samples of either soils or

- 356 contained *Bacilli*, while Lake sediments contained *Spirochaetes*, which were respectively
- 357 negligible.
- 358
- 359 4 Discussion
- 360 4.1 Methanogenic conditions

We measured ε_{ac} values in anaerobic environmental samples, which consumed acetate 361 362 almost exclusively by methanogenesis. Predominance of methanogenesis occurred in the 363 absence of sulfate, in some incubations of the rice field soils even in the presence of sulfate 364 provided there was no prior incubation in the presence of sulfate. In the rice field soils, CH₄ carbon accounted for more than 90% of the consumed acetate carbon, and CH₃F completely 365 inhibited acetate consumption, the increase of δ^{13} C in the residual acetate, and also inhibited 366 367 most of CH₄ production. In conclusion, acetate was exclusively consumed by aceticlastic 368 methanogenesis and only little CH₄ was produced from other sources than acetate, 369 presumably from background organic carbon via hydrogenotrophic methanogenesis as indicated by the negative $\delta^{13}C$ of the produced CH₄. The increase of $\delta^{13}C$ in the residual 370 371 acetate was expected due to preferred utilization of isotopically light acetate carbon. Such patterns of CH₄ production and change in ¹³C isotopic signatures have been observed by us 372 373 before in rice field soils and lake sediments (Conrad et al., 2010; Conrad et al., 2009; Fu et al., 374 2018; Ji et al., 2018). They are in agreement with the presence of a diverse methanogenic 375 archaeal community consisting of putatively hydrogenotrophic and aceticlastic methanogenic 376 archaea, which have been found in both Vercelli and IRRI soils (Liu et al., 2019; Liu et al., 377 2018b). The aceticlastic methanogens consisted of species of the genera *Methanosarcina* and 378 Methanosaeta (or Methanothrix (Oren, 2014)), which differ in the mechanism of acetate 379 activation and the affinity towards acetate (Jetten et al., 1990). 380 Both genera of methanogens were also present in the sediments of Lake Fuchskuhle, which 381 exhibited a similar pattern of acetate consumption and CH₄ production as the anaerobic rice 382 field soils, thus confirming and extending earlier studies (Chan et al., 2002; Conrad et al., 383 2010). Notably, CH₃F addition again almost completely inhibited CH₄ production from acetate and was accompanied by highly negative δ^{13} C in the small amounts of residual CH₄, 384

385 which was presumably produced by hydrogenotrophic methanogenesis. Addition of CH₃F did 386 not completely inhibit acetate consumption, indicating consumption by oxidation rather than 387 aceticlastic methanogenesis. However, CH₃F almost completely inhibited the increase of δ^{13} C 388 in the residual acetate, indicating only a negligible isotope effect. Also, CH₄ production 389 accounted only for less than 50% of the consumed acetate, as production of CH₄ was replaced 390 by CO₂. Hence, part of the acetate was apparently consumed by oxidative processes, even 391 without addition of sulfate. We assume that the oxidation consumption process was driven by 392 humic acids (Lovley et al., 1996). Notably, imbalance in the stoichiometry between CH_4 and 393 consumed acetate is reflected by the fact that the SW basin has a higher humic acid content 394 than the NE basin (Casper et al., 2003).

395 Values of ε_{ac} measured in cultures of methanogenic archaea differ depending on the genus 396 and the corresponding mechanism of acetate activation. Thus, methanogenic archaea of the 397 genus Methanosarcina, which activate acetate with acetate kinase and phosphotransacetylase have a relatively negative ε_{ac} with values ranging between -35‰ and -21‰ (Gelwicks et al., 398 399 1994; Goevert and Conrad, 2009; Krzycki et al., 1987; Zyakun et al., 1988). By contrast, 400 those of the genus Methanosaeta, which activate acetate with acetyl-CoA synthetase, have 401 less negative ε_{ac} with values ranging between -14‰ and -10‰ (Penning et al., 2006a; 402 Valentine et al., 2004). The ε_{ac} values in methanogenic rice field soils were all in a range of -403 21‰ to -17‰, which is at the less negative end or even a bit less negative than the values 404 reported for pure cultures of *Methanosarcina* but is more negative than the values reported for 405 Methanosaeta. Therefore, it is reasonable to conclude that in the methanogenic rice field soils, 406 acetate was consumed mainly by *Methanosarcina* species and only to a minor extent by 407 Methanosaeta species. This conclusion is in agreement with the composition of the soil 408 methanogenic archaeal communities, which consisted of both genera. A similar conclusion 409 has been reached in methanogenic rice field soil (Goevert and Conrad, 2009). A similar 410 enrichment factor for acetate consumption has also been measured in the anoxic sediment of 411 Lake Wintergreen (Gelwicks et al., 1994) and again in the present study of the NE basin of 412 Lake Fuchskuhle. However, the sediment of the SW basin of Lake Fuchskuhle exhibited a 413 less negative ε_{ac} of about -11‰, which would be consistent with the activity of aceticlastic

