
 

 1 

SPATIALLY VARYING RELEVANCE OF 1 

HYDROMETEOROLOGICAL HAZARDS FOR 2 

VEGETATION PRODUCTIVITY EXTREMES 3 

Josephin Kroll1*, Jasper M. C. Denissen1*, Mirco Migliavacca2,1, Wantong Li1, Anke Hildebrandt3,4,5, 4 
Rene Orth1 5 
 6 
* Authors contributed equally 7 
 8 
1 – Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, 9 
Germany 10 
2 – Now at: European Commission, Joint Research Centre (JRC), Ispra, Italy 11 
3 – German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Leipzig, Germany 12 
4 - Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany 13 
5 - Friedrich-Schiller-University Jena, Jena, Germany 14 
 15 
Correspondence: Josephin Kroll (jkroll@bgc-jena.mpg.de) and Jasper M. C. Denissen (jdenis@bgc-16 
jena.mpg.de) 17 

ABSTRACT 18 
Vegetation plays a vital role in the Earth system by sequestering carbon, producing food and oxygen, 19 
and providing evaporative cooling. Vegetation productivity extremes have multi-faceted implications, 20 
for example on crop yields or the atmospheric CO2 concentration. Here, we focus on productivity 21 
extremes as possible impacts of coinciding, potentially extreme hydrometeorological anomalies. Using 22 
monthly global satellite-based Sun-induced chlorophyll fluorescence data as a proxy for vegetation 23 
productivity from 2007 - 2015, we show that vegetation productivity extremes are related to 24 
hydrometeorological hazards as characterized through ERA5-Land reanalysis data in approximately 50% 25 
of our global study area. For the latter, we are considering sufficiently vegetated and cloud-free regions; 26 
and we refer to hydrometeorological hazards as water or energy related extremes inducing productivity 27 
extremes. The relevance of the different hazard types varies in space; temperature-related hazards 28 
dominate at higher latitudes with cold spells contributing to productivity minima and heat waves 29 
supporting productivity maxima, while water-related hazards are relevant in the (sub)tropics with 30 
droughts being associated with productivity minima and wet spells with the maxima. Next to single 31 
hazards also compound events such as joint droughts and heat waves or joint wet and cold spells play 32 
a role, particularly in dry and hot regions. Further, we detect regions where energy control transitions 33 
to water control between maxima and minima of vegetation productivity. Therefore, these areas 34 
represent hot spots of land-atmosphere coupling where vegetation efficiently translates soil moisture 35 
dynamics into surface fluxes such that the land affects near-surface weather. Overall, our results 36 
contribute to pinpoint how potential future changes in temperature and precipitation could propagate 37 
to shifting vegetation productivity extremes and related ecosystem services.38 
 39 

