
Response to Referee’s Comments
Authors: This document is a point-by-point reply to all referees’ comments on our manuscript entitled "A seamless ensemble-

based reconstruction of surface ocean pCO2 and air–sea CO2 fluxes over the global coastal and open oceans". We split the
document into Sections 1, 2, and 3. Throughout this document, the referees’ comments are in bold and the revised text included
in the manuscript is in italic. The manuscript has been revised corresponding to this point-by-point reply.5

1 #REFEREE 1: The authors use a neural network model to generate a pCO2 product for the global ocean using the
SOCAT data, and combine these pCO2 estimates with a wind speed product to compute the CO2 flux. The
ensemble model results compare well overall to the observations, and the carbon flux estimates are in-line with the
literature. My main comments concern how novel these results are compared to the extensive literature on the
topic, and the interpretation of some of the model statistics.10

We would like to thank Referee 1 for constructive comments and suggestions on our study.

1.1 There is a lot of previous literature using spatially and temporally sparse observations of surface pCO2 to
generate global data products and provide estimates of ocean carbon uptake, some of which use very similar
methods to those in this present manuscript. The authors cite this previous literature, but there’s very little
discussion of it. Consequently, I found it difficult to interpret how the present authors’ methods and results are15
novel and differed from these previous studies. The motivation appears to be in lines 41-46, however, I don’t
follow how the previous literature did not incorporate “space-time varying uncertainty estimates”? It would also
appear that the incorporation of the coasts is relatively new, though the authors then cite a few recent studies and
declare that it’s a closed gap? I suggest that the introduction needs to contain a much clearer description of how
the methods used here compare to previous studies, and what is new about this analysis.20

This study is made up of our efforts to reproduce and intensively analyse the spatially and temporally varying surface pCO2

fields, the air–sea CO2 fluxes, and their reconstruction uncertainties over the global ocean. We acknowledge previous studies
pursuing the same target and are aware that the existing observation–based mapping methods (for instance proposed by Röden-
beck et al., 2013; Landschützer et al., 2016; Denvil-Sommer et al., 2019; Gregor et al., 2019; Watson et al., 2020) succeeded
in obtaining a relatively low misfit between the reconstructed and gridded SOCAT data (see in Rödenbeck et al., 2015; Gre-25
gor et al., 2019; Friedlingstein et al., 2020). Although similar interpolation and machine learning approaches (e.g., clustering,
classical regression, neural networks) and/or similar sets of predictor variables for pCO2 have been considered in the preced-
ing literature, model design and implementation are still different (e.g., proportion of SOCAT data used in model fitting and
evaluation). The present manuscript reflects our vision on the following key features.

i. A design of an ensemble of numerous feed forward neural network (FFNN) models:30

It is based on a Monte Carlo approach wherein each model is trained and validated on sub-samples randomly drawn from
the monthly gridded SOCATv2020 data and available data of predictors. The ensemble size of 100 is considered in this
study. Our proposed ensemble approach was developed at the Laboratoire des Sciences du Climat et de l’Environnement
(LSCE) as both an extension and an improvement of the first version (LSCE-FFNN-v1, Denvil-Sommer et al., 2019).
Quality assessments comparing these two model versions are documented in Chau et al. (2020). Besides, the proposed35
approach inherits strengths of the existing statistical models and further aims at reducing mapping uncertainties induced
by, for instance, discrete boundaries in the two-step clustering-regression by Landschützer et al. (2016); Gregor et al.
(2019) or the two-step FFNN-based reconstruction of pCO2 climatologies and anomalies by Denvil-Sommer et al.
(2019). As described in the Method section (2.2) in the manuscript, each FFNN model follows a leave-p-out cross-
validation approach, i.e., the exclusion of p gridded SOCAT data of the reconstructed month itself in model training40
and validation. This allows to reduce model over-fitting. In addition, it leaves more independent data for evaluation
than previous approaches, results obtained by the proposed reconstruction are in line with the others though (see e.g.,
Friedlingstein et al., 2020, and references therein).
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ii. Quantification and evaluation of model best estimates (ensemble means) and uncertainties (ensemble spreads):
45

There exists other ensemble-based methods, their concepts and principle objectives are nevertheless different. For exam-
ple, Gregor et al. (2019) and Gregor and Gruber (2021) introduce machine-learning ensembles with a small ensemble
size of different two-step clustering-regression models mapping surface pCO2 and propose the ensemble mean as their
model best estimate. In a broader context, Rödenbeck et al. (2015) suggest an intercomparison of multiple mapping meth-
ods targeting the identification of common or distinguishable features of different mapping results. Hauck et al. (2020)50
and Friedlingstein et al. (2020) synthesize pCO2 mapping products and refer to an ensemble of their observation–based
estimates of air-sea CO2 fluxes as a benchmark to compare with the one derived from ocean biogeochemical models.

Up to recently, most of these studies have used misfits between the reconstructed and observation–based data (e.g., the
root-mean-square deviation, RMSD) to evaluate product quality and infer uncertainty estimates of the reconstructed
pCO2. Reconstruction errors of pCO2 are then propagated to get uncertainty estimates of the reconstructed CO2 fluxes55
(see in Landschützer et al., 2014, for instance). By construction, such uncertainty estimates are restricted to oceanic
regions and periods when observations are available (Lebehot et al., 2019; Hauck et al., 2020), and the uncertainty
quantification of an averaged pCO2 or an integrated flux is under low confidence due to sparse data density. An advantage
of our approach is that an ensemble of 100 model outputs of pCO2 and CO2 fluxes is available at each 1◦ × 1◦ ocean
grid cell of the globe for each month in the period 1985–2019. The ensemble asset facilitates the quantification of model60
uncertainty of pCO2 and CO2 fluxes averaged or integrated over space and time of interest (see for instance Figures 5
and 9 in the manuscript). This is expected to provide more robust estimates than the ones based on reconstruction errors.

iii. Seamless analysis of the reconstructed data and uncertainty estimates over the open ocean and coastal zones:
An in-depth analysis has been made and presented for both the open and coastal regions divided by latitude bands. Inter-
pretations of good or poor reconstructions of surface pCO2 and air-sea CO2 fluxes (e.g., data density and distribution,65
regional to local characteristics of pCO2 and its potential drivers, model design and resolution) and changes in spatial
and seasonal variations of CO2 fluxes are given. To strengthen our interpretation, we have shown both the temporal and
spatial distribution of the reconstructed pCO2 and CO2 fluxes fields, model-data misfits, model uncertainty, and linked
these materials with their driving mechanisms suggested in previous literature. More importantly, we have made an in-
tercomparison of model reconstruction ability between regions, identified oceanic sectors where the model does not fit70
the data well, and suggested further improvements on the data reconstruction based on the proposed space-time varying
uncertainty fields.

With these points involved in the manuscript, we believe that our study is novel and statistics and keys findings therein
would be useful contributions for the marine science community. However, we agree with the referee that the first version of
the manuscript missed part of discussions on the comparison among the existing methods, and thus the novelty of this study75
was not bold. We consider this referee’s feedback important and it has been taken into account in our revision. Precisely, we
have reworked on the last two paragraphs in the Introduction section (Lines 37-55 of the first manuscript). The new paragraphs
are produced below.

