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Abstract. We have estimated global air–sea CO2 fluxes (fgCO2) from the open ocean to coastal seas. Fluxes and associated

uncertainty are computed from an ensemble-based reconstruction of CO2 sea surface partial pressure (pCO2) maps trained with

gridded data from the Surface Ocean CO2 Atlas v2020 database. The ensemble mean (which is the best estimate provided by

the approach) fits independent data well and a broad agreement between the spatial distribution of model–data differences and

the ensemble standard deviation (which is our model uncertainty estimate) is seen. Ensemble-based uncertainty estimates are5

denoted by ±1σ. The space-time varying uncertainty fields identify oceanic regions where improvements in data reconstruction

and extensions of the observational network are needed. Poor reconstructions of pCO2 are primarily found over the coasts

and/or in regions with sparse observations, while fgCO2 estimates with largest uncertainty are observed over the open Southern

Ocean (44◦S southward), the subpolar regions, the Indian gyre, and upwelling systems.

Our estimate of the global net sink for the period 1985–2019 is 1.643±0.125 PgCyr−1 including 0.150±0.010 PgCyr−110

for the coastal net sink.Among the ocean basins, the subtropical Pacific (18◦N–49◦N) and the subpolar Atlantic (49◦N–76◦N)

appear respectively to be the strongest CO2 sinks for the open ocean and the coastal ocean. Based on mean flux density per

unit area, the most intense CO2 drawdown is, however, observed over the Arctic (76◦N poleward) followed by the Subpolar

Atlantic and Subtropical Pacific for both open ocean and coastal sectors. Reconstruction results also show significant changes

in the global annual integral of all open- and coastal-ocean CO2 fluxes with a growth rate of +0.062± 0.006 PgCyr−2 and15

a temporal standard deviation of 0.526± 0.022 PgCyr−1 over the 35-year period. The link between its large interannual to

multi-year variations and the El Niño-Southern Oscillation climate variability is reconfirmed.
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1 Introduction

Since the onset of the Industrial Era, humankind has profoundly modified the global carbon (C) cycle. The use of fossil fuels,

cement production, and land use change has added 700± 75 PgC (best estimate ±1σ) to the atmosphere between 1750 and20

2019 (Friedlingstein et al., 2020). An estimated 285± 5 PgC of this excess C stayed there, the remainder was taken up by

the ocean (170± 20 PgC) and the land biosphere (230 ± 60 PgC). While the fraction of total CO2 emissions sequestered

by the ocean remained rather stable (22− 25%) over the past six decades (Friedlingstein et al., 2020), the global ocean sink

has varied significantly at interannual time scales (Rödenbeck et al., 2015). Global ocean biogeochemical models (GOBMs)

are used within the framework of the annual assessment of the global carbon budget (Friedlingstein et al., 2020) to annually25

re-estimate the means and variations of CO2 sinks and sources over the global ocean and major basins. However, these recent

model-based estimates need to be benchmarked against observation-based estimates in order to better understand the global

carbon budget as well as its yearly re-distribution in the biosphere (Hauck et al., 2020).

In situ measurements of sea surface fugacity of CO2 collected by an international coordinated effort of the ocean observation

community and combined into the Surface Ocean CO2 Atlas (SOCAT, https://www.socat.info/, Bakker et al., 2016) provide30

an observational constraint on the assessment of the surface ocean partial pressure of CO2 (pCO2) and the ocean C sinks and

sources. Despite an increasing number of observations since the 1990s, data density remains uneven in space and time. While,

for instance, data coverage is sparse over the Southern basins of the Atlantic and Pacific oceans, observations are seasonally

biased towards the summers at high latitudes (Landschützer et al., 2014; Denvil-Sommer et al., 2019; Gregor et al., 2019).

Various data-based approaches have been proposed to infer gridded maps of surface ocean pCO2 from the sparse set of35

observation–based data. They have been successful in obtaining similarly low misfits between the reconstructed and evaluation

data and reasonable estimates of air-sea CO2 fluxes (see in Rödenbeck et al., 2015; Gregor et al., 2019; Friedlingstein et al.,

2020) although model design and implementation are quite different (e.g., proportion of SOCAT data used in model fitting

and evaluation). Aside from data reconstruction built on a single model mapping pCO2 data with machine learning, classical

regression, or mixed layer schemes (e.g., Rödenbeck et al., 2013; Landschützer et al., 2016; Iida et al., 2021), ensemble-based40

approaches have recently emerged but with their own concepts and objectives. For example, Denvil-Sommer et al. (2019)

designed a two-step reconstruction of pCO2 climatologies and anomalies based on five neural network models and selected

the one that reproduced the pCO2 field with the smallest model–data misfit. Gregor et al. (2019) and Gregor and Gruber

(2021) introduced machine-learning ensembles with six to sixteen different two-step clustering-regression models mapping

surface pCO2 and suggest that the use of their ensemble mean is better than each member estimate. In a broader context,45

Rödenbeck et al. (2015) presented an intercomparison of fourteen mapping methods targeting the identification of common

or distinguishable features of different products in long-term mean, regional and temporal variations. Hauck et al. (2020)

and Friedlingstein et al. (2020) also synthesized pCO2 mapping products and took an ensemble of their observation–based

estimates of air-sea CO2 fluxes as a benchmark to compare with the one derived from ocean biogeochemical models.

Despite positive conclusions overall, statistical data reconstructions are still subject to further improvements. In Rödenbeck50

et al. (2015), Hauck et al. (2020), Bushinsky et al. (2019), and Denvil-Sommer et al. (2021), the authors explain that substantial
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extensions of surface ocean observational network systems are essential to better determine pCO2 and fluxes at finer scales and

reduce mapping uncertainties. So far mapping uncertainties have been estimated by using misfits between the model outputs

and SOCAT data (e.g., the root-mean-square deviation, RMSD). By construction, such uncertainty estimates are restricted

to oceanic regions and periods when observations are available (Rödenbeck et al., 2015; Lebehot et al., 2019; Gregor et al.,55

2019) and the uncertainty quantification of an averaged pCO2 or an integrated flux over space and time of interest is under

low confidence due to sparse data density. Also, most of the aforementioned mapping methods target pCO2 data and estimate

air-sea fluxes solely over the open ocean, with the coastal data excluded or not fully qualified. In Laruelle et al. (2014),

the authors present spatial distributions of air-sea flux density and estimates of the total coastal C sink inferred from spatial

integration methods on coastal SOCAT data. Laruelle et al. (2017) adapted the two-step neural network approach described60

in Landschützer et al. (2016) to the coastal ocean pCO2. The coastal and open ocean products were combined into a single

reconstruction to yield a global monthly climatology of pCO2 presented in Landschützer et al. (2020). Notwithstanding these

advances, a global reconstruction and its uncertainty assessment of monthly varying coastal surface ocean pCO2 and air-sea

fluxes are still missing.

In this work, we propose a new inference strategy for reconstructing the monthly pCO2 fields and the contemporary air–sea65

fluxes over the period 1985–2019 with a spatial resolution of 1◦ × 1◦. It is based on a Monte Carlo approach, an ensemble of

100 neural network models mapping sub-samples drawn from the monthly gridded SOCATv2020 data and available data of

predictors. This ensemble approach was developed at the Laboratoire des Sciences du Climat et de l’Environnement (LSCE)

as both an extension and an improvement of the first version (LSCE-FFNN-v1, Denvil-Sommer et al., 2019). In the following

sections, we first present the ensemble of neural networks designed with the aim of leaving aside the issue of discrete boundaries70

in the existing two-step clustering-regressions (see further discussion in Gregor and Gruber, 2021) and reducing the mapping

uncertainties induced by the two-step reconstruction of the pCO2 fields (Denvil-Sommer et al., 2019) or by an ensemble-based

reconstruction with a small ensemble size. In addition, each FFNN model follows a leave-p-out cross-validation approach,

i.e., the exclusion of p gridded SOCAT data of the reconstructed month itself in model training and validation. This allows

to reduce model over-fitting and to leave much more independent data for model evaluation than the previous studies. Mean75

and standard deviation computed from the ensemble of 100 model outputs are defined as estimates of the mean state and

uncertainty of the carbon fields. As one of the novel key findings of this study compared to the existing ones, we compute

and analyze the estimates of pCO2 and air–sea fluxes, model errors, and model uncertainties for different time scales (e.g.,

monthly, yearly, and multi-decadal) and spatial scales (e.g., grid cells, sub-basins, and the global ocean). We then suggest the

use of an indicator map built on the space-time varying uncertainty fields instead of model–data misfits for identifying regions80

that should be prioritized in future observational programs and model development in order to improve data reconstruction.

Last but not least, the model best estimates and uncertainty of pCO2 and air–sea fluxes are analysed seamlessly over the open

ocean to the coastal zone. Potential drivers of the spatio-temporal distribution and the magnitude of open ocean and coastal

CO2 fluxes are discussed with the aim to better identify underlying processes and to detect potential focus regions for further

studies on the evolution of oceanic CO2 sources and sinks.85
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2 Methods

2.1 General formulation

The air–sea flux density (molCm−2yr−1) is calculated here by the standard bulk equation

fgCO2 = kL(1− fice) ∆pCO2

= kL(1− fice)
(
pCOatm

2 − pCO2

)
, (1)90

where k is the gas transfer velocity computed as a function of the 10-meter ERA5 wind speed (Hersbach et al., 2020) following

Wanninkhof (2014) and its coefficient is scaled to match a global mean transfer velocity of 16.5 cm h−1 (Naegler, 2009). L

is the temperature-dependent solubility of CO2 (Weiss, 1974), fice and pCOatm
2 are, respectively, the sea ice fraction and the

atmospheric CO2 partial pressure. In Eq. (1), a positive (negative) flux indicates oceanic CO2 uptake (release). Details and

references for the source of these variables are given in Table S1, except for pCO2 that is described in the following section.95

2.2 An ensemble-based approach for the reconstruction of sea surface pCO2 and air–sea CO2 fluxes

The sea surface partial pressure of CO2 in Eq. (1) is estimated monthly over each point of the global ocean by analysing

sparse in situ measurements of CO2 fugacity, gathered and gridded at monthly and 1-degree resolution in the 2020 release

of the Surface Ocean CO2 Atlas (SOCATv2020, https://www.socat.info/). SOCATv2020 covers the period 1985–2019. First,

monthly gridded pCO2 data were converted from SOCATv2020 CO2 fugacity (Körtzinger, 1999). We have then regressed100

these pCO2 values against a set of predictors with non-linear functions, i.e., feed-forward neural network models (FFNNs). As

illustrated in Fig. 1, our predictors are biological, chemical, and physical variables commonly associated with the variations

of pCO2 (e.g., Landschützer et al., 2013; Denvil-Sommer et al., 2019; Gregor et al., 2019): sea surface height (SSH), sea

surface temperature (SST), sea surface salinity (SSS), mixed layer depth (MLD), chlorophyll-a (CHL), atmospheric CO2 mole

fraction (xCO2). A pCO2 climatology (Takahashi et al., 2009) and the geographical coordinates (latitude and longitude) were105

also added to the predictors. Table S1 details the data source. All data were reprocessed and co-located at the same SOCAT

resolution following Landschützer et al. (2016) and Denvil-Sommer et al. (2019). For instance, CHL was set approximately

to 0 mg m−3 over the Arctic and the Southern Ocean winter when no data is available. In case of data unavailable before

1998, climatologies based on all available data were used as predictors. Exceptionally, predictors for SSH before 1993 were

climatologies plus a linear trend in order to retain the overall response to the global warming. MLD before 1992 was taken as110

the average MLD between 1992 and 1997.