1 INTRODUCTION 40 
Vegetation is a crucial component of the Earth system because it provides ecosystem services like food 41 
and oxygen production, CO2 sequestration and evaporative cooling. Therefore, the effects of changes 42 
in vegetation productivity are diverse; it influences crop yields (Orth et al., 2020), cloud formation (Hong 43 
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et al., 1995; Freedman et al., 2001), precipitation (Pielke Sr et al., 2007), atmospheric pollution (Otu-51 
Larbi et al., 2019) and heat wave intensity (Li et al., 2021b).  52 
Photosynthesis requires sufficient water (soil moisture) and energy (incoming shortwave radiation) 53 
supply. In regions that are water (energy) limited, plants usually benefit from water (energy) surpluses 54 
and suffer from respective deficits. Many studies confirm that, depending on the evaporative regime, 55 
vegetation productivity follows the temporal evolution of influential variables such as soil moisture or 56 
temperature which summarize the water or energy dynamics (Beer et al., 2010; Seddon et al., 2016; 57 
Madani et al., 2017; Denissen et al., 2020; Piao et al., 2020; Li et al., 2021a).   58 
Correspondingly, hydrometeorological hazards, such as temperature and precipitation extremes have 59 
implications on vegetation productivity. Many studies investigated the influence of such hazards on 60 
vegetation productivity, highlighting their impact on the biosphere (Ciais et al., 2005; Zhao et al., 2010; 61 
Zscheischler et al., 2013; Zscheischler et al., 2014a; Zscheischler et al., 2014b; Flach et al., 2018; Wang 62 
et al., 2019; Zhang et al., 2019; Qui et al., 2020). However, usually these studies focus on particular types 63 
of hydrometeorological hazards such as droughts or heat waves, or they use vegetation productivity 64 
data from models or other proxies rather than the recent satellite-derived Sun-induced chlorophyll 65 
fluorescence (SIF) data (Frankenberg et al., 2011; Joiner et al., 2013). 66 
In this study, we re-visit the relationship between vegetation productivity and hydrometeorological 67 
hazards by analyzing the implications of both single and compound hazards on vegetation productivity 68 
extremes, as has been highlighted before (Sun et al., 2015, Zhou et al., 2019). However, to our 69 
knowledge for the first time, we do so comprehensively by approximating variable importance during 70 
vegetation productivity extremes inferred from SIF data on a global scale. This analysis is done from an 71 
impact perspective; we first detect impacts (productivity extremes) before relating them to coinciding, 72 
potentially extreme hydrometeorological anomalies (Smith, 2011). Finally, we investigate where the full 73 
vegetation productivity range between minima and maxima involves transitions from energy to water 74 
controls. In regions where this occurs, the feedback of the land surface on the climate can be stronger, 75 
as the water-controlled vegetation translates soil moisture dynamics through its energy and water 76 
fluxes to affect the boundary layer and consequently also near-surface weather. Hence, our vegetation-77 
based analysis can indicate hot spots of land-atmosphere coupling (Koster et al., 2004; Guo and 78 
Dirmeyer, 2013).  79 
In section 3.1 we investigate the co-occurrence of vegetation productivity extremes and 80 
hydrometeorological hazards. Further, we show the timing of such vegetation productivity extremes in 81 
section 3.2. Additionally, we determine the main drivers of vegetation productivity extremes and assess 82 
the influence of underlying evaporative regimes in section 3.3. We summarize our results across climate 83 
regimes in section 3.4 and investigate regions with vegetation productivity controls switching between 84 
water and energy variables in section 3.5.  85 

2 DATA AND METHODS 86 
In order to characterize vegetation behavior, we use SIF and Enhanced Vegetation Index (EVI) data in 87 
this study. SIF is used as a proxy for vegetation productivity. We employ satellite-observed SIF data 88 
retrieved from the Global Ozone Measurement Experiment (GOME-2; Koehler et al., 2015). In the 89 
derivation of this SIF product, multiple corrections for varying solar zenith angles, differences in 90 
overpass times and cloud fraction have been applied to yield reliable SIF estimates. In addition to 91 
vegetation productivity, we also study changes related to vegetation greenness by using satellite-92 
observed EVI data from Moderate-resolution Imaging Spectroradiometer (MODIS; Didan, 2015).  93 
As for the hydrometeorological variables, representing energy and water availability, we consider 2m 94 
temperature, shortwave incoming radiation, vapor pressure deficit, soil moisture from 4 layers (1: 0-7 95 
cm, 2: 7-28 cm, 3: 28-100 cm, 4: 100-289 cm) and total precipitation, all from the ERA5-Land reanalysis 96 
data (Muñoz-Sabater, 2019). In addition to this, and to validate the robustness of our results, we use an 97 
alternative soil moisture product, SoMo.ml, which provides data for three layers (1: 0-10 cm, 2: 10-98 
30cm, 3: 30-50cm), and which is derived through a machine learning approach that is trained with in-99 
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situ soil moisture measurements from across the globe (O and Orth, 2021). All datasets used in this 111 
study are summarized in Table 1. 112 
 113 
 114 
Table 1. Data sets used in this study. 115 

Variables Dataset Version Application Reference 

Sun-induced chlorophyll 
fluorescence 

GOME-2 GFZ Vegetation productivity proxy Köhler et 
al., 2015 

Enhanced Vegetation 
Index 

MOD13C2 V006 Vegetation greenness proxy Didan, 2015 

Soil moisture layer 1-4, 
precipitation, shortwave 
incoming radiation, 
temperature, vapor 
pressure deficit 

ERA5 land  Hydrometeorological 
variables indicating energy 
and water availability 

