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Abstract. Vegetation plays a vital role in the Earth system by sequestering carbon, producing food and oxygen, and providing 

evaporative cooling. Vegetation productivity extremes have multi-faceted implications, for example on crop yields or the 

atmospheric CO2 concentration. Here, we focus on productivity extremes as possible impacts of coinciding, potentially 

extreme hydrometeorological anomalies. Using monthly global satellite-based Sun-induced chlorophyll fluorescence data as 15 

a proxy for vegetation productivity from 2007 - 2015, we show that vegetation productivity extremes are related to 

hydrometeorological hazards as characterized through ERA5-Land reanalysis data in approximately 50% of our global study 

area. For the latter, we are considering sufficiently vegetated and cloud-free regions; and we refer to hydrometeorological 

hazards as water or energy related extremes inducing productivity extremes. The relevance of the different hazard types varies 

in space; temperature-related hazards dominate at higher latitudes with cold spells contributing to productivity minima and 20 

heat waves supporting productivity maxima, while water-related hazards are relevant in the (sub)tropics with droughts being 

associated with productivity minima and wet spells with the maxima. Next to single hazards also compound events such as 

joint droughts and heat waves or joint wet and cold spells play a role, particularly in dry and hot regions. Further, we detect 

regions where energy control transitions to water control between maxima and minima of vegetation productivity. Therefore, 

these areas represent hot spots of land-atmosphere coupling where vegetation efficiently translates soil moisture dynamics into 25 

surface fluxes such that the land affects near-surface weather. Overall, our results contribute to pinpoint how potential future 

changes in temperature and precipitation could propagate to shifting vegetation productivity extremes and related ecosystem 

services. 

1 Introduction 

Vegetation is a crucial component of the Earth system because it provides ecosystem services like food and oxygen production, 30 

CO2 sequestration and evaporative cooling. Therefore, the effects of changes in vegetation productivity are diverse; it 
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influences crop yields (Orth et al., 2020), cloud formation (Hong et al., 1995; Freedman et al., 2001), precipitation (Pielke Sr 

et al., 2007), atmospheric pollution (Otu-Larbi et al., 2019) and heat wave intensity (Li et al., 2021b).  

Photosynthesis requires sufficient water (soil moisture) and energy (incoming shortwave radiation) supply. In regions that are 

water (energy) limited, plants usually benefit from water (energy) surpluses and suffer from respective deficits. Many studies 35 

confirm that, depending on the evaporative regime, vegetation productivity follows the temporal evolution of influential 

variables such as soil moisture or temperature which summarize the water or energy dynamics (Beer et al., 2010; Seddon et 

al., 2016; Madani et al., 2017; Denissen et al., 2020; Piao et al., 2020; Li et al., 2021a).   

Correspondingly, hydrometeorological hazards, such as temperature and precipitation extremes have implications on 

vegetation productivity. Many studies investigated the influence of such hazards on vegetation productivity, highlighting their 40 

impact on the biosphere (Ciais et al., 2005; Zhao et al., 2010; Zscheischler et al., 2013; Zscheischler et al., 2014a; Zscheischler 

et al., 2014b; Flach et al., 2018; Wang et al., 2019; Zhang et al., 2019; Qui et al., 2020). However, usually these studies focus 

on particular types of hydrometeorological hazards such as droughts or heat waves, or they use vegetation productivity data 

from models or other proxies rather than the recent satellite-derived Sun-induced chlorophyll fluorescence (SIF) data 

(Frankenberg et al., 2011; Joiner et al., 2013). 45 

In this study, we re-visit the relationship between vegetation productivity and hydrometeorological hazards by analyzing the 

implications of both single and compound hazards on vegetation productivity extremes, as has been highlighted before (Sun 

et al., 2015, Zhou et al., 2019). However, to our knowledge for the first time, we do so comprehensively by approximating 

variable importance during vegetation productivity extremes inferred from SIF data on a global scale. This analysis is done 

from an impact perspective; we first detect impacts (productivity extremes) before relating them to coinciding, potentially 50 

extreme hydrometeorological anomalies (Smith, 2011). Finally, we investigate where the full vegetation productivity range 

between minima and maxima involves transitions from energy to water controls. In regions where this occurs, the feedback of 

the land surface on the climate can be stronger, as the water-controlled vegetation translates soil moisture dynamics through 

its energy and water fluxes to affect the boundary layer and consequently also near-surface weather. Hence, our vegetation-

based analysis can indicate hot spots of land-atmosphere coupling (Koster et al., 2004; Guo and Dirmeyer, 2013).  55 