Lines 35-85 in the revised manuscript:80
Various data-based approaches have been proposed to infer gridded maps of surface ocean pCO2 from the sparse set of
observation–based data. They have been successful in obtaining similarly low misfits between the reconstructed and evaluation
data and reasonable estimates of air-sea CO2 fluxes (see in Rödenbeck et al., 2015; Gregor et al., 2019; Friedlingstein et al.,
2020) although model design and implementation are quite different (e.g., proportion of SOCAT data used in model fitting
and evaluation). Aside from data reconstruction built on a single model mapping pCO2 data with machine learning, classical85
regression, or mixed layer schemes (e.g., Rödenbeck et al., 2013; Landschützer et al., 2016; Iida et al., 2021), ensemble-based
approaches have recently emerged but with their own concepts and objectives. For example, Denvil-Sommer et al. (2019)
designed a two-step reconstruction of pCO2 climatologies and anomalies based on five neural network models and selected
the one that reproduced the pCO2 field with the smallest model–data misfit. Gregor et al. (2019) and Gregor and Gruber
(2021) introduced machine-learning ensembles with six to sixteen different two-step clustering-regression models mapping90
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surface pCO2 and suggest that the use of their ensemble mean is better than each member estimate. In a broader context,
Rödenbeck et al. (2015) presented an intercomparison of fourteen mapping methods targeting the identification of common
or distinguishable features of different products in long-term mean, regional and temporal variations. Hauck et al. (2020)
and Friedlingstein et al. (2020) also synthesized pCO2 mapping products and took an ensemble of their observation–based
estimates of air-sea CO2 fluxes as a benchmark to compare with the one derived from ocean biogeochemical models.95

Despite positive conclusions overall, statistical data reconstructions are still subject to further improvements. In Rödenbeck
et al. (2015), Hauck et al. (2020), Bushinsky et al. (2019), and Denvil-Sommer et al. (2021), the authors explain that substantial
extensions of surface ocean observational network systems are essential to better determine pCO2 and fluxes at finer scales and
reduce mapping uncertainties. So far mapping uncertainties have been estimated by using misfits between the model outputs
and SOCAT data (e.g., the root-mean-square deviation, RMSD). By construction, such uncertainty estimates are restricted to100
oceanic regions and periods when observations are available (Rödenbeck et al., 2015; Lebehot et al., 2019; Gregor et al.,
2019) and the uncertainty quantification of an averaged pCO2 or an integrated flux over space and time of interest is under
low confidence due to sparse data density. Also, most of the aforementioned mapping methods target pCO2 data and estimate
air-sea fluxes solely over the open ocean, with the coastal data excluded or not fully qualified. In Laruelle et al. (2014), the
authors present spatial distributions of air-sea flux density and estimates of the total coastal C sink inferred from spatial105
integration methods on coastal SOCAT data. Laruelle et al. (2017) adapted the two-step neural network approach described
in Landschützer et al. (2016) to the coastal ocean pCO2. The coastal and open ocean products were combined into a single
reconstruction to yield a global monthly climatology of pCO2 presented in Landschützer et al. (2020). Notwithstanding these
advances, a global reconstruction and its uncertainty assessment of monthly varying coastal surface ocean pCO2 and air-sea
fluxes are still missing.110

In this work, we propose a new inference strategy for reconstructing the monthly pCO2 fields and the contemporary air–sea
fluxes over the period 1985–2019 with a spatial resolution of 1◦ × 1◦. It is based on a Monte Carlo approach, an ensemble of
100 neural network models mapping sub-samples drawn from the monthly gridded SOCATv2020 data and available data of
predictors. This ensemble approach was developed at the Laboratoire des Sciences du Climat et de l’Environnement (LSCE)
as both an extension and an improvement of the first version (LSCE-FFNN-v1, Denvil-Sommer et al., 2019). In the following115
sections, we first present the ensemble of neural networks designed with the aim of leaving aside the issue of discrete boundaries
in the existing two-step clustering-regressions (see further discussion in Gregor and Gruber, 2021) and reducing the mapping
uncertainties induced by the two-step reconstruction of the pCO2 fields (Denvil-Sommer et al., 2019) or by an ensemble-based
reconstruction with a small ensemble size. In addition, each FFNN model follows a leave-p-out cross-validation approach,
i.e., the exclusion of p gridded SOCAT data of the reconstructed month itself in model training and validation. This allows120
to reduce model over-fitting and to leave much more independent data for model evaluation than the previous studies. Mean
and standard deviation computed from the ensemble of 100 model outputs are defined as estimates of the mean state and
uncertainty of the carbon fields. As one of the novel key findings of this study compared to the existing ones, we compute
and analyze the estimates of pCO2 and air–sea fluxes, model errors, and model uncertainties for different time scales (e.g.,
monthly, yearly, and multi-decadal) and spatial scales (e.g., grid cells, sub-basins, and the global ocean). We then suggest the125
use of an indicator map built on the space-time varying uncertainty fields instead of model–data misfits for identifying regions
that should be prioritized in future observational programs and model development in order to improve data reconstruction.
Last but not least, the model best estimates and uncertainty of pCO2 and air–sea fluxes are analysed seamlessly over the open
ocean to the coastal zone. Potential drivers of the spatio-temporal distribution and the magnitude of open ocean and coastal
CO2 fluxes are discussed with the aim to better identify underlying processes and to detect potential focus regions for further130
studies on the evolution of oceanic CO2 sources and sinks.

1.2 I think the methods section is missing a few key details that will help support this manuscript.

• First, it would be helpful for the authors to explain how to interpret and compare the RMSD and r2 values for
each region. The reason being, that these values are listed for each ocean region, but it’s a little unclear what
differences in these values between regions is saying about the model estimate. For example, I was surprised by135
how low the RMSD value for the Southern Ocean is (slightly lower than the global mean), despite the somewhat
limited observation–based data and well documented, substantial inter-annual variability. However, the Southern

3



Ocean does have a lower r2 value, which the authors seem to attach a greater weight to in their interpretation.
Second, I’m a little confused by equation (2). Why is the equation for the mean squared deviation (MSD) shown
when it’s the root mean squared deviation (RMSD) which is calculated throughout the manuscript? Also, the text140
refers back to this equation for the definition of the σ misfit, but this definition is itself within the MSD equation
and is not clearly labeled on its own.

We have revised the manuscript and added in Section Methods details of the statistics used in this study to facilitate
the readers’ interpretation of our results (see the new Section 2.4 reproduced below). In general, RMSD measures the145
model skill in terms of mean distance between model estimates and evaluation data while r2 measures the proportion of
data variation predicted by the model. RMSDs between the model and SOCAT gridded data over the Southern Ocean
(open: 19.18 µatm, coastal: 35.73 µatm) are slightly higher [lower] than the global errors (open: 17.87 µatm, coastal:
35.86 µatm) for the open ocean [coastal zone], but the regional r2 values (open: 0.62, coastal: 0.65) are lower than
the global ones (open: 0.78, coastal: 0.70). The global scores involve the ones of all the regions, where the poorest150
reconstruction were found over the Arctic, subpolar, and coastal regions. Compared to other metrics such as model bias
and r2, RMSD takes another role as an outlier detector of model-data misfits which gives larger weights to such high
errors over these regions. Yet, data sampling is limited over the Southern Ocean similar to polar/subpolar and coastal
regions. We have also learned that the interannual variability of pCO2 over the Southern Ocean is moderate compared
to that over the Equatorial Pacific and polar/subpolar regions (see also in Rödenbeck et al., 2015; Denvil-Sommer et al.,155
2019). However, air-sea fluxes vary greatly over the Southern Ocean (SO), we also show that the SO RMSD between
our fluxes and SOCAT-based estimates are larger than those of certain regions (Table S2).