An ensemble of 100 FFNNs was used to reconstruct monthly pCO2 fields with a 1◦ × 1◦ resolution over the global sur-

face ocean during years 1985–2019. This ensemble approach was developed at the Laboratoire des Sciences du Climat et

de l’Environnement (LSCE) as both an extension and an improvement of the first version (LSCE-FFNN-v1, Denvil-Sommer

et al., 2019). Our model outputs are part of the Copernicus Marine Environment Monitoring Service (CMEMS). Throughout115

the paper, it is hence referred to as CMEMS-LSCE-FFNN.
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CMEMS-FFNN: 
An ensemble of feed forward neural network models
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Figure 1. Illustration of a feed-forward neural network (FFNN) model mapping monthly gridded SOCAT data and feature variables (Ta-

ble S1) co-located at a spatial resolution of 1◦ × 1◦.

To reconstruct the pCO2 fields over the global ocean for each target month over the 1985–2019 period, all the available

SOCAT data and the co-located predictors have been collected for the month before and the month after the target month. We

randomly extracted two thirds of each one of these datasets to make training datasets for the FFNNs, leaving the remaining

third to be corresponding test datasets. The FFNNs were then trained for each target month. Moreover, the exclusion of the120

reconstructed month itself in the training and test datasets follows a leave-p-out cross-validation approach, where p is the

number of gridded SOCAT data in the target month. This approach allows to reduce model over-fitting, as well as to assess the

quality of the reconstruction against SOCAT data that are fully independent from the training phase.

The random extraction and the FFNN training were repeated 100 times so that 100 versions of the monthly FFNNs have

been obtained. Note that our ensemble approach belongs to the classes of bootstraping and Monte Carlo methods in statistics.125

Theoretically, the number of samples or the ensemble size must be substantially large to get a convergence. However, it was

demonstrated in the literature (e.g., Goodhue et al., 2012; Efron et al., 2015) that with the ensemble size of 50 the model

estimation is likely stable and with the ensemble size over 100 the improvement in standard errors between model outputs

and evaluation data is negligible. Fig. S2 shows an illustration of the reconstruction skill with respect to the ensemble size S.

For each ensemble of S model outputs of pCO2 (S ∈ {5, 10, 20, 50, 75, 100}), the root-mean-square deviation (RMSD)130

is computed between the ensemble mean (our best model estimate) and SOCAT data over the period 1985-2019. As seen in

this figure, the reconstruction starts to stabilize with S = 50. In this study, we have exploited a large but realistic amount of
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computing resources to run an ensemble of S = 100 neural network models. Equation (1) was then applied to the ensembles

of FFNN outputs of pCO2 in order to obtain ensembles of monthly global fgCO2 fields.

2.3 Coastal and regional division135

The reconstructed pCO2 fields and air–sea CO2 fluxes are analysed over the global ocean, at particular locations, and in 11

oceanic sub-basins used by the Regional Carbon Cycle Assessment Project Tier 1 (RECCAP1, Canadell et al., 2011) and

previous studies (Schuster et al., 2013; Sarma et al., 2013; Ishii et al., 2014; Lenton et al., 2013; Wanninkhof et al., 2013;

Landschützer et al., 2014). In order to distinguish the coastal from the open ocean, we use the coastal mask from the MARgins

and CATchments Segmentation (MARCATS, Laruelle et al., 2013) interpolated on the 1◦ × 1◦ SOCAT grid. Details of the140

regional (open and coastal) division are given in Table 1 and Fig. 2.

Table 1. Indication of 11 RECCAP1 regions (Fig. 2). Only the total area with respect to the maximum coverage of the reconstructed data is

accounted for each region.

Index Region Latitude
Area (106km2)

Open ocean Coast

Globe (G) 90◦S – 90◦N 330.42 22.35

1 Arctic (Ar) 76◦N – 90◦N 1.07 0.99

2 Subpolar Atlantic (SpA) 49◦N – 76◦N 8.88 4.15

3 Subpolar Pacific (SpP) 49◦N – 76◦N 6.16 3.65

4 Subtropical Atlantic (StA) 18◦N – 49◦N 23.22 1.83

5 Subtropical Pacific (StP) 18◦N – 49◦N 36.37 1.65

6 Equatorial Atlantic (EA) 18◦S – 18◦N 23.15 1.05

7 Equatorial Pacific (EP) 18◦S – 18◦N 66.50 3.22

8 South Atlantic (SA) 44◦S – 18◦S 17.79 0.83

9 South Pacific (SP) 44◦S – 18◦S 37.15 0.50

10 Indian Ocean (IO) 44◦S – 30◦N 52.80 2.71

11 Southern Ocean (SO) 90◦S – 44◦S 59.47 3.12

With the above definitions, the coastal regions encompass 6.33% of a total maximum ocean area of 352.77× 106 km2.

The computation of these numbers was based on the maximum data coverage of the CMEMS-LSCE-FFNN reconstruction

taking into account the variable monthly sea–ice fraction. The number of monthly gridded SOCATv2020 data used in the

reconstruction of pCO2 is reported in Table S2 for each region, with 301,449 in total and 10.36% of the data available over the145

predefined coastal regions.

2.4 Statistics

The mean (µ) and standard deviation (σ) of the 100-member ensembles of pCO2 and fgCO2 are respectively chosen as their

best estimate and the associated uncertainty. Unless stated otherwise, a model best estimate and its uncertainty computed at
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Figure 2. Map of RECCAP1 regions (Regional Carbon Cycle Assessment and Processes, Canadell et al., 2011) and MARCATS coastal

mask (MARgins and CATchments Segmentation, Laruelle et al., 2013) co-located on the 1◦ × 1◦ SOCAT grid.

each desired space-time resolution are denoted by µensemble ±σensemble, where150

µensemble =

∑i=100
i=1 pCO

Reconstruction(i)
2

100
, σensemble =

√√√√∑i=100
i=1

(
pCO

Reconstruction(i)
2 −µensemble

)2

100
, (2)

and pCO
Reconstruction(i)
2 is one of the 100 members of the reconstructed pCO2 fields. Similar definitions are applied for

fgCO2. The units of air-sea flux estimates is molCm−2yr−1 for a flux density and converted to PgCyr−1 for an integral over

a region or the global ocean.

Model robustness of the reconstructed pCO2 fields is evaluated on the gridded SOCAT data and in situ observations (Sutton155

et al., 2019). The evaluation data is denoted as pCOObservation
2 in the following formulas. Standard statistics include the

coefficient of determination (r2), misfit mean (model bias) and misfit standard deviation,

µmisfit =

∑j=N
j=1 dpCOj

2

N
, σmisfit =

√√√√∑j=N
j=1

(
dpCOj

2 −µmisfit

)2

N
, (3)

and the root-mean-square deviation (RMSD)

RMSD=

√√√√∑j=N
j=1

(
dpCOj

2

)2

N
, (4)160

where dpCOj
2 = pCOReconstruction

2 [j]−pCOObservation
2 [j], and N is a number of evaluation data. All these scores are computed

for different coastal and open regions from the scale of grid cells to the global scale.
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Generally, RMSD measures the reconstruction skill in terms of mean distance between model estimates and evaluation data

while r2 measures the proportion of data variation predicted by the model. Compared to other metrics such as mean absolute

bias and r2, RMSD takes another role, an outlier detector, which gives larger weights to high model–data misfits. Note that165

r2, µmisfit, σmisfit, and RMSD reflect the model performance with respect to evaluation data, while σensemble measures the

stability of the model best estimate µensemble. Nevertheless, these different statistics should consistently reflect the skill of the

model reconstruction, e.g., depending on the density and distribution of data sampling.

In the next section, both the temporal and spatial distributions of gridded SOCAT data and in situ observations, model–data

errors, model best estimates and uncertainties are shown. An intensive analysis is presented for both the open ocean and the170

coastal zones. We then interpret key factors leading to a good or poor reconstruction of surface pCO2 and fgCO2, e.g., SOCAT

data density and distribution, model design and resolution, regional to local characteristics of pCO2 and fgCO2, and their

potential driving mechanisms.

3 Results

3.1 Evaluation175

To verify the robustness of the mapping method, we first evaluate the goodness of fit of reconstructed pCO2 against the

independent SOCAT data from the leave-p-out cross-validation set (see Sect. 2.2).

Empirical Cumulative Distribution Functions (CDFs) and frequency histograms drawn from these data are compared in

Figs. 3a and 3b. While a frequency histogram in Fig. 3a shows the number of gridded SOCAT pCO2 data distributed for

each bin, the one in Fig. 3b (grey) reflects how the pCO2 values in grid boxes with observations are distributed within their180

bounds. The probability–probability (P–P) plot of Fig. 3b (blue curve) measures the fit in the distributions of the reconstruction

and SOCAT data. The same presentation is used in Figs. 3c and 3d for the misfit standard deviation σmisfit and the ensemble

standard deviation σensemble (see their definitions in Eqs. 2 and 3 and their values in Figs. S3c and S3g).