Muñoz-
Sabater, 
2019 

Precipitation, net solar 
radiation, net thermal 
radiation 

ERA5  Computation of aridity to 
evaluate resulting patterns 

Hersbach et 
al., 2020 

Soil moisture layer 1-3 SoMo.ml 1 Alternative soil moisture data 
set 

O and Orth, 
2021 

Fraction of vegetation 
cover 

VCF5KYR  1 Evaluation of resulting 
patterns with respect to 
vegetation characteristics  

Hansen and 
Song, 2018 

Evapotranspiration GLEAM 3.3b Vegetation productivity proxy Martens et 
al., 2017 

 116 
The workflow applied to these datasets is illustrated in Fig. 1. At first, all data is pre-processed for 117 
comparability by (i) aggregating it to monthly, half-degree spatial and temporal resolution and by (ii) 118 
focusing on the time period 2007-2015. Next, we compute anomalies by removing linear trends and the 119 
mean seasonal cycle from the data for both the vegetation and hydrometeorological variables. In each 120 
grid cell, we disregard months with an absolute SIF value below 0.5 mW/m2/sr/nm to focus on times 121 
with sufficiently active vegetation (as in Li et al., 2021a). Additionally, grid cells with a fractional 122 
vegetation cover < 5% are excluded from the analysis. Finally, we assure the necessary data availability 123 
by considering only grid cells with > 15 monthly anomalies across the study period remaining after the 124 
filtering. Out of the identified suitable months in each grid cell, we determine the five strongest negative 125 
and five strongest positive monthly SIF anomalies. The sum of all grid cells for which five SIF maxima 126 
and minima can be detected is referred to as total study area.    127 
After this filtering, we follow two approaches in our analysis. In the first approach, we check for 128 
hydrometeorological hazards coinciding with the determined extreme vegetation productivity events. 129 
Thereby, we consider air temperature and soil moisture layer 2 as these variables were previously found 130 
to be globally most relevant for vegetation productivity (Li et al., 2021a). At first, we average the monthly 131 
temperature and soil moisture anomalies across the five months of maximum and minimum SIF 132 
anomalies. Then, a series of steps is taken to test if the coinciding hydrometeorological anomalies during 133 
SIF extremes are actually hazardous: (i) We randomly sample five months with sufficiently active 134 
vegetation and average the soil moisture and temperature anomalies, respectively, across them. (ii) We 135 
repeat this 100 times to obtain a distribution from which we determine the 10th and 90th percentile. (iii) 136 
A hydrometeorological hazard is detected if the actual, averaged temperature and/or soil moisture 137 
anomalies associated with the SIF extremes are below 10th (cold spell or drought) or above the 90th 138 
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percentile (heat wave or wet spell) of the distribution of randomly sampled averaged anomalies. Note 145 
that with this approach we can detect both single and compound hydrometeorological hazards. 146 
Complementing this analysis, in the second approach we analyze the temporal co-variation between SIF 147 
extremes and hydrometeorological anomalies. For this purpose, we correlate the five SIF extreme 148 
anomalies with anomalies of all considered hydrometeorological variables in each grid cell. We include 149 
respective SIF and hydrometeorological data from the surrounding grid cells to yield a larger data 150 
sample consisting of 5 x (8+1) = 45 data pairs. We disregard negative and insignificant (p-value > 0.05) 151 
correlations, as we assume these are not indicating actual physical controls but rather represent the 152 
influence of noise or confounding effects such as low precipitation during times of high radiation. This 153 
also serves to deal with uncertainty in the SIF data set. When systematic patterns emerge from either 154 
of the approaches with adequate significance, they are unlikely confounded by underlying SIF patterns: 155 
as we focus solely on either SIF maxima or minima, statistically significant relations only emerge when 156 
concurrent hydrometeorological anomalies of an appropriate magnitude exist. Finally, the 157 
hydrometeorological variable that yields the highest correlation coefficient with the extreme SIF 158 
anomalies is regarded as the main SIF-controlling variable during vegetation productivity maxima or 159 
minima. 160 
 161 

 162 
Figure 1. Schematic representation of our methodological approach. *Filtering for sufficiently active vegetation is explained 163 
in section 2. 164 