The statistics (e.g., Bias, RMSD, r2, and number of data grided from SOCAT observations) listed in Table S2 and
scattered in Figure 3c for different open and coastal regions provide a general comparison of the reconstruction skill of
the CMEMS-LSCE-FFNN model among the oceanic basins. Nevertheless, examining merely these numbers would not160
give us a robust assessment of the full story behind. As one of the contributions of this study compared to the heretofore
publications, an intensive analysis of the data reconstruction has been made and presented in Sections 3.1.2 and 3.1.3 for
both the open ocean and the coastal zones. Interpretations of key factors driving a good or poor reconstruction of surface
pCO2 (e.g., data density and distribution, regional to local characteristics of pCO2 and its potential drivers, model design
and resolution) are given. To strengthen our interpretations, we have shown both the temporal and spatial distribution of165
SOCAT data, model-data errors, model uncertainty and scattered them with their driving mechanisms suggested in the
literature. Based on these materials, we have made an intercomparison of model reconstruction ability between regions,
identified oceanic sectors where the model does not fit the data, and importantly we have suggested improvements on
the data reconstruction.

The precise definitions of σmisfit and the root mean squared deviation (RMSD) are given in the revised manuscript. We170
have rewritten Section 2.4 (Statistics). The new Section 2.4 is as follows.

Lines 148-173 in the revised manuscript:
The mean (µ) and standard deviation (σ) of the 100-member ensembles of pCO2 and fgCO2 are respectively chosen
as their best estimate and the associated uncertainty. Unless stated otherwise, a model best estimate and its uncertainty175
computed at each desired space-time resolution are denoted by µensemble ±σensemble, where

µensemble =

∑i=100
i=1 pCO

Reconstruction(i)
2

100
, σensemble =

√√√√∑i=100
i=1

(
pCO

Reconstruction(i)
2 −µensemble

)2

100
, (2)

and pCO
Reconstruction(i)
2 is one of the 100 members of the reconstructed pCO2 fields. Similar definitions are applied for

fgCO2. The units of air-sea flux estimates is molCm−2yr−1 for a flux density and converted to PgCyr−1 for an integral
over a region or the global ocean.180
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Model robustness of the reconstructed pCO2 fields is evaluated on the gridded SOCAT data and in situ observations
(Sutton et al., 2019). The evaluation data is denoted as pCOObservation

2 in the following formulas. Standard statistics
include the coefficient of determination (r2), misfit mean (model bias) and misfit standard deviation,

µmisfit =

∑j=N
j=1 dpCOj

2

N
, σmisfit =

√√√√∑j=N
j=1

(
dpCOj

2 −µmisfit

)2

N
, (3)

and the root-mean-square deviation (RMSD)185

RMSD=

√√√√∑j=N
j=1

(
dpCOj

2

)2

N
, (4)

where dpCOj
2 = pCOReconstruction

2 [j]− pCOObservation
2 [j], and N is a number of evaluation data. All these scores are

computed for different coastal and open regions from the scale of grid cells to the global scale.

Generally, RMSD measures the reconstruction skill in terms of mean distance between model estimates and evaluation
data while r2 measures the proportion of data variation predicted by the model. Compared to other metrics such as190
mean absolute bias and r2, RMSD takes another role, an outlier detector, which gives larger weights to high model–
data misfits. Note that r2, µmisfit, σmisfit, and RMSD reflect the model performance with respect to evaluation data,
while σensemble measures the stability of the model best estimate µensemble. Nevertheless, these different statistics should
consistently reflect the skill of the model reconstruction, e.g., depending on the density and distribution of data sampling.

In the next section, both the temporal and spatial distributions of gridded SOCAT data and in situ observations, model–195
data errors, model best estimates and uncertainties are shown. An intensive analysis is presented for both the open
ocean and the coastal zones. We then interpret key factors leading to a good or poor reconstruction of surface pCO2

and fgCO2, e.g., SOCAT data density and distribution, model design and resolution, regional to local characteristics of
pCO2 and fgCO2, and their potential driving mechanisms.

• Lastly, I think the description of the wind speed product used should be included in the main text rather than the200
supplementary, considering that this will have a large impact on the overall flux numbers (which the authors do
highlight in the results).
The wind speed product is now added in the main text.

Lines 91-92 in the revised manuscript:205
k is the gas transfer velocity computed as a function of the 10-meter ERA5 wind speed (Hersbach et al., 2020) following
Wanninkhof (2014) and its coefficient is scaled to match a global mean transfer velocity of 16.5 cm h−1 (Naegler, 2009).

1.3 I suggest re-working the 2nd paragraph of the abstract. This paragraph currently reads like a laundry list of
different regions and where they fall in terms of largest total source/sink, largest flux density source/sink, along
with coastal and open ocean qualifiers. This many iterations of “X is the greatest . . . ” makes it difficult to210
follow-along and is not particularly interesting (e.g. the equatorial Pacific as the strongest source of carbon to the
atmosphere is not a surprising result). Instead, highlight some of the other key findings, like the increase in ocean
carbon uptake over the 1985-2019 timeframe (right now the mean is just listed, but the change is highlighted in
the conclusion).

The second paragraph of the abstract has been modified. A new version of the full abstract is reproduced below.215

Modified abstract:
We have estimated global air–sea CO2 fluxes (fgCO2) from the open ocean to coastal seas. Fluxes and associated uncer-
tainty are computed from an ensemble-based reconstruction of CO2 sea surface partial pressure (pCO2) maps trained with
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gridded data from the Surface Ocean CO2 Atlas v2020 database. The ensemble mean (which is the best estimate provided by220
the approach) fits independent data well and a broad agreement between the spatial distribution of model–data differences
and the ensemble standard deviation (which is our model uncertainty estimate) is seen. Ensemble-based uncertainty estimates
are denoted by ±1σ. The space-time varying uncertainty fields identify oceanic regions where improvements in data recon-
struction and extensions of the observational network are needed. Poor reconstructions of pCO2 are primarily found over the
coasts and/or in regions with sparse observations, while fgCO2 estimates with largest uncertainty are observed over the open225
Southern Ocean (44◦S southward), the subpolar regions, the Indian gyre, and upwelling systems.

Our estimate of the global net sink for the period 1985–2019 is 1.643±0.125 PgCyr−1 including 0.150±0.010 PgCyr−1

for the coastal net sink. Among the ocean basins, the subtropical Pacific (18◦N–49◦N) and the subpolar Atlantic (49◦N–76◦N)
appear respectively to be the strongest CO2 sinks for the open ocean and the coastal ocean. Based on mean flux density per
unit area, the most intense CO2 drawdown is, however, observed over the Arctic (76◦N poleward) followed by the Subpolar230
Atlantic and Subtropical Pacific for both open ocean and coastal sectors. Reconstruction results also show significant changes
in the global annual integral of all open- and coastal-ocean CO2 fluxes with a growth rate of +0.062± 0.006 PgCyr−2 and
a temporal standard deviation of 0.526± 0.022 PgCyr−1 over the 35-year period. The link between its large interannual to
multi-year variations and the El Niño-Southern Oscillation climate variability is reconfirmed.

235
OTHER COMMENTS

1.4 Lines 37-40: Should all the manuscripts be separated with a comma rather than a semicolon? And why is the
Rödenbeck et al. (2015) manuscript specifically highlighted as “other mapping methods”?

The comma is now used to separate the references if they are part of the sentence. Rödenbeck et al. (2015) is cited in the
manuscript as one of the studies which made an intercomparison between different observation–based mapping methods re-240
constructing ocean surface pCO2 and quantifying CO2 fluxes. However, we have changed the text in the Introduction (see our
reply to Referee’s comment 1.1).