In section 3.1 we investigate the co-occurrence of vegetation productivity extremes and hydrometeorological hazards. Further, 

we show the timing of such vegetation productivity extremes in section 3.2. Additionally, we determine the main drivers of 

vegetation productivity extremes and assess the influence of underlying evaporative regimes in section 3.3. We summarize our 

results across climate regimes in section 3.4 and investigate regions with vegetation productivity controls switching between 

water and energy variables in section 3.5. 60 

2 Data and methods 

In order to characterize vegetation behavior, we use SIF and Enhanced Vegetation Index (EVI) data in this study. SIF is used 

as a proxy for vegetation productivity. We employ satellite-observed SIF data retrieved from the Global Ozone Measurement 
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Experiment (GOME-2; Koehler et al., 2015). In the derivation of this SIF product, multiple corrections for varying solar zenith 

angles, differences in overpass times and cloud fraction have been applied to yield reliable SIF estimates. In addition to 65 

vegetation productivity, we also study changes related to vegetation greenness by using satellite-observed EVI data from 

Moderate-resolution Imaging Spectroradiometer (MODIS; Didan, 2015).  

As for the hydrometeorological variables, representing energy and water availability, we consider 2m temperature, shortwave 

incoming radiation, vapor pressure deficit, soil moisture from 4 layers (1: 0-7 cm, 2: 7-28 cm, 3: 28-100 cm, 4: 100-289 cm) 

and total precipitation, all from the ERA5-Land reanalysis data (Muñoz-Sabater, 2019). In addition to this, and to validate the 70 

robustness of our results, we use an alternative soil moisture product, SoMo.ml, which provides data for three layers (1: 0-10 

cm, 2: 10-30cm, 3: 30-50cm), and which is derived through a machine learning approach that is trained with in-situ soil 

moisture measurements from across the globe (O and Orth, 2021). All datasets used in this study are summarized in Table 1. 

The workflow applied to these datasets is illustrated in Fig. 1. At first, all data is pre-processed for comparability by (i) 

aggregating it to monthly, half-degree spatial and temporal resolution and by (ii) focusing on the time period 2007-2015. Next, 75 

we compute anomalies by removing linear trends and the mean seasonal cycle from the data for both the vegetation and 

hydrometeorological variables. In each grid cell, we disregard months with an absolute SIF value below 0.5 mW/m2/sr/nm to 

focus on times with sufficiently active vegetation (as in Li et al., 2021a). Additionally, grid cells with a fractional vegetation 

cover < 5% are excluded from the analysis. Finally, we assure the necessary data availability by considering only grid cells 

with > 15 monthly anomalies across the study period remaining after the filtering. Out of the identified suitable months in each 80 

grid cell, we determine the five strongest negative and five strongest positive monthly SIF anomalies. The sum of all grid cells 

for which five SIF maxima and minima can be detected is referred to as total study area.    

After this filtering, we follow two approaches in our analysis. In the first approach, we check for hydrometeorological hazards 

coinciding with the determined extreme vegetation productivity events. Thereby, we consider air temperature and soil moisture 

layer 2 as these variables were previously found to be globally most relevant for vegetation productivity (Li et al., 2021a). At 85 

first, we average the monthly temperature and soil moisture anomalies across the five months of maximum and minimum SIF 

anomalies. Then, a series of steps is taken to test if the coinciding hydrometeorological anomalies during SIF extremes are 

actually hazardous: (i) We randomly sample five months with sufficiently active vegetation and average the soil moisture and 

temperature anomalies, respectively, across them. (ii) We repeat this 100 times to obtain a distribution from which we 

determine the 10th and 90th percentile. (iii) A hydrometeorological hazard is detected if the actual, averaged temperature 90 

and/or soil moisture anomalies associated with the SIF extremes are below 10th (cold spell or drought) or above the 90th 

percentile (heat wave or wet spell) of the distribution of randomly sampled averaged anomalies. Note that with this approach 

we can detect both single and compound hydrometeorological hazards. 

