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Abstract. We have estimated the air–sea CO2 fluxes (fgCO2) over the global ocean from the open sea to the continental

shelves. Fluxes and associated uncertainty were computed from an ensemble-based reconstruction of CO2 sea surface partial

pressure (pCO2) maps trained with observations from the Surface Ocean CO2 Atlas v2020 database. The ensemble mean

(which is the best estimate provided by the approach) fits independent data well and a broad agreement between the spatial

distribution of model-data differences and the ensemble standard deviations (which are our model uncertainty estimate) is seen.5

The space-time varying uncertainty fields identify oceanic regions where improvements in data reconstruction and extensions

of the observational network are needed. Poor reconstructions of pCO2 are primarily found over the coasts and/or in regions

with sparse observations, while fgCO2 estimates with largest uncertainty are observed over the open Southern Ocean (44◦S

southward), the subpolar regions, the Indian gyre, and upwelling systems.

Our estimate of the global net sink for the period 1985–2019 is 1.643±0.125 PgCyr−1 including 0.150±0.010 PgCyr−1 for10

the coastal net sink. Results suggest that the open ocean Subtropical Pacific (between 18◦N–49◦N) has the strongest CO2 sink

(0.485± 0.014 PgCyr−1) among the basins of the world, followed by the open ocean sub-basins in the Southern hemisphere.

The coastal Subpolar Atlantic (between 49◦N–76◦N) is the most significant coastal net sink, amounting to one third of the

total coastal uptake; the northern Pacific continental shelves (north of 18◦N) are the next contributors. The Equatorial Pacific

(between 18◦S–18◦N) is the predominant source emitting 0.523± 0.016 PgCyr−1 of CO2 back to the atmosphere. Based on15

the mean flux density per unit area, the most intense CO2 drawdown is, however, observed over the Arctic (76◦N poleward)

followed by the Subpolar Atlantic and Subtropical Pacific for both open ocean and coastal sectors. The mean efflux density

over the Equatorial Pacific remains the highest, but similar densities can also be found along other strong upwelling systems in

the equatorial band.
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1 Introduction20

Since the onset of the Industrial Era, humankind has profoundly modified the global carbon (C) cycle. The use of fossil fuels,

cement production, and land use change has added 700± 75 PgC (best estimate ±1σ) to the atmosphere between 1750 and

2019 (Friedlingstein et al., 2020). An estimated 285± 5 PgC of this excess C stayed there, the remainder was taken up by

the ocean (170± 20 PgC) and the land biosphere (230 ± 60 PgC). While the fraction of total CO2 emissions sequestered

by the ocean remained rather stable (22− 25%) over the past six decades (Friedlingstein et al., 2020), the global ocean sink25

has varied significantly at interannual time scales (Rödenbeck et al., 2015). Global ocean biogeochemical models (GOBMs)

are used within the framework of the annual assessment of the global carbon budget (Friedlingstein et al., 2020) to annually

re-estimate the means and variations of CO2 sinks and sources over the global ocean and major basins. However, these recent

model-based estimates need to be benchmarked against observation-based estimates in order to better understand the global

carbon budget as well as its yearly re-distribution in the biosphere (Hauck et al., 2020).30

In situ measurements of sea surface fugacity of CO2 collected by an international coordinated effort of the ocean observation

community and combined into the Surface Ocean CO2 Atlas (SOCAT, https://www.socat.info/, Bakker et al., 2016) provide an

observational constraint on the assessment of the ocean C sinks and sources. Despite an increasing number of observations since

the 1990s, data density remains uneven in space and time. While, for instance, data coverage is sparse over the Southern basins

of the Atlantic and Pacific oceans, observations are seasonally biased towards the summers at high latitudes (Landschützer35

et al., 2014; Denvil-Sommer et al., 2019; Gregor et al., 2019).

Various data-based approaches including machine learning, classical regression, and mixed layer schemes have been pro-

posed in Rödenbeck et al. (2013); Landschützer et al. (2014, 2016); Denvil-Sommer et al. (2019); Bushinsky et al. (2019);

Gregor et al. (2019); Watson et al. (2020); Denvil-Sommer et al. (2021) (see also other mapping methods in Rödenbeck et al.,

2015) to infer gridded maps of surface ocean pCO2 from the sparse set of observations, targeting the improved reconstruction40

of spatially and temporally varying surface pCO2 fields and air–sea CO2 fluxes over the global ocean and major basins. While

these studies provide model bias and standard errors and use these statistics as model uncertainty estimates, none has so far

analysed space-time varying uncertainty estimates, e.g., based on the model dispersion of a large set of realizations of pCO2

and air–sea flux estimates. Moreover, up to recently, most of these reconstructions did not cover the coastal ocean, a gap that

has been closed by validated estimates of mean climatologies of pCO2 (Laruelle et al., 2017; Landschützer et al., 2020), air–sea45

flux density and the total coastal C sink (Laruelle et al., 2014).

In this work, we first propose a new inference strategy for this problem based on an ensemble of 100 neural network models

mapping the monthly gridded SOCATv2020 data. The approach consists in reconstructing the monthly pCO2 fields and the

contemporary air–sea fluxes over the period 1985–2019 on a spatial resolution of 1◦×1◦. Mean and standard deviation are com-

puted from the ensembles of 100 model outputs. They are used to estimate the mean state and uncertainty of the carbon fields50

seamlessly for different time scales (e.g., monthly, yearly, and multi-decadal) and spatial scales (e.g., grid cells, sub-basins,

and the global ocean). Based on the uncertainty estimates, we identify regions that should be prioritized in future observational

programs and model development in order to reduce model errors and uncertainty. Potential drivers of the spatio-temporal
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distribution and the magnitude of air–sea CO2 fluxes are discussed with the aim to better attribute underlying processes and

detect potential focus regions for further studies on the evolution of oceanic CO2 sources and sinks.55

2 Methods

2.1 General formulation

The air–sea flux density (molCm−2yr−1) is calculated here by the standard bulk equation

fgCO2 = Tr ∆pCO2

= kL(1− fice)
(
pCOatm

2 − pCO2

)
, (1)60

where k is the gas transfer velocity computed as a function of the 10-meter wind speed following Wanninkhof (2014), L is

the temperature-dependent solubility of CO2 (Weiss, 1974), fice and pCOatm
2 are, respectively, the sea ice fraction and the

atmospheric CO2 partial pressure. In Eq. (1), a positive (negative) flux indicates oceanic CO2 uptake (release). Details and

references for the source of these variables are given in Table S1, except for pCO2 that is described in the following section.

2.2 An ensemble-based approach for the reconstruction of sea surface pCO2 and air–sea CO2 fluxes65

The partial pressure of CO2 in Eq. (1) is estimated monthly over each point of the global ocean by analysing sparse in situ

pCO2 measurements, gathered and gridded at monthly and 1-degree resolution in the 2020 release of the Surface Ocean

CO2 Atlas (SOCAT, https://www.socat.info/). SOCATv2020 covers the period 1985–2019. We have regressed these pCO2

values against a set of predictors with a non-linear function, a feed-forward neural network model (FFNN), as illustrated in

Fig. 1. Our predictors are biological, chemical, and physical variables commonly associated with the variations of pCO2 (e.g.,70

Landschützer et al., 2013; Denvil-Sommer et al., 2019; Gregor et al., 2019): sea surface height (SSH), sea surface temperature

(SST), sea surface salinity (SSS), mixed layer depth (MLD), chlorophyll-a (CHL), atmospheric CO2 mole fraction (xCO2).

A pCO2 climatology (Takahashi et al., 2009) and the geographical coordinates (latitude and longitude) were also added to the

predictors. Table S1 details the data source. All data were reprocessed and co-located at the same SOCAT resolution following

Denvil-Sommer et al. (2019).75

An ensemble of 100 FFNNs was used to reconstruct monthly pCO2 fields with a 1◦× 1◦ resolution over the global sur-

face ocean during years 1985–2019. This ensemble approach was developed at the Laboratoire des Sciences du Climat et

de l’Environnement (LSCE) as both an extension and an improvement of the first version (LSCE-FFNN-v1, Denvil-Sommer

et al., 2019). Our model outputs are part of the Copernicus Marine Environment Monitoring Service (CMEMS). Throughout

the paper, it is hence referred to as CMEMS-LSCE-FFNN.80

To reconstruct the pCO2 fields over the global ocean for each target month over the 1985–2019 period, all the available

SOCAT data and the co-located predictors have been collected for the month before and the month after the target month. We

randomly extracted two thirds of each one of these datasets to make training datasets for the FFNNs, leaving the remaining

3

https://doi.org/10.5194/bg-2021-207
Preprint. Discussion started: 3 August 2021
c© Author(s) 2021. CC BY 4.0 License.