1.5 Line 139: How is the variability in “analytical equipment” accounted for here?

The word “analytical equipment” was not appropriate in the context of the sentence in Lines 139-141 of the first manuscript.
Thank you for pointing it out. We have rewritten this sentence as follows. Temporal sampling bias is also a source of uncer-245
tainty, it is now added in this sentence as suggested by Referee 3 (comment 3.7).

Lines 197-200 in the revised manuscript:
Variability in the sampling time and location of cruises and instruments induces temporal sampling bias (e.g., towards some
days in a month and/or the summer months at high latitudes) and latitude and longitude offsets from the cell center (e.g., with250
an average of 0.34◦ ± 0.14◦ as reported in Sabine et al., 2013) which are not taken into account.

1.6 Figure 2: I suggest directly labeling each region in the figure with the abbreviated label (i.e. SpA for subpolar
Atlantic) for clarity. Figure 5 and 8: The tick marks in the colorbar for these figures are relatively large and look
like a negative sign, I’d suggest making them much smaller.

The label of Figure 2 is now changed from the numbers to the abbreviated names of 11 regions. The size of tick marks in the255
colorbar of all the figures is also reduced.
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2 #REFEREE 2: At present, there are many data products in marine physics, such as temperature and salinity
products, but there are few data products in marine chemistry. I support the publication of more marine chemistry
data products.

We thank Referee 2 for his/her interest in marine chemistry data products and comments/suggestions on our study.260

2.1 The author reconstructed surface ocean pCO2 based on FFNN with region divided by latitudes and similar
predictors with previous researches was used, which is not novel.

With the proposed ensemble-based mapping method, statistics, and keys findings presented in the manuscript, we believe that
our study is novel and would be a valuable contribution for the marine science community. However, we admit that the first
version of the manuscript missed part of discussions on the comparison among the existing methods, and thus the novelty of265
this study was not easy to interpret. We consider this Referee’s feedback important and have revised the manuscript in such a
way that our three main contributions (see Lines 30-72 in this document and our reply to comment 2.5 below) are elaborated
and highlighted. We added relevant information to the last paragraphs in Section Introduction (Lines 35-85 in the revised
manuscript). Note that oceanic regions divided by latitude bands are only used for the analysis of our results, FFNN models
themselves do not follow oceanic regions or biomes in clustering before training as opposed to Landschützer et al. (2016) and270
Gregor et al. (2019). The Referee’s comment "The author reconstructed surface ocean pCO2 based on FFNN with region
divided by latitudes" seems to be misleading.

2.2 The reconstruction of pCO2 and sea-air CO2 flux over global coastal oceans are interesting works but the
author needs to do much more works on the validation of coastal results. Because a standard deviation of 41.79
µatm between pCO2 results and SOCAT observations possibly leads to opposite results in the estimate of coastal275
CO2 flux.

After the introduction of our new ensemble-based approach, the current manuscript indeed presents numerous results and an
intense analysis for evaluating our global reconstruction of monthly pCO2 and fluxes from the open ocean to the coastal zone.
The coastal-ocean reconstruction is compared with monthly gridded SOCAT data (not used in our model fitting) and with
the open-ocean reconstruction. We compute and analyze the estimates of coastal pCO2 and air–sea fluxes, their model errors,280
and model uncertainties for different time scales (e.g., monthly, yearly, and multi-decadal) and spatial scales (e.g., grid cells,
sub-basins, and the global ocean) (see Figures 4-8 and Table 2 in the main text and more in the Supplementary). This is one
of the novel contributions of this study which complement to the existing ones focusing on analyzing the spatial distribution
and/or a monthly climatology of their coastal estimates (see our interpretation in the Introduction in the revised manuscript).

285
Referee 2 explains that a standard deviation of 41.79 µatm between pCO2 results and SOCAT observations possibly

leads to opposite results in the estimate of coastal CO2 flux. This seems to be misleading. Indeed, we have written in the
manuscript:
Lines 184-188 in the revised manuscript (Lines 126-130 in the first manuscript):
The reconstructed pCO2 field matches SOCAT data well: both are normally distributed with the same mean of 361.3 µatm290
(Fig. 3a) and a high agreement for all percentiles (Fig. 3b) is seen. The slight under- or overestimation at high and low per-
centiles implies that the model is slightly biased towards the mean value, as is expected when predictor variables do not fully
explain predictand variables in the training dataset. This reduced variability is also reflected in the difference between the data
standard deviation based on SOCAT pCO2 (41.79 µatm) and the one based on CMEMS-LSCE-FFNN (36.30 µatm).
In this context, 41.79 µatm is the standard deviation of SOCAT data itself, it is not the standard deviation of differences be-295
tween the reconstructed and SOCAT data.

However, in this revision, we added a new subsection (3.1.3 Time series stations) including model evaluation on data sampled
at in situ stations (Sutton et al., 2019). This would facilitate for the readers qualifying our product (see this new subsection in
Lines 360-384 of the revised manuscript; text below). Consequently, we reorganise Section 3.1 (Evaluation) as follows:300
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• Section 3.1.1 Global ocean remains the same as in the first manuscript.

• Section 3.1.2 Ocean basins comprises the model evaluation for regions in the Arctic, Atlantic, Pacific, Indian Ocean,
Southern Ocean.

• Section 3.1.3 Time series stations (new in this revision) includes the model evaluation on both open and coastal data
sampled at in situ stations (Sutton et al., 2019).305

As part of this new section, our coastal-ocean reconstruction is evaluated on data sampled at the time series stations (Fig-
ures S5). Despite less skill than the ocean-ocean reconstructions (Figures S6 and S7), our coastal-ocean reconstructions are
rather compatible with observation–based pCO2 data (Figure S8). In general, all reconstructed time series cover the full pe-
riod 1985-2019 and would therefore be useful for estimating long-term means, trends, and variations of CO2 surface partial
pressure and ultimately the corresponding air-sea fluxes. observation–based data are still sparse and mostly distributed over the310
past two decades (see also the data density in Figures S1, S3, and S4 in the Supplementary), densifying observation networks
is in priority to provide a better validation of both coastal- and open-ocean data reconstructions.

44°S

18°S

18°N
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76°N
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Location map

Figure S5. Location map of in situ measurements of ocean surface pCO2 (Sutton et al., 2019).

Lines 360-384 in the revised manuscript (Section 3.1.3 Time series stations):

CMEMS-FFNN-LSCE estimates of pCO2 are now compared with moored pCO2 time series provided by Sutton et al. (2019).315
This data product comprises pCO2 measurements collected from a wide range of oceanic regions since 2004 (Figs. S5–S8).
Most of the stations were established in the North Atlantic and the North and Equatorial Pacific, one site is in the IO and
another in the SO. Approximately one third of Sutton et al. (2019) sites belong to the coastal seas and shelves (Fig. S8).
Table S3 details the information of the moored pCO2 time series.

Observation–based data used for model–data comparison (black points in Figs S6–S8) are monthly averages of pCO2 mea-320
surements at each site. This interpolation results in monthly time series with a number of data N between 9 (NH10) and 98
(WHOTS). The ensemble mean µensemble and ensemble spread σensemble (Eq. 2) are computed from the CMEMS-LSCE-FFNN
ensemble of model outputs at the four nearest model grid boxes of each location. Results confirm a reasonably good recon-
struction of the proposed approach. The model best estimates (coloured thick lines) characterise pCO2 trends and variations
of in situ data well and the model ensembles almost catch the observation–based data in their 99% confidence interval (light325
shaded envelop). Over 90% of the time series stations, the model estimation obtains a moderate to high coefficient of deter-
mination r2 with a linear model–data correlation r larger than 0.5 (e.g., BTM: 0.98, CRESCENTREEF: 0.92, HOGREEF:
0.84, SOFS: 0.79, TAO110W: 0.75, WHOTS: 0.73). Mean bias µmisfit (Eq. 3) and RMSD (Eq. 4) are relatively low compared
to mean pCO2 values of the time series stations.