414	Methanosaeta species. Indeed, mcrA genes of Methanoseata species were much more
415	abundant in the sediments of Lake Fuchskuhle than mcrA genes of Methanosarcina species.
416	Also in Lake Dagow sediments (located in the same region of Germany), methanogenic
417	archaea were dominated by Methanosaeta species and exhibited a relatively high ε_{ac} of about
418	-13‰ (Penning et al., 2006a). However, the sediment of the NE basin of Lake Fuchskuhle,
419	which was also dominated by Methanosaeta species exhibited more negative ϵ_{ac} values of
420	about -19‰.
421	Methanogenic consumption results in disproportionation of the acetate molecule with
422	oxidation of the carboxyl group to CO_2 and reduction of the methyl group to CH_4 . In context
423	of the isotope fractionation during the conversion of acetate to CH4 it is the isotopic
424	enrichment factor of the methyl group, $\epsilon_{ac\text{-methyl}}$, which matters. Studies of fractionation of the
425	acetate-methyl in pure culture studies of aceticlastic methanogenic archaea have shown that
426	$\epsilon_{ac\text{-methyl}}$ was always a few permil less negative than $\epsilon_{ac}.$ This difference was due to a larger
427	isotope effect for the conversion of acetate-carboxyl than acetate-methyl (Gelwicks et al.,
428	1994; Goevert and Conrad, 2009; Penning et al., 2006a; Valentine et al., 2004). Alternatively
429	to $\epsilon_{ac\text{-methyl}}$ the enrichment factor for the conversion of acetate-methyl to CH_4 can also be
430	measured from the isotopic composition in CH4, i.e., $\epsilon_{\text{CH4}}.$ Most of the studies of pure
431	methanogenic cultures resulted in ϵ_{CH4} being similar to $\epsilon_{ac-methyl}$ (Gelwicks et al., 1994;
432	Goevert and Conrad, 2009; Penning et al., 2006a), but occasionally ϵ_{CH4} was a few permil
433	more negative than $\epsilon_{ac-methyl}$, both in pure culture (Valentine et al., 2004) and in environmental
434	samples (Goevert and Conrad, 2009). Similarly, values of ϵ_{CH4} in the unbuffered suspensions
435	of rice field soils were only slightly more negative than values of $\epsilon_{ac}.$ However, in the
436	buffered suspensions of both rice field soils and lake sediments, values of ϵ_{CH4} were much
437	more negative than those of ε_{ac} , the difference amounting to 9-17‰. These results indicate
438	that the isotope effect for the conversion of the acetate-methyl to CH_4 was much stronger than
439	that for the conversion of acetate-carboxyl to CO_2 , which is completely opposite to the results
440	obtained in cultures of methanogenic archaea. This discrepancy in the results is presently
441	without conclusive explanation. The possibility of effects by bicarbonate or CO_2
442	concentrations, being different in the pure microbial cultures, the unbuffered and buffered soil

- 443 suspensions, or of phosphate effects should be considered. Effects of CO₂ concentrations and
- 444 buffer systems on fractionation factors have for example been observed in cultures of
- 445 chemolithoautotrophic *Thermoanaerobacter kivui* (Blaser et al., 2015).
- 446
- 447 4.2 Sulfidogenic conditions

448 We also measured ε_{ac} values in anaerobic environmental samples, which consumed acetate 449 by sulfate reduction. These conditions were achieved (only in the buffered suspensions) by 450 preincubation with gypsum and measurement of acetate consumption in the presence of 451 sulfate (gypsum). Preincubation was required because of delayed sulfate reduction (Liu et al., 452 2018a). The relative abundance of both *dsrB* genes and genes of bacterial 16S rRNA were 453 only marginally different between samples preincubated under methanogenic and sulfidogenic 454 conditions, similarly as observed before (Wörner et al., 2016). It is probably the induction of 455 the sulfate reduction activity, which delayed sulphidogenic conditions (Liu et al., 2018a). Sulfidogenic conditions were verified by showing that methanogenesis was almost completely 456 inhibited while acetate consumption operated, also with respect to increase of δ^{13} C in the 457 458 residual acetate, and that CH₃F, which is rather specific for acetoclastic methanogenesis, had 459 only a marginal effect on these sulfidogenic activities. Finally, sulfidogenic conditions were 460 verified by the stoichiometry of acetate conversion, which showed only very little CH₄ 461 production. 462 Values of ε_{ac} measured in cultures of sulfate-reducing bacteria differ depending on the 463 genus and the corresponding mechanism of acetate dissimilation. Experiments with cultures 464 of sulfate reducers showed that *Desulfobacca acetoxidans*, which dissimilates acetate via the 465 acetyl-CoA pathway, exhibits of about -19‰ being similar to the ε_{ac} values of aceticlastic 466 Methanosarcina species. By contrast, cultures of Desulfobacter species, which dissimilate 467 acetate vie the tricarbonic acid cycle, exhibited ε_{ac} values of about +2‰ (Goevert and Conrad, 2008). The ε_{ac} values measured in sulfidogenic anoxic paddy soils were in a range of -24‰ to 468