3 RESULTS AND DISCUSSION 165 

3.1 HYDROMETEOROLOGICAL HAZARDS AND VEGETATION PRODUCTIVITY EXTREMES 166 
Figure 2 shows which hydrometeorological hazards are associated with SIF extremes as inferred with 167 
approach 1 described in Section 2 and in Fig. 1. In approximately 50% of the global study area, we find 168 
that vegetation productivity extremes are associated with hydrometeorological hazards. This is in line 169 
with previous research (Zscheischler et al., 2014b). For both maximum and minimum vegetation 170 
productivity, we find spatially coherent patterns of associated hydrometeorological hazards. In the 171 
Northern Hemisphere SIF maxima (minima) at high latitudes relate to heat waves (cold spells), where in 172 
mid latitudes they occur jointly with wet spells (droughts). This suggests that hydrometeorological 173 
hazards associated with SIF extremes vary systematically according to energy- and water control of the 174 
local vegetation. Thereby, the boundary between both regimes and the respectively determined 175 
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relevant hydrometeorological hazards is surprisingly sharp, for example in North America, and in eastern 176 
Europe and Russia (Flach et al., 2018).  177 
Further, single hydrometeorological hazards (either an extreme temperature or soil moisture anomaly) 178 
are relevant in more areas than compound hazards (combination of extreme temperature and extreme 179 
soil moisture anomaly). Compound hazards seem to be particularly important in the sub-tropics on both 180 
hemispheres. Differences also exist between maximum and minimum vegetation productivity extremes, 181 
the latter being slightly more associated with compound hazards.    182 
Overall, the most frequent hazards during vegetation productivity minima are droughts and cold spells. 183 
Previous studies have reported the relevance of drought in this context (Zscheischler et al., 2013; 184 
Zscheischler et al., 2014a; Zscheischler et al., 2014b) even though for different vegetation productivity 185 
proxies. On the contrary, the importance of cold spells is not analyzed, probably because vegetation 186 
productivity in boreal regions is comparably smaller than in e. g. tropical regions (Li and Xiao, 2019).187 
  188 
The results in Fig. 2 are based on averages of the five months with strongest SIF anomalies in each grid 189 
cell. Figure S1 shows co-occurring hydrometeorological hazards separately for each of the five SIF 190 
maxima and minima. The patterns are similar as in Fig. 2, we consistently find temperature-related 191 
hazards to be relevant in energy-controlled regions and water-related hazards in water-controlled 192 
regions across all five individual SIF extremes. Weaker SIF extremes tend to be less associated with 193 
hydrometeorological hazards. This could be because the signal-to-noise ratio is decreased for weaker 194 
extremes, or other factors such as disturbances (fire or insect outbreaks) play a more prominent role 195 
for these productivity extremes. As mentioned, soil moisture layer 2 is used here to detect droughts and 196 
wet spells, but similar results are obtained with soil moisture layers 1 and 3, respectively (not shown). 197 
 198 
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 199 
Figure 2. Hydrometeorological hazards co-occurring with (a) SIF maxima and (b) SIF minima. Colors denote the type of 200 
hydrometeorological hazard. Bar plots indicate the area affected by each hazard type relative to the total study area.  201 
 202 

3.2 TIMING OF STRONGEST SIF EXTREME 203 
To further understand the spatially varying relevance of hydrometeorological hazards, we show the 204 
months of the year associated with the strongest SIF extreme in each grid cell in Fig. 3. The spatial 205 
pattern is quite different from that in Fig. 2, for example the sharp transitions between regions with 206 
energy and water-related hydrometeorological hazards are not present in Fig. 3. Hence, this transition 207 
is apparently not related to SIF extremes occurring in different seasons and might be rather related to 208 
different evaporative regimes which will be further investigated in the next subsection 3.3. The spatial 209 
variability in Fig. 3 is lower at high latitudes compared with (sub-)tropical regions. At high latitudes the 210 
growing season is short and constrained by energy availability. In the tropics, we find an increased 211 
smaller-scale variability, presumably due to the weak seasonal cycle of hydrometeorological variables. 212 
Most SIF extremes in North America and Eurasia occur in the early growing season, presumably when 213 
vegetation either starts to grow or growing is limited due to energy or water control. While here we 214 
show the months-of-year associated with the strongest SIF extreme, in Fig. S2 we show similar patterns 215 
in the timing of the 2nd to 5th strongest SIF extremes, indicating that each of the remaining SIF extremes 216 
occurs in similar months-of-year.  217 
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 218 