Half of the open-ocean reconstructions have model errors less than 20 µatm and even less than 10 µatm at KEO, PAPA,330
SOLS, STRATUS, and WHOTS (Figs S6 and S7). Despite less skill than the open-ocean reconstructions, the coastal-ocean
reconstructions are quite compatible with the in situ data (Fig. S8). Most of RMSDs remain lower than 20% of the mean pCO2

values of coastal time series (e.g., CCE2: 36.53 µatm, ICELAND: 12.26 µatm, M2: 36.58 µatm). For some other stations
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in the US west coast and the oceanic regimes of coral reef, the estimates differ from the observation–based data in terms of
magnitude of pCO2 (e.g., CRIMP2, LA PARGUERA) and/or of its seasonal cycle (e.g., CHABA, CHEECAROCKS, SEAK).335

The reconstructed time series cover the full period 1985-2019 while observation–based data are still sparse and almost
distributed over the past two decades (Figs. S6-S8). The CMEMS-LSCE-FFNN time series would be useful for estimating and
assessing long-term means, trends, and variations of CO2 surface partial pressure and the corresponding air-sea fluxes.

2.3 The CHL data used was only from 1992 to 2019, and was not available in the Arctic and the Southern Ocean in
winter, the details about how the reconstruction was carried out when CHL was not available should be declared340
clearly in the method section.

This information is now added in the Method section (see the italic text below). To be precise, climatologies based on all avail-
able CHL data (1998-2019) were used as predictors for data unavailable before 1998. We set CHL approximately to 0 mg m−3

over the Arctic and the Southern Ocean in winter when no data are available (e.g., Landschützer et al., 2016; Denvil-Sommer
et al., 2019; Gregor et al., 2019).345

Lines 107-109 in the revised manuscript:
CHL was set approximately to 0 mg m−3 over the Arctic and the Southern Ocean winter when no data is available. In case of
data unavailable before 1998, climatologies based on all available data were used as predictors.

2.4 The subskin temperature correction (Watson et al., 2020) should be considered in the estimate of sea-air CO2350
flux.

Watson et al. (2020) proposed a double correction to the SOCAT data and to the computation of the CO2 flux in order to remove
some aliasing caused by the temperature vertical gradient within the marine boundary layer. However, the Watson et al. (2020)
adjustment, if applied here, would add roughly 0.9 PgCyr−1 to the global ocean sink estimate based on observations. The
adjusted ocean sink estimate would thus surpass the land sink and result in a large carbon budget imbalance. More evidence of355
their genericity is needed before applying skin and subskin corrections (Friedlingstein et al., 2020).

2.5 The author should reconsider the topic of this manuscript. If the author want focus on the CO2 flux of global
open oceans, additional work was necessary rather than only discussing spatial distribution or interannual
variability, because the reconstruction method in this manuscript and the results was not novel. If the author
want focus on the CO2 flux of global coastal oceans, which was still a research gap, much more works are needed360
to make the result convince.

As mentioned in our response to Referee’s comments 1.1 and 2.1, the manuscript presents three main contributions:

i. Our data reconstruction is based on a new model design - an ensemble of 100 neural network models.

ii. We quantify and evaluate model best estimates and uncertainties based on the ensemble asset. For the first time, the
space-time varying uncertainty estimates (see for instance the Introduction - Lines 35-85 - and Figures 5 and 9 in the365
revised manuscript) derived from the ensemble of model outputs are presented and analysed. We promote the use of the
proposed uncertainty fields which would be more informative than the RMSD-based uncertainty fields (e.g., proposed in
Landschützer et al., 2014) in identifying oceanic sectors where further improvements on the data reconstruction will be
needed.

iii. More importantly, the manuscript presents a seamless analysis of the reconstructed data and uncertainty estimates over370
the open ocean and coastal zones. Furthermore, the open ocean estimates are considered as references for the coastal
data assessment.

We believe that the ensemble-based approach and analysis therein are novel and the Introduction section has been changed
to better highlight these contributions. Also, we have added a new section (3.1.3) presenting an evaluation of the reconstructed
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data on independent in situ observations in the revised version of the manuscript. Precisely, we propose to add Figures S5-S8,375
Table S3, and an interpretation of these results (see also in our reply to Referee’s comment 2.2).

2.6 Line 76: “An ensemble of 100 FFNNs was used to reconstruct monthly pCO2 fields. . . . . . ”, How are these 100
models built? Why did you do that? How are the results of 100 models selected? Line 84-85: “The random
extraction and the FFNN training were repeated 100 times so that 100 versions of the monthly FFNNs have been
obtained”, Why is it the "100 times"? How is the "100 times" determined? Does it converge after 100 iterations?380

The description of the construction of the ensemble approach is already given in the manuscript as follows (Figure 1 is used to
illustrate a neural network model mapping the target pCO2 and predictor variables).

Lines 117-120 in the revised manuscript (Lines 81-84 in the first manuscript):
To reconstruct the pCO2 fields over the global ocean for each target month over the 1985–2019 period, all the available SO-385
CAT data and the co-located predictors have been collected for the month before and the month after the target month. We
randomly extracted two thirds of each one of these datasets to make training datasets for the FFNNs, leaving the remaining
third to be corresponding test datasets. The FFNNs were then trained for each target month.

Our ensemble approach comprises multiple network models, each trained and validated on resampled data of SOCAT pCO2390
and predictors. We added Figure S2 in the Supplementary document and a new paragraph in (text below) in this revision of our
manuscript, explaining the reasons we have selected 100 model runs for our study.

20 40 60 80 100
Ensemble size

20.5

20.6

20.7

20.8

RM
SD

 [
at

m
]

Figure S2. RMSD between a best estimate (ensemble mean) and SOCAT data of ocean surface pCO2 with respect to the ensemble size in
{5, 10, 20, 50, 75, 100}.

Lines 124-134 in the revised manuscript:
The random extraction and the FFNN training were repeated 100 times so that 100 versions of the monthly FFNNs have been395
obtained. Note that our ensemble approach belongs to the classes of bootstraping and Monte Carlo methods in statistics.
Theoretically, the number of samples or the ensemble size must be substantially large to get a convergence. However, it was
demonstrated in the literature (e.g., Goodhue et al., 2012; Efron et al., 2015) that with the ensemble size of 50 the model
estimation is likely stable and with the ensemble size over 100 the improvement in standard errors between model outputs
and evaluation data is negligible. Fig. S2 shows an illustration of the reconstruction skill with respect to the ensemble size400
S. For each ensemble of S model outputs of pCO2 (S ∈ {5, 10, 20, 50, 75, 100}), the root-mean-square deviation (RMSD)
is computed between the ensemble mean (our best model estimate) and SOCAT data over the period 1985-2019. As seen in
this figure, the reconstruction starts to stabilize with S = 50. In this study, we have exploited a large but realistic amount of
computing resources to run an ensemble of S = 100 neural network models.
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2.7 Table 2, What is the meaning of two numbers in the rightmost column of Table 2, for example: 0.07± 0.04,405
0.30± 0.13