CMEMS-FFNN: 
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Figure 1. Illustration of a feed-forward neural network (FFNN) model mapping monthly SOCAT observations and feature variables (Ta-

ble S1) co-located at a spatial resolution of 1◦× 1◦.

third to be corresponding test datasets. The FFNNs were then trained for each target month. The random extraction and the

FFNN training were repeated 100 times so that 100 versions of the monthly FFNNs have been obtained. The exclusion of85

the reconstructed month itself in the training and test datasets follows a leave-p-out cross-validation approach, where p is the

number of SOCAT observations in the target month. This approach allows to reduce model over-fitting, as well as to assess

the quality of the reconstruction against SOCAT data that are fully independent from the training phase. Equation (1) was then

applied to the ensembles of FFNN outputs of pCO2 in order to obtain ensembles of monthly global fgCO2 fields.

2.3 Coastal and regional division90

The reconstructed pCO2 fields and air–sea CO2 fluxes are analysed over the global ocean, at particular locations, and in 11

oceanic sub-basins used by the Regional Carbon Cycle Assessment Project Tier 1 (RECCAP1, Canadell et al., 2011) and

previous studies (Schuster et al., 2013; Sarma et al., 2013; Ishii et al., 2014; Lenton et al., 2013; Wanninkhof et al., 2013;

Landschützer et al., 2014). In order to distinguish the coastal from the open ocean, we use the coastal mask from the MARgins

and CATchments Segmentation (MARCATS, Laruelle et al., 2013) interpolated on the 1◦× 1◦ SOCAT grid. Details of the95

regional (open and coastal) division are given in Table 1 and Fig. 2.

With the above definitions, the coastal regions encompass 6.33% of a total maximum ocean area of 352.77× 106 km2. The

computation of these numbers was based on the maximum data coverage of the CMEMS-LSCE-FFNN reconstruction taking

into account the variable monthly sea–ice fraction. The number of SOCATv2020 observations used in the reconstruction of
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Table 1. Indication of 11 RECCAP1 regions (Fig. 2). Only the total area with respect to the maximum coverage of the reconstructed data is

accounted for each region.

Index Region Latitude
Area (106km2)

Open ocean Coast

Globe (G) 90◦S – 90◦N 330.42 22.35

1 Arctic (Ar) 76◦N – 90◦N 1.07 0.99

2 Subpolar Atlantic (SpA) 49◦N – 76◦N 8.88 4.15

3 Subpolar Pacific (SpP) 49◦N – 76◦N 6.16 3.65

4 Subtropical Atlantic (StA) 18◦N – 49◦N 23.22 1.83

5 Subtropical Pacific (StP) 18◦N – 49◦N 36.37 1.65

6 Equatorial Atlantic (EA) 18◦S – 18◦N 23.15 1.05

7 Equatorial Pacific (EP) 18◦S – 18◦N 66.50 3.22

8 South Atlantic (SA) 44◦S – 18◦S 17.79 0.83

9 South Pacific (SP) 44◦S – 18◦S 37.15 0.50

10 Indian Ocean (IO) 44◦S – 30◦N 52.80 2.71

11 Southern Ocean (SO) 90◦S – 44◦S 59.47 3.12
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Figure 2. Map of RECCAP1 regions (Regional Carbon Cycle Assessment and Processes, Canadell et al., 2011) and MARCATS coastal

mask (MARgins and CATchments Segmentation, Laruelle et al., 2013) co-located on the 1◦× 1◦ SOCAT grid.

pCO2 is reported in Table S2 for each region, with 301,449 in total and 10.36% of the data observed over the predefined coastal100

regions.
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2.4 Statistics

The mean and standard deviation of the 100-member ensembles of pCO2 and fgCO2 are respectively chosen as their best

estimate and the associated uncertainty (σensemble). Uncertainty statistics are computed from the ensemble at each desired

space-time resolution. For air–sea fluxes, the unit of a best estimate and its 1-sigma uncertainty is molCm−2yr−1 for a flux105

density and converted to PgCyr−1 for an integral over a region or the global ocean.

Model robustness is also evaluated on SOCAT observations and the reconstructed pCO2 fields. Standard statistics include

the coefficient of determination (r2) and the root-mean-square deviation (RMSD) with

MSD
(
pCOReconstruction

2 , pCOObservation
2

)
=
[
Mean

(
pCOReconstruction

2 − pCOObservation
2

)]2

+
[
Std

(
pCOReconstruction

2 − pCOObservation
2

)]2
. (2)110

Misfit mean (model bias) and misfit standard deviation (denoted as σmisfit hereafter) involved in Eq. (2) are also used for model

evaluation. All these scores are computed for different coastal and open regions from the scale of grid cells to the global scale.

Note that r2, RMSD, misfit mean, and σmisfit reflect the model performance with respect to observations, while σensemble

measures the stability of the model best estimate. Nevertheless, these different statistics should consistently reflect the skill of

the model reconstruction, e.g., depending on the density and distribution of data sampling.115

3 Results

3.1 Evaluation

To verify the robustness of the mapping method, we first evaluate the goodness of fit of reconstructed pCO2 against the

independent SOCAT observations from the leave-p-out cross-validation set (see Sect. 2.2).

Empirical Cumulative Distribution Functions (CDFs) and frequency histograms drawn from these data are compared in120

Figs. 3a and 3b. While a frequency histogram in Fig. 3a shows the number of pCO2 data at SOCAT observation location dis-

tributed for each bin, the one in Fig. 3b (grey) reflects how the pCO2 values at observation location are distributed within their

bounds. The probability–probability (P–P) plot of Fig. 3b (blue curve) measures the fit in the distributions of the reconstruction

and SOCAT data. The same presentation is used in Figs. 3c and 3d for the misfit standard deviation σmisfit and the ensemble

standard deviation σensemble at SOCAT observation location (see their values in Figs. S2c and S2g).125

The reconstructed pCO2 field matches SOCAT data well: both are normally distributed with the same mean of 361.3 µatm

(Fig. 3a) and a high agreement for all percentiles (Fig. 3b) is seen. The slight under- or overestimation at high and low

percentiles implies that the model is slightly biased towards the mean value, as is expected when predictor variables do not

fully explain predictand variables in the training dataset. This reduced variability is also reflected in the difference between the

data standard deviation based on SOCAT pCO2 (41.79 µatm) and the one based on CMEMS-LSCE-FFNN (36.30 µatm).130

Displayed on Fig. 3c, both misfit standard deviation (σmisfit) and model uncertainty (σensemble) empirically follow the

exponential distribution. σmisfit is much higher than σensemble as the CDF and frequency histogram of the former (blue) show
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Figure 3. Comparison between empirical Cumulative Distribution Functions (CDFs) of (a,b) SOCATv2020 data and the reconstructed pCO2

field and (c,d) model–observation misfit standard deviation (std) and model uncertainty, as seen in Fig. S2. In (c,d), the distribution of misfit

std values scaled with a factor of 2 is plotted. A histogram with the axis in grey of the four subplots displays the number of data distributed

in each bin, the bins with less than 200 data for (a) and 20 data for (c) have been excluded. In (b,d), the bisector is shown in black.
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field and (c,d) model–observation misfit standard deviation (std) and model uncertainty, as seen in Fig. S2. In (c,d), the distribution of misfit

std values scaled with a factor of 2 is plotted. A histogram with the axis in grey of the four subplots displays the number of data distributed

in each bin, the bins with less than 200 data for (a) and 20 data for (c) have been excluded. In (b,d), the bisector is shown in black.

heavier tails than those of the latter (orange), which brings the P–P curve below the bisector in Fig. 3d. When dividing the misfit

standard deviation values shown in Fig. S2c by 2, σmisfit (green) shares a similar distribution as σensemble (orange). A natural

explanation for this twofold tuning factor would point to a simple lack of spread of the ensemble, either because the FFNN135

ensemble would be too small or because the uncertainty in the predictors (not accounted for here in the ensemble) would be

significant. The SOCAT CO2 fugacity data are sampled at uneven space-time resolution (e.g., the sampling frequency varies

between one read per minute to one per hour). Gridded data correspond to the average of measurements collected within a

1◦× 1◦ box and in a month over the entire cell area. Variability in the number of cruises and analytical equipment induces

measurement latitude and longitude offsets from the cell center, e.g., with an average of 0.34◦± 0.14◦ as reported in Sabine140

et al. (2013) which are not taken into account.

Assume that

(1) Such practical imperfection presents a systematic error in each measurement from the true data with an overall standard

deviation of σobservation.
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(2) Systematic errors between SOCAT observations and the reconstructed data equal those between the true data and the145

reconstructed data.

As observation errors are independent from the random errors induced by the ensemble approach in each grid cell (further to

the implementation of the leave-p-out cross-validation in model training; see Sect. 2.2), σmisfit in Eq. (2) can be interpreted as

σ2
misfit = σ2

ensemble +σ2
observation, (3)

where σ2
observation varies in space and time and is larger near shelves (see the observation variability in Figs. S1b and S1c).150

The interpretation of the magnitude of mismatch is therefore not straightforward, but we note that the spatial distribution

of model errors and uncertainty estimates over the global ocean (Fig. 5) consistently identifies the spatial distribution of the

model skill. This asset is prioritized in our preliminary study and further analysed in the next sections. The twofold factor used

for the illustration in Fig. 3 has not been kept for the following results.