The reconstructed pCO2 field matches SOCAT data well: both are normally distributed with the same mean of 361.3 µatm

(Fig. 3a) and a high agreement for all percentiles (Fig. 3b) is seen. The slight under- or overestimation at high and low185

percentiles implies that the model is slightly biased towards the mean value, as is expected when predictor variables do not

fully explain predictand variables in the training dataset. This reduced variability is also reflected in the difference between the

data standard deviation based on SOCAT pCO2 (41.79 µatm) and the one based on CMEMS-LSCE-FFNN (36.30 µatm).

Displayed on Fig. 3c, both misfit standard deviation (σmisfit) and model uncertainty (σensemble) empirically follow the

exponential distribution. σmisfit is much higher than σensemble as the CDF and frequency histogram of the former (blue) show190

heavier tails than those of the latter (orange), which brings the P–P curve below the bisector in Fig. 3d. When dividing the misfit

standard deviation values shown in Fig. S3c by 2, σmisfit (green) shares a similar distribution as σensemble (orange). A natural

explanation for this twofold tuning factor would point to a simple lack of spread of the ensemble, either because the FFNN

ensemble would be too small or because the uncertainty in the predictors (not accounted for here in the ensemble) would be

significant. The SOCAT CO2 fugacity data are sampled at uneven space-time resolution (e.g., the sampling frequency varies195

8



200 400
pCO2 [ atm]

0

25

50

75

100

Nu
m

be
r o

f d
at

a 
[×

10
3 ]

SOCAT
Reconstructed

0.00

0.25

0.50

0.75

1.00

CD
F

(a)

0.00 0.25 0.50 0.75 1.00
CDF (Reconstructed pCO2)

0.00

0.25

0.50

0.75

1.00

CD
F 

(S
OC

AT
 p

CO
2)

0

10

20

30

Nu
m

be
r o

f d
at

a 
[×

10
3 ]

(b)

10 20 30
 [ atm]

0

5

10

15

Nu
m

be
r o

f d
at

a 
[×

10
3 ]

Misfit (unscaled)
Misfit (scaled)
Ensemble

0.00

0.25

0.50

0.75

1.00

CD
F

(c)

0.00 0.25 0.50 0.75 1.00
CDF ( ensemble)

0.00

0.25

0.50

0.75

1.00

CD
F 

(
m

isf
it)

Unscaled
Scaled

0

1

2

3

Nu
m

be
r o

f d
at

a 
[×

10
3 ]

(d)

1

Figure 3. Comparison between empirical Cumulative Distribution Functions (CDFs) of (a,b) SOCATv2020 data and the reconstructed pCO2

field and (c,d) model–data misfit standard deviation (σmisfit) and model uncertainty (σensemble), as seen in Fig. S3. In (c,d), the distribution

of σmisfit values scaled with a factor of 2 is plotted. A histogram with the axis in grey of the four subplots displays the number of gridded

data distributed in each bin, the bins with less than 200 data for (a) and 20 data for (c) have been excluded. In (b,d), the bisector is shown in

black.

between one read per minute to one per hour). Gridded data correspond to the average of measurements collected within a

1◦ × 1◦ box and in a month over the entire cell area. Variability in the sampling time and location of cruises and instruments

induces temporal sampling bias (e.g., towards some days in a month and/or the summer months at high latitudes) and latitude

and longitude offsets from the cell center (e.g., with an average of 0.34◦ ± 0.14◦ as reported in Sabine et al., 2013) which are

not taken into account.200

Assume that

(1) Such practical imperfection presents a systematic error in each measurement from the true data with an overall standard

deviation of σobservation.

(2) Systematic errors between SOCAT data and the reconstructed data equal those between the true data and the recon-

structed data.205
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As observation errors are independent from the random errors induced by the ensemble approach in each grid cell (further to

the implementation of the leave-p-out cross-validation in model training; see Sect. 2.2), σmisfit in Eq. (3) can be interpreted as

σ2
misfit = σ2

ensemble +σ2
observation, (4)

where σ2
observation varies in space and time and is larger near shelves (see the observation variability in Figs. S1b and S1c).

The interpretation of the magnitude of mismatch is therefore not straightforward, but we note that the spatial distribution210

of model errors and uncertainty estimates over the global ocean (Fig. 5) consistently identifies the spatial distribution of the

model skill. This asset is prioritized in our preliminary study and further analysed in the next sections. The twofold factor used

for the illustration in Fig. 3 has not been kept for the following results.

3.1.1 Global ocean

At global scale, the model fits the data with a mean bias close to zero, an RMSD of 20.48 µatm, and a coefficient of deter-215

mination (r2) of 0.76. The temporal fluctuation of the spatial mean of the model–data mean difference over the global ocean

is displayed on Fig. 4a along with the number of available gridded data. The time series of the yearly bias (black curve) starts

with a large positive value (7.47± 1.60 µatm) in year 1985 (∼ 740 gridded data). The bias drops during the following years

and fluctuates around zero from 1994 onward (the number of grid boxes containing SOCAT observations per year is generally

larger than 5000). In general, the magnitudes of the yearly model bias and model spread are correlated with the number of220

observation-based data which increased greatly since the 1990s. The importance of sustained data coverage is emphasized by

Fig. S4. It illustrates the fact that large model–data mismatches are frequently associated with the interruption of Voluntary Ob-

serving Ship (VOS) lines and thus with the tracking of CO2 fugacity over large regions. The larger bias computed prior to the

1990s (Fig. 4a) might intuitively lead to the conclusion that model outputs are less reliable than those in the later periods. How-

ever, this global mean score is influenced by the amount and distribution of data, and consequently the increased data density225

does not fully explain the reconstruction skill. For instance, even with a higher number of observation-based data than that in

the pre-1990s, years 2001 and 2007 stand out with strong negative biases (−5.44±1.26 and −3.12±0.92 µatm, respectively).

While such a comparison between the global bias and the number of data highlights the lack of a simple relationship between

the number of data and the skill of the mapping method, the ensemble spread (dark grey area) of model errors, representing the

spread of the annual mean of pCO2 estimates at SOCAT grid with observations, is reduced with an exponential decay constant230

of 0.46± 0.06 per 1000 gridded data (Fig. 4b).

The model scores for the open ocean over the period 1985 to 2019 are 17.87 µatm for RMSD and 0.78 for r2. The skill of

this novel method, which uses only two thirds of SOCAT data for fitting each of 100 FFNN models ranks similar to those from

alternative statistical reconstruction approaches (Rödenbeck et al., 2013; Landschützer et al., 2014; Gregor et al., 2019) which

have been used to complement model-based estimates of the ocean carbon sink (Friedlingstein et al., 2019, 2020).235

The CMEMS-LSCE-FFNN reconstruction over the coastal regions for the full period is roughly twice less effective than

over the open ocean in terms of RMSD (35.86 µatm) while it shows a rather good fit with r2 = 0.70. The high RMSD

reflects local high model errors along the continental shelves (Fig. S3). For the 1998–2015 period, the CMEMS-LSCE-FFNN
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Figure 4. (a) Time series of the yearly mean model bias, i.e., the reconstructed pCO2 data minus SOCATv2020 data, over the global ocean.

The black curve and dark grey area represent the mean estimate and 1σ-envelop of errors of the 100-member ensemble, the light grey curve

represents the total number of gridded SOCAT data used in the FFNN model construction. (b) Exponential fits of the model uncertainty (the

magnitude of the 1σ-envelop in Fig. 4a) against the number of gridded data per year. The exponential function is y = aexp−bx+c. The black

curve is derived from the best fit and the grey shaded area corresponds to the spread derived from standard errors of parameter estimates. (c)

Statistical scores for 11 oceanic regions with the size of each scattered object proportional to the number of regional data (Table S2).

approach scored an RMSD of 35.84 µatm while a recent coastal reconstruction by Landschützer et al. (2020) obtained an

error of 26.8 µatm (see their Table 1). The latter presents a global ocean pCO2 climatology product by unifying data over240

the same period from two conceptually equivalent reconstruction models: one covering the open ocean at a 1◦ × 1◦ resolution

(Landschützer et al., 2016) and one targeting the coastal ocean at a 0.25◦ × 0.25◦ resolution (Laruelle et al., 2017). These

heretofore reconstructions cover the coastal region with a broader definition (400 km distance from the sea shore) than the

MARCATS mask used in this study leading to the differences in characteristics and numbers of evaluation data of pCO2. In

addition, the CMEMS-LSCE-FFNN model was designed with the leave-p-out cross-validation approach excluding much more245
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independent data from monthly model fitting for model evaluation than in the previous models. Overall model errors remain

high despite the increase in spatial resolution and in the number of observations. Coastal and shelf seas are characterized

by complex physical and biological dynamics leading to high variability at small scales. For instance, pCO2 levels over the

Californian shelf can exceed 850 µatm and with a spatial gradient of pCO2 as large as 470 µatm over a distance less than

0.5 km (Chavez et al., 2018; Feely et al., 2008). Clearly, further model improvement is needed in order to capture such high250

spatial and temporal variability of surface ocean pCO2 present in observations (see also in Bakker et al., 2016; Laruelle et al.,

2017, and references therein).

