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Abstract. Climate change is projected to increase the imbalance between the supply (precipitation) and atmospheric demand

for water (i.e. increased potential evapotranspiration), stressing plants in water-limited environments. Plants may be able to

offset increasing aridity because rising CO2 increases water-use-efficiency. CO2 fertilization has also been cited as one of the

drivers of the widespread ‘greening’ phenomenon. However, attributing the size of this CO2 fertilization effect is complicated,

due in part to a lack of long-term vegetation monitoring and interannual to decadal-scale climate variability. In this study we5

asked the question, how much has CO2 contributed towards greening? We focused our analysis on a broad aridity gradient

spanning eastern Australia’s woody ecosystems. Next we analysed 38-years of satellite remote sensing estimates of vegeta-

tion greenness (normalized difference vegetation index, NDVI) to examine the role of CO2 in ameliorating climate change

impacts. Multiple statistical techniques were applied to separate the CO2-attributable effects on greening from the changes in

water supply and atmospheric aridity. Widespread vegetation greening occurred despite a warming climate, increases in vapor10

pressure deficit, and repeated record-breaking droughts and heatwaves. Between 1982-2019 we found that NDVI increased

(median 11.3%) across 90.5% of the woody regions. After masking disturbance effects (e.g. fire), we statistically estimated

an 11.7% increase in NDVI attributable to CO2, broadly consistent with a hypothesized theoretical expectation of an 8.6%

increase in water-use-efficiency due to rising CO2. In contrast to reports of a weakening CO2 fertilization effect, we found no

consistent temporal change in the CO2 effect. We conclude rising CO2 has mitigated the effects of increasing aridity, repeated15

record-breaking droughts, and record-breaking heat waves in eastern Australia. However, we were unable to determine whether

trees or grasses were the primary beneficiary of the CO2 induced change in water-use-efficiency, which has implications for

projecting future ecosystem resilience. A more complete understanding of how CO2 induced changes in water-use-efficiency

affect trees and non-tree vegetation is needed.
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1 Introduction20

Australia is the world’s driest inhabited continent. Predicting how climate change will affect ecosystem resilience and alter

Australia’s terrestrial hydrological cycle is of paramount importance. Australia’s woody ecosystems are mostly concentrated

in the east, where there are large gradients of precipitation (P) (300 - 2000+ mm yr-1) and potential evapotranspiration (PET)

(800-2100 mm yr-1). Most eastern Australian woodlands occupy water-limited regions where annual PET far exceeds P (Fig.

A1), and tree species have evolved to cope with water-limited conditions (Peters et al., 2021) and high interannual rainfall25

variability. However, the climate is warming: eight of Australia’s ten warmest years on record have occurred since 2005 (CSIRO

and Bureau of Meteorology, 2020) and Australia’s climate has warmed by ~1.5°C since records began in 1910. The warming

has likely increased atmospheric demand for water (e.g. PET or vapor pressure deficit, VPD). In most woody ecosystems, the

ratio of water supply (i.e. P) to water demand (i.e. PET) has declined in recent decades (Figs. 1,2a). Eastern Australia has also

been impacted by several multi-year droughts, episodic deluges of rainfall (King et al., 2020), and an increasing frequency30

of severe heatwaves (Perkins et al., 2012) in the last few decades. Precipitation changes have been spatially variable over

eastern Australia, where northern Queensland grew wetter and southeast Australia grew drier (Fig. 2a). In the last two decades,

southeast Australia experienced the two worst droughts in the observational record (2001-2009; van Dijk et al. (2013) and

2017-2019; (Bureau of Meteorology, 2019). Yet between these two droughts, Eastern Australia experienced record breaking

rainfall in 2011 associated with a strong La Niña event. This caused marked vegetation ‘greening’ (e.g. increased foliar cover),35

even in the arid interior (Bastos et al., 2013; Poulter et al., 2014; Ahlstrom et al., 2015). However, this greening contributed to

record-breaking fires in the following year (Harris et al., 2018).

Theory suggests that plant physiological responses to atmospheric carbon dioxide (CO2) may mitigate some of the negative

effects of an aridifying climate. However, the magnitude of plant responses to increased atmospheric CO2 has been challenging

to establish in field experiments (Jiang et al., 2020b), from observations (Walker et al., 2020, Frankenberg et al. (2021b), Zhu40

et al. (2021)), or to separate from other drivers (e.g. climate variability, disturbances, and changes in land management; Zhu

et al. (2016)). Studies have used data from the Advanced Very High Resolution Radiometer (AVHRR) satellites to show

positive trends in the normalized difference vegetation index (NDVI) over Australia (Donohue et al., 2009). The greening trend

is caused by increased leaf area, which has likely resulted from increased atmospheric CO2 concentrations (Donohue et al.,

2009; Ukkola et al., 2016). The evidence for increases in leaf area from rising CO2 have also been supported by observations45

of reduced runoff in Australia’s drainage basins (Trancoso et al., 2017; Ukkola et al., 2016).