3.1.1 Global ocean155

At global scale, the model fits the data with a mean bias close to zero, an RMSD of 20.48 µatm, and a coefficient of deter-

mination (r2) of 0.76. The temporal fluctuation of the spatial mean of the model–observation mean difference over the global

ocean is displayed on Fig. 4a along with the number of observations. The time series of the yearly bias (black curve) starts

with a large positive value (7.47± 1.60 µatm) in year 1985 (∼ 740 observations). The bias drops during the following years

and fluctuates around zero from 1994 onward (the number of observations per year is generally larger than 5000). In general,160

the magnitudes of the yearly model bias and model spread are correlated with the number of observations which increased

greatly since the 1990s. The importance of sustained data coverage is emphasized by Fig. S3. It illustrates the fact that large

model–observation mismatches are frequently associated with the interruption of Voluntary Observing Ship (VOS) lines and

thus with the tracking of CO2 fugacity over large regions. The larger bias computed prior to the 1990s (Fig. 4a) might intu-

itively lead to the conclusion that model outputs are less reliable than those in the later periods. However, this global mean165

score is influenced by the amount and distribution of data, and consequently the increased observation density does not fully

explain the reconstruction skill. For instance, even with a higher number of observations than that in the pre-1990s, years 2001

and 2007 stand out with strong negative biases (−5.44±1.26 and−3.12±0.92 µatm, respectively). While such a comparison

between the global bias and the number of observations highlights the lack of a simple relationship between the number of

data and the skill of the mapping method, the ensemble spread (dark grey area) of model errors, representing the spread of the170

annual mean of pCO2 estimates at SOCAT observation location, is reduced with an exponential decay constant of 0.46± 0.06

per 1000 observations (Fig. 4b).

The model scores for the open ocean over the period 1985 to 2019 are 17.87 µatm for RMSD and 0.78 for r2. The skill of

this novel method, which uses only two thirds of SOCAT data for fitting each of 100 FFNN models ranks similar to those from

alternative statistical reconstruction approaches (Rödenbeck et al., 2013; Landschützer et al., 2014; Gregor et al., 2019) which175

have been used to complement model-based estimates of the ocean carbon sink (Friedlingstein et al., 2019, 2020).
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Figure 4. (a) Timeseries of the yearly mean model bias, i.e., the reconstructed pCO2 data minus SOCATv2020 data, over the global ocean.

The black curve and dark grey area represent the mean estimate and 1σ-envelop of errors of the 100-member ensemble, the light grey curve

represents the total number of observations used in the FFNN model construction. (b) Exponential fits of the model uncertainty (the magnitude

of the 1σ-envelop in Fig. 4a) against the number of yearly SOCAT observations. The exponential function is y = aexp−bx +c. The black

curve is derived from the best fit and the grey shaded area corresponds to the spread derived from standard errors of parameter estimates. (c)

Statistical scores for 11 oceanic regions with the size of each scattered object proportional to the number of regional observations (Table S2).

The CMEMS-LSCE-FFNN reconstruction over the coastal regions for the full period is roughly twice less effective than

over the open ocean in terms of RMSD (35.86 µatm) while it shows a rather good fit with r2 = 0.70. The high RMSD reflects

local high model errors along the continental shelves (Fig. S2). For the 1998–2015 period, the CMEMS-LSCE-FFNN model

scored an RMSD of 35.84 µatm, larger than the coastal reconstruction error of 26.8 µatm by Landschützer et al. (2020). The180

latter unified data for the same period from two conceptually equivalent reconstruction models, one covering the open ocean

(Landschützer et al., 2016) and one targeting the coastal ocean (Laruelle et al., 2017). Besides, Landschützer et al. (2020) used
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the coastal reconstruction by Laruelle et al. (2017) with a finer spatial resolution and a broader definition of the continental

shelf (400 km distance from the sea shore and a 0.25◦× 0.25◦ resolution) than CMEMS-LSCE-FFNN. However, coastal

reconstruction errors remain high despite the increase in spatial resolution and in the number of observations. Coastal and shelf185

seas are characterized by complex physical and biological dynamics leading to high variability at small scales. For instance,

pCO2 levels over the Californian shelf can exceed 850 µatm and with a spatial gradient of pCO2 as large as 470 µatm over

a distance less than 0.5 km (Chavez et al., 2018; Feely et al., 2008). Clearly, further model improvement is needed in order

to capture such high spatial and temporal variability of surface ocean pCO2 present in observations (see also in Bakker et al.,

2016; Laruelle et al., 2017, and references therein).190

In the following subsections, we present and discuss the reconstruction skills for different ocean regions, as well as for open

ocean and coastal domains (Fig. 4c). Complete results including the numbers of observations, RMSDs, and r2 for each region

are summarized in Table S2.

3.1.2 Arctic

Data coverage is particularly sparse over the Arctic ocean (Ar) with 50 to 220 samples per year since 2007 and an interruption195

in 2010 (Fig. S3). While continental shelves account for 50% of the region’s area, only one third of the observations are from

coastal regions. Moreover, observations are seasonally biased towards ice-free summer months (Bakker et al., 2016). Though

reconstruction standard errors are similar for open basins and coastal regions (RMSDs of 33.01 and 30.65 µatm respectively),

the coefficient of determination is higher over the open ocean (r2= 0.61) compared to coastal seas (r2= 0.44), suggesting a

higher model skill over open basins. The close-to-zero bias of the coastal reconstruction shown in Fig. 4c results from the200

compensation between highly positive and negative values over the continental shelves of Alaska, the Canadian Archipelagos,

the Barents and Kara Seas (see Fig. S2), the yearly bias fluctuates within [−50,30] µatm (Fig. S3). Of all open ocean regions,

the Arctic reconstruction has the highest bias (3.19 µatm). Cold Arctic waters are characterized by low levels of surface ocean

pCO2 due to the temperature effect on CO2 solubility and the seasonal draw-down of dissolved inorganic carbon (DIC) during

summer months by intense biological production (Feely et al., 2001; Takahashi et al., 2009; Arrigo et al., 2010). Assuming that205

the Arctic predictors remain within the range of global relationships, the overestimation of pCO2 by CMEMS-LSCE-FFNN,

as seen in Fig. 4c, suggests a possible underestimation of biological productivity. While the preceding remains conjectural,

we acknowledge a large uncertainty on the contribution of biological activity (net primary production, NPP) on surface ocean

pCO2, as it is "proxied" by chlorophyll-a derived from remote sensing (Maritorena et al., 2010; Babin et al., 2015b). Overall,

these scores point to the Arctic as a relatively poorly reconstructed region.210

3.1.3 Atlantic

The North Atlantic stands out as a region with high data coverage (Fig. S1a) and a rapidly increasing number of data since

2000 (Fig. S3). A sustained sampling effort adds between 2000 to 4000 data each year to the database over the Subtropical

(StA) and Subpolar Atlantic (SpA) regions (including between 10− 40% of coastal observations). The data density over the
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North Atlantic stands in strong contrast to the often less than 1000 observations per year collected over the Equatorial (EA)215

and South Atlantic (SA) and their strong year-to-year variability.

The comparison between the reconstructed open ocean pCO2 and independent observations over the four sub-regions of the

open Atlantic (Fig. 4c and Table S2) reveals small mean model–observation differences, which together with the two other

scores, identify the Atlantic as the basin with the highest reconstruction skill. RMSDs corresponding to the StA, the EA, and

the SA are below 15.50 µatm and r2 values are in the range of [0.69,0.77]. While a larger RMSD is obtained over the SpA220

(23.68 µatm), the r2 of 0.76 falls close to the upper end of the range determined for the three other regions. As discussed in

Schuster et al. (2013), large temporal and spatial gradients of pCO2 as well as its variability driven by a diversity of physical

and biological processes (e.g., surface ocean temperature gradients, biological production, vertical mixing, and horizontal

advection of water masses) keep the analysis of pCO2 over the SpA challenging.

Despite accounting for over 59% of the total of coastal observations, skillful data reconstruction over the coastal Atlantic225

regions remains difficult. RMSDs are in general above 30 µatm and, with the exception of the coastal SpA (r2 = 0.79),

below 51% of the observed variance is predicted by the model over the other regions (StA: 0.51, EA: 0.25, SA: 0.46). The

large model–observation mismatch along the Atlantic continental shelves (Fig. S2) reflects the poor reconstruction of pCO2

over regions under the influence of upwelling systems (e.g., Moroccan coast, Benguela), large river discharges (e.g., Amazon,

Congo, Florida, Mississippi), and the bottle necks of gulfs or bays (e.g., Bahamas, English Channel).230

3.1.4 Pacific

With the exception of the Subpolar Pacific (SpP), the number of observations has increased regularly over the Pacific basin. In

the recent years, from 1000 to 3500 observations are recorded per year over the Subtropical Pacific (StP), the Equatorial Pacific

(EP), and the South Pacific (SP) (Fig. S3). Forty percent of open ocean observations are collected over the StP and the EP in

the years 1985–2019. Corresponding RMSDs are 17.15 and 16.68 µatm, with r2 above 0.78. Despite a data coverage below235

one third of that reported for the two previous regions, the model proved skillful in reconstructing pCO2 over the SP (Fig. 4c)

with RMSD = 11.50 µatm and r2 = 0.76.