- 469 -22‰, but were only -24‰ to -10‰, when measured in the presence of CH₃F, which
- 470 guarantees that all aceticlastic methanogenic activities were inhibited. This range of ε_{ac} values
- 471 compares rather well with the value of -19% measured in Desulfobacca acetoxidans, which

- 472 however, was of only low relative abundance in the rice field soil incubations. However, it is 473 well possible that uncultured-family-level lineages, which were the major sulfate reducers, 474 dissimilated by similar pathway than *Desulfobacca acetoxidans* and thus, exhibited similar ε_{ac} 475 values. Also Syntrophobacteraceae, which have been found to act as major acetate-utilizing 476 sulfate reducers in Vercelli soil (Liu et al., 2018a) increased in relative abundance after 477 preincubation with sulfate. The lake sediments, by contrast, exhibited a high relative 478 abundance of *Desulfobacca acetoxidans*, and ε_{ac} values (including those with CH₃F) were in a 479 range of -26‰ to -14‰. Unfortunately, there is, to our knowledge, only a paucity of ε_{ac} values 480 measured in cultures of sulfate reducers (Goevert and Conrad, 2008). Therefore, it is not 481 possible to have a better resolution of the role of different taxa and metabolic types of sulfate-482 reducing bacteria on the fractionation of acetate carbon.
- 483

484 5 Conclusions

In order to learn about the factors that affect the magnitude of ¹³C isotope fractionation 485 486 during anaerobic acetate consumption, we studied acetate consumption under methanogenic 487 and sulfidogenic conditions in four different environmental samples, two rice field soils and 488 two lake sediments, by quantifying the conversion of acetate to CH_4 and CO_2 and by measuring the δ^{13} C in these compounds, and also determined the composition of the microbial 489 490 communities. Despite a relatively wide variety of environmental conditions and microbial 491 community compositions, the range of fractionation factors (isotopic enrichment factors ε_{ac} 492 for the fractionation of total acetate) was quite moderate. The observed ε_{ac} values were 493 basically within the range that is known from studies of pure cultures of sulfate-reducing 494 bacteria and methanogenic archaea, with a predominance of ε_{ac} values around -20%, which is 495 consistent with acetate fractionation in both aceticlastic Methanosarcina species and acetatedissimilating sulfate reducers using the acetyl-CoA pathway. In few cases ε_{ac} values were 496 close to -10‰, being consistent with a predominance of aceticlastic Methanosaeta species. 497 498 However, there is a paucity of data from cultures of acetate-dissimilating sulfate reducing 499 bacteria, for example from Syntrophobacteraceae, which presently limits the potential for 500 predicting fractionation of acetate carbon by knowing the microbial community composition.

501	Another point of concern is the use of buffered growth media, which may affect isotope
502	fractionation, such as indicated by the observation that ϵ_{CH4} values were much more negative
503	than ϵ_{ac} values when using suspensions in phosphate buffer rather than in water.
504	
505	Acknowledgements
506	We thank Dres Peter Casper and Dheeraj Kanaparthi for providing sediment samples from
507	Lake Fuchskuhle. We thank the Fonds der Chemischen Industrie Deutschland for financial
508 509	support.
510	References
511 512 513 514	Angel, R., Claus, P., Conrad, R., 2012, Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J. 6, 847-862.
515 516 517	Berger, S. A., Krompass, D., Stamatakis, A., 2011, Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst. Biol. 60, 291-302.
518 519 520	Blair, N. E. and Carter Jr., W. D., 1992, The carbon isotope biogeochemistry of acetate from a methanogenic marine sediment. Geochim. Cosmochim. Acta 56, 1247-1258.
521 522 523	Blaser, M. and Conrad, R., 2016, Stable carbon isotope fractionation as tracer of carbon cycling in anoxic soil ecosystems. Curr. Opinion Biotechnol. 41, 122- 129.
524 525 526	Blaser, M. B., Dreisbach, L. K., Conrad, R., 2015, Carbon isotope fractionation of <i>Thermoanaerobacter kivui</i> in different growth media and at different total inorganic carbon concentrations. Org. Geochem. 81, 45-52.
527 528 529	Casper, P., Chan, O. C., Furtado, A. L. S., Adams, D. D., 2003, Methane in an acidic bog lake: The influence of peat in the catchment on the biogeochemistry of methane. Aquat. Sci. 65, 36-46.
530 531 532	Chan, O. C., Claus, P., Casper, P., Ulrich, A., Lueders, T., Conrad, R., 2005, Vertical distribution of structure and function of the methanogenic archaeal community in Lake Dagow sediment. Environ. Microbiol. 7, 1139-1149.
533 534 535	Chan, O. C., Wolf, M., Hepperle, D., Casper, P., 2002, Methanogenic archaeal community in the sediment of an artificially partitioned acidic bog lake. FEMS Microbiol. Ecol. 42, 119-129.
536	Chidthaisong, A., Chin, K. J., Valentine, D. L., Tyler, S. C., 2002, A comparison