Yet disentangling the CO2 fertilization effect from other drivers of climate variability and global change has been particularly

challenging for satellite based analyses. It is challenging to attribute causes of greening because of co-occurring changes in

climate, land-use, and disturbance are confounded with the effect of CO2 fertilization. Furthermore, the time series of even

the longest systematically collected optical vegetation index records from a single sensor is 20 years (e.g. MODIS Terra).50

Analysis of trends extending beyond 20 years requires merging satellite records across sensors and platforms. But this requires

care to address changes in radiometric and spatial resolution of the sensor, as well as drift in the solar zenith angle (Ji and

Brown, 2017; Frankenberg et al., 2021a) and the time of retrieval. Thus different analytical methodologies have produced
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disagreements over where greening has occurred (Cortés et al., 2021). One often-used method to provide additional constraint

on greening trends has been to compare remote sensing derived trends with modeled changes in leaf area index (LAI) from55

ensembles of dynamic global models (Zhu et al., 2016; Wang et al., 2020). However these model attribution approaches rely on

a set of key assumptions. None of the models can accurately predict LAI changes in response to rising CO2 (De Kauwe et al.,

2014; Medlyn et al., 2016). Vegetation models have been shown to diverge in their simulation of LAI over Australia (Medlyn

et al., 2016; Teckentrup et al., 2021; Zhu et al., 2016), and have bioclimatic rules for determining phenology which may not

be appropriate for the highly variable Australian climate and the evergreen Eucalyptus forests (Teckentrup et al., 2021). These60

model simulations are typically compared with modeled LAI products derived from the red and near infrared wavelengths of

multispectral satellite sensors, of which each product carries specific algorithmic assumptions about canopy-light interception

which are conditional upon estimated land cover types. In comparison, NDVI carries no ecosystem specific assumption, and is

an effective proxy of leaf area in ecosystems with low-to-moderate canopy cover (Carlson and Ripley, 1997), a characteristic

of eastern Australian woody ecosystems (Specht, 1972; Yang et al., 2018).65

Here we ask, how much can greening trends be explained by rising CO2? Using eastern Australia as a model system, we

used a multi satellite derived NDVI record encompassing 38 years with multiple statistical techniques to isolate the influence

of CO2 from simultaneous effects of meteorological change and disturbance. Next we contrasted CO2 effects with theoretical

predictions based on water-use-efficiency (WUE) theory for plants and the observed rise in CO2. Finally, we examined whether

recent NDVI greening trends have co-occurred with changes in tree or grass cover over the last two decades.70

2 Methods

2.1 Study area

The study region encompasses the dominant woody ecosystems of eastern Australia (Fig. A1b). We used the National Vege-

tation Information System 5.1 land cover dataset (Australian Department of Agriculture, Water and the Environment (2020);

Table A1) to select locations designated as “Acacia Forests and Woodlands”, “Acacia Open Woodlands”, “Callitris Forests and75

Woodlands”, “Casuarina Forests and Woodlands”, “Eucalypt Low Open Forests”, “Eucalypt Open Forests”, “Eucalypt Open

Woodlands”, “Eucalypt Tall Open Forests”, “Eucalypt Woodlands”, “Low Closed Forests and Tall Closed Shrublands”, “Mallee

Open Woodlands and Sparse Mallee Shrublands”, “Mallee Woodlands and Shrublands”, “Melaleuca Forests and Woodlands”,