Complementing this analysis, in the second approach we analyze the temporal co-variation between SIF extremes and 

hydrometeorological anomalies. For this purpose, we correlate the five SIF extreme anomalies with anomalies of all considered 95 

hydrometeorological variables in each grid cell. We include respective SIF and hydrometeorological data from the surrounding 

grid cells to yield a larger data sample consisting of 5 x (8+1) = 45 data pairs. We disregard negative and insignificant (p-value 
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> 0.05) correlations, as we assume these are not indicating actual physical controls but rather represent the influence of noise 

or confounding effects such as low precipitation during times of high radiation. This also serves to deal with uncertainty in the 

SIF data set. When systematic patterns emerge from either of the approaches with adequate significance, they are unlikely 100 

confounded by underlying SIF patterns: as we focus solely on either SIF maxima or minima, statistically significant relations 

only emerge when concurrent hydrometeorological anomalies of an appropriate magnitude exist. Finally, the 

hydrometeorological variable that yields the highest correlation coefficient with the extreme SIF anomalies is regarded as the 

main SIF-controlling variable during vegetation productivity maxima or minima. 

3 Results and discussion 105 

3.1 Hydrometeorological hazards and vegetation productivity extremes 

Figure 2 shows which hydrometeorological hazards are associated with SIF extremes as inferred with approach 1 described in 

Section 2 and in Fig. 1. In approximately 50% of the global study area, we find that vegetation productivity extremes are 

associated with hydrometeorological hazards. This is in line with previous research (Zscheischler et al., 2014b). For both 

maximum and minimum vegetation productivity, we find spatially coherent patterns of associated hydrometeorological 110 

hazards. In the Northern Hemisphere SIF maxima (minima) at high latitudes relate to heat waves (cold spells), where in mid 

latitudes they occur jointly with wet spells (droughts). This suggests that hydrometeorological hazards associated with SIF 

extremes vary systematically according to energy- and water control of the local vegetation. Thereby, the boundary between 

both regimes and the respectively determined relevant hydrometeorological hazards is surprisingly sharp, for example in North 

America, and in eastern Europe and Russia (Flach et al., 2018).  115 

Further, single hydrometeorological hazards (either an extreme temperature or soil moisture anomaly) are relevant in more 

areas than compound hazards (combination of extreme temperature and extreme soil moisture anomaly). Compound hazards 

seem to be particularly important in the sub-tropics on both hemispheres. Differences also exist between maximum and 

minimum vegetation productivity extremes, the latter being slightly more associated with compound hazards.    

Overall, the most frequent hazards during vegetation productivity minima are droughts and cold spells. Previous studies have 120 

reported the relevance of drought in this context (Zscheischler et al., 2013; Zscheischler et al., 2014a; Zscheischler et al., 

2014b) even though for different vegetation productivity proxies. On the contrary, the importance of cold spells is not analyzed, 

probably because vegetation productivity in boreal regions is comparably smaller than in e. g. tropical regions (Li and Xiao, 

2019).  

The results in Fig. 2 are based on averages of the five months with strongest SIF anomalies in each grid cell. Figure S1 shows 125 

co-occurring hydrometeorological hazards separately for each of the five SIF maxima and minima. The patterns are similar as 

in Fig. 2, we consistently find temperature-related hazards to be relevant in energy-controlled regions and water-related hazards 

in water-controlled regions across all five individual SIF extremes. Weaker SIF extremes tend to be less associated with 

hydrometeorological hazards. This could be because the signal-to-noise ratio is decreased for weaker extremes, or other factors 
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such as disturbances (fire or insect outbreaks) play a more prominent role for these productivity extremes. As mentioned, soil 130 

moisture layer 2 is used here to detect droughts and wet spells, but similar results are obtained with soil moisture layers 1 and 

3, respectively (not shown). 

3.2 Timing of strongest SIF extreme 

To further understand the spatially varying relevance of hydrometeorological hazards, we show the months of the year 

associated with the strongest SIF extreme in each grid cell in Fig. 3. The spatial pattern is quite different from that in Fig. 2, 135 

for example the sharp transitions between regions with energy and water-related hydrometeorological hazards are not present 

in Fig. 3. Hence, this transition is apparently not related to SIF extremes occurring in different seasons and might be rather 

related to different evaporative regimes which will be further investigated in the next subsection 3.3. The spatial variability in 

Fig. 3 is lower at high latitudes compared with (sub-)tropical regions. At high latitudes the growing season is short and 

constrained by energy availability. In the tropics, we find an increased smaller-scale variability, presumably due to the weak 140 

seasonal cycle of hydrometeorological variables. Most SIF extremes in North America and Eurasia occur in the early growing 

season, presumably when vegetation either starts to grow or growing is limited due to energy or water control. While here we 

show the months-of-year associated with the strongest SIF extreme, in Fig. S2 we show similar patterns in the timing of the 

2nd to 5th strongest SIF extremes, indicating that each of the remaining SIF extremes occurs in similar months-of-year.  