The overall good performance of the FFNN over these three Pacific sub-regions contrasts with its lack of skill over the open

SpP. The observation density is poor and highly variable. Before 1994, less than 250 observations per year are available to

constrain the reconstruction, followed by several years of intense effort and a maximum of about 1250 observations in 2000,240

before decreasing again to the pre-1994 values. At first order, skill scores fluctuate in line with observation density. During the

first period (up to 1994), the bias varies within [−25,25] µatm (Fig. S3), it decreases close to [−2,4] µatm between 1997 and

2000, and increases again along with decreasing data density. Much like the SpA, the SpP is a region characterized by a strong

spatial and temporal variability in pCO2 (Ishii et al., 2014), challenging any reconstruction method. The difficulty is further

aggravated by the paucity of data in this region compared to the SpA. Skill scores are modest over the SpP with an RMSD of245

29.08 µatm and r2 of 0.64 (Fig. 4c and Table S2).

The ratio between coastal and open ocean observations is 1 : 24. The paucity of observations for the coastal domain is re-

flected by lower skill scores compared to the open ocean. Over the coastal SpP, for example, the RMSD amounts to 54.69 µatm,
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while it is 29.08 µatm for the corresponding open ocean region. Comparable to the SpP, data reconstruction over the coastal

regions of the StP (e.g., North American coast, Sea of Japan), as well as over the western EP (e.g., Peruvian upwelling) and250

the SP (e.g., offshore Chile) remains difficult (Fig. S2). Similar results have been found by Landschützer et al. (2020).

The EP is characterized by strong equatorial upwelling making it one of the major outgassing regions of CO2 (Feely et al.,

2001). Surface ocean pCO2 shows a strong interannual variability predominantly in response to the El Niño Southern Oscilla-

tion (ENSO), the dominant regional climate mode (Rödenbeck et al., 2015; Landschützer et al., 2016; Denvil-Sommer et al.,

2019). Before the 2000s, negative [positive] peaks of bias (Fig. S3) coincide with La Niña years; e.g., 1988–1990, 1995–1996,255

1999–2001 [El Niño; e.g., 1986–1987, 1991–1992, 1997–1998] (see the ENSO events highlighted in Fig. 9). A strong nega-

tive bias is again computed in 2010–2012 which could reflect the lack of data during that cooling phase. On the contrary, the

reconstruction seems less sensitive to the strong warm anomalies associated with the 2015–2016 El Niño. The model appears

to be more efficient at reconstructing surface ocean pCO2 during the hot climate mode (El Niño) than during the cool one (La

Niña) when enhanced upwelling drives surface ocean pCO2 up and towards unusual large values. This allows us to anticipate260

the effect of a general decrease in data collection during 2020–2021 in response to the Coronavirus disease 2019 (COVID-

19) pandemic on the estimation of the ocean carbon sink. We expect a high negative bias in model estimates of pCO2 and

the consequent underestimation of CO2 outgassing due to the combined impact of Covid19 on data collection and La Niña

conditions governing since August/September 2020 (https://public.wmo.int/en/media/press-release/la-nina-has-developed). It

is worthwhile to also note that observations in the eastern EP have declined in the last five years compared to the other years in265

the 2010s.

3.1.5 Indian Ocean

The Indian Ocean (IO) is the third largest oceanic regions by area but also the one with the lowest data density. With the

exception of the year 1995 (approximately 1900 observations), as few as 500 data have been collected per year (Fig. S3),

yielding a total number of observations often below 10 per grid cell for the entire reconstruction period (Fig. S1a). There have270

been even less than 75 observations per year over the continental shelf. However, the reconstruction over the coastal region is

comparable to the open IO with a low RMSD (< 19 µatm) and a high correlation to the observations (r2 = 0.65). The overall

negative bias shown in Fig. 4c for the coastal IO points to the model underestimating coastal pCO2 levels. Large errors are

distributed along the western Arabian Sea, the western Madagascar, and the tropical eastern IO (Fig. S2). These regions are

under the influence of the southwest monsoon giving rise to a seasonal upwelling regime (see Feely et al., 2001; Sabine et al.,275

2002; Sarma et al., 2013, and references therein). Strong seasonal upwelling results in a marked seasonal cycle of surface ocean

pCO2 with high levels during the upwelling season. The paucity of data is likely to limit the skill of the model reconstruction

of the seasonal cycle over large parts of the IO with consequences for the annual mean analyzed here.

3.1.6 Southern Ocean

Up to recently, data coverage over the Southern Ocean (SO) has been sparse (Fig. S1a), irregular at grid cell scale, and biased280

towards Austral summer months (e.g. Bushinsky et al., 2019; Gregor et al., 2019). A strong sampling effort allowed a recent
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increase in observations to reach up to 2000 observations per year (Fig. S3). Model scores for the open, respectively the coastal

ocean are: RMSDs of 19.18 µatm and 35.73 µatm, as well as r2 of 0.62 and 0.65. The reconstruction lacks skill over the

continental shelves of South America and Antarctica (see Fig. S2).

In general, the pCO2 reconstruction over the SO has less skill compared to the Atlantic or the Pacific due to the paucity in285

observations compared to its large area. Rödenbeck et al. (2015) reported inconsistent reconstructed interannual variability of

pCO2 between different data-based methods. The interannual variability is large due to the natural variability of the coupled

ocean-atmosphere system characterized by one of the globe’s strongest ocean current, strong winds, vertical mixing and up-

welling of DIC rich deep waters (Gregor et al., 2018; Gruber et al., 2019). Efforts to improve pCO2 reconstruction are ongoing

and include model development (e.g., Gregor et al., 2017), as well as the increase in data coverage by the addition of data from290

different sampling platforms (e.g., profiling floats, Bushinsky et al., 2019). For the time being, CMEMS-LSCE-FFNN stands

out as one of the most skillful models with respect to observations in the SO (Friedlingstein et al., 2019, 2020; Hauck et al.,

2020).

3.2 Long term mean and uncertainty estimates

Fig. 5 shows temporal mean estimates, their associated uncertainty, and RMSDs of the monthly air–sea pCO2 gradient295

(∆pCO2) and CO2 fluxes (fgCO2) over the full period (see also Fig. S4 for the coastal regions only). In the top maps,

the regions in red are dominant CO2 uptake regions (influxes) and the regions in blue are dominant source regions of CO2 to

the atmosphere (effluxes). The uncertainty of ∆pCO2 is merely computed from the ensemble of the reconstructed sea surface

pCO2 since the randomness in the atmospheric pCO2 field is assumed to be negligible. Due to impacts of wind stress, solubility

of CO2, and seasonal sea–ice coverage on the gas transfer coefficient, spatial distributions of mean estimates, their uncertainty,300

and RMSDs of ∆pCO2 (Figs. 5a, 5c, 5e) and fgCO2 (Figs. 5b, 5d, 5f) differ from low to high values. The means of air–sea

fluxes integrated/averaged over different RECCAP1 regions (Table 1) are shown in Fig. 6. The distribution of uncertainty esti-

mates and number of observations for these regions is also displayed on Fig. 7, wherein only values smaller than 90%-quantile

of uncertainty estimates shown in Figs. 5c and 5d are plotted to reduce the effects of outliers on data visualization. The seasonal

average computed over the full reconstruction period of air–sea CO2 fluxes over the global ocean is shown in Fig. 8.305

3.2.1 Arctic

The Arctic ocean stands out as the region with the strongest CO2 uptake per unit area with 2.336± 0.104 molCm−2yr−1 for

the open sea and 1.522± 0.108 molCm−2yr−1 for the continental shelf margins (Figs. 5b and 6b). At the scale of grid cells,

air–sea gradients of pCO2 are large but the downward fluxes are relatively modest over the shelves of the eastern Greenland, the

Barents and Kara Seas, and the Siberia Seas (Fig. 5 or S4). During the sea–ice covered seasons, these coastal regions are neutral310

while the open ocean Arctic sectors (e.g., the Norwegian Sea, the Barents Sea, the Kara Seas) are CO2 sinks with moderate

influx densities (Fig. 8). The open ocean influx density exceeds 3 molCm−2yr−1 in the Arctic summer. This substantial

amount of CO2 uptake is driven by low surface ocean temperature, seasonal changes in sea–ice cover, and intense biological

production. Increasing light availability and input of nutrients through melt waters and river discharges sustain high levels of

13

https://doi.org/10.5194/bg-2021-207
Preprint. Discussion started: 3 August 2021
c© Author(s) 2021. CC BY 4.0 License.