The numbers without brackets (e.g., 0.07± 0.04, 0.30± 0.13) in the rightmost column of Table 2 in the manuscript refer to
the estimates derived from observation–based methods. In the caption of Table 2, we wrote: In column ’RECCAP1’, values
in parentheses are the ’best’ estimates proposed by RECCAP1 studies, the others are the estimates computed with different
methods using pCO2 observations. More information is now added to the caption of Table 2.410

Modified caption of Table 2:
Yearly mean of contemporary air–sea CO2 fluxes (PgCyr−1) integrated over the global ocean and 11 RECCAP1 regions.
Mean estimate and uncertainty (µensemble ±σensemble) of the CMEMS-LSCE-FFNN approach is shown for the coast (C),
the open ocean (O), and the total area (T). For a comparison, estimates derived from RECCAP1 (Canadell et al., 2011;415
Schuster et al., 2013; Ishii et al., 2014; Sarma et al., 2013; Lenton et al., 2013; Wanninkhof et al., 2013) are provided. In
column ’RECCAP1’, values in parentheses are the ’best’ estimates proposed by RECCAP1 studies which were derived from
averages or medians of estimates based on the pCO2 climatology or pCO2 diagnostic model, and/or the atmospheric and
ocean inversions, and GOBM models. The ’RECCAP1’ values out of parentheses are the estimates derived from different
methods mapping observation–based data of pCO2. With an exception for the global estimate* (Wanninkhof et al., 2013),420
those of the RECCAP1 sub-basins are available only for the open ocean.

2.8 Line 444-446: “The global open ocean uptake obtained in this study of 1.344± 0.111 PgC yr−1 lies between the
observation based net sink estimate by Wanninkhof et al. (2013) (1.18 PgC yr−1) and the global sum of regional
best estimates given in Table 2 (1.8 PgC yr−1)”. In table 2, I can’t find the value of 1.8 PgC yr−1

It means that 1.8 PgC yr−1 is the sum of all the ’best’ estimates (between brackets) given in Table 2.425

2.9 Line 462-463: The discrepancy is possibly due to an overestimation of Arctic pCO2 by the
CMEMS-LSCE-FFNN (see in Sect. 3.1.2) and to the lack of estimates over a large portion of the seasonally
sea–ice covered regions. This sentence means that the data in the Arctic are not accurate at present. So the data
in the Arctic is not suitable for use at present.

Results shown in Sect. 3.1.2 in the manuscript confirm that the model reconstruction of pCO2 over the Arctic does not fit430
SOCAT data well and is much more uncertain than for other oceanic regions. The factors behind the poor estimates of Arctic
pCO2 have been further discussed in the Discussion section (Lines 460-469 in the first manuscript, Lines 555-564 in the revised
manuscript). Despite the need for further improvements, our analysis fairly documents the current status and discusses the way
forward.

435
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Figure S6. Time series of open ocean surface pCO2 at different stations - part 1 (see station locations in Fig. S5 and Table S3). Evaluation
data are monthly averages of measurements at each station (Sutton et al., 2019). The ensemble mean µensemble and ensemble spread σensemble

(Eq. 2) are computed from reconstructed data at the four nearest neighbors of that location. Number of grid boxes with observations N , model
bias µmisfit (Eq. 3), RMSD (Eq. 4), and model–data correlation r2 have been computed on these monthly interpolated data. In each subplot,
dots stand for observation–based data and the coloured line with shaded areas stand for the mean and uncertainty envelops computed from
the CMEMS-LSCE-FFNN 100-member ensemble (dark: 68% confidence interval, i.e. µensemble±σensemble; light: 99% confidence interval,
i.e. µensemble ± 3σensemble).
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Figure S7. Time series of open ocean surface pCO2 at different stations - part 2 (see station locations in Fig. S5 and Table S3). Evaluation
data are monthly averages of measurements at each station (Sutton et al., 2019). The ensemble mean µensemble and ensemble spread σensemble

(Eq. 2) are computed from reconstructed data at the four nearest neighbors of that location. Number of grid boxes with observations N , model
bias µmisfit (Eq. 3), RMSD (Eq. 4), and model–data correlation r2 have been computed on these monthly interpolated data. In each subplot,
dots stand for observation–based data and the coloured line with shaded areas stand for the mean and uncertainty envelops computed from
the CMEMS-LSCE-FFNN 100-member ensemble (dark: 68% confidence interval, i.e. µensemble±σensemble; light: 99% confidence interval,
i.e. µensemble ± 3σensemble).
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Figure S8. Time series of coastal ocean surface pCO2 at different stations (see station locations in Fig. S5). Evaluation data are monthly
averages of measurements at each station (Sutton et al., 2019). The ensemble mean µensemble and ensemble spread σensemble (Eq. 2) are
computed from reconstructed data at the four nearest neighbors of that location. Number of grid boxes with observations N , model bias
µmisfit (Eq. 3), RMSD (Eq. 4), and model–data correlation r2 have been computed on these monthly interpolated data. In each subplot, dots
stand for observation–based data and the coloured line with shaded areas stand for the mean and uncertainty envelops computed from the
CMEMS-LSCE-FFNN 100-member ensemble (dark: 68% confidence interval, i.e. µensemble±σensemble; light: 99% confidence interval, i.e.
µensemble ± 3σensemble).
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3 #REFEREE 3 (Meike Becker): The authors present an estimate of global air-sea CO2 fluxes based on
interpolating gridded SOCAT pCO2 data. They use an ensemble of 100 feed-forward neural network models
(FFNN) and sea surface height, sea surface temperature, sea surface salinity, mixed layer depth, chlorophyll-a,
atmospheric mole fractions, a pCO2 climatology and position data as drivers. They present an uncertainty
analysis based on their ensemble spread as a semi-independent parameter, which is better than many available440
air-sea flux products. However, there are a few things that should be improved.

We would like to thank Meike Becker (Referee 3) for her positive feedback and suggestions.

3.1 One point that needs improvement is the description of the driving data, where some important information is
missing. The driving data that were used are not available for the full period for which the authors present flux
maps. How did you deal with that? Did you use a climatology for CHL, SST, MLD etc. before the early/mid 90s?445
If so, what was this based on? This information is crucial for interpreting interannual variability prior to the
mid-90s.

The information of all data used in our reconstruction has been presented in Table S1 (Supplementary material). As shown
in this table, monthly data of sea surface temperature (SST) and atmospheric mole fractions (xCO2) which are possibly key
drivers to trends and interannual variability of the pCO2 field are available over the full period (1985-2019). It is also noted450
at the end of Table S1: **For some data unavailable before 1998, climatologies based on all available data were used as
predictors. Exceptionally, predictors for SSH before 1993 are climatologies plus a linear trend in order to retain the overall
response to global warming. MLD before 1992 was taken as the average MLD between 1992 and 1997. We, however, agree
with the referee to make this information clearer to the readers. This information is now added to the main text.