3.3 Hydrometeorological drivers of vegetation productivity extremes 145 

After showing the co-occurrence of hydrometeorological hazards with SIF extremes, we apply a correlation analysis (approach 

2 in section 2) to characterize the co-variability between extreme SIF anomalies and concurrent hydrometeorological 

anomalies. Figure 4 shows the hydrometeorological variable that correlates strongest with SIF during extreme vegetation 

productivity months, indicating respective controls. At the high latitudes and in the tropics SIF extremes are generally energy 

controlled, while in the mid latitudes and subtropics they are water controlled. Overall, we find similar spatial patterns as in 150 

Fig. 2, demonstrating consistent results across co-occurrence and co-variability of SIF extremes and hydrometeorological 

hazards. This coherence suggests that hydrometeorological hazards play a key role in inducing SIF extremes.  

The bar plot insets in Fig. 3 indicate that SIF maxima are equally controlled by energy and water variables while SIF minima 

are overall more water controlled. Even though weaker, this shift is also present in Fig. 2. This difference can be explained 

with transitional regions, which have energy-controlled SIF maxima, but water-controlled SIF minima. This is illustrated for 155 

example by the northward shift of the transition between energy and water control in Russia when comparing the results for 

maximum and minimum SIF. These transitional regions will be further investigated in section 3.5. 

We repeated this analysis with SoMo.ml soil moisture and found similar spatial patterns of energy- and water-controlled 

regions (Fig. S3), underlining that our results are robust with respect to the choice of the soil moisture product. Furthermore, 

we repeat our co-variability analysis for EVI instead of SIF in Fig. S4, which allows us to contrast to some extent the behavior 160 

of vegetation physiology (SIF) and vegetation structure (EVI). Similar to the spatial patterns of energy- and water-controlled 
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vegetation in Fig. 4, EVI shows predominant energy control at high latitudes, while the mid latitudes are largely water-

controlled. Further, as in Fig. 4 for SIF, EVI minima are more associated with water variables than EVI maxima.  

However, the overall extent of water-controlled areas is clearly larger in the case of EVI compared with the SIF results. This 

could (i) partly be related to the fact that EVI, being less dynamic than SIF because it is more related to vegetation greenness 165 

and structure, tends to vary at time scales more in line with that of soil moisture (Turner et al., 2020), which can support 

stronger correlations. Or (ii) it could be due to confounding effects of the changing soil/vegetation color between dry and wet 

states on the EVI signal. 

3.4 Hydrometeorological controls across climate regimes 

In addition to analyzing the spatial variation of the main drivers of vegetation productivity extremes, we attempt to further 170 

understand the large-scale patterns along temperature and aridity gradients. To this end, we bin grid cells by their climate 

characteristics as denoted by long-term mean temperature and aridity (the ratio between unit-adjusted net radiation and 

precipitation). The results in Fig. 5 illustrate which hydrometeorological variable most often has the highest correlation with 

SIF anomalies in each climate regime.  

Figure 5 (a) and (b) show that vegetation productivity extremes in humid regions (aridity < 1; Budyko, 1974) are mostly energy 175 

controlled, with temperature controlling in cold regions (long-term average temperature < 10 °C) and radiation controlling in 

warm regions (long-term temperature > 10 °C). In contrast, productivity extremes in arid regions (aridity > 2, Budyko, 1974) 

are mainly water controlled, with soil moisture layer 2 and 3 as most important water controls. The main difference between 

maximum and minimum SIF results is detectable in semi-arid regions (1 < aridity < 2). While for maximum SIF those climate 

regimes show mostly energy control, SIF minima in these regimes are largely water controlled. From this, we deduce that 180 

semi-arid regions represent the transitional regime, as the main drivers change from energy to water variables from SIF 

maximum to SIF minimum. 