44°S
18°S

18°N
49°N
76°N

180° 180°120°W 60°W 0° 60°E 120°E180° 180°

(a) pCO2 [ atm]

50

0

50

44°S
18°S

18°N
49°N
76°N

180° 180°120°W 60°W 0° 60°E 120°E180° 180°

(b) fgCO2 [molC m 2 yr 1]

2

0

2

44°S
18°S

18°N
49°N
76°N

180° 180°120°W 60°W 0° 60°E 120°E180° 180°

(c) Uncertainty [ atm]

0.0

0.5

1.0

1.5

2.0

44°S
18°S

18°N
49°N
76°N

180° 180°120°W 60°W 0° 60°E 120°E180° 180°

(d) Uncertainty [molC m 2 yr 1]

0.00

0.02

0.04

0.06

0.08

0.10

44°S
18°S

18°N
49°N
76°N

180° 180°120°W 60°W 0° 60°E 120°E180° 180°

(e) RMSD [ atm]

0

10

20

30

44°S
18°S

18°N
49°N
76°N

180° 180°120°W 60°W 0° 60°E 120°E180° 180°

(f) RMSD [molC m 2 yr 1]

0.0

0.5

1.0

1.5

Figure 5. Climatological mean (top) and uncertainty (middle) of air–sea pCO2 difference (a, c) and of CO2 fluxes (b, d) over 1985–2019.

Uncertainty is computed as the standard deviation of the 100-member CMEMS-LSCE-FFNN model outputs of sea surface pCO2 and air–

sea CO2 fluxes. The bottom plots (e, f) show RMSDs between the SOCAT data (or data-based estimates of fluxes for (f)) and the mean

CMEMS-LSCE-FFNN model outputs.

primary production and CO2 drawdown (Bates and Mathis, 2009; Arrigo et al., 2010; Yasunaka et al., 2016). Notwithstanding,315

the Arctic ocean represents roughly 0.58% of the total surface ocean area (Table 1) and the yearly mean CO2 uptake integrated

over the Arctic for the full period amounts to only 1.64% of the global ocean sink (Table 2 and Fig. 6a).

3.2.2 Atlantic

The open ocean Subpolar Atlantic (SpA) sink contributes approximately 78% to the total SpA annual C uptake (0.259±0.011

PgCyr−1), as well as with 12.29% to the total ocean sink (1.643± 0.125 PgCyr−1, Table 2). Per unit area, the open ocean320
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Table 2. Yearly mean of contemporary air–sea CO2 fluxes (PgCyr−1) integrated over the global ocean and 11 RECCAP1 regions. Mean

estimate (ensemble mean) ± uncertainty (ensemble std) of the CMEMS-LSCE-FFNN approach is shown for the coast (C), the open ocean

(O), and the total area (T). For a comparison, estimates derived from RECCAP1 (Canadell et al., 2011; Schuster et al., 2013; Ishii et al., 2014;

Sarma et al., 2013; Lenton et al., 2013; Wanninkhof et al., 2013) are provided. In column ’RECCAP1’, values in parentheses are the ’best’

estimates proposed by RECCAP1 studies, the others are the estimates computed with different methods using pCO2 observations. With an

exception for the global estimate* (Wanninkhof et al., 2013), those of the RECCAP1 sub-basins are available only for the open ocean.

Approach CMEMS-LSCE-FFNN RECCAP1

Regions 1985–2019 1990–2009

Globe

(T) 1.643± 0.125 1.486± 0.114

(O) 1.493± 0.122 1.344± 0.111 1.18*

(C) 0.150± 0.010 0.141± 0.009 0.18*

Arctic (Ar)

(T) 0.027± 0.001 0.024± 0.001

(0.12± 0.06)(O) 0.016± 0.001 0.015± 0.001

(C) 0.011± 0.001 0.010± 0.001

Subpolar Atlantic (SpA)

(T) 0.259± 0.011 0.255± 0.010
0.07± 0.04, 0.30± 0.13

(0.21± 0.06)(O) 0.202± 0.009 0.197± 0.008

(C) 0.057± 0.004 0.058± 0.004

Subtropical Atlantic (StA)

(T) 0.214± 0.011 0.202± 0.009
0.18± 0.09, 0.24± 0.16

(0.26± 0.06)(O) 0.204± 0.010 0.192± 0.009

(C) 0.010± 0.001 0.010± 0.001

Equatorial Atlantic (EA)

(T) −0.117± 0.009 −0.128± 0.008 −0.10± 0.05,−0.12± 0.14

(−0.12± 0.04)(O) −0.113± 0.009 −0.123± 0.008

(C) −0.004± 0.001 −0.004± 0.001

South Atlantic (SA)

(T) 0.192± 0.016 0.174± 0.015
0.25± 0.12, 0.21± 0.23

(0.14± 0.04)(O) 0.184± 0.015 0.167± 0.015

(C) 0.008± 0.001 0.007± 0.001

Subpolar Pacific (SpP)

(T) 0.040± 0.010 0.029± 0.009

0.44± 0.21, 0.37

(0.47± 0.13)

(O) 0.008± 0.008 −0.002± 0.007

(C) 0.032± 0.004 0.031± 0.003

Subtropical Pacific (StP)

(T) 0.523± 0.016 0.512± 0.014

(O) 0.495± 0.015 0.485± 0.014

(C) 0.028± 0.003 0.027± 0.002

Equatorial Pacific (EP)

(T) −0.503± 0.022 −0.514± 0.020 −0.51± 0.24,−0.27

(−0.44± 0.14)(O) −0.490± 0.021 −0.500± 0.020

(C) −0.013± 0.003 −0.013± 0.003

South Pacific (SP)

(T) 0.358± 0.029 0.343± 0.029
0.29± 0.14, 0.24

(0.37± 0.08)(O) 0.352± 0.029 0.337± 0.028

(C) 0.006± 0.0004 0.006± 0.0004

Indian Ocean (IO)

(T) 0.300± 0.033 0.281± 0.027
0.24± 0.12

(0.37± 0.06)(O) 0.305± 0.033 0.286± 0.027

(C) −0.004± 0.002 −0.005± 0.002

Southern Ocean (SO)

(T) 0.349± 0.070 0.307± 0.061
0.27± 0.13

(0.42± 0.07)(O) 0.330± 0.069 0.290± 0.061

(C) 0.018± 0.002 0.017± 0.002
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Figure 6. Distribution of contemporary fluxes (positive into the ocean) over 11 regions (see in Fig. 2) for the full period 1985–2019.

Uncertainties of the mean estimates of air–sea fluxes integrated (a) or averaged (b) over each region are shown with error bars.
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Figure 7. Distribution (violin) of all uncertainty estimates (Figs. 5c and 5d) and the total number (star) of SOCAT observations (Fig. S1a)

split for 11 RECCAP1 regions. A violin plot shows the range, median, and density of uncertainty estimates for pCO2 (µatm) and fgCO2

(molCm−2yr−1).

influx amounts to 2.012± 0.092 molCm−2yr−1, the coastal ocean influx is 30.51% less than its open ocean counterpart

and slightly lower than the coastal Arctic sink (Fig. 6b). However, when integrated over the region, the yearly uptake of

0.057±0.004 PgCyr−1 makes the coastal SpA the strongest sink among the 11 coastal regions (Fig. 6a). The interplay between

temperature- and biology driven effects results in changes in the seasonal and spatial distributions of surface ocean pCO2 and

ultimately air–sea CO2 fluxes. During boreal winter/spring, high wind speeds enhance gas transfer velocities, contribute to a325

strong cooling and an increase of CO2 solubility (Takahashi et al., 2009; Feely et al., 2001), both enhancing uptake of CO2

over the Labrador Sea, the North Atlantic and Norwegian Currents, the Barents and Kara Seas (Fig. 8). High wind speeds
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Figure 8. Seasonality of downward CO2 fluxes [molCm−2yr−1] in 1985–2019. Temporal means of the reconstructed fgCO2 field for

January to March (JFM), April to June (AMJ), July to September (JAS) and, October to December (OND) are shown.

also strengthen vertical mixing, a process supplying dissolved inorganic carbon (DIC), alkalinity (ALK), and nutrients to the

surface ocean. During the spring and summer months, a vigorous biological activity (Sigman and Hain, 2012) counteracts the

warming induced decrease in CO2 solubility and increase in pCO2 by drawing down DIC, ALK, and nutrients (Feely et al.,330

2001). Along the coast, inputs of fresh water (decrease in salinity and increase in CO2 solubility) and nutrients (biological

activity and DIC drawdown) combine to strengthen CO2 uptake (Arrigo et al., 2010; Yasunaka et al., 2016; Olafsson et al.,

2021).