 219 
Figure 3. Global distribution of the month-of-year in which the strongest SIF (a) maximum and (b) minimum anomaly occur. 220 
Data gaps (grey) are caused by filtering for active vegetation and excluding insignificant and negative correlations. 221 

3.3 HYDROMETEOROLOGICAL DRIVERS OF VEGETATION PRODUCTIVITY EXTREMES 222 
After showing the co-occurrence of hydrometeorological hazards with SIF extremes, we apply a 223 
correlation analysis (approach 2 in section 2) to characterize the co-variability between extreme SIF 224 
anomalies and concurrent hydrometeorological anomalies. Figure 4 shows the hydrometeorological 225 
variable that correlates strongest with SIF during extreme vegetation productivity months, indicating 226 
respective controls. At the high latitudes and in the tropics SIF extremes are generally energy controlled, 227 
while in the mid latitudes and subtropics they are water controlled. Overall, we find similar spatial 228 
patterns as in Fig. 2, demonstrating consistent results across co-occurrence and co-variability of SIF 229 
extremes and hydrometeorological hazards. This coherence suggests that hydrometeorological hazards 230 
play a key role in inducing SIF extremes.  231 
The bar plot insets in Fig. 3 indicate that SIF maxima are equally controlled by energy and water variables 232 
while SIF minima are overall more water controlled. Even though weaker, this shift is also present in Fig. 233 
2. This difference can be explained with transitional regions, which have energy-controlled SIF maxima, 234 
but water-controlled SIF minima. This is illustrated for example by the northward shift of the transition 235 
between energy and water control in Russia when comparing the results for maximum and minimum 236 
SIF. These transitional regions will be further investigated in section 3.5. 237 
We repeated this analysis with SoMo.ml soil moisture and found similar spatial patterns of energy- and 238 
water-controlled regions (Fig. S3), underlining that our results are robust with respect to the choice of 239 
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the soil moisture product. Furthermore, we repeat our co-variability analysis for EVI instead of SIF in Fig. 242 
S4, which allows us to contrast to some extent the behavior of vegetation physiology (SIF) and 243 
vegetation structure (EVI). Similar to the spatial patterns of energy- and water-controlled vegetation in 244 
Fig. 4, EVI shows predominant energy control at high latitudes, while the mid latitudes are largely water-245 
controlled. Further, as in Fig. 4 for SIF, EVI minima are more associated with water variables than EVI 246 
maxima.   247 
However, the overall extent of water-controlled areas is clearly larger in the case of EVI compared with 248 
the SIF results. This could (i) partly be related to the fact that EVI, being less dynamic than SIF because 249 
it is more related to vegetation greenness and structure, tends to vary at time scales more in line with 250 
that of soil moisture (Turner et al., 2020), which can support stronger correlations. Or (ii) it could be due 251 
to confounding effects of the changing soil/vegetation color between dry and wet states on the EVI 252 
signal. 253 

 254 
Figure 4. Global distribution of hydrometeorological controls of Sun-Induced Fluorescence (SIF) (a) maxima and (b) minima in 255 
respective colors, as assessed from strongest correlations. The inset bar plot indicates the area controlled by each variable 256 
relative to the total study area. Dark grey color denotes the study area, in which correlations are negative/insignificant. 257 