Fig. S5 indicates that hydrometeorological anomalies do not solely elicit immediate, but also lagged vegetation responses. A 

clear difference between water- and energy-controlled conditions is already visible when correlating hydrometeorological 

anomalies of the preceding month with the respective SIF extreme. Energy and water surpluses and deficits establish over 185 

time, which is most clearly evidenced in arid regions, where precipitation and shallow soil moisture of the preceding month is 

found to be the most important variable. With time, deeper soil moisture becomes more important (Fig. 5a-b), as in case of 

SIF maxima, precipitation needs time to infiltrate the soil and in case of SIF minima, the soil dries most rapidly from the top 

down.  

The results for EVI show similar patterns despite an increased overall water control as seen earlier in the global maps (Fig. 190 

S4). For example, where in humid regions SIF extremes are mainly energy controlled, EVI extremes are more often water 

controlled, which is also reflected in the global maps in Fig. S4. 

Fig. S6 illustrates similar controlling hydro-meteorological variables for SIF and evapotranspiration (ET) extremes. This 

suggests that carbon and water cycles are sensitive to similar hazards, which in turn enhances their impact on the land climate 
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system via both carbon and water pathways. This further demonstrates the usefulness of SIF observations for reflecting plant 195 

transpiration (Jonard et al., 2020). Further, Fig. S6 shows that GLEAM ET extremes relate much more strongly to surface soil 

moisture than GOME-2 SIF extremes. This could be due to the part of ET that partitions into an unproductive part, bare soil 

evaporation, which evaporates water from the surface layer directly and a productive part, which is connected to carbon uptake 

and therefore SIF. Surface soil moisture affects the unproductive part, while overall enhancing the role of surface soil moisture 

for ET.  200 

Figure 5 (e) and (f) show the results of Fig. 2 binned according to their long-term climate characteristics. In humid regions, 

both SIF extremes are co-occurring with temperature hazards. In contrast, in arid regions water-related hazards co-occur with 

maximum and minimum SIF. Thereby, Fig. 5 underlines once more the similarity of the results obtained with approaches 1 

(Fig. 2) and 2 (Fig. 4).  

To additionally explore the influence of different vegetation types and their respective plant physiological differences on the 205 

main controls of vegetation productivity, we bin the grid cell results by the respective fraction of tree cover of the entire 

vegetation cover, and by aridity in Fig. S7. We find that the radiation control of SIF extremes in humid regions is mostly 

associated with forests, and that the water control in semi-arid regions largely occurs for shorter vegetation, with presumably 

more shallow root systems, while productivity extremes in more forested semi-arid regions tend to be energy-controlled. IN 

very strong droughts, tall trees with deep rooting systems are particularly prone to suffer hydraulic failure (Brum et al., 2019). 210 

However, in our analysis we consider 5 events in a 15-year time period, such that we likely don’t exclusively capture very 

strong droughts that might results in tree mortality. Generally, hardly any changes in the most important variables can be seen 

with variations in tree cover, suggesting that on a global scale plant physiological differences only have a limited effect on 

determining the most important control for SIF extremes. As in Fig. 5, similar patterns are found for EVI extremes with overall 

increased relevance of water variables particularly in short vegetation-dominated regions. 215 

3.5 Switching hydrometeorological controls between SIF maxima and minima 

In a final step, we focus on shifts between energy and water control when moving from SIF maxima to SIF minima. The 

respective transitional regions represent hot spots of land-atmosphere coupling as (i) in these regions the land surface (soil 

moisture) is affecting near-surface weather at least during productivity minima (therefore also influencing transpiration) and 

(ii) this effect can be significant as transpiration (variability) is relatively high compared with drier regions where vegetation 220 

productivity would be water-limited across its entire range from minimum to maximum. The results are depicted in Fig. 6, 

which illustrates these emerging transitions from water to energy control (yellow) and vice-versa (blue, denoting land-

atmosphere hot spots). Grid cells that stay within water or energy control, even with a change between the water or energy 

variables, respectively, are shown in black indicating no transition. Figure 6 (a) reveals many regions with no transition. 