The Subtropical Atlantic (StA) is characterized by weak to moderate mean flux densities per unit area (open: 0.733±
0.036 molCm−2yr−1, coastal: 0.457±0.064 molCm−2yr−1). The total integrated C uptake amounts to 0.214±0.011 PgCyr−1,335

with 0.204± 0.010 PgCyr−1 contributed by the open ocean. As for the SpA, the net uptake reflects the combined effect of

cooling, mixing, and biological activity. Figures 5 and S4 show the regional distribution of sources and sinks. Regions of in-

tense CO2 uptake are associated with the warm Gulf Stream and its northeastward extension, the North Atlantic Drift. Strong

uptake is also found over the western continental shelf where strong river discharges sustain high levels of biological produc-

tivity in particular during spring (Jamet et al., 2007; Kealoha et al., 2020). Weaker sinks or sources of CO2 in the southwestern340

StA and the eastern subtropical gyre are primarily driven by high surface temperature and enhanced stratification (Schuster

et al., 2013). The latter restricts the vertical supply of nutrients and limits biological production. Finally, a relatively strong

source of CO2 is found over the Canary upwelling system in summer (Fig. 8).
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The Equatorial Atlanic (EA) stands out as the second strongest source region of CO2 after the Equatorial Pacific (EP) with

a yearly outgassing of −0.117± 0.009 PgCyr−1 (Fig. 6a). Most of CO2 is released from the open ocean with an average345

efflux of −0.407± 0.031 molCm−2yr−1 (Figs. 5b and 6b). This intense source of CO2 stems from upwelling of cool and

CO2-rich waters in the eastern EA. A westward increase in outgassing is observed along with the advection of CO2-rich

waters (Schuster et al., 2013). The coastal EA regions release an average of −0.288± 0.064 molCm−2yr−1 of CO2. Over

large areas, the opposing effects of primary production and high surface temperature combine to weaken the coastal sink or

seasonally switch it from a weak to a moderate source (e.g., the north east EA, Caribbean Sea, Venezuelan and Guiana basins,350

Gulf of Guinea) (Fig. 8). The Amazon river is a notable exception. Its large discharges of fresh water, nutrients, as well as of

dissolved and particulate carbon turn the coastal and adjacent shelf seas into a net sink of CO2 (Medeiros et al., 2015; Ibánhez

et al., 2015).

The South Atlantic (SA) uptake amounts to 0.192± 0.016 PgCyr−1. Regions north of 30◦S act as weak sources or are

neutral with respect to air–sea exchanges of CO2, as opposed to regions to the South which are significant sinks of CO2355

(Fig. 5b). For the full period, densities over the open and coastal regions are, respectively, 0.862± 0.072 molCm−2yr−1 and

0.776±0.125 molCm−2yr−1. Coastal regions are changing from moderate sources to sinks with increasing latitude (Fig. S4).

The SA has similar seasonal dynamics as the StA with CO2 uptake in winter and outgassing in summer (Takahashi et al.,

2009; Schuster et al., 2013). During the austral winter, deep mixed layers result in cold surface waters which absorb CO2

from the atmosphere. By contrast, warming during the summer reduces the solubility of CO2 leading to a weak sink or even360

a source (Fig. 8). As explained before, biological production counteracts the effect of warming and the vigorous spring bloom

contributes to the uptake south of 30◦S (Sigman and Hain, 2012; Carvalho et al., 2020).

3.2.3 Pacific

The Subpolar Pacific (SpP) is the second smallest region by area (2.78% of the total surface ocean area) and with 0.040±
0.010 PgCyr−1 (net coastal and open oecan sinks) provides the smallest contribution to the total yearly ocean C uptake365

(Table 2 and Fig. 6a). The coastal ocean contributes about 0.032± 0.004 PgCyr−1 to the total yearly C uptake, making the

SpP the only region for which coastal fluxes exceed open ocean fluxes. The strength of its coastal C sink ranks second among all

coastal regions (Fig. 6a). Seasonal features of CO2 fluxes are shown in Fig. 8. The SpP is ice-covered during the winter months

which results in close to zero air–sea fluxes per unit area north of 60◦N (e.g., Beaufort, Siberia, and Chukchi Seas). Besides,

vertical convection during winter brings up DIC-rich old waters leading to CO2 outgassing exceeding −3 molCm−2yr−1 in370

the South of the region (Bates and Mathis, 2009; Arrigo et al., 2010; Ishii et al., 2014; Yasunaka et al., 2016). An intense

biological production during the boreal summer drives an intense uptake of CO2 over the entire SpP (Feely et al., 2001;

Sigman and Hain, 2012; Ishii et al., 2014). The interplay of these two seasonal mechanisms and their opposing effects make

the open SpP a weak yearly net sink (Fig. 6). The average flux density per unit area is 0.044± 0.123 molCm−2yr−1 over

the open ocean, much smaller than the value determined for the coastal ocean of 0.775± 0.127 molCm−2yr−1 (Fig. 6b). The375

enhanced uptake of CO2 by the coastal ocean compared to the open ocean results from melt water discharge and high primary

production over the shelves of the Chukchi and Bering Seas and the Gulf of Alaska in the spring/summer (Yasunaka et al.,
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2016). In addition, the combined effects of river runoff, (i.e., freshwater fluxes and the dilution of salinity and DIC-rich waters,

as well as the delivery of nutrients and the enhancement of biological productivity) surpass those of winter upwelling of DIC

over the Beaufort and the East Siberia Seas (Arrigo et al., 2010).380

A total mean uptake of 0.523±0.016 PgCyr−1 makes the Subtropical Pacific (StP) the largest sink region. The open ocean

contribution dominates the regional sink with 0.495± 0.015 PgCyr−1 (Table 2 and Fig. 6a). The corresponding mean flux

density per unit area is 1.136± 0.036 molCm−2yr−1 (Fig. 6b) and makes the StP rank third after the open ocean Arctic

and SpA regions. As discussed for the StA, during winter months cooling and high wind intensities along the Kuroshio and

North Pacific Currents enhance the uptake of CO2 (Takahashi et al., 2009; Ishii et al., 2014). By contrast, summer warming385

drives the StP towards close to neutral conditions, respectively a weak source (Fig. 8). With a yearly mean uptake of 0.028±
0.003 PgCyr−1, the coastal StP sink becomes third in terms of intensity among the coastal sinks (Fig. 6a). The influx density is

1.444±0.130 molCm−2yr−1. Western coastal systems and shelf seas are under the influence of the delivery of freshwater and

nutrients by large river systems (Liu et al., 2014). The resulting intense biological production contributes to influx densities per

unit area that are higher over the western continental shelf and seas (e.g., East China Sea, Sea of Japan) than over the California390

upwelling system (Figs. 5b, S4b, and 8).

The Equatorial Pacific (EP) is the strongest source region of CO2 to the atmosphere with a yearly average efflux of−0.490±
0.021 PgCyr−1 from the open ocean, respectively −0.013± 0.003 PgCyr−1 from the continental shelves. On average per

unit area, the open sea emits −0.616± 0.027 molCm−2yr−1 of CO2. This high rate of outgassing is a distinct feature of

the EP (e.g., Feely et al., 2001; Takahashi et al., 2009; Rödenbeck et al., 2015; Landschützer et al., 2016; Denvil-Sommer395

et al., 2019; Landschützer et al., 2019) and is primarily due to the upwelling of DIC rich deep waters. The magnitude of CO2

release decreases westward - from Eastern boundary upwelling (e.g., Peru, Panama) to the International Date line - in line with

decreasing upwelling intensity, warmer sea surface temperature, and lower salinity (Ishii et al., 2014). Compared to the open

EP, the efflux density of the coastal regions (−0.334± 0.071 molCm−2yr−1) is roughly half that of the open ocean.

The South Pacific (SP) ranks second as a sink region for CO2 with a yearly net flux of 0.358± 0.029 PgCyr−1, mostly400

contributed by the open ocean (Fig. 6a). Uptake rates per unit area are very similar to those obtained for the SA (Fig. 6b). A

detailed assessment reveals the open ocean influx density to be slightly lower (0.791± 0.066 molCm−2yr−1), respectively

the coastal one to be slightly higher (0.987± 0.063 molCm−2yr−1) over the SP compared to the SA. Due to the larger area

of the SP (Table 1), its integrated sink is approximately twice that of the SA. Similar to the processes discussed above for the

SA, vertical mixing drives the uptake of CO2 during austral winter (Takahashi et al., 2009; Ishii et al., 2014) and the effect405

of warming on CO2 solubility during spring and summer is off-set by biological production. The latter leads to moderate to

high uptake of CO2 over the coasts and the southwest open sea (e.g., Eastern Australian Currents, Southern Australia, New

Zealand) (Fig. 8). The influx density decreases eastward under the influence of the strong upwelling of DIC driven by the Peru

Current.
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3.2.4 Indian Ocean410

The total integrated Indian Ocean (IO) sink is evaluated to 0.300±0.033 PgCyr−1, with 0.305±0.033 PgCyr−1 contributed

by the open ocean and a weak coastal source of −0.004± 0.002 PgCyr−1. The spatial distribution of flux densities (Fig. 5b)

reveals the northwestern IO to be a net source of CO2 to the atmosphere, while the northeastern IO is close to neutral and

latitudes south of 18◦S act as a strong sink. This regional compensation leads to a small open ocean influx density per unit

area of 0.482±0.052 molCm−2yr−1 and a small coastal efflux per unit area of−0.131±0.061 molCm−2yr−1 (Fig. 6b). The415

northern IO is a strong source of CO2 sustained by the monsoon-driven seasonal upwelling along the Arabian and Somalian

coasts (Behrenfeld et al., 2006; Sarma et al., 2013). The northeastern IO regions including the Bay of Bengal and its continental

shelves receive fresh waters discharged from the Ganges river and lateral inputs from Indonesian outflows (see Sarma et al.,

2013, and references therein), and switch between mild sources and sinks (Fig. 8). The Subtropical Front (40◦S) divides the

region south of 18◦S into a weak sink to the North and over the oligotrophic gyre and a band of vigorous uptake to its South420

over the Subantarctic zone (SAZ) between 40◦S and 44◦S (Fig. 5b). Similar to the SA and SP, this entire region is identified

as a significant net sink of CO2 in winter (Fig. 8) possibly driven by enhanced solubility in response to cooling and mixing.