3.4 HYDROMETEOROLOGICAL CONTROLS ACROSS CLIMATE REGIMES 258 
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more energy controlled (Fig. 4).274 
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In addition to analyzing the spatial variation of the main drivers of vegetation productivity extremes, we 276 
attempt to further understand the large-scale patterns along temperature and aridity gradients. To this 277 
end, we bin grid cells by their climate characteristics as denoted by long-term mean temperature and 278 
aridity (the ratio between unit-adjusted net radiation and precipitation). The results in Fig. 5 illustrate 279 
which hydrometeorological variable most often has the highest correlation with SIF anomalies in each 280 
climate regime.  281 
Figure 5 (a) and (b) show that vegetation productivity extremes in humid regions (aridity < 1; Budyko, 282 
1974) are mostly energy controlled, with temperature controlling in cold regions (long-term average 283 
temperature < 10 °C) and radiation controlling in warm regions (long-term temperature > 10 °C). In 284 
contrast, productivity extremes in arid regions (aridity > 2, Budyko, 1974) are mainly water controlled, 285 
with soil moisture layer 2 and 3 as most important water controls. The main difference between 286 
maximum and minimum SIF results is detectable in semi-arid regions (1 < aridity < 2). While for 287 
maximum SIF those climate regimes show mostly energy control, SIF minima in these regimes are largely 288 
water controlled. From this, we deduce that semi-arid regions represent the transitional regime, as the 289 
main drivers change from energy to water variables from SIF maximum to SIF minimum. 290 
Fig. S5 indicates that hydrometeorological anomalies do not solely elicit immediate, but also lagged 291 
vegetation responses. A clear difference between water- and energy-controlled conditions is already 292 
visible when correlating hydrometeorological anomalies of the preceding month with the respective SIF 293 
extreme. Energy and water surpluses and deficits establish over time, which is most clearly evidenced 294 
in arid regions, where precipitation and shallow soil moisture of the preceding month is found to be the 295 
most important variable. With time, deeper soil moisture becomes more important (Fig. 5a-b), as in 296 
case of SIF maxima, precipitation needs time to infiltrate the soil and in case of SIF minima, the soil dries 297 
most rapidly from the top down.  298 
The results for EVI show similar patterns despite an increased overall water control as seen earlier in 299 
the global maps (Fig. S4). For example, where in humid regions SIF extremes are mainly energy 300 
controlled, EVI extremes are more often water controlled, which is also reflected in the global maps in 301 
Fig. S4. 302 
Fig. S6 illustrates similar controlling hydro-meteorological variables for SIF and evapotranspiration (ET) 303 
extremes. This suggests that carbon and water cycles are sensitive to similar hazards, which in turn 304 
enhances their impact on the land climate system via both carbon and water pathways. This further 305 
demonstrates the usefulness of SIF observations for reflecting plant transpiration (Jonard et al., 2020). 306 
Further, Fig. S6 shows that GLEAM ET extremes relate much more strongly to surface soil moisture than 307 
GOME-2 SIF extremes. This could be due to the part of ET that partitions into an unproductive part, bare 308 
soil evaporation, which evaporates water from the surface layer directly and a productive part, which is 309 
connected to carbon uptake and therefore SIF. Surface soil moisture affects the unproductive part, 310 
while overall enhancing the role of surface soil moisture for ET.  311 
Figure 5 (e) and (f) show the results of Fig. 2 binned according to their long-term climate characteristics. 312 
In humid regions, both SIF extremes are co-occurring with temperature hazards. In contrast, in arid 313 
regions water-related hazards co-occur with maximum and minimum SIF. Thereby, Fig. 5 underlines 314 
once more the similarity of the results obtained with approaches 1 (Fig. 2) and 2 (Fig. 4).  315 
To additionally explore the influence of different vegetation types and their respective plant 316 
physiological differences on the main controls of vegetation productivity, we bin the grid cell results by 317 
the respective fraction of tree cover of the entire vegetation cover, and by aridity in Fig. S7. We find 318 
that the radiation control of SIF extremes in humid regions is mostly associated with forests, and that 319 
the water control in semi-arid regions largely occurs for shorter vegetation, with presumably more 320 
shallow root systems, while productivity extremes in more forested semi-arid regions tend to be energy-321 
controlled. IN very strong droughts, tall trees with deep rooting systems are particularly prone to suffer 322 
hydraulic failure (Brum et al., 2019). However, in our analysis we consider 5 events in a 15-year time 323 
period, such that we likely don’t exclusively capture very strong droughts that might results in tree 324 
mortality. Generally, hardly any changes in the most important variables can be seen with variations in 325 
tree cover, suggesting that on a global scale plant physiological differences only have a limited effect on 326 
determining the most important control for SIF extremes. As in Fig. 5, similar patterns are found for EVI 327 
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extremes with overall increased relevance of water variables particularly in short vegetation-dominated 342 
regions.  343 
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 344 
Figure 5. Hydrometeorological controls of vegetation productivity extremes summarized across climate regimes, (a) and (b) 345 
for Sun-Induced Fluorescence (SIF) extremes, (c) and (d) for Enhanced Vegetation Index (EVI) extremes. (e) and (f) display the 346 
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hydrometeorological hazards co-occurring with the SIF extremes. Box color denotes the main controlling 354 
hydrometeorological variable, the second most important variable is indicated in the smaller squares’ color, while its size 355 
represents the ratio between highest/second highest amounts of grid cells.  356 