of isotope fractionation of carbon and hydrogen from paddy field rice roots and 537

538 539	soil bacterial enrichments during CO ₂ /H ₂ methanogenesis. Geochim. Cosmochim. Acta 66, 983-995.
540 541	Conrad, R., 2005, Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal. Org. Geochem. 36, 739-752.
542 543 544 545	Conrad, R., Chan, O. C., Claus, P., Casper, P., 2007, Characterization of methanogenic <i>Archaea</i> and stable isotope fractionation during methane production in the profundal sediment of an oligotrophic lake (Lake Stechlin, Germany). Limnol. Oceanogr. 52, 1393-1406.
546 547 548	Conrad, R., Claus, P., Casper, P., 2010, Stable isotope fractionation during the methanogenic degradation of organic matter in the sediment of an acidic bog lake, Lake Grosse Fuchskuhle. Limnol. Oceanogr. 55, 1932-1942.
549 550 551	Conrad, R., Klose, M., Claus, P., Dan, J. G., 2009, Activity and composition of the methanogenic archaeal community in soil vegetated with wild versus cultivated rice. Soil Biol. Biochem. 41, 1390-1395.
552 553 554	Fu, B., Conrad, R., Blaser, M., 2018, Potential contribution of acetogenesis to anaerobic degradation in methanogenic rice field soils. Soil Biol. Biochem. 119, 1-10.
555 556 557	Gelwicks, J. T., Risatti, J. B., Hayes, J. M., 1994, Carbon isotope effects associated with aceticlastic methanogenesis. Appl. Environ. Microbiol. 60, 467-472.
558 559 560	Goevert, D. and Conrad, R., 2008, Carbon isotope fractionation by sulfate- reducing bacteria using different pathways for the oxidation of acetate. Environ. Sci. Technol. 42, 7813-7817.
561 562 563 564	Goevert, D. and Conrad, R., 2009, Effect of substrate concentration on carbon isotope fractionation during acetoclastic methanogenesis by <i>Methanosarcina barkeri</i> and <i>M. acetivorans</i> and in rice field soil. Appl. Environ. Microbiol. 75, 2605-2612.
565 566	Goevert, D. and Conrad, R., 2010, Stable isotope fractionation by acetotrophic sulfur-reducing bacteria. FEMS Microbiol. Ecol. 71, 218-225.
567 568	Hayes, J. M., 1993, Factors controlling ¹³ C contents of sedimentary organic compounds: principles and evidence. Mar. Geol. 113, 111-125.
569 570 571	Holmes, M., Chanton, J. P., Bae, H. S., Ogram, A., 2014, Effect of nutrient enrichment on δ^{13} CH4 and the methane production pathway in the Florida Everglades. J. Geophys. ResBiogeosci. 119, 1267-1280.
572 573 574	Janssen, P. H. and Frenzel, P., 1997, Inhibition of methanogenesis by methyl fluoride - studies of pure and defined mixed cultures of anaerobic bacteria and archaea. Appl. Environ. Microbiol. 63, 4552-4557.