Transitions are found mostly in North Eurasia and North America. Globally, a change from energy control during maximum 225 

SIF to water control during minimum SIF occurs more often (7% of the study area) than the opposite transition (4%).  
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Figure 6b and c display the percentage of grid cells in each climate regime changing from water to energy control and vice-

versa with grid cells binned with respect to long-term climate conditions, similar to Fig. 5. The highest fraction of grid cells in 

each climate regime would show no change, but as we focus on transitioning grid cells, only they are displayed. Transitions 

from water to energy control between SIF maxima and SIF minima happen most often in cold, humid regions. This is deviating 230 

from the prevailing energy control in these climate regimes, and probably related to local-scale features and/or micro-

meteorological conditions. Figure 6 (c) indicates that changes from energy control during maximum SIF to water control 

during minimum SIF most frequently occur in the semi-arid transitional regions. These are land-atmosphere coupling hot spots 

as described above. The transition from energy to water limitation could be caused by energy-controlled maxima in spring, 

when presumably soil water resources are available after being replenished during autumn and winter. With sufficient water 235 

supply, energy surpluses could induce vegetation productivity maxima. During summer, soil moisture could be depleted for 

example by the high vegetation demand, and therefore taking over the SIF control of photosynthesis that is reflected into the 

SIF dynamics. 

3.6 Limitations 

Our results are obtained at, and valid for, relatively large spatial (half degree) and temporal (monthly) scales. Previous studies 240 

have shown differences in the vegetation-climate coupling across scales (Linscheid et al., 2020), suggesting it would be 

worthwhile to repeat our analysis for different spatiotemporal scales in the future, possibly with new satellite data products. In 

this context it should be noted, however, that while the relationship between SIF and gross primary productivity (GPP) as 

actual vegetation productivity is strong for large spatio-temporal scales (Frankenberg et al., 2011; Guanter et al., 2012; Joiner 

et al., 2013), it can deteriorate towards smaller scales (He et al., 2020; Maguire et al., 2020; Marrs et al., 2020; Wohlfahrt et 245 

al., 2018). And the spatiotemporal range within which there is an acceptable SIF-GPP relationship is not entirely clear yet.  

As a second source of uncertainty, SIF data with their relatively large spatial footprint are more vulnerable to cloud 

contamination compared to finer-scale satellite products (Joiner et al., 2013). Also, especially across South America the SIF 

data quality is decreased to additional noise (Joiner et al., 2013; Köhler et al., 2015). In our study, many grid cells in these 

regions and other tropical, cloud-dominated regions exhibit insignificant or negative correlations between SIF and 250 

hydrometeorological anomalies, which is why no hydrometeorological controls can be determined there (Fig. 4). Confirming 

the validity of our results for the tropical grid cells where results can be obtained, we find mostly consistent and physically 

meaningful results, e. g. radiation being a main driver of vegetation productivity as the cloud cover is limiting radiation 

(reported similarly for non-extreme conditions by Green et al., 2020 and Li et al., 2021a).  

Next to the SIF data, there is also noteworthy uncertainty in the soil moisture data from ERA5. While data quality of surface 255 

soil moisture benefits from (satellite) data assimilation, the soil moisture dynamics in deeper layers are more model-based 

which is somewhat contradicting the observational character of our study. Therefore, we use soil moisture data from SoMo.ml 

as an independent data set, which is not based on physical modelling and the related assumptions and parameterizations as it 

is derived with machine learning applied to in situ measurements from different depths. Overall, the similar results obtained 
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with ERA5-Land and SoMo.ml soil moisture confirm the robustness of our results despite uncertainties in the soil moisture 260 

data.  

Finally, the use of correlation methods for inferring causal relations is potentially insufficient and under debate (Krich et al., 

2020). We want to emphasize that in our study when referring to “drivers” or “controls” of vegetation productivity, we simply 

base this on correlation and do not imply causality. Nevertheless, we try to filter out confounding effects by disregarding 

negative and insignificant correlations. Additionally, testing our methodology (approach 2) for non-anomalous vegetation 265 

productivity (Fig. S8) which allows to compare results with that of Li et al. (2021a), reveals similar results while they use a 

different methodology based on random forests and Shapley Additive Explanations (SHAP) values which is more robust 

against confounding effects. Next to this, in our study we apply two different methodologies in approaches 1 and 2 and find 

similar results, which further underlines the robustness of our conclusions. 