3.5 SWITCHING HYDROMETEOROLOGICAL CONTROLS BETWEEN SIF MAXIMA AND MINIMA 357 
In a final step, we focus on shifts between energy and water control when moving from SIF maxima to 358 
SIF minima. The respective transitional regions represent hot spots of land-atmosphere coupling as (i) 359 
in these regions the land surface (soil moisture) is affecting near-surface weather at least during 360 
productivity minima (therefore also influencing transpiration) and (ii) this effect can be significant as 361 
transpiration (variability) is relatively high compared with drier regions where vegetation productivity 362 
would be water-limited across its entire range from minimum to maximum. The results are depicted in 363 
Fig. 6, which illustrates these emerging transitions from water to energy control (yellow) and vice-versa 364 
(blue, denoting land-atmosphere hot spots). Grid cells that stay within water or energy control, even 365 
with a change between the water or energy variables, respectively, are shown in black indicating no 366 
transition. Figure 6 (a) reveals many regions with no transition. Transitions are found mostly in North 367 
Eurasia and North America. Globally, a change from energy control during maximum SIF to water control 368 
during minimum SIF occurs more often (7% of the study area) than the opposite transition (4%).  369 
Figure 6b and c display the percentage of grid cells in each climate regime changing from water to 370 
energy control and vice-versa with grid cells binned with respect to long-term climate conditions, similar 371 
to Fig. 5. The highest fraction of grid cells in each climate regime would show no change, but as we focus 372 
on transitioning grid cells, only they are displayed. Transitions from water to energy control between 373 
SIF maxima and SIF minima happen most often in cold, humid regions. This is deviating from the 374 
prevailing energy control in these climate regimes, and probably related to local-scale features and/or 375 
micro-meteorological conditions. Figure 6 (c) indicates that changes from energy control during 376 
maximum SIF to water control during minimum SIF most frequently occur in the semi-arid transitional 377 
regions. These are land-atmosphere coupling hot spots as described above. The transition from energy 378 
to water limitation could be caused by energy-controlled maxima in spring, when presumably soil water 379 
resources are available after being replenished during autumn and winter. With sufficient water supply, 380 
energy surpluses could induce vegetation productivity maxima. During summer, soil moisture could be 381 
depleted for example by the high vegetation demand, and therefore taking over the SIF control of 382 
photosynthesis that is reflected into the SIF dynamics.  383 
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 386 
Figure 6. Changing hydrometeorological controls between vegetation productivity maxima and minima. (a) Global 387 
distribution of changing controls: In Fig. (b) and (c) grid cells are binned by their long-term climate characteristics. (b) 388 
indicates the percentage of grid cells in each climate regime switching from water to energy control, (c) denotes the 389 
percentage of grid cells changing from an energy-controlled maxima to a water-controlled minima. 390 