In the following subsections, we present and discuss the reconstruction skills for different ocean regions, as well as for open

ocean and coastal domains (Fig. 4c). Complete results including the numbers of gridded data, RMSDs, and r2 for each region

are summarized in Table S2.255

3.1.2 Ocean basins

3.1.2.1 Arctic

Data coverage is particularly sparse over the Arctic ocean (Ar) with 50 to 220 grid boxes with observations per year since

2007 and an interruption in 2010 (Fig. S4). While continental shelves account for 50% of the region’s area, only one

third of the observation-based data are from coastal regions. Moreover, observations are seasonally biased towards ice-260

free summer months (Bakker et al., 2016). Though reconstruction standard errors are similar for open basins and coastal

regions (RMSDs of 33.01 and 30.65 µatm respectively), the coefficient of determination is higher over the open ocean

(r2= 0.61) compared to coastal seas (r2= 0.44), suggesting a higher model skill over open basins. The close-to-zero bias

of the coastal reconstruction shown in Fig. 4c results from the compensation between highly positive and negative values

over the continental shelves of Alaska, the Canadian Archipelagos, the Barents and Kara Seas (see Fig. S3), the yearly265

bias fluctuates within [−50,30] µatm (Fig. S4). Of all open ocean regions, the Arctic reconstruction has the highest

bias (3.19 µatm). Cold Arctic waters are characterized by low levels of surface ocean pCO2 due to the temperature

effect on CO2 solubility and the seasonal draw-down of dissolved inorganic carbon (DIC) during summer months by

intense biological production (Feely et al., 2001; Takahashi et al., 2009; Arrigo et al., 2010). Assuming that the Arctic

predictors remain within the range of global relationships, the overestimation of pCO2 by CMEMS-LSCE-FFNN, as270

seen in Fig. 4c, suggests a possible underestimation of biological productivity. While the preceding remains conjectural,

we acknowledge a large uncertainty on the contribution of biological activity (net primary production, NPP) on surface

ocean pCO2, as it is "proxied" by chlorophyll-a derived from remote sensing (Maritorena et al., 2010; Babin et al.,

2015b). Overall, these scores point to the Arctic as a relatively poorly reconstructed region.

3.1.2.2 Atlantic275

The North Atlantic stands out as a region with high data coverage (Fig. S1a) and a rapidly increasing number of data

since 2000 (Fig. S4). A sustained sampling effort adds between 2000 to 4000 data each year to the database over the

Subtropical (StA) and Subpolar Atlantic (SpA) regions (including between 10− 40% of coastal data). The data density
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over the North Atlantic stands in strong contrast to the often less than 1000 gridded data per year collected over the

Equatorial (EA) and South Atlantic (SA) and their strong year-to-year variability.280

The comparison between the reconstructed open ocean pCO2 and evaluation data over the four sub-regions of the open

Atlantic (Fig. 4c and Table S2) reveals small mean model–data differences, which together with the two other scores,

identify the Atlantic as the basin with the highest reconstruction skill. RMSDs corresponding to the StA, the EA, and

the SA are below 15.50 µatm and r2 values are in the range of [0.69,0.77]. While a larger RMSD is obtained over the

SpA (23.68 µatm), the r2 of 0.76 falls close to the upper end of the range determined for the three other regions. As285

discussed in Schuster et al. (2013), large temporal and spatial gradients of pCO2 as well as its variability driven by a

diversity of physical and biological processes (e.g., surface ocean temperature gradients, biological production, vertical

mixing, and horizontal advection of water masses) keep the analysis of pCO2 over the SpA challenging.

Despite accounting for over 59% of the total of coastal data, skillful data reconstruction over the coastal Atlantic regions

remains difficult. RMSDs are in general above 30 µatm and, with the exception of the coastal SpA (r2 = 0.79), below290

51% of the observed variance is predicted by the model over the other regions (StA: 0.51, EA: 0.25, SA: 0.46). The large

model–data mismatch along the Atlantic continental shelves (Fig. S3) reflects the poor reconstruction of pCO2 over

regions under the influence of upwelling systems (e.g., Moroccan coast, Benguela), large river discharges (e.g., Amazon,

Congo, Florida, Mississippi), and the bottle necks of gulfs or bays (e.g., Bahamas, English Channel).

3.1.2.3 Pacific295

With the exception of the Subpolar Pacific (SpP), the number of observations has increased regularly over the Pacific

basin. In the recent years, there are from 1000 to 3500 grid boxes with observations recorded over the Subtropical Pacific

(StP), the Equatorial Pacific (EP), and the South Pacific (SP) (Fig. S4). Forty percent of total open ocean data belong

to the StP and the EP in the years 1985–2019. Corresponding RMSDs are 17.15 and 16.68 µatm, with r2 above 0.78.

Despite a data coverage below one third of that reported for the two previous regions, the model proved skillful in300

reconstructing pCO2 over the SP (Fig. 4c) with RMSD = 11.50 µatm and r2 = 0.76.

The overall good performance of the FFNN over these three Pacific sub-regions contrasts with its lack of skill over the

open SpP. The data density is poor and highly variable. Before 1994, less than 250 gridded data per year are available

to constrain the reconstruction, followed by several years of intense effort and a maximum of about 1250 data in 2000,

before decreasing again to the pre-1994 values. At first order, skill scores fluctuate in line with data density. During the305

first period (up to 1994), the bias varies within [−25,25] µatm (Fig. S4), it decreases close to [−2,4] µatm between 1997

and 2000, and increases again along with decreasing data density. Much like the SpA, the SpP is a region characterized

by a strong spatial and temporal variability in pCO2 (Ishii et al., 2014), challenging any reconstruction method. The

difficulty is further aggravated by the paucity of data in this region compared to the SpA. Skill scores are modest over

the SpP with an RMSD of 29.08 µatm and r2 of 0.64 (Fig. 4c and Table S2).310

The ratio between coastal and open ocean observation-based data is 1 : 24. The paucity of data for the coastal domain is

reflected by lower skill scores compared to the open ocean. Over the coastal SpP, for example, the RMSD amounts to
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54.69 µatm, while it is 29.08 µatm for the corresponding open ocean region. Comparable to the SpP, data reconstruction

over the coastal regions of the StP (e.g., North American coast, Sea of Japan), as well as over the western EP (e.g.,

Peruvian upwelling) and the SP (e.g., offshore Chile) remains difficult (Fig. S3). Similar results have been found by315

Landschützer et al. (2020).

The EP is characterized by strong equatorial upwelling making it one of the major outgassing regions of CO2 (Feely

et al., 2001). Surface ocean pCO2 shows a strong interannual variability predominantly in response to the El Niño

Southern Oscillation (ENSO), the dominant regional climate mode (Rödenbeck et al., 2015; Landschützer et al., 2016;

Denvil-Sommer et al., 2019). Before the 2000s, negative [positive] peaks of bias (Fig. S4) coincide with La Niña years;320

e.g., 1988–1990, 1995–1996, 1999–2001 [El Niño; e.g., 1986–1987, 1991–1992, 1997–1998] (see the ENSO events

highlighted in Fig. 9). A strong negative bias is again computed in 2010–2012 which could reflect the lack of data during

that cooling phase. On the contrary, the reconstruction seems less sensitive to the strong warm anomalies associated

with the 2015–2016 El Niño. The model appears to be more efficient at reconstructing surface ocean pCO2 during the

hot climate mode (El Niño) than during the cool one (La Niña) when enhanced upwelling drives surface ocean pCO2325

up and towards unusual large values. This allows us to anticipate the effect of a general decrease in data collection and

processing since 2020 in response to the Coronavirus disease 2019 (COVID-19) pandemic on the estimation of the ocean

carbon sink. We expect a high negative bias in model estimates of pCO2 and the consequent underestimation of CO2

outgassing due to the combined impact of data decreasing and La Niña conditions governing since August/September

2020 (https://public.wmo.int/en/media/press-release/la-nina-has-developed). It is worthwhile to also note that monthly330

gridded SOCAT data in the eastern EP have declined in the last five years compared to the other years in the 2010s.

3.1.2.4 Indian Ocean

The Indian Ocean (IO) is the third largest oceanic regions by area but also the one with the lowest data density. With

the exception of the year 1995 (approximately 1900 grid boxes including observations), as few as 500 gridded data have

been provided per year (Fig. S4), yielding a total number of data often below 10 per grid cell for the entire reconstruction335

period (Fig. S1a). There have been even less than 75 grid boxes with observations per year over the continental shelf.

However, the reconstruction over the coastal region is comparable to the open IO with a low RMSD (< 19 µatm) and

a high correlation to the observation-based data (r2 = 0.65). The overall negative bias shown in Fig. 4c for the coastal

IO points to the model underestimating coastal pCO2 levels. Large errors are distributed along the western Arabian Sea,

the western Madagascar, and the tropical eastern IO (Fig. S3). These regions are under the influence of the southwest340

monsoon giving rise to a seasonal upwelling regime (see Feely et al., 2001; Sabine et al., 2002; Sarma et al., 2013, and

references therein). Strong seasonal upwelling results in a marked seasonal cycle of surface ocean pCO2 with high levels

during the upwelling season. The paucity of data is likely to limit the skill of the model reconstruction of the seasonal

cycle over large parts of the IO with consequences for the annual mean analyzed here.
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3.1.2.5 Southern Ocean345

Up to recently, data coverage over the Southern Ocean (SO) has been sparse (Fig. S1a), irregular at grid cell scale,

and biased towards Austral summer months (e.g. Bushinsky et al., 2019; Gregor et al., 2019). A strong sampling effort

allowed a recent increase in observations to reach up to 2000 gridded data per year (Fig. S4). Model scores for the

open, respectively the coastal ocean are: RMSDs of 19.18 µatm and 35.73 µatm, as well as r2 of 0.62 and 0.65. The

reconstruction lacks skill over the continental shelves of South America and Antarctica (see Fig. S3).350

In general, the pCO2 reconstruction over the SO has less skill compared to the Atlantic or the Pacific due to the paucity

in observation-based data compared to its large area. Rödenbeck et al. (2015) reported inconsistent reconstructed inter-

annual variability of pCO2 between different data-based methods. The interannual variability is large due to the natural

variability of the coupled ocean-atmosphere system characterized by one of the globe’s strongest ocean current, strong

winds, vertical mixing and upwelling of DIC rich deep waters (Gregor et al., 2018; Gruber et al., 2019). Efforts to im-355

prove pCO2 reconstruction are ongoing and include model development (e.g., Gregor et al., 2017), as well as the increase

in data coverage by the addition of data from different sampling platforms (e.g., profiling floats, Bushinsky et al., 2019).

For the time being, CMEMS-LSCE-FFNN stands out as one of the skillful models with respect to observation-based

data in the SO (Friedlingstein et al., 2020; Hauck et al., 2020).

3.1.3 Time series stations360

CMEMS-FFNN-LSCE estimates of pCO2 are now compared with moored pCO2 time series provided by Sutton et al. (2019).

This data product comprises pCO2 measurements collected from a wide range of oceanic regions since 2004 (Figs. S5–S8).

Most of the stations were established in the North Atlantic and the North and Equatorial Pacific, one site is in the IO, and

another in the SO. Approximately one third of Sutton et al. (2019) sites belong to the coastal seas and shelves (Fig. S8).