4 Conclusion 270 

In this observation-based study, we quantify that vegetation productivity extremes are related to hydrometeorological hazards 

in about 50% of the global land area that is sufficiently vegetated and cloud-free. The most relevant hazards for vegetation 

productivity extremes vary along climate gradients. For vegetation productivity maxima the most relevant hydrometeorological 

extremes are heatwaves in Northern latitudes above 50°N and wet spells in latitudes below 50°N. For productivity minima, 

drought and cold spells are globally most detrimental to large-scale photosynthesis and carbon uptake. The results of our 275 

impact-centric analysis are similar to, and complement more traditional climate-centric studies (Ciais et al., 2005; Flach et al., 

2018; Qui et al., 2020). Compound extremes also play a role in 15-20% of our study area, they are somewhat more relevant 

for productivity minima than for the maxima, with joint drought-heat extremes being most important. Semi-arid, grass-

dominated ecosystems tend to transition between water and energy control within the range of their productivity variability. 

This results in a sensitivity to both water- and energy-related hazards. Thereby, we illustrate how global land-atmosphere 280 

coupling hot spots (Koster et al., 2004), where the land surface affects near-surface weather, can be verified using novel 

vegetation productivity data.  

Overall, this study highlights the profound role of (compound) hydrometeorological hazards for global vegetation productivity 

extremes. Understanding these complex, climate-dependent relationships with present-day observational data is a starting point 

to more reliably foresee respective changes in a changing future climate with e. g. fewer cold spells but probably more droughts. 285 
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Table 1. Data sets used in this study. 430 

Variables Dataset Version Application Reference 

Sun-induced chlorophyll 

fluorescence 

GOME-2 GFZ Vegetation productivity proxy Köhler et al., 

2015 

Enhanced Vegetation Index MOD13C2 V006 Vegetation greenness proxy Didan, 2015 

Soil moisture layer 1-4, 

precipitation, shortwave 

incoming radiation, 

temperature, vapor pressure 

deficit 

ERA5 land  Hydrometeorological variables 

indicating energy and water 

availability 

Muñoz-

Sabater, 

2019 

Precipitation, net solar 

radiation, net thermal 

radiation 

ERA5  Computation of aridity to 

evaluate resulting patterns 

Hersbach et 

al., 2020 

Soil moisture layer 1-3 SoMo.ml 1 Alternative soil moisture data set O and Orth, 

2021 

Fraction of vegetation cover VCF5KYR  1 Evaluation of resulting patterns 

with respect to vegetation 

characteristics  

Hansen and 

Song, 2018 
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Evapotranspiration GLEAM 3.3b Vegetation productivity proxy Martens et 

al., 2017 

 

 
Figure 1. Schematic representation of our methodological approach. *Filtering for sufficiently active vegetation is explained in 
section 2. 
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 435 
Figure 2. Hydrometeorological hazards co-occurring with (a) SIF maxima and (b) SIF minima. Colors denote the type of 
hydrometeorological hazard. Bar plots indicate the area affected by each hazard type relative to the total study area.  
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Figure 3. Global distribution of the month-of-year in which the strongest SIF (a) maximum and (b) minimum anomaly occur. Data 440 
gaps (grey) are caused by filtering for active vegetation and excluding insignificant and negative correlations. 
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Figure 4. Global distribution of hydrometeorological controls of Sun-Induced Fluorescence (SIF) (a) maxima and (b) minima in 
respective colors, as assessed from strongest correlations. The inset bar plot indicates the area controlled by each variable relative 445 
to the total study area. Dark grey color denotes the study area, in which correlations are negative/insignificant. 
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Figure 5. Hydrometeorological controls of vegetation productivity extremes summarized across climate regimes, (a) and (b) for Sun-
Induced Fluorescence (SIF) extremes, (c) and (d) for Enhanced Vegetation Index (EVI) extremes. (e) and (f) display the 450 
hydrometeorological hazards co-occurring with the SIF extremes. Box color denotes the main controlling hydrometeorological 
variable, the second most important variable is indicated in the smaller squares’ color, while its size represents the ratio between 
highest/second highest amounts of grid cells.  

 
Figure 6. Changing hydrometeorological controls between vegetation productivity maxima and minima. (a) Global distribution of 455 
changing controls: In Fig. (b) and (c) grid cells are binned by their long-term climate characteristics. (b) indicates the percentage of 
grid cells in each climate regime switching from water to energy control, (c) denotes the percentage of grid cells changing from an 
energy-controlled maxima to a water-controlled minima. 

 