455
Lines 107-111 in the revised manuscript:
CHL was set approximately to 0 mg m−3 over the Arctic and the Southern Ocean winter when no data is available. In case
of data unavailable before 1998, climatologies based on all available data were used as predictors. Exceptionally, predictors
for SSH before 1993 were climatologies plus a linear trend in order to retain the overall response to the global warming. MLD
before 1992 was taken as the average MLD between 1992 and 1997.460

3.2 Another thing that I want to point out, is the inconsistent and partly misleading use of the terms ‘observations’,
‘sample’ and ‘data’. The authors base their product on a gridded version of the SOCAT data set (monthly, 1x1).
In order to avoid confusion, the term ‘observations’ should be reserved for data that has been retrieved from field
work, in the case the original pCO2 measurements in the SOCAT database. The gridded version contains
monthly, 1x1 averages of these pCO2 measurements. When the authors write about ‘X observations’ in a certain465
region, they actually mean ‘grid boxes with observations’. Please make sure that this becomes clearer. In line 195
for example, the authors write 50 to 220 samples per year’. Here the authors should specify that they mean ‘grid
boxes with data’ as the reader easily can assume that there were only 50-220 pCO2 observations every year.

Thank you for highlighting this. We agree that the wording has to be carefully selected. We went through the manuscript
and refer now to "observation–based data" rather than "observations" (see for instance our correction in Lines 71-82 in this470
document).

3.3 I also want to comment on Figure S1. Here the authors show the coverage of the gridded SOCAT product and its
variability where they mention ‘pCO2 individuals’. I don’t understand if this means the original SOCAT pCO2

observations (i.e. a measure of how well the gid box mean represents the actual conditions), or the pCO2 of the
gridded version (showing the variability within the gridded product).475

In the (b) and (c) subplots of Figure S1 we show maximal variability of pCO2 individuals within a grid cell, i.e.,

max
t

{pCOmax
2,tij − pCOmin

2,tij}
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where t, ij indicates time and space indices. pCOmax
2,tij and pCOmin

2,tij were converted from the corresponding values of CO2

fugacity observations which are available in the monthly gridded SOCATv2020 database. We think that the term ’pCO2 indi-
viduals’ is correct in this sense. We have made a consistent use of the terms of ’observations’ and ’gridded data’ throughout
the main text, and reworded the caption of Figure S1 to avoid any ambiguity.

480
Modified caption of Figure S1:
(a) Spatial distribution of monthly gridded SOCATv2020 data. (b,c) Maximal variability of pCO2 individual data within a
1◦ × 1◦-grid box (µatm), i.e. maxt{pCOmax

2,tij − pCOmin
2,tij}, where t and ij indicate time and space indices. pCOmax

2,tij and
pCOmin

2,tij were converted from the corresponding values of CO2 fugacity observations in the monthly gridded SOCATv2020
database. Fig. S1c shows the distribution of the variability larger than the 80%-quantile.485

3.4 I understand that the authors used the subocean divisions from RECCAP 1. This of course increases the
comparability to the results of RECCAP 1, but also this makes the results difficult to interpret. Using a biome
scheme such as used in RECCAP 2 (e.g. after Fay and McKinley (2014)) would have led to a clearer separation of
regions with similar characteristics, and thus increased the interpretability. I also miss a discussion of how this
product performs in comparison to other global air-sea CO2 flux products.490

We are on the same page with Referee 3 that using biomes proposed by Fay and McKinley (2014) would provide a better
interpretation of small-scale characteristics of pCO2 and air-sea CO2 fluxes. However, geometries of the biomes (e.g., their
boundaries) would complicate the evaluation of the CMEMS-LSCE-FFNN model estimates and uncertainty, e.g., the compari-
son between the model outputs and sparse SOCAT data, and the analysis of results obtained for the open ocean and the coastal
regions. Regarding the scope of this study, we have chosen to use the subocean divisions with latitude bands. Consequently,495
the CMEMS-LSCE-FFNN estimates of regional air-sea CO2 fluxes have been compared to the ones presented in RECCAP1.

Each of the observation–based reconstruction methods for pCO2 and CO2 fluxes has both strengths and weaknesses. We
have revised the Introduction (Lines 37-55 in the first manuscript) to better highlight the differences between the present
approach and previous ones, as well as to emphasize its novelty. See new paragraphs of the Introduction in Lines 35-85 in the500
revised manuscript. In-depth intercomparisons amongst different model-based and/or observation–based products are presented
in previous works including Rödenbeck et al. (2015), Denvil-Sommer et al. (2019), and Hauck et al. (2020) are beyond the
scope of this study.

3.5 Minor suggestions

• L 40: pCO2 was not introduced as an abbreviation.505

• L 59: Tr is not described.

• L 86: change to: p is the number of grid cells with observations.

• Figure 3: The yellow bars in panel c) are very difficult to read, especially the first one.

• Figure 4a/b: You show the number of observation (or grid cells with observations) per year. Please change that.

We took these suggestions into account in this revision. Particularly for Tr, it was defined in Eq (1) in the first manuscript510
with respect to Tr = kL(1− fice). We deleted Tr from Eq. (1) since it is not referred elsewhere throughout the text. In the
revised manuscript, Eq. (1) is as follows

fgCO2 = kL(1− fice) ∆pCO2

= kL(1− fice)
(
pCOatm

2 − pCO2

)
. (1)
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3.6 Additionally change STD to s. Go through the manuscript and make sure, that you use consistent terminology.515

STD was changed to σ for a consistent use of its notation.

3.7 L 140, add temporal offsets from the cell center. In many regions this will be the dominant one, especially during
the productive season.

Temporal offsets of data sampling is now mentioned in the sentence in Lines 139-141 of the first manuscript. The revised text
is below.520

Lines 197-200 in the revised manuscript:
Variability in the sampling time and location of cruises and instruments induces temporal sampling bias (e.g., towards some
days in a month and/or the summer months at high latitudes) and latitude and longitude offsets from the cell center (e.g., with
an average of 0.34◦ ± 0.14◦ as reported in Sabine et al., 2013) which are not taken into account.525

3.8 L 182: Be aware that Laruelle et al. (2017) and Landschützer et al. (2020) are climatologies.

Landschützer et al. (2020) present a global ocean pCO2 climatology product combining two individual data reconstructions:
one for the open ocean proposed by Landschützer et al. (2016) using SOCAT data at a 1◦ × 1◦ resolution over 1982-2016
and another for the coastal ocean proposed by Laruelle et al. (2017) using coastal SOCAT data at a 0.25◦ × 0.25◦ resolution
over 1998-2015. As stated in these two studies, their reconstructed data are available for each month. In Landschützer et al.530
(2020) (Table 1), the authors reported RMSDs (RMSEs in their study) of each of the open-ocean and coastal-ocean reconstruc-
tions computed with respect to monthly gridded SOCATv5 data over the common period 1998-2015. In Section 3.3, they then
present a comparison between their seasonal climatology product and a seasonal climatology computed from SOCAT data but
are aware that this assessment could not be robust due to temporal sampling bias of SOCAT observations.

535
In Lines 179-185 in the first manuscript, we cited 26.8 µatm in Landschützer et al. (2020) (Table 1) which is the RMSD of

the coastal reconstruction by Laruelle et al. (2017). Even though the CMEMS-LSCE-FFNN RMSD (35.84 µatm) reported here
were computed using Eq. (4) over the same period as in the previous study, RMSDs of the two approaches are quite different.
Our study uses the MARCATS mask proposed by Laruelle et al. (2013) leading to a smaller coastal area and a different number
of evaluation data than those in Laruelle et al. (2017) and Landschützer et al. (2020). These two studies use the coastal mask540
defined within 400 km distance from the sea shore. In addition, the leave-p-out cross-validation used in CMEMS-LSCE-FFNN
model fitting permits to leave much more independent data for model evaluation than the previous approaches (see Sections
Introduction and Methods in the revised manuscript).

We rewrote Lines 179-185 in the first manuscript to better highlight differences in model errors between these coastal re-545
constructions.