Table S3 details the information of the moored pCO2 time series.365

Observation-based data used for model–data comparison (black points in Figs S6–S8) are monthly averages of pCO2 mea-

surements at each site. This interpolation results in monthly time series with a number of data N between 9 (NH10) and 98

(WHOTS). The ensemble mean µensemble and ensemble spread σensemble (Eq. 2) are computed from the CMEMS-LSCE-

FFNN ensemble of model outputs at the four nearest model grid boxes of each location. Results confirm a reasonably good

reconstruction of the proposed approach. The model best estimates (coloured thick lines) characterise pCO2 trends and vari-370

ations of in situ data well and the model ensembles almost catch the observation-based data in their 99% confidence interval

(light shaded envelop). Over 90% of the time series stations, the model estimation obtains a moderate to high coefficient of

determination r2 with a linear model–data correlation r larger than 0.5 (e.g., BTM: 0.98, CRESCENTREEF: 0.92, HOGREEF:

0.84, SOFS: 0.79, TAO110W: 0.75, WHOTS: 0.73). Mean bias µmisfit (Eq. 3) and RMSD (Eq. 4) are relatively low compared

to mean pCO2 values of the time series stations.375

Half of the open-ocean reconstructions have model errors less than 20 µatm and even less than 10 µatm at KEO, PAPA,

SOLS, STRATUS, and WHOTS (Figs S6 and S7). Despite less skill than the open-ocean reconstructions, the coastal-ocean

reconstructions are quite compatible with the in situ data (Fig. S8). Most of RMSDs remain lower than 20% of the mean pCO2
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values of coastal time series (e.g., CCE2: 36.53 µatm, ICELAND: 12.26 µatm, M2: 36.58 µatm). For some other stations in the

US west coast and the oceanic regimes of coral reef, the estimates differ from the observation-based data in terms of magnitude380

of pCO2 (e.g., CRIMP2, LA PARGUERA) and/or of its seasonal cycle (e.g., CHABA, CHEECAROCKS, SEAK).

The reconstructed time series cover the full period 1985-2019 while observation-based data are still sparse and almost

distributed over the past two decades (Figs. S6-S8). The CMEMS-LSCE-FFNN time series would be useful for estimating and

assessing long-term means, trends, and variations of CO2 surface partial pressure and the corresponding air-sea fluxes.

3.2 Long term mean and uncertainty estimates385

Fig. 5 shows temporal mean estimates, their associated uncertainty, and RMSDs of the monthly air–sea pCO2 gradient

(∆pCO2) and CO2 fluxes (fgCO2) over the full period (see also Fig. S9 for the coastal regions only). In the top maps,

the regions in blue are dominant CO2 uptake regions (influxes) and the regions in red are dominant source regions of CO2

to the atmosphere (effluxes). The uncertainty of ∆pCO2 is merely computed from the ensemble of the reconstructed sea sur-

face pCO2 since the randomness in the atmospheric pCO2 field is assumed to be negligible. Due to impacts of wind stress,390

solubility of CO2, and seasonal sea–ice coverage on the gas transfer coefficient, spatial distributions of mean estimates, their

uncertainty, and RMSDs of ∆pCO2 (Figs. 5a, 5c, 5e) and fgCO2 (Figs. 5b, 5d, 5f) differ from low to high values. The means

of air–sea fluxes integrated/averaged over different RECCAP1 regions (Table 1) are shown in Fig. 6. The distribution of un-

certainty estimates and numbers of gridded SOCAT data for these regions is also displayed on Fig. 7, wherein only values

smaller than 90%-quantile of uncertainty estimates shown in Figs. 5c and 5d are plotted to reduce the effects of outliers on data395

visualization. The seasonal average computed over the full reconstruction period of air–sea CO2 fluxes over the global ocean

is shown in Fig. 8.

3.2.1 Arctic

The Arctic ocean stands out as the region with the strongest CO2 uptake per unit area with 2.336± 0.104 molCm−2yr−1 for

the open sea and 1.522± 0.108 molCm−2yr−1 for the continental shelf margins (Figs. 5b and 6b). At the scale of grid cells,400

air–sea gradients of pCO2 are large but the downward fluxes are relatively modest over the shelves of the eastern Greenland,

the Barents and Kara Seas, and the Siberia Seas (Fig. 5 or S9). During the sea–ice covered seasons, these coastal regions

are neutral while the open ocean Arctic sectors (e.g., the Norwegian Sea, the Barents Sea, the Kara Seas) are CO2 sinks

with moderate influx densities (Fig. 8). The open ocean influx density exceeds 3 molCm−2yr−1 in the Arctic summer. This

substantial amount of CO2 uptake is driven by low surface ocean temperature, seasonal changes in sea–ice cover, and intense405

biological production. Increasing light availability and input of nutrients through melt waters and river discharges sustain high

levels of primary production and CO2 drawdown (Bates and Mathis, 2009; Arrigo et al., 2010; Yasunaka et al., 2016, 2018).

Notwithstanding, the Arctic ocean represents roughly 0.58% of the total surface ocean area (Table 1) and the yearly mean CO2

uptake integrated over the Arctic for the full period amounts to only 1.64% of the global ocean sink (Table 2 and Fig. 6a).
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Figure 5. Climatological mean (top) and uncertainty (middle) of air–sea pCO2 difference (a, c) and of CO2 fluxes (b, d) over 1985–2019.

Uncertainty (Eq. 2) is computed as the standard deviation of the 100-member CMEMS-LSCE-FFNN model outputs of sea surface pCO2

and air–sea CO2 fluxes. The bottom plots (e, f) show RMSDs (Eq. 4) between the SOCAT data (or data-based estimates of fluxes for (f)) and

the mean CMEMS-LSCE-FFNN model outputs.

3.2.2 Atlantic410

The open ocean Subpolar Atlantic (SpA) sink contributes approximately 78% to the total SpA annual C uptake (0.259±0.011

PgCyr−1), as well as with 12.29% to the total ocean sink (1.643± 0.125 PgCyr−1, Table 2). Per unit area, the open ocean

influx amounts to 2.012± 0.092 molCm−2yr−1, the coastal ocean influx is 30.51% less than its open ocean counterpart

and slightly lower than the coastal Arctic sink (Fig. 6b). However, when integrated over the region, the yearly uptake of

0.057±0.004 PgCyr−1 makes the coastal SpA the strongest sink among the 11 coastal regions (Fig. 6a). The interplay between415
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Figure 7. Distribution (violin) of all uncertainty estimates (Figs. 5c and 5d) and the total number (star) of gridded SOCAT data (Fig. S1a)

split for 11 RECCAP1 regions. A violin plot shows the range, median, and density of uncertainty estimates for pCO2 (µatm) and fgCO2

(molCm−2yr−1).

temperature- and biology driven effects results in changes in the seasonal and spatial distributions of surface ocean pCO2 and

ultimately air–sea CO2 fluxes. During boreal winter/spring, high wind speeds enhance gas transfer velocities, contribute to a

strong cooling and an increase of CO2 solubility (Takahashi et al., 2009; Feely et al., 2001), both enhancing uptake of CO2

over the Labrador Sea, the North Atlantic and Norwegian Currents, the Barents and Kara Seas (Fig. 8). High wind speeds also

strengthen vertical mixing, a process supplying dissolved inorganic carbon (DIC) and nutrients to the surface ocean. During the420

spring and summer months, a vigorous biological activity (Sigman and Hain, 2012) counteracts the warming induced decrease

in CO2 solubility and increase in pCO2 by drawing down DIC (Feely et al., 2001). Along the coast of the Barents and Kara
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Figure 8. Seasonality of downward CO2 fluxes [molCm−2yr−1] in 1985–2019. Temporal means of the reconstructed fgCO2 field for

January to March (JFM), April to June (AMJ), July to September (JAS) and, October to December (OND) are shown.

Seas, inputs of fresh water (decrease in salinity and increase in CO2 solubility) and nutrients (biological activity and DIC

drawdown) combine to strengthen CO2 uptake (Arrigo et al., 2010; Yasunaka et al., 2016, 2018; Olafsson et al., 2021). This

contrasts with other coastal regions (e.g., southern North Sea and Baltic Sea) where the respiration of terrestrial particulate425

organic carbon from river run-off contributes to making these areas a strong seasonal source of CO2 (Borgesa and Gypensb,

2010; Becker et al., 2021).

The Subtropical Atlantic (StA) is characterized by weak to moderate mean flux densities per unit area (open: 0.733±
0.036molCm−2yr−1, coastal: 0.457±0.064molCm−2yr−1). The total integrated C uptake amounts to 0.214±0.011 PgCyr−1,

with 0.204± 0.010 PgCyr−1 contributed by the open ocean. As for the SpA, the net uptake reflects the combined effect of430

cooling, mixing, and biological activity. Figures 5 and S9 show the regional distribution of sources and sinks. Regions of in-

tense CO2 uptake are associated with the warm Gulf Stream and its northeastward extension, the North Atlantic Drift. Strong

uptake is also found over the western continental shelf where strong river discharges sustain high levels of biological produc-

tivity in particular during spring (Jamet et al., 2007; Kealoha et al., 2020). Weaker sinks or sources of CO2 in the southwestern

StA and the eastern subtropical gyre are primarily driven by high surface temperature and enhanced stratification (Schuster435

et al., 2013). The latter restricts the vertical supply of nutrients and limits biological production. Finally, a relatively strong

source of CO2 is found over the Canary upwelling system in summer (Fig. 8).
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The Equatorial Atlanic (EA) stands out as the second strongest source region of CO2 after the Equatorial Pacific (EP) with

a yearly outgassing of −0.117± 0.009 PgCyr−1 (Fig. 6a). Most of CO2 is released from the open ocean with an average

efflux of −0.407± 0.031 molCm−2yr−1 (Figs. 5b and 6b). This intense source of CO2 stems from upwelling of cool and440

CO2-rich waters in the eastern EA. A westward increase in outgassing is observed along with the advection of CO2-rich

waters (Schuster et al., 2013). The coastal EA regions release an average of −0.288± 0.064 molCm−2yr−1 of CO2. Over

large areas, the opposing effects of primary production and high surface temperature combine to weaken the coastal sink or

seasonally switch it from a weak to a moderate source (e.g., the north east EA, Caribbean Sea, Venezuelan and Guiana basins,

Gulf of Guinea) (Fig. 8). The Amazon river is a notable exception. Its large discharges of fresh water, nutrients, as well as of445

dissolved and particulate carbon turn the coastal and adjacent shelf seas into a net sink of CO2 (Medeiros et al., 2015; Ibánhez

et al., 2015).