- Jetten, M. S. M., Stams, A. J. M., Zehnder, A. J. B., 1990, Acetate threshold and
 acetate activating enzymes in methanogenic bacteria. FEMS Microbiol. Ecol.
 73, 339-344.
- 578 Ji, Y., Liu, P., Conrad, R., 2018, Change of the pathway of methane production
 579 with progressing anoxic incubation of paddy soil. Soil Biol. Biochem. 121,
 580 177-184.
- 581 Kanaparthi, D., Pommerenke, B., Casper, P., Dumont, M. G., 2013,
- 582 Chemolithotrophic nitrate-dependent Fe(II)-oxidizing nature of actinobacterial
 583 subdivision lineage TM3. ISME J. 7, 1582-1594.
- Katoh, K. and Standley, D. M., 2013, MAFFT multiple sequence alignment
 software version 7: improvements in performance and usability. Mol. Biol.
 Evol. 30, 772-780.
- 587 Krzycki, J. A., Kenealy, W. R., DeNiro, M. J., Zeikus, J. G., 1987, Stable carbon
 588 isotope fractionation by *Methanosarcina barkeri* during methanogenesis from
 589 acetate, methanol, or carbon dioxide-hydrogen. Appl. Environ. Microbiol. 53,
 590 2597-2599.
- Liu, P., Klose, M., Conrad, R., 2019, Temperature-dependent network modules of
 soil methanogenic bacterial and archaeal communities. Frontiers Microbiol. 10,
 496-doi: 10.3389/fmicb.2019.00496.
- Liu, P., Pommerenke, B., Conrad, R., 2018a, Identification of
 Syntrophobacteraceae as major acetate-degrading sulfate reducing bacteria in
 Italian paddy soil. Environ. Microbiol. 20, 337-354.
- Liu, P. F. and Conrad, R., 2017, Syntrophobacteraceae-affiliated species are major
 propionate-degrading sulfate reducers in paddy soil. Environ. Microbiol. 19,
 1669-1686.
- Liu, P. F., Klose, M., Conrad, R., 2018b, Temperature effects on structure and
 function of the methanogenic microbial communities in two paddy soils and
 one desert soil. Soil Biol. Biochem. 124, 236-244.
- Londry, K. L. and DesMarais, D. J., 2003, Stable carbon isotope fractionation by
 sulfate-reducing bacteria. Appl. Environ. Microbiol. 69, 2942-2949.
- Lovley, D. R., Coates, J. D., Blunt-Harris, E. L., Phillips, E. J. P., Woodward, J.
 C., 1996, Humic substances as electron acceptors for microbial respiration.
 Nature 382, 445-448.
- 608 Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar,
- Buchner, A., Lai, T., Steppi, S., Jobb, G., Förster, W., Brettske, I., Gerber, S.,
- Ginhart, A. W., Gross, O., Grumann, S., Hermann, S., Jost, R., König, A., Liss,
- 611 T., Lüssmann, R., May, M., Nonhoff, B., Reichel, B., Strehlow, R., Stamatakis,
- 612 A., Stuckmann, N., Vilbig, A., Lenke, M., Ludwig, T., Bode, A., Schleifer, K.
- 613 H., 2004, ARB: a software environment for sequence data. Nucleic Acids Res.
- 614 32, 1363-1371.