While biological production maintains the sink over the SAZ during austral spring and summer months, warming reduces CO2

uptake over the oligotrophic gyre.

3.2.5 Southern Ocean425

The total Southern Ocean (SO) sink amounts to 0.349±0.070 PgCyr−1, including a coastal uptake of 0.018±0.002 PgCyr−1.

The mean influx per unit area over the open SO is 0.468± 0.104 molCm−2yr−1 and close to the one obtained for the open

IO (Fig. 6b). The area-averaged CO2 drawdown over the coastal SO is 0.599± 0.089 molCm−2yr−1 with strong coastal

sinks distributed over the South American and Antarctic shelves (60◦W westward as seen in Fig. 5b or S4b). During the

austral spring and summer, intense phytoplankton blooms enhance the consumption of CO2 over the Subantarctic and the430

Polar Frontal Zones between 44◦S and 58◦S (Sigman and Hain, 2012; Lenton et al., 2013), leading to a large sink with a flux

density exceeding 1.667 molCm−2yr−1 (Fig. 8). South of 58◦S, sea–ice retreat and vertical stratification contribute to a mild

sink over the Antarctic Zone. During winter, vertical mixing brings DIC rich deep waters to the surface triggering a strong

outgassing of CO2 along the Antarctic Circumpolar Current.

4 Discussion435

4.1 Contemporary air–sea CO2 flux estimates

Our estimates of contemporary net fluxes of CO2 for the global ocean and 11 open ocean regions are compared to estimates

from RECCAP1 in Table 2 after adjusting them to the same period (1990–2009). RECCAP1 best estimates were derived from

averages or medians of estimates based on the pCO2 climatology or pCO2 diagnostic model, and/or the atmospheric and ocean

inversions and GOBM models (see Schuster et al., 2013; Ishii et al., 2014; Sarma et al., 2013; Lenton et al., 2013, and references440
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therein). The observation-based estimates of regional net fluxes reported in these studies were computed from the reconstruction

of SOCAT pCO2 data (only used in Schuster et al., 2013), LDEO data (https://www.ldeo.columbia.edu/res/pi/CO2/), and

its climatology (Takahashi et al., 2009). With the exception of the global ocean, coastal fluxes were not part of the earlier

assessment. The global open ocean uptake obtained in this study of 1.344± 0.111 PgCyr−1 lies between the observation-

based net sink estimate by Wanninkhof et al. (2013) (1.18 PgCyr−1) and the global sum of regional best estimates given445

in Table 2 (1.8 PgCyr−1). Net regional fluxes computed from CMEMS-LSCE-FFNN are mostly within the range of fluxes

derived from observation-based reconstructions and multi-approach best estimates . Our Southern Ocean open ocean sink

(0.290±0.061 PgCyr−1) compares well with previous observation-based estimates (0.27±0.13 PgCyr−1), but is lower than

multi-approach best estimates (0.42± 0.07 PgCyr−1). A significant discrepancy between the present and previous estimates

is also found over the Arctic ocean for which the regional open ocean net CO2 uptake is about 1 order of magnitude lower in450

CMEMS-LSCE-FFNN compared to the RECCAP1 best estimate (Schuster et al., 2013).

Based on the MARCATS mask (Fig. 2), the CMEMS-LSCE-FFNN estimate of the yearly net coastal sink over the full

reconstruction period is 0.150± 0.010 PgCyr−1. For 1990–2011, we estimate a yearly net coastal sink of 0.147± 0.009

PgCyr−1 which is lower than the one based on SOCATv2 data by Laruelle et al. (2014) (0.19± 0.05 PgCyr−1). Despite

the fact that the present estimate was obtained with a model at a lower spatial resolution, the flux density of coastal sources455

and sinks, as well as their spatial distribution (Fig. S4b) are, in general, consistent with Laruelle et al. (2014) (Fig. 2) with

exceptions found in Northern polar and subpolar regions. For instance, Laruelle et al. (2014) suggested the Okhotsk shelf to be

a strong source of CO2 in excess of −3 molCm−2yr−1. To the contrary and in line with Otsuki et al. (2003), it is identified as

a significant sink in this study taking up 1 to 2.333 molCm−2yr−1 (Fig. 5).

Our estimates for the mean annual open and coastal ocean uptake over the Arctic (> 76◦N ) are 0.015±0.001 PgCyr−1 and460

0.010±0.001 PgCyr−1 (Table 2) which are respectively less than the best estimate of 0.12±0.06 PgC yr−1 by Schuster et al.

(2013) and that of 0.07 PgC yr−1 by Laruelle et al. (2014). The discrepancy is possibly due to an overestimation of Arctic

pCO2 by the CMEMS-LSCE-FFNN (see in Sect. 3.1.2) and to the lack of estimates over a large portion of the seasonally

sea–ice covered regions (see in Figs. 5 and 8). Further improvements would include using additional products of sea surface

height and input from river discharge and sea–ice melt available over the Arctic. Besides, in Eq. (1), the air–sea flux density is465

a linear function of the sea–ice fraction leading to fgCO2 = 0 as fice = 1. Loose et al. (2009) suggest that the flux density in

such regions is larger than evaluated by Eq. (1). A suggestion for a better assessment of air–sea fluxes over the Arctic and other

regions with sea–ice cover (i.e., Antarctic and partly subpolar regions) would be to impose a sea–ice concentration of 99% for

values exceeding 99% (Bates et al., 2006).

4.2 Model errors and uncertainties470

Our uncertainty evaluation for estimates of pCO2 and air–sea CO2 fluxes is based on a Monte Carlo approach. Statistics

(i.e., ensemble standard deviation) are based on ensembles of CMEMS-LSCE-FFNN model realizations. It allows producing

spatially and temporally varying uncertainty fields of pCO2 and fgCO2 estimates covering the global ocean and the full period.
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This asset can be used for quantifying the uncertainty for different spatial and temporal resolutions (e.g., monthly/yearly

integrated fluxes at regional/global scales).475

As a complement to Fig. 3 (bottom plots) which generally evaluates the reliability of model uncertainty estimates compared

to model–observation misfit deviations, Fig. 5 shows some similarity between their spatial distributions for pCO2 (Figs. 5c

and 5e) as for fgCO2 (Figs. 5d and 5f). For pCO2, large model–observation misfits and uncertainties are found over regions

with sparse density or devoid of SOCAT data (see in Figs. S1a and S3), but also with high temporal and/or spatial pCO2 vari-

ations (partly shown in Figs. S1b and S1c). High temporal/spatial gradients of pCO2 are typically associated with upwelling480

systems (e.g., Eastern boundary upwelling systems, Arabian Sea upwelling), Western boundary currents (e.g., Gulf Stream,

Kuroshio), intense biological production (e.g., spring bloom in temperate Northern/Southern latitudes), coastal and shelf dy-

namics including river runoff (e.g., Amazon, Congo, Mississippi, and great subpolar and Arctic rivers such as Ob, Yenisey,

Lena, Mackenzie). Comparing between Figs. 5c and 5d (5e and 5f), the magnitude of the uncertainty estimates (model errors)

of air–sea CO2 flux estimates appears to be much less correlated to measurement density (Fig. S1) than the pCO2 field (see485

also in Figs. 7a and 7b). The model uncertainty and errors of fgCO2 estimates are highest over the open SO (> 44◦S), the

subpolar regions, the Indian gyre, and upwelling systems.

In this study, the uncertainty quantified for the reconstruction of pCO2 and ultimately fgCO2 is a result of randomly sampling

training and validation datasets from predictors and SOCAT observations for 100 FFNN model runs (see Sect. 2.2). This

subsampling approach permits to take into account an assumption of uncertainties of predictors and SOCAT data, i.e., random490

errors exist through changes in the range between their sub-samples. For a better assessment of the reconstruction uncertainty,

future studies should include realistic uncertainties of these data, and also of local (sub-)skin effects of temperature and salinity

as suggested in Watson et al. (2020). Additional sources of uncertainty in the computation of air–sea fluxes are discussed by

Wanninkhof (2014); Woolf et al. (2019); Fay et al. (2021). These studies have demonstrated the strong impact of different

wind field products and model parameterizations on the gas transfer velocity k in Eq. (1) and the corresponding air–sea flux495

estimates. For instance, using the eight expressions for the parameterization of k proposed in Woolf et al. (2019) and references

therein would inflate the uncertainty of the global mean annual uptake from 5% to 10%. However, it would not significantly

impact the spatial distribution of uncertainty, but only its magnitude.