The South Atlantic (SA) uptake amounts to 0.192± 0.016 PgCyr−1. Regions north of 30◦S act as weak sources or are

neutral with respect to air–sea exchanges of CO2, as opposed to regions to the South which are significant sinks of CO2

(Fig. 5b). For the full period, densities over the open and coastal regions are, respectively, 0.862± 0.072 molCm−2yr−1 and450

0.776±0.125 molCm−2yr−1. Coastal regions are changing from moderate sources to sinks with increasing latitude (Fig. S9).

The SA has similar seasonal dynamics as the StA with CO2 uptake in winter and outgassing in summer (Takahashi et al.,

2009; Schuster et al., 2013). During the austral winter, deep mixed layers result in cold surface waters which absorb CO2

from the atmosphere. By contrast, warming during the summer reduces the solubility of CO2 leading to a weak sink or even

a source (Fig. 8). As explained before, biological production counteracts the effect of warming and the vigorous spring bloom455

contributes to the uptake south of 30◦S (Sigman and Hain, 2012; Carvalho et al., 2020).

3.2.3 Pacific

The Subpolar Pacific (SpP) is the second smallest region by area (2.78% of the total surface ocean area) and with 0.040±
0.010 PgCyr−1 (net coastal and open ocean sinks) provides the smallest contribution to the total yearly ocean C uptake

(Table 2 and Fig. 6a). The coastal ocean contributes about 0.032± 0.004 PgCyr−1 to the total yearly C uptake, making the460

SpP the only region for which coastal fluxes exceed open ocean fluxes. The strength of its coastal C sink ranks second among all

coastal regions (Fig. 6a). Seasonal features of CO2 fluxes are shown in Fig. 8. The SpP is ice-covered during the winter months

which results in close to zero air–sea fluxes per unit area north of 60◦N (e.g., Beaufort, Siberia, and Chukchi Seas). Besides,

vertical convection during winter brings up DIC-rich old waters leading to CO2 outgassing exceeding −3 molCm−2yr−1

in the South of the region (Bates and Mathis, 2009; Arrigo et al., 2010; Ishii et al., 2014; Yasunaka et al., 2016). An intense465

biological production during the boreal summer drives an intense uptake of CO2 over the entire SpP (Feely et al., 2001; Sigman

and Hain, 2012; Ishii et al., 2014). The interplay of these two seasonal mechanisms and their opposing effects make the open

SpP a weak yearly net sink (Fig. 6). The average flux density per unit area is 0.044± 0.123 molCm−2yr−1 over the open

ocean, much smaller than the value determined for the coastal ocean of 0.775± 0.127 molCm−2yr−1 (Fig. 6b). As shown in

Bates (2006), Arrigo et al. (2010), and Ishii et al. (2014), surface DIC concentration is higher over the open, deep basins than470

the shallow coastal seas of the SpP, particularly induced by deep mixing during winter/spring. Over the same period, seasonal
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sea-ice also restricts gas exchanging, the coastal sector thus acts as a neutral region of CO2 fluxes (Fig. 8). During spring and

summer, a substantial amount of CO2 is also absorbed in the coastal shelf seas influenced by high biological production in

large ice-free areas (e.g., Chukchi and Gulf of Alaska), and/or by dilution of sea waters from river freshwater with low salinity

and DIC concentration (e.g., Beaufort, Laptev, and East Siberia Seas) (Arrigo et al., 2010; Yasunaka et al., 2016, 2018).475

A total mean uptake of 0.523±0.016 PgCyr−1 makes the Subtropical Pacific (StP) the largest sink region. The open ocean

contribution dominates the regional sink with 0.495± 0.015 PgCyr−1 (Table 2 and Fig. 6a). The corresponding mean flux

density per unit area is 1.136± 0.036 molCm−2yr−1 (Fig. 6b) and makes the StP rank third after the open ocean Arctic

and SpA regions. As discussed for the StA, during winter months cooling and high wind intensities along the Kuroshio and

North Pacific Currents enhance the uptake of CO2 (Takahashi et al., 2009; Ishii et al., 2014). By contrast, summer warming480

drives the StP towards close to neutral conditions, respectively a weak source (Fig. 8). With a yearly mean uptake of 0.028±
0.003 PgCyr−1, the coastal StP sink becomes third in terms of intensity among the coastal sinks (Fig. 6a). The influx density is

1.444±0.130 molCm−2yr−1. Western coastal systems and shelf seas are under the influence of the delivery of freshwater and

nutrients by large river systems (Liu et al., 2014). The resulting intense biological production contributes to influx densities per

unit area that are higher over the western continental shelf and seas (e.g., East China Sea, Sea of Japan) than over the California485

upwelling system (Figs. 5b, S9b, and 8).

The Equatorial Pacific (EP) is the strongest source region of CO2 to the atmosphere with a yearly average efflux of −0.490±
0.021 PgCyr−1 from the open ocean, respectively −0.013± 0.003 PgCyr−1 from the continental shelves. On average per

unit area, the open sea emits −0.616± 0.027 molCm−2yr−1 of CO2. This high rate of outgassing is a distinct feature of

the EP (e.g., Feely et al., 2001; Takahashi et al., 2009; Rödenbeck et al., 2015; Landschützer et al., 2016; Denvil-Sommer490

et al., 2019; Landschützer et al., 2019) and is primarily due to the upwelling of DIC rich deep waters. The magnitude of CO2

release decreases westward - from Eastern boundary upwelling (e.g., Peru, Panama) to the International Date line - in line with

decreasing upwelling intensity, warmer sea surface temperature, and lower salinity (Ishii et al., 2014). Compared to the open

EP, the efflux density of the coastal regions (−0.334± 0.071 molCm−2yr−1) is roughly half that of the open ocean.

The South Pacific (SP) ranks second as a sink region for CO2 with a yearly net flux of 0.358± 0.029 PgCyr−1, mostly495

contributed by the open ocean (Fig. 6a). Uptake rates per unit area are very similar to those obtained for the SA (Fig. 6b). A

detailed assessment reveals the open ocean influx density to be slightly lower (0.791± 0.066 molCm−2yr−1), respectively

the coastal one to be slightly higher (0.987± 0.063 molCm−2yr−1) over the SP compared to the SA. Due to the larger area

of the SP (Table 1), its integrated sink is approximately twice that of the SA. Similar to the processes discussed above for the

SA, vertical mixing drives the uptake of CO2 during austral winter (Takahashi et al., 2009; Ishii et al., 2014) and the effect500

of warming on CO2 solubility during spring and summer is off-set by biological production. The latter leads to moderate to

high uptake of CO2 over the coasts and the southwest open sea (e.g., Eastern Australian Currents, Southern Australia, New

Zealand) (Fig. 8). The influx density decreases eastward under the influence of the strong upwelling of DIC driven by the Peru

Current.
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3.2.4 Indian Ocean505

The total integrated Indian Ocean (IO) sink is evaluated to 0.300±0.033 PgCyr−1, with 0.305±0.033 PgCyr−1 contributed

by the open ocean and a weak coastal source of −0.004± 0.002 PgCyr−1. The spatial distribution of flux densities (Fig. 5b)

reveals the northwestern IO to be a net source of CO2 to the atmosphere, while the northeastern IO is close to neutral and

latitudes south of 18◦S act as a strong sink. This regional compensation leads to a small open ocean influx density per unit

area of 0.482±0.052 molCm−2yr−1 and a small coastal efflux per unit area of −0.131±0.061 molCm−2yr−1 (Fig. 6b). The510

northern IO is a strong source of CO2 sustained by the monsoon-driven seasonal upwelling along the Arabian and Somalian

coasts (Behrenfeld et al., 2006; Sarma et al., 2013). The northeastern IO regions including the Bay of Bengal and its continental

shelves receive fresh waters discharged from the Ganges river and lateral inputs from Indonesian outflows (see Sarma et al.,

2013, and references therein), and switch between mild sources and sinks (Fig. 8). The Subtropical Front (40◦S) divides the

region south of 18◦S into a weak sink to the North and over the oligotrophic gyre and a band of vigorous uptake to its South515

over the Subantarctic zone (SAZ) between 40◦S and 44◦S (Fig. 5b). Similar to the SA and SP, this entire region is identified

as a significant net sink of CO2 in winter (Fig. 8) possibly driven by enhanced solubility in response to cooling and mixing.

While biological production maintains the sink over the SAZ during austral spring and summer months, warming reduces CO2

uptake over the oligotrophic gyre.

3.2.5 Southern Ocean520

The total Southern Ocean (SO) sink amounts to 0.349±0.070 PgCyr−1, including a coastal uptake of 0.018±0.002 PgCyr−1.

The mean influx per unit area over the open SO is 0.468± 0.104 molCm−2yr−1 and close to the one obtained for the open

IO (Fig. 6b). The area-averaged CO2 drawdown over the coastal SO is 0.599± 0.089 molCm−2yr−1 with strong coastal

sinks distributed over the South American and Antarctic shelves (60◦W westward as seen in Fig. 5b or S4b). During the

austral spring and summer, intense phytoplankton blooms enhance the consumption of CO2 over the Subantarctic and the525

Polar Frontal Zones between 44◦S and 58◦S (Sigman and Hain, 2012; Lenton et al., 2013), leading to a large sink with a flux

density exceeding 1.667 molCm−2yr−1 (Fig. 8). South of 58◦S, sea–ice retreat and vertical stratification contribute to a mild

sink over the Antarctic Zone. During winter, vertical mixing brings DIC rich deep waters to the surface triggering a strong

outgassing of CO2 along the Antarctic Circumpolar Current.
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Table 2. Yearly mean of contemporary air–sea CO2 fluxes (PgCyr−1) integrated over the global ocean and 11 RECCAP1 regions. Mean

estimate and uncertainty (µensemble ±σensemble) of the CMEMS-LSCE-FFNN approach is shown for the coast (C), the open ocean (O),

and the total area (T). For a comparison, estimates derived from RECCAP1 (Canadell et al., 2011; Schuster et al., 2013; Ishii et al., 2014;

Sarma et al., 2013; Lenton et al., 2013; Wanninkhof et al., 2013) are provided. In column ’RECCAP1’, values in parentheses are the ’best’

estimates proposed by RECCAP1 studies which were derived from averages or medians of estimates based on the pCO2 climatology or

pCO2 diagnostic model, and/or the atmospheric and ocean inversions, and GOBM models. The ’RECCAP1’ values out of parentheses

are the estimates derived from different methods mapping observation-based data of pCO2. With an exception for the global estimate*

(Wanninkhof et al., 2013), those of the RECCAP1 sub-basins are available only for the open ocean.