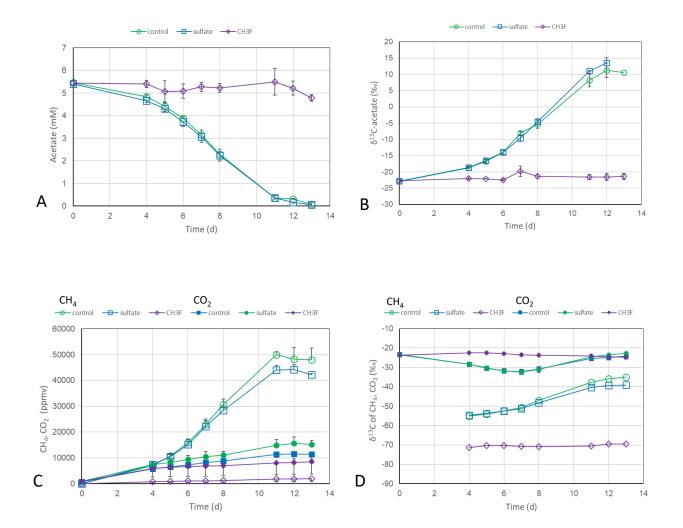
615

616 617 618	Tardieux, P., 1981, Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant and Soil 62, 413-430.
619	Oren, A., 2014, The family <i>Methanotrichaceae</i> . In: Rosenberg, E., DeLong, E. F.,
620	Lory, S., Stackebrandt, E., Thompson, F. (Eds.), The Prokaryotes, Springer,
621	Berlin, 298-306.
622	Pelikan, C., Herbold, C. W., Hausmann, B., Mueller, A. L., Pester, M., Loy, A.,
623	2016, Diversity analysis of sulfite- and sulfate-reducing microorganisms by
624	multiplex <i>dsrA</i> and <i>dsrB</i> amplicon sequencing using new primers and mock
625	community-optimized bioinformatics. Environ. Microbiol. 18, 2994-3009.
626 627 628	Penning, H., Claus, P., Casper, P., Conrad, R., 2006a, Carbon isotope fractionation during acetoclastic methanogenesis by <i>Methanosaeta concilii</i> in culture and a lake sediment. Appl. Environ. Microbiol. 72, 5648-5652.
629 630 631	Penning, H., Tyler, S. C., Conrad, R., 2006b, Determination of isotope fractionation factors and quantification of carbon flow by stable isotope signatures in a methanogenic rice root model system. Geobiology 4, 109-121.
632	Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J.,
633	Glöckner, F. O., 2007, SILVA: a comprehensive online resource for quality
634	checked and aligned ribosomal RNA sequence data compatible with ARB.
635	Nucleic Acids Res. 35, 7188-7196.
636	Stumm, W. and Morgan, J. J., 1996, Aquatic Chemistry, 3. ed. Wiley, New York.
637	Valentine, D. L., Chidthaisong, A., Rice, A., Reeburgh, W. S., Tyler, S. C., 2004,
638	Carbon and hydrogen isotope fractionation by moderately thermophilic
639	methanogens. Geochim. Cosmochim. Acta 68, 1571-1590.
640	Wang, Q., Quensen, J. F., Fish, J. A., Lee, T. K., Sun, Y. N., Tiedje, J. M., Cole,
641	J. R., 2013, Ecological patterns of <i>nifH</i> genes in four terrestrial climatic zones
642	explored with targeted metagenomics using FrameBot, a new informatics tool.
643	Mbio 4, e00592-13-doi:10.1128/mBio.00592-13.
644	Wörner, S., Zecchin, S., Dan, J. G., Todorova, N. H., Loy, A., Conrad, R., Pester,
645	M., 2016, Gypsum amendment to rice paddy soil stimulated bacteria involved
646	in sulfur cycling but largely preserved the phylogenetic composition of the total
647	bacterial community. Environ. Microbiol. Reports 8, 413-423.
648	Yang, S., Liebner, S., Alawi, M., Ebenhöh, O., Wagner, D., 2014, Taxonomic
649	database and cut-off value for processing <i>mcrA</i> gene 454 pyrosequencing data
650	by MOTHUR. J. Microbiol. Methods 103, 3-5.
651	Zyakun, A. M., Bondar, V. A., Laurinavichus, K. S., Shipin, O. V., Belyaev, S. S.,
652	Ivanov, M. V., 1988, Fractionation of carbon isotopes under the growth of
653	methane-producing bacteria on various substrates. Mikrobiologiceskij Zhurnal

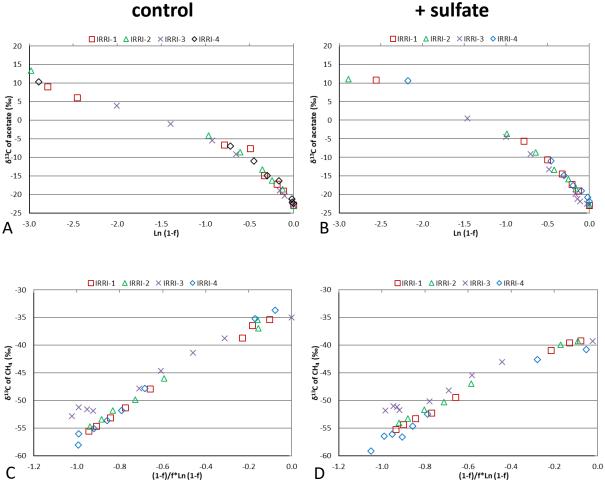
Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A.,