4.3 Quantification of the global ocean carbon sink

Table 3 presents the comparison of estimates between the CMEMS-LSCE-FFNN, an ensemble of data-based reconstruction500

approaches, and an ensemble of global ocean biogeochemical models (GOBMs) used in the Global Carbon Project (GCP,

Friedlingstein et al., 2019, 2020; Hauck et al., 2020) for the reconstruction of air–sea CO2 fluxes. The reconstructed CMEMS-

LSCE-FFNN field covers approximately 88.9% of the total ocean area used by the GCP (361.9× 106 km2). The annual con-

temporary uptake over the global ocean and the full period 1985–2019 was 1.643± 0.125 PgC yr−1 with a starting net influx

of 0.784± 0.178 PgC yr−1, a growth rate of +0.062± 0.006 PgCyr−2, and an interannual variability (temporal standard de-505

viation) of 0.526± 0.022 PgC yr−1 (Fig. 9). The contemporary sink amounted to 2.301± 0.126 PgC yr−1 for the last decade

(2010s) and 2.877± 0.154 PgC yr−1 in the year 2019 (Table 3). The long term positive trend of the global ocean carbon sink
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Figure 9. Yearly global integrated air–sea flux estimates derived from the CMEMS-LSCE-FFNN ensemble (mean ± uncertainty) for 1985–

2019. Multivariate El Niño-Southern Oscillation Index (MEI; Wolter and Timlin, 1993, https://psl.noaa.gov/enso/mei/, last access: December

2020) is used to indicate a link between variations in the CMEMS-LSCE-FFNN sink estimate and the ENSO climate mode (El Niño: MEI

> 0.5, La Niña: MEI < -0.5, Neutral: otherwise).

Table 3. Comparison of the global anthropogenic CO2 uptake (mean ± uncertainty) between CMEMS-LSCE-FFNN, and data-based and

model-based estimates used in the Global Carbon Project (Friedlingstein et al., 2019, 2020; Hauck et al., 2020). The CMEMS-LSCE-FFNN

approach provides contemporary flux estimates. Anthropogenic flux estimates are derived from contemporary fluxes adjusted with the global

ocean area of 361.9×106 km2 and the riverine flux of 0.78 PgC yr−1. The estimates in parentheses were provided in Hauck et al. (2020) as

the ensemble mean and standard deviation of the model- or data-based estimates.

Periods

Methods 1985–1989 1990–1999 2000–2009 2009–2018 2010–2019 2019

CMEMS
Contemporary 0.952± 0.162 1.347± 0.124 1.624± 0.103 2.212± 0.120 2.301± 0.126 2.877± 0.154

Anthropogenic 1.757± 0.166 2.162± 0.127 2.446± 0.106 3.049± 0.123 3.141± 0.129 3.732± 0.158

GCP2019
Data (2.32± 0.18) (2.44± 0.14) (3.09± 0.10)

Model 2± 0.6 (1.99± 0.25) 2.2± 0.6 (2.17± 0.26) 2.5± 0.6 (2.52± 0.29)

GCP2020 Model 2± 0.5 2.1± 0.5 2.5± 0.6 2.6± 0.6

estimates tracks the growth rate of atmospheric CO2 concentration since the mid-1980s (Friedlingstein et al., 2019, 2020).

The interanual to multi-annual variability of the global ocean carbon sink co-varies with cold and hot ENSO phases (Fig. 9)

confirming ENSO as a leading mode of variability of the ocean carbon sink (Feely et al., 1999).510

Taking into account the total ocean area of 361.9×106 km2 and the outgassing of river carbon of 0.78 PgC yr−1 (Resplandy

et al., 2018) yields an anthropogenic sink estimate of 2.423± 0.125 PgC yr−1 for the years 1985–2019, respectively 3.141±
0.129 PgC yr−1 for the 2010s and 3.732±0.158 PgC yr−1 for 2019. As shown in Table 3, the CMEMS-LSCE-FFNN estimates
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of the annual anthropogenic C uptake for different decades (1990s to 2010s) are in line with the data-based estimates but above

the model-based estimates in the GCP publications. Hauck et al. (2020) demonstrated that the spatial distribution of CO2515

sources and sinks, as well as decadal trends of the annual mean flux estimates derived from the data-based reconstruction

methods and the GOBMs are consistent at the global and regional scales. However, the mismatch in magnitude of these

estimates, seasonal cycles, and their interannual variability are still large and remain to be resolved. Note that the uncertainties

computed in Hauck et al. (2020) (see estimates in parentheses in Table 3) are defined as the ensemble standard deviation of

multiple data-based or model-based products and are lower than the uncertainties reported in the GCP (Friedlingstein et al.,520

2019, 2020). The latter published a total estimate of ±0.6 PgC yr−1 which corresponds to the combination of the interannual

variability derived from GOBMs-based estimates ( ±0.4 PgC yr−1) and the uncertainty of the ensemble mean ocean sink

(±[0.2− 0.4] PgC yr−1).

5 Summary and Conclusions

In this paper, we proposed an ensemble of 100 feed-forward neural network models for the reconstruction of air–sea fluxes of525

CO2 (fgCO2) over the global ocean for the period 1985–2019. This CMEMS-LSCE-FFNN model was first used to reproduce

the pCO2 fields and we have evaluated its skill. The corresponding monthly fields of fgCO2 were then deduced by applying the

air–sea CO2 flux formulation (Eq. 1). Mean state estimates and uncertainty from the CMEMS-LSCE-FFNN ensemble-based

estimates of air–sea CO2 fluxes have been analysed for the global ocean and 11 RECCAP1 sub-basins (Fig. 2) from the open

seas to the continental shelves.530

Our estimate for the contemporary net global sink over the period 1985–2019 is 1.643±0.125 PgCyr−1 including 0.150±
0.010 PgCyr−1 for the coastal sink. The model suggested a net flux of 0.784± 0.178 PgCyr−1 in the year 1985 followed by

an increase in the global ocean uptake with a growth rate of +0.062± 0.006 PgCyr−2. CO2 absorption by the ocean showed

little fluctuation in the 1990s followed by an anomalous reduction in the years 1999–2001 (Fig. 9). Thereafter, the ocean sink

has strengthened leading to a global uptake rate of 2.301± 0.126 PgCyr−1 in the 2010s. The large interannual to multi-year535

variations of the global carbon sink with a temporal standard deviation of 0.526±0.022 PgC yr−1 are associated to the ENSO

climate variability.

The global ocean sink and regional sources and sinks of CO2 computed by CMEMS-LSCE-FFNN (Tables 2 and 3) were

compared to the estimates by RECCAP1 (Canadell et al., 2011; Wanninkhof et al., 2013; Schuster et al., 2013; Ishii et al.,

2014; Sarma et al., 2013; Lenton et al., 2013) and GCP (Friedlingstein et al., 2019; Hauck et al., 2020; Friedlingstein et al.,540

2020). We showed that the magnitude, spatial distribution, and seasonal variations of CMEMS-LSCE-FFNN CO2 fluxes are

generally consistent with those suggested in the preceding studies (Feely et al., 2001; Takahashi et al., 2009; Laruelle et al.,

2014, 2017) for both the open and coastal seas. Mechanisms shaping the regional distribution (Figs. 5b and 6) and seasonal

variations (Fig. 8) of net sinks and sources of CO2 were briefly discussed in Sect. 3.2. The results in Fig. 6 also suggest a

difference between the rank of 11 RECCAP1 sub-basins with respect to their total net sinks or sources and with respect to their545

mean flux densities per unit area:
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• Ranking regional contributions to the global integration of air-sea fluxes: the EP is confirmed as the predominant ocean

source region compensating approximately 25% of the total sinks for both the open and coastal seas. The EA regions

and the coastal IO are diagnosed as weak sources. Due to its large area, the open StP contributes with the largest regional

sink of CO2 to the global ocean net flux (the StP sink is equivalent to the EP source), followed by the SO, the IO, and550

the SP. For the coastal regions, the largest sink is computed for the SpA (one third of the total coastal uptake), followed

by the northern Pacific and the SO.

• Ranking mean regional flux densities per unit area: the EP remains the strongest source of CO2 followed by the EA

and the coastal IO. The CO2 absorption is higher over the Northern hemisphere than over the Southern one with the

strongest uptake per unit area over the open Arctic and SpA. The coastal Arctic, SpA, and StP are identified as the555

dominant coastal sinks with similar flux densities.

Though statistics and relevant analyses throughout the paper have confirmed that the CMEMS-LSCE-FFNN estimates of

sea surface pCO2 and air–sea CO2 fluxes are reasonably reliable, we believe that the model skill can be further improved. The

spatial patterns of model–observation misfit (RMSD between SOCAT data and the reconstructed fields) and model uncertainty

(ensemble standard deviation) computed by the proposed approach (Fig. 5) agree in pointing out where the model poorly560

recovers evaluation data and/or results large uncertainty estimates. We showed that the uncertainty fields (e.g., Figs. 5c and

5d) produced by the CMEMS-LSCE-FFNN approach are more informative than the standard error maps (e.g., Figs. 5e and

5f). Thus, the CMEMS-LSCE-FFNN uncertainty fields could be used to identify regions that should be prioritized in future

extensions of the observational network and confirmed through dedicated observing system simulation experiments (Denvil-

Sommer et al., 2021).565
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