Approach CMEMS-LSCE-FFNN RECCAP1

Regions 1985–2019 1990–2009

Globe

(T) 1.643± 0.125 1.486± 0.114

(O) 1.493± 0.122 1.344± 0.111 1.18*

(C) 0.150± 0.010 0.141± 0.009 0.18*

Arctic (Ar)

(T) 0.027± 0.001 0.024± 0.001

(0.12± 0.06)(O) 0.016± 0.001 0.015± 0.001

(C) 0.011± 0.001 0.010± 0.001

Subpolar Atlantic (SpA)

(T) 0.259± 0.011 0.255± 0.010
0.07± 0.04, 0.30± 0.13

(0.21± 0.06)(O) 0.202± 0.009 0.197± 0.008

(C) 0.057± 0.004 0.058± 0.004

Subtropical Atlantic (StA)

(T) 0.214± 0.011 0.202± 0.009
0.18± 0.09, 0.24± 0.16

(0.26± 0.06)(O) 0.204± 0.010 0.192± 0.009

(C) 0.010± 0.001 0.010± 0.001

Equatorial Atlantic (EA)

(T) −0.117± 0.009 −0.128± 0.008
−0.10± 0.05, −0.12± 0.14

(−0.12± 0.04)(O) −0.113± 0.009 −0.123± 0.008

(C) −0.004± 0.001 −0.004± 0.001

South Atlantic (SA)

(T) 0.192± 0.016 0.174± 0.015
0.25± 0.12, 0.21± 0.23

(0.14± 0.04)(O) 0.184± 0.015 0.167± 0.015

(C) 0.008± 0.001 0.007± 0.001

Subpolar Pacific (SpP)

(T) 0.040± 0.010 0.029± 0.009

0.44± 0.21, 0.37
(0.47± 0.13)

(O) 0.008± 0.008 −0.002± 0.007

(C) 0.032± 0.004 0.031± 0.003

Subtropical Pacific (StP)

(T) 0.523± 0.016 0.512± 0.014

(O) 0.495± 0.015 0.485± 0.014

(C) 0.028± 0.003 0.027± 0.002

Equatorial Pacific (EP)

(T) −0.503± 0.022 −0.514± 0.020
−0.51± 0.24, −0.27

(−0.44± 0.14)(O) −0.490± 0.021 −0.500± 0.020

(C) −0.013± 0.003 −0.013± 0.003

South Pacific (SP)

(T) 0.358± 0.029 0.343± 0.029
0.29± 0.14, 0.24

(0.37± 0.08)(O) 0.352± 0.029 0.337± 0.028

(C) 0.006± 0.0004 0.006± 0.0004

Indian Ocean (IO)

(T) 0.300± 0.033 0.281± 0.027
0.24± 0.12

(0.37± 0.06)(O) 0.305± 0.033 0.286± 0.027

(C) −0.004± 0.002 −0.005± 0.002

Southern Ocean (SO)

(T) 0.349± 0.070 0.307± 0.061
0.27± 0.13

(0.42± 0.07)(O) 0.330± 0.069 0.290± 0.061

(C) 0.018± 0.002 0.017± 0.002
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4 Discussion530

4.1 Contemporary air–sea CO2 flux estimates

Our estimates of contemporary net fluxes of CO2 for the global ocean and 11 open ocean regions are compared to estimates

from RECCAP1 in Table 2 after adjusting them to the same period (1990–2009). RECCAP1 best estimates were derived from

averages or medians of estimates based on the pCO2 climatology or pCO2 diagnostic model, and/or the atmospheric and

ocean inversions and GOBM models (see Schuster et al., 2013; Ishii et al., 2014; Sarma et al., 2013; Lenton et al., 2013, and535

references therein). The observation-based estimates of regional net fluxes reported in these studies were computed from the

reconstruction of SOCAT pCO2 data (only used in Schuster et al., 2013), LDEO data (https://www.ldeo.columbia.edu/res/

pi/CO2/), and its climatology (Takahashi et al., 2009). With the exception of the global ocean, coastal fluxes were not part

of the earlier assessment. The global open ocean uptake obtained in this study of 1.344± 0.111 PgCyr−1 lies between the

observation-based net sink estimate by Wanninkhof et al. (2013) (1.18 PgCyr−1) and the global sum of regional best estimates540

given in Table 2 (1.8 PgCyr−1). Net regional fluxes computed from CMEMS-LSCE-FFNN are mostly within the range of

fluxes derived from observation-based reconstructions and multi-approach best estimates. Our Southern Ocean open ocean sink

(0.290±0.061 PgCyr−1) compares well with previous observation-based estimates (0.27±0.13 PgCyr−1), but is lower than

multi-approach best estimates (0.42± 0.07 PgCyr−1). A significant discrepancy between the present and previous estimates

is also found over the Arctic ocean for which the regional open ocean net CO2 uptake is about 1 order of magnitude lower in545

CMEMS-LSCE-FFNN compared to the RECCAP1 best estimate (Schuster et al., 2013).

Based on the MARCATS mask (Fig. 2), the CMEMS-LSCE-FFNN estimate of the yearly net coastal sink over the full

reconstruction period is 0.150± 0.010 PgCyr−1. For 1990–2011, we estimate a yearly net coastal sink of 0.147± 0.009

PgCyr−1 which is lower than the one based on SOCATv2 data by Laruelle et al. (2014) (0.19± 0.05 PgCyr−1). Despite

the fact that the present estimate was obtained with a model at a lower spatial resolution, the flux density of coastal sources550

and sinks, as well as their spatial distribution (Fig. S9b) are, in general, consistent with Laruelle et al. (2014) (Fig. 2) with

exceptions found in Northern polar and subpolar regions. For instance, Laruelle et al. (2014) suggested the Okhotsk shelf to be

a strong source of CO2 in excess of −3 molCm−2yr−1. To the contrary and in line with Otsuki et al. (2003), it is identified as

a significant sink in this study taking up 1 to 2.333 molCm−2yr−1 (Fig. 5).

Our estimates for the mean annual open and coastal ocean uptake over the Arctic (> 76◦N ) are 0.015±0.001 PgCyr−1 and555

0.010±0.001 PgCyr−1 (Table 2) which are respectively less than the best estimate of 0.12±0.06 PgC yr−1 by Schuster et al.

(2013) and that of 0.07 PgC yr−1 by Laruelle et al. (2014). The discrepancy is possibly due to an overestimation of Arctic

pCO2 by the CMEMS-LSCE-FFNN (see in Sect. 3.1.2) and to the lack of estimates over a large portion of the seasonally

sea–ice covered regions (see in Figs. 5 and 8). Further improvements would include using additional products of sea surface

height and input from river discharge and sea–ice melt available over the Arctic. Besides, in Eq. (1), the air–sea flux density is560

a linear function of the sea–ice fraction leading to fgCO2 = 0 as fice = 1. Loose et al. (2009) suggest that the flux density in

such regions is larger than evaluated by Eq. (1). A suggestion for a better assessment of air–sea fluxes over the Arctic and other
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regions with sea–ice cover (i.e., Antarctic and partly subpolar regions) would be to impose a sea–ice concentration of 99% for

values exceeding 99% (Bates et al., 2006).

4.2 Model errors and uncertainties565

Our uncertainty evaluation for estimates of pCO2 and air–sea CO2 fluxes is based on a Monte Carlo approach. Statistics (i.e.,

ensemble standard deviation, Eq. 2) are based on ensembles of CMEMS-LSCE-FFNN model realizations. It allows producing

spatially and temporally varying uncertainty fields of pCO2 and fgCO2 estimates covering the global ocean and the full period.

This asset can be used for quantifying the uncertainty for different spatial and temporal resolutions (e.g., monthly/yearly

integrated fluxes at regional/global scales).570

As a complement to Fig. 3 (bottom plots) which generally evaluates the reliability of model uncertainty estimates compared

to model–data misfit deviations, Fig. 5 shows some similarity between their spatial distributions for pCO2 (Figs. 5c and 5e) as

for fgCO2 (Figs. 5d and 5f). For pCO2, large model–data misfits and uncertainties are found over regions with sparse density

or devoid of SOCAT data (see in Figs. S1a and S4), but also with high temporal and/or spatial pCO2 variations (partly shown

in Figs. S1b and S1c). High temporal/spatial gradients of pCO2 are typically associated with upwelling systems (e.g., Eastern575

boundary upwelling systems, Arabian Sea upwelling), Western boundary currents (e.g., Gulf Stream, Kuroshio), intense bio-

logical production (e.g., spring bloom in temperate Northern/Southern latitudes), coastal and shelf dynamics including river

runoff (e.g., Amazon, Congo, Mississippi, and great subpolar and Arctic rivers such as Ob, Yenisey, Lena, Mackenzie). Com-

paring between Figs. 5c and 5d (5e and 5f), the magnitude of the uncertainty estimates (model errors) of air–sea CO2 flux

estimates appears to be much less correlated to measurement density (Fig. S1) than the pCO2 field (see also in Figs. 7a and580

7b). The model uncertainty and errors of fgCO2 estimates are highest over the open SO (> 44◦S), the subpolar regions, the

Indian gyre, and upwelling systems.

In this study, the uncertainty quantified for the reconstruction of pCO2 and ultimately fgCO2 is a result of randomly sampling

training and validation datasets from predictors and SOCAT observation-based data for 100 FFNN model runs (see Sect. 2.2).