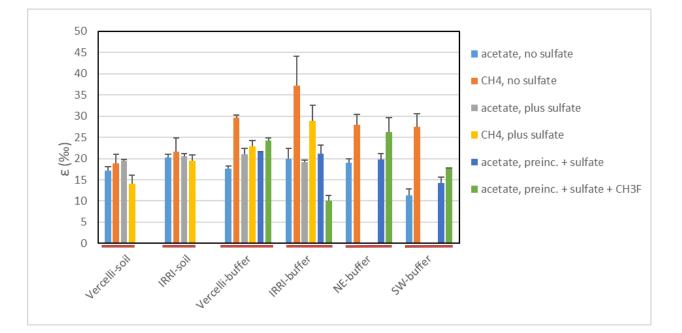
50, 16-22. 654

656	Figure legends
657	Fig. 1: Acetate conversion to CH4 and CO2 in unbuffered suspensions of paddy soil from the
658	IRRI (the Philippines) without additions (water control), with gypsum, and with CH ₃ F.
659	The panels show the temporal change of (A) concentrations of acetate; (B) δ^{13} C of
660	acetate; (C) partial pressures of CH ₄ and CO ₂ (1 ppmv = 10^{-6} bar); (D) δ^{13} C of CH ₄
661	and CO ₂ . Means \pm SE, n = 2.
662	Fig. 2: Mariotti plots of (A, B) acetate consumption and (C, D) CH ₄ production in (A, C) the
663	absence (control) and (B, D) the presence of gypsum (+ sulfate) in 4 replicates of
664	unbuffered suspensions of paddy soil from the IRRI.
665	Fig. 3: Isotopic enrichment factors (ϵ_{ac} or ϵ_{CH4} , given as negative values) of unbuffered soil
666	suspensions (Vercelli-soil, IRRI-soil) and buffered suspensions of paddy soil
667	(Vercelli, IRRI) or sediments of Lake Fuchskuhle (NE and SW basin). The values of
668	ϵ_{ac} (acetate) and ϵ_{CH4} (CH4) were measured without addition of sulfate (methanogenic
669	conditions), with addition of sulfate during preincubation and the experiment
670	(sulfidogenic conditions) and with sulfate but the preincubation without sulfate
671	(mostly methanogenic conditions). Mean \pm SE, n = 3-4.
672	Fig. 4: Acetate conversion to CH_4 and CO_2 in phosphate-buffered (pH 7.0) suspensions of
673	paddy soil from Vercelli (Italy) without additions (control); with CH3F; with gypsum
674	(preincubation and experiment); with gypsum (preincubation and experiment) + CH_3F .
675	The panels show the temporal change of (A) concentrations of acetate; (B) $\delta^{13}C$ of
676	acetate; (C) partial pressures of CH ₄ (1 ppmv = 10^{-6} bar); (D) δ^{13} C of CH ₄ ; (E) partial
677	pressures of CO ₂ (1 ppmv = 10^{-6} bar); (D) δ^{13} C of CO ₂ . Means ± SE, n = 3.
678	Fig. 5: Balance of CH ₄ produced against acetate consumed in phosphate-buffered suspensions
679	of paddy soil from Vercelli and IRRI, and of sediments from the NE and SW basin of
680	Lake Fuchskuhle. The figures show individual replicates $(n = 3)$ of the unamended
681	control (methanogenic conditions); of the experiment plus gypsum (CaSO ₄ -1); of
682	preincubation and experiment plus gypsum (CaSO ₄ -2). The diagonal line indicates
683	stoichiometric conversion (disproportionation) of acetate to $CH_4 + CO_2$.