Lines 238-246 in the revised manuscript:
For the 1998–2015 period, the CMEMS-LSCE-FFNN approach scored an RMSD of 35.84 µatm while a recent coastal re-
construction by Landschützer et al. (2020) obtained an error of 26.8 µatm (see their Table 1). The latter presents a global550
ocean pCO2 climatology product by unifying data over the same period from two conceptually equivalent reconstruction mod-
els: one covering the open ocean at a 1◦ × 1◦ resolution (Landschützer et al., 2016) and one targeting the coastal ocean at
a 0.25◦ × 0.25◦ resolution (Laruelle et al., 2017). These heretofore reconstructions cover the coastal region with a broader
definition (400 km distance from the sea shore) than the MARCATS mask used in this study leading to the differences in
characteristics and numbers of evaluation data of pCO2. In addition, the CMEMS-LSCE-FFNN model was designed with the555
leave-p-out cross-validation approach excluding much more independent data from monthly model fitting for model evaluation
than in the previous models.
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3.9 L 307: Please round the uncertainties to 2 significant digits (or less if it seems unrealistically low) and the
measured value to the same number of digits, for example 2.336± 0.104 to 2.34± 0.10. Please do so for all
uncertainties in the manuscript.560

We have rounded estimates of air-sea fluxes and uncertainties to 3 digits since some of them become 0 with less than 3 digits;
for instance, fluxes and uncertainty estimates over coastal regions (see in Table 2).

3.10 L 328-330: Please correct this. Primary production and respiration have usually only a very small influence on
alkalinity (if we neglect anerobic remineralization processes for the moment): primary production increases
alkalinity, while remineralization processes reduce alkalinity565

We have corrected it. Alkalinity was removed from the discussion in Lines 328-330 of the first manuscript. Below is the mod-
ified text.

Lines 419-422 in the revised manuscript:
High wind speeds also strengthen vertical mixing, a process supplying dissolved inorganic carbon (DIC) and nutrients to the570
surface ocean. During the spring and summer months, a vigorous biological activity (Sigman and Hain, 2012) counteracts the
warming induced decrease in CO2 solubility and increase in pCO2 by drawing down DIC (Feely et al., 2001).

3.11 L 332: Another important influence factor in coastal regions is the inflow of terrestrial POC, e.g. in the southern
North Sea, leading to the release of CO2 to the atmosphere.

Thank you. The impact of the inflow of terrestrial nutrients on air-sea CO2 exchanges over the coastal SpA is now discussed575
in our revised manuscript.

Lines 424-427 in the revised manuscript:
This contrasts with other coastal regions (e.g., southern North Sea and Baltic Sea) where the respiration of terrestrial par-
ticulate organic carbon from river run-off contributes to making these areas a strong seasonal source of CO2 (Borgesa and580
Gypensb, 2010; Becker et al., 2021).

3.12 L 376-377: Are these really the dominant factors? After you argumentation for why the open ocean region is
neutral (vertical convection brings up old, DIC rich water which balances the influx during summer) I would
expect the absence of this deep mixing in coastal, shallow regions to be one of the major reasons why the coastal
regions are a larger sink than the open ocean.585

As shown in Bates (2006), Arrigo et al. (2010), and Ishii et al. (2014), surface DIC concentration is higher over the open, deep
basins than the shallow coastal seas of the subpolar Pacific, particularly induced by deep mixing during winter/spring. Also
in this period, the coastal sector is covered by seasonal sea-ice resulting in a neutral region of air-sea fluxes while the open
sea-ice free ocean (e.g., the southern Bering Sea) acts as a strong source of CO2. In spring/summer time, high CO2 uptake
is found in coastal shelf seas influenced by sea-ice retreat and high biological production, e.g. Chukchi and Gulf of Alaska590
(Yasunaka et al., 2016, 2018), and/or by dilution of sea waters from river freshwater with low salinity and DIC concentration,
e.g., Beaufort Sea, Laptev, and East Siberia Seas (Arrigo et al., 2010).

Thank you for correction. We have rephrased our argument with a broader context as follows.

Lines 469-475 in the revised manuscript:595
As shown in Bates (2006), Arrigo et al. (2010), and Ishii et al. (2014), surface DIC concentration is higher over the open,
deep basins than the shallow coastal seas of the SpP, particularly induced by deep mixing during winter/spring. Over the same
period, seasonal sea-ice also restricts gas exchanging, the coastal sector thus acts as a neutral region of CO2 fluxes (Fig. 8).
During spring and summer, a substantial amount of CO2 is also absorbed in the coastal shelf seas influenced by high biological
production in large ice-free areas (e.g., Chukchi and Gulf of Alaska), and/or by dilution of sea waters from river freshwater600
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with low salinity and DIC concentration (e.g., Beaufort, Laptev, and East Siberia Seas) (Arrigo et al., 2010; Yasunaka et al.,
2016, 2018).

3.13 To be honest, I can’t really see from this figure that it covaries with the ENSO mode. As I see it the flux increases
equally often during La Nina as during El Nino. It would be more interesting to see a comparison of the
interannual variability with other air-sea flux products.605

The covariate between the ENSO events and the temporal variability of the global carbon sink has been covered by its increasing
long-term trend in Figure 9 in the first manuscript. We have added another curve whose values are ticked on the right y-axis
of the same figure. This curve stands for the yearly flux variability, i.e., the yearly ocean uptake estimate after removing its
long-term trend. See the revised version of Figure 9 below.

In-depth intercomparisons amongst different model-based and/or observation–based products are presented in previous610
works including Rödenbeck et al. (2015); Denvil-Sommer et al. (2019); Hauck et al. (2020). This study further focuses on
presenting the three main points: (1) an introduction of our novel ensemble-based approach for reconstructing the global
monthly pCO2 fields and air–sea fluxes from the open ocean to coastal regions, (2) quantification and evaluation of model best
estimates and uncertainties based on the ensemble asset for different time scales (e.g., monthly, yearly, and multi-decadal) and
spatial scales (e.g., grid cells, sub-basins, and the global ocean), (3) a seamless analysis of the reconstructed data and uncer-615
tainty estimates over the open ocean and coastal zones. These key points are now also elaborated in the Introduction (see Lines
35-85 in the revised manuscript). Regarding the scope of this study and intense analysis presented in the current manuscript,
we suggest to retain Figure 9 as it is revised as follows. However, this point raised by the referee is interesting and will be
considered in our future studies.
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Figure 9. Yearly global integrated air–sea flux estimates derived from the CMEMS-LSCE-FFNN ensemble (mean ± uncertainty) for 1985–
2019. Multivariate El Niño-Southern Oscillation Index (MEI; Wolter and Timlin, 1993, https://psl.noaa.gov/enso/mei/, last access: December
2020) is used to generally indicate a link between variations, e.g. Yearly uptake - Trend , in the CMEMS-LSCE-FFNN sink estimate and the
ENSO climate mode (El Niño: MEI > 0.5, La Niña: MEI < -0.5, Neutral: otherwise).

** In addition to the comments addressed above, we also account editorial suggestions from our colleague Nicolas Metzl.620
We would like to thank him for his comments and supports to improve our manuscript. Aside from some points matching with
the ones suggested by the three referees, the following items make other changes in this revision from the first manuscript:
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• The color in Figures 5 (a,b), 8, and S9 (a,b) is reset: blue for CO2 sink and red for CO2 sources.

• The study of Yasunaka et al. (2018) is cited when discussing CO2 fluxes over some sectors in the Arctic and subpolar
regions.625

• “Fair data used statement for SOCAT” is added in Acknowledgements.
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