This subsampling approach permits to take into account an assumption of uncertainties of predictors and SOCAT data, i.e.,585

random errors exist through changes in the range between their sub-samples. For a better assessment of the reconstruction

uncertainty, future studies would need to include realistic uncertainties of these data, and also of local (sub-)skin effects of

temperature and salinity as suggested in Watson et al. (2020). Additional sources of uncertainty in the computation of air–sea

fluxes are discussed by Wanninkhof (2014), Woolf et al. (2019), and Fay et al. (2021). These studies have demonstrated the

strong impact of different wind field products and model parameterizations on the gas transfer velocity k in Eq. (1) and the590

corresponding air–sea flux estimates. For instance, using the eight expressions for the parameterization of k proposed in Woolf

et al. (2019) and references therein would inflate the uncertainty of the global mean annual uptake from 5% to 10%. However,

it would not significantly impact the spatial distribution of uncertainty, but only its magnitude.
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4.3 Quantification of the global ocean carbon sink

Table 3 presents the comparison of estimates between the CMEMS-LSCE-FFNN, an ensemble of data-based reconstruction595

approaches, and an ensemble of global ocean biogeochemical models (GOBMs) used in the Global Carbon Project (GCP,

Friedlingstein et al., 2019, 2020; Hauck et al., 2020) for the reconstruction of air–sea CO2 fluxes. The reconstructed CMEMS-

LSCE-FFNN field covers approximately 88.9% of the total ocean area used by the GCP (361.9× 106 km2). The annual con-

temporary uptake over the global ocean and the full period 1985–2019 was 1.643± 0.125 PgC yr−1 with a starting net influx

of 0.784± 0.178 PgC yr−1, a growth rate of +0.062± 0.006 PgCyr−2, and an interannual variability (temporal standard de-600

viation) of 0.526± 0.022 PgC yr−1 (Fig. 9). The contemporary sink amounted to 2.301± 0.126 PgC yr−1 for the last decade

(2010s) and 2.877± 0.154 PgC yr−1 in the year 2019 (Table 3). The long term positive trend of the global ocean carbon sink

estimates tracks the growth rate of atmospheric CO2 concentration since the mid-1980s (Friedlingstein et al., 2019, 2020).

The interanual to multi-annual variability of the global ocean carbon sink co-varies with cold and hot ENSO phases (Fig. 9)

confirming ENSO as a leading mode of variability of the ocean carbon sink (Feely et al., 1999).605
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Figure 9. Yearly global integrated air–sea flux estimates derived from the CMEMS-LSCE-FFNN ensemble (mean ± uncertainty) for 1985–

2019. Multivariate El Niño-Southern Oscillation Index (MEI; Wolter and Timlin, 1993, https://psl.noaa.gov/enso/mei/, last access: December

2020) is used to generally indicate a link between variations, e.g. Yearly uptake - Trend , in the CMEMS-LSCE-FFNN sink estimate and the

ENSO climate mode (El Niño: MEI > 0.5, La Niña: MEI < -0.5, Neutral: otherwise).

Taking into account the total ocean area of 361.9×106 km2 and the outgassing of river carbon of 0.78 PgC yr−1 (Resplandy

et al., 2018) yields an anthropogenic sink estimate of 2.423± 0.125 PgC yr−1 for the years 1985–2019, respectively 3.141±
0.129 PgC yr−1 for the 2010s and 3.732±0.158 PgC yr−1 for 2019. As shown in Table 3, the CMEMS-LSCE-FFNN estimates

of the annual anthropogenic C uptake for different decades (1990s to 2010s) are in line with the data-based estimates but above
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Table 3. Comparison of the global anthropogenic CO2 uptake (mean ± uncertainty) between CMEMS-LSCE-FFNN, and data-based and

model-based estimates used in the Global Carbon Project (Friedlingstein et al., 2019, 2020; Hauck et al., 2020). The CMEMS-LSCE-FFNN

approach provides contemporary flux estimates. Anthropogenic flux estimates are derived from contemporary fluxes adjusted with the global

ocean area of 361.9×106 km2 and the riverine flux of 0.78 PgC yr−1. The estimates in parentheses were provided in Hauck et al. (2020) as

the ensemble mean and standard deviation (µensemble ±σensemble) of the model- or data-based estimates.

Periods

Methods 1985–1989 1990–1999 2000–2009 2009–2018 2010–2019 2019

CMEMS
Contemporary 0.952± 0.162 1.347± 0.124 1.624± 0.103 2.212± 0.120 2.301± 0.126 2.877± 0.154

Anthropogenic 1.757± 0.166 2.162± 0.127 2.446± 0.106 3.049± 0.123 3.141± 0.129 3.732± 0.158

GCP2019
Data (2.32± 0.18) (2.44± 0.14) (3.09± 0.10)

Model 2± 0.6 (1.99± 0.25) 2.2± 0.6 (2.17± 0.26) 2.5± 0.6 (2.52± 0.29)

GCP2020 Model 2± 0.5 2.1± 0.5 2.5± 0.6 2.6± 0.6

the model-based estimates in the GCP publications. Hauck et al. (2020) demonstrated that the spatial distribution of CO2610

sources and sinks, as well as decadal trends of the annual mean flux estimates derived from the data-based reconstruction

methods and the GOBMs are consistent at the global and regional scales. However, the mismatch in magnitude of these

estimates, seasonal cycles, and their interannual variability are still large and remain to be resolved. Note that the uncertainties

computed in Hauck et al. (2020) (see estimates in parentheses in Table 3) are defined as the ensemble standard deviation of

multiple data-based or model-based products and are lower than the uncertainties reported in the GCP (Friedlingstein et al.,615

2019, 2020). The latter published a total estimate of ±0.6 PgC yr−1 which corresponds to the combination of the interannual

variability derived from GOBMs-based estimates ( ±0.4 PgC yr−1) and the uncertainty of the ensemble mean ocean sink

(±[0.2− 0.4] PgC yr−1).

5 Summary and Conclusions

In this paper, we proposed an ensemble of 100 feed-forward neural network models for the reconstruction of air–sea fluxes of620

CO2 (fgCO2) over the global ocean for the period 1985–2019. This CMEMS-LSCE-FFNN model was first used to reproduce

the pCO2 fields and we have evaluated its skill. The corresponding monthly fields of fgCO2 were then deduced by applying the

air–sea CO2 flux formulation (Eq. 1). Mean state estimates and uncertainty (Eq. 2) from the CMEMS-LSCE-FFNN ensemble-

based estimates of air–sea CO2 fluxes have been analysed for the global ocean and 11 RECCAP1 sub-basins (Fig. 2) from the

open seas to the continental shelves.625

Our estimate for the contemporary net global sink over the period 1985–2019 is 1.643±0.125 PgCyr−1 including 0.150±
0.010 PgCyr−1 for the coastal sink. The model suggested a net flux of 0.784± 0.178 PgCyr−1 in the year 1985 followed by

an increase in the global ocean uptake with a growth rate of +0.062± 0.006 PgCyr−2. CO2 absorption by the ocean showed

little fluctuation in the 1990s followed by an anomalous reduction in the years 1999–2001 (Fig. 9). Thereafter, the ocean sink

has strengthened leading to a global uptake rate of 2.301± 0.126 PgCyr−1 in the 2010s. The large interannual to multi-year630
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variations of the global carbon sink with a temporal standard deviation of 0.526±0.022 PgC yr−1 are associated to the ENSO

climate variability.

The global ocean sink and regional sources and sinks of CO2 computed by CMEMS-LSCE-FFNN (Tables 2 and 3) were

compared to the estimates by RECCAP1 (Canadell et al., 2011; Wanninkhof et al., 2013; Schuster et al., 2013; Ishii et al.,

2014; Sarma et al., 2013; Lenton et al., 2013) and GCP (Friedlingstein et al., 2019; Hauck et al., 2020; Friedlingstein et al.,635

2020). We showed that the magnitude, spatial distribution, and seasonal variations of CMEMS-LSCE-FFNN CO2 fluxes are

generally consistent with those suggested in the preceding studies (Feely et al., 2001; Takahashi et al., 2009; Laruelle et al.,

2014, 2017) for both the open and coastal seas. Mechanisms shaping the regional distribution (Figs. 5b and 6) and seasonal

variations (Fig. 8) of net sinks and sources of CO2 were briefly discussed in Sect. 3.2. The results in Fig. 6 also suggest a

difference between the rank of 11 RECCAP1 sub-basins with respect to their total net sinks or sources and with respect to their640

mean flux densities per unit area:

• Ranking regional contributions to the global integration of air–sea fluxes: the EP is confirmed as the predominant ocean

source region compensating approximately 25% of the total sinks for both the open and coastal seas. The EA regions

and the coastal IO are diagnosed as weak sources. Due to its large area, the open StP contributes with the largest regional

sink of CO2 to the global ocean net flux (the StP sink is equivalent to the EP source), followed by the SO, the IO, and645

the SP. For the coastal regions, the largest sink is computed for the SpA (one third of the total coastal uptake), followed

by the northern Pacific and the SO.

• Ranking mean regional flux densities per unit area: the EP remains the strongest source of CO2 followed by the EA

and the coastal IO. The CO2 absorption is higher over the Northern hemisphere than over the Southern one with the

strongest uptake per unit area over the open Arctic and SpA. The coastal Arctic, SpA, and StP are identified as the650

dominant coastal sinks with similar flux densities.

Though statistics and relevant analyses throughout the paper have confirmed that the CMEMS-LSCE-FFNN estimates of

sea surface pCO2 and air–sea CO2 fluxes are reasonably reliable, we believe that the model skill can be further improved. The

spatial patterns of model–data misfit (RMSD between SOCAT data and the reconstructed fields, Eq. 4) and model uncertainty

(ensemble standard deviation, Eq. 2) computed by the proposed approach (Fig. 5) agree in pointing out where the model poorly655

recovers evaluation data and/or results large uncertainty estimates. We showed that the uncertainty fields (e.g., Figs. 5c and

5d) produced by the CMEMS-LSCE-FFNN approach are more informative than the standard error maps (e.g., Figs. 5e and

5f). Thus, the CMEMS-LSCE-FFNN uncertainty fields could be used to identify regions that should be prioritized in future

extensions of the observational network and confirmed through dedicated observing system simulation experiments (Denvil-

Sommer et al., 2021).660
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