3.6 LIMITATIONS 391 
Our results are obtained at, and valid for, relatively large spatial (half degree) and temporal (monthly) 392 
scales. Previous studies have shown differences in the vegetation-climate coupling across scales 393 
(Linscheid et al., 2020), suggesting it would be worthwhile to repeat our analysis for different 394 
spatiotemporal scales in the future, possibly with new satellite data products. In this context it should 395 
be noted, however, that while the relationship between SIF and gross primary productivity (GPP) as 396 
actual vegetation productivity is strong for large spatio-temporal scales (Frankenberg et al., 2011; 397 
Guanter et al., 2012; Joiner et al., 2013), it can deteriorate towards smaller scales (He et al., 2020; 398 
Maguire et al., 2020; Marrs et al., 2020; Wohlfahrt et al., 2018). And the spatiotemporal range within 399 
which there is an acceptable SIF-GPP relationship is not entirely clear yet.  400 
As a second source of uncertainty, SIF data with their relatively large spatial footprint are more 401 
vulnerable to cloud contamination compared to finer-scale satellite products (Joiner et al., 2013). Also, 402 
especially across South America the SIF data quality is decreased to additional noise (Joiner et al., 2013; 403 
Köhler et al., 2015). In our study, many grid cells in these regions and other tropical, cloud-dominated 404 
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regions exhibit insignificant or negative correlations between SIF and hydrometeorological anomalies, 406 
which is why no hydrometeorological controls can be determined there (Fig. 4). Confirming the validity 407 
of our results for the tropical grid cells where results can be obtained, we find mostly consistent and 408 
physically meaningful results, e. g. radiation being a main driver of vegetation productivity as the cloud 409 
cover is limiting radiation (reported similarly for non-extreme conditions by Green et al., 2020 and Li et 410 
al., 2021a).  411 
Next to the SIF data, there is also noteworthy uncertainty in the soil moisture data from ERA5. While 412 
data quality of surface soil moisture benefits from (satellite) data assimilation, the soil moisture 413 
dynamics in deeper layers are more model-based which is somewhat contradicting the observational 414 
character of our study. Therefore, we use soil moisture data from SoMo.ml as an independent data set, 415 
which is not based on physical modelling and the related assumptions and parameterizations as it is 416 
derived with machine learning applied to in situ measurements from different depths. Overall, the 417 
similar results obtained with ERA5-Land and SoMo.ml soil moisture confirm the robustness of our results 418 
despite uncertainties in the soil moisture data.  419 
Finally, the use of correlation methods for inferring causal relations is potentially insufficient and under 420 
debate (Krich et al., 2020). We want to emphasize that in our study when referring to “drivers” or 421 
“controls” of vegetation productivity, we simply base this on correlation and do not imply causality. 422 
Nevertheless, we try to filter out confounding effects by disregarding negative and insignificant 423 
correlations. Additionally, testing our methodology (approach 2) for non-anomalous vegetation 424 
productivity (Fig. S8) which allows to compare results with that of Li et al. (2021a), reveals similar results 425 
while they use a different methodology based on random forests and Shapley Additive Explanations 426 
(SHAP) values which is more robust against confounding effects. Next to this, in our study we apply two 427 
different methodologies in approaches 1 and 2 and find similar results, which further underlines the 428 
robustness of our conclusions.   429 

4 CONCLUSION 430 
In this observation-based study, we quantify that vegetation productivity extremes are related to 431 
hydrometeorological hazards in about 50% of the global land area that is sufficiently vegetated and 432 
cloud-free. The most relevant hazards for vegetation productivity extremes vary along climate 433 
gradients. For vegetation productivity maxima the most relevant hydrometeorological extremes are 434 
heatwaves in Northern latitudes above 50°N and wet spells in latitudes below 50°N. For productivity 435 
minima, drought and cold spells are globally most detrimental to large-scale photosynthesis and carbon 436 
uptake. The results of our impact-centric analysis are similar to, and complement more traditional 437 
climate-centric studies (Ciais et al., 2005; Flach et al., 2018; Qui et al., 2020). Compound extremes also 438 
play a role in 15-20% of our study area, they are somewhat more relevant for productivity minima than 439 
for the maxima, with joint drought-heat extremes being most important. Semi-arid, grass-dominated 440 
ecosystems tend to transition between water and energy control within the range of their productivity 441 
variability. This results in a sensitivity to both water- and energy-related hazards. Thereby, we illustrate 442 
how global land-atmosphere coupling hot spots (Koster et al., 2004), where the land surface affects 443 
near-surface weather, can be verified using novel vegetation productivity data.  444 
Overall, this study highlights the profound role of (compound) hydrometeorological hazards for global 445 
vegetation productivity extremes. Understanding these complex, climate-dependent relationships with 446 
present-day observational data is a starting point to more reliably foresee respective changes in a 447 
changing future climate with e. g. fewer cold spells but probably more droughts. 448 
 449 
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