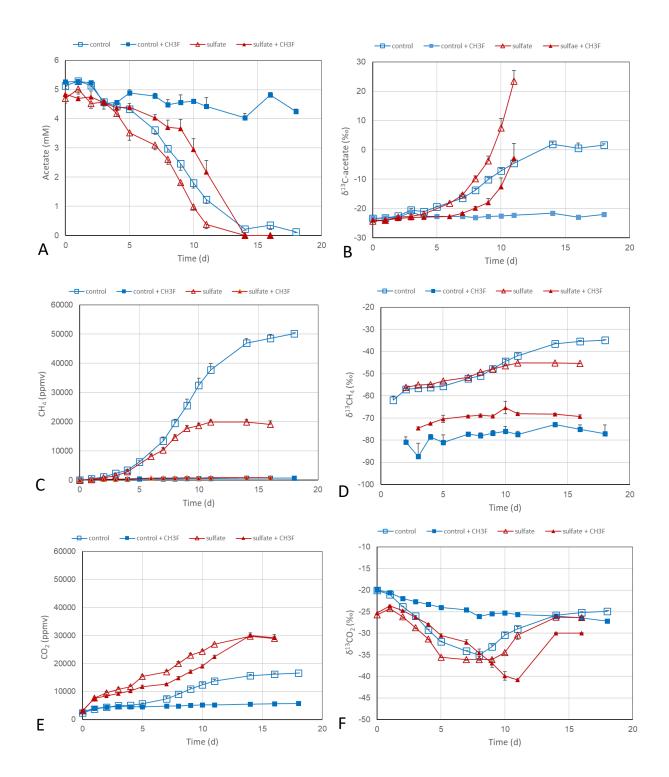


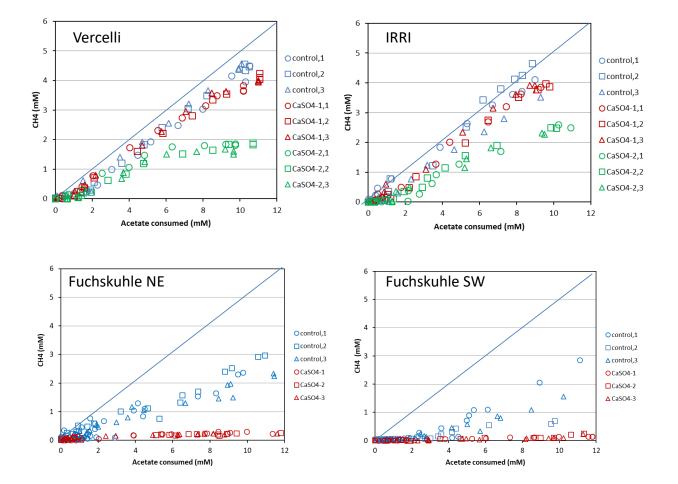
684	Fig. 6: Acetate conversion to CH_4 and CO_2 in phosphate-buffered (pH 7.0) suspensions of
685	sediment from the NE basin of Lake Fuchskuhle without additions (control); with
686	CH ₃ F; with gypsum (preincubation and experiment); with gypsum (preincubation and
687	experiment) + CH_3F . The panels show the temporal change of (A) concentrations of
688	acetate; (B) δ^{13} C of acetate; (C) partial pressures of CH ₄ (1 ppmv = 10 ⁻⁶ bar); (D) δ^{13} C
689	of CH ₄ ; (E) partial pressures of CO ₂ (1 ppmv = 10^{-6} bar); (D) δ^{13} C of CO ₂ . Means ±
690	SE, $n = 3$.
691	Fig. 7: Relative abundance of (A) mcrA (methanogens), (B) dsrB (sulfate reducers), (C)
692	bacterial 16S rRNA genes; The DNA was extracted after preincubation of phosphate-
693	buffered suspensions of paddy soils (Vercelli, IRRI) and sediments of Lake
694	Fuchskuhle (NE, SW basin) without additions (methanogenic conditions) or
695 696	preincubated and incubated in the presence of sulfate (sulfidogenic conditions).





+ sulfate





Vercelli, 2nd experiment

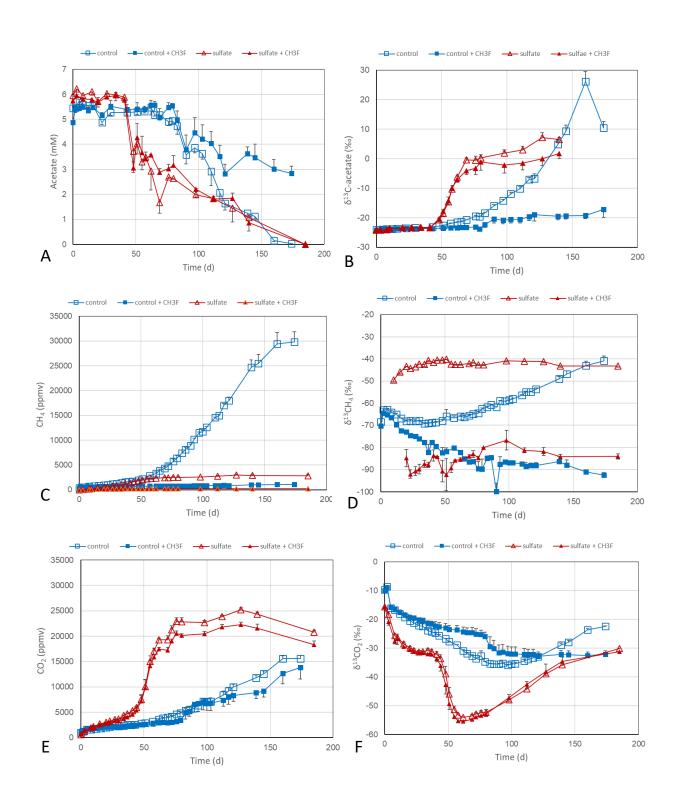
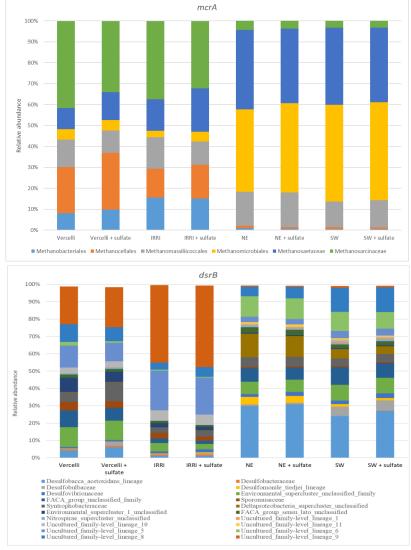



Fig. 6

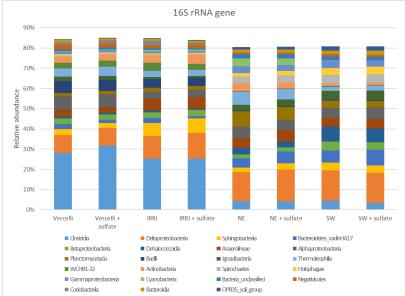


Fig. 7