“Other Forests and Woodlands”, “Other Open Woodlands”, “Rainforests and Vine Thickets”, and “Tropical Eucalypt Wood-

lands/Grasslands”.80

2.2 Climate and remote sensing datasets

We used the atmospheric CO2 record from the deseasonalized Mauna Loa record (https://www.esrl.noaa.gov/gmd/ccgg/trends/

data.html), and extracted climate data (Table A1) from the Australian Bureau of Meteorology’s Australian Water Availabil-

ity Project (AWAP; Jones et al. (2009)). AWAP is a gridded climate product interpolated to 0.05° from a large network of
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meteorological stations distributed across Australia. Vapor pressure deficit was calculated using daily estimates of maximum85

temperature and vapor pressure at 15:00 hours. PET was calculated from shortwave radiation and mean air temperature using

the Priestley-Taylor method (Davis et al., 2017). The Priestley-Taylor method has been shown to be appropriate for estimating

large-scale PET (Raupach, 2000) and is more suited for use in long-term analysis where CO2 increased than other common

formulations such as the Penman-Monteith equation (Greve et al., 2019; Milly and Dunne, 2016), which explicitly imposes

a fixed stomatal resistance that is incompatible with plant physiology theory (Medlyn et al., 2001). AWAP measurements of90

shortwave radiation only extend back to 1990, so we extended the PET record to 1982 by calibrating the ERA5-Land PET

record (1980-2019) to the AWAP PET record (1990-2019) by linear regression for each grid-cell, and then gap-filled the years

1982-1989 with the calibrated ERA5 PET. PET from the Climate Research Unit record (Harris et al., 2014) was highly cor-

related with both the recalibrated ERA5 PET (r = 0.91; 1982-1989) and the original AWAP PET (r = 0.97; 1990-2019). Next,

we calculated a 30-year climatology of the meteorological variables using the period of 1982-2011 to be close to current stan-95

dards (World Meteorological Organization, 2017). We used this climatology to define the mean annual P:PET (the moisture

index; MIMA), and as the reference to calculate a 12-month running anomaly of annual P:PET (MIanom). Zonal statistics for

each meteorological variable were calculated using simplified Köppen climate zones, derived from the Australian Bureau of

Meteorology (Fig. 2b, Table A1).

We used surface reflectance from two satellite products to generate the NDVI record: National Oceanic and Atmospheric Ad-100

ministration’s Climate Data Record v5 Advanced Very High Radiometric Resolution (AVHRR) Surface Reflectance (NOAA-

CDR) record and the National Space and Aeronautical Administration’s MCD43A4 Nadir Bidirectional Reflectance Distri-

bution Function Adjusted Reflectance (MODIS-MCD43) (Table A1; Schaaf & Wang, 2015). NDVI data was extracted from

1982-2019 at 0.05° resolution from the NOAA-CDR AVHRR version 5 product (Vermote and NOAA CDR Program, 2018).

The surface reflectance record of AVHRR extends through 2019, but the quality of the record starts to degrade in 2017 because105

of an increase in the solar zenith angle (Ji and Brown, 2017), causing a sensor-produced decline in NDVI during 2017-2019.

For this reason we only use AVHRR surface reflectance data between 1982-2016. We composited monthly mean AVHRR

NDVI (NDVIAVHRR) estimates using only daily pixel retrievals with no detected cloud cover (Quality Assurance band, bit

1). Monthly NDVIAVHRR estimates aggregated from less than three daily retrievals were removed. They were also removed

when the coefficient of variation of daily retrievals for a given month was greater than 25%. We also removed NDVIAVHRR110

monthly estimates where NDVIAVHRR, solar zenith angle, or time of acquisition deviated beyond 3.5 standard deviations from

the monthly mean, calculated from a climatology spanning 1982-2016.

We used the MODIS-MCD43 surface reflectance at 500 m resolution to derive NDVI for 2001-2019 (NDVIMODIS). Monthly

mean estimates of the surface reflectance were produced by compositing pixels flagged as “ideal-quality” (Quality Assurance,

bits 0-1). We also masked disturbances to have greater confidence in our attribution of the targeted drivers of NDVIMODIS115

change (climate & CO2). The Global Forest Change product v1.7 (Hansen et al., 2013) was used to mask pixels from 2001

onwards that had experienced forest loss due to deforestation or severe stand clearing disturbance. We masked pixel locations

that experienced bushfires from the year 2001 onwards. Specifically, these pixels were masked for the year of burning and

the following three years using the 500 m resolution MODIS-MCD64 monthly burned-area product (Giglio et al., 2018). We
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terminated the NDVIMODIS time series in August of 2019, prior to the widespread bushfires of late 2019/2020. Both NDVIAVHRR120

and NDVIMODIS datasets were processed using Google Earth Engine (Gorelick et al., 2017), and exported at 5 km spatial

resolution, which best approximated the native resolution of the NOAA-CDR AVHRR and AWAP products. Further post-

processing used the ‘stars’ (Pebesma, 2020) and ‘data.table’ (Dowle and Srinivasan, 2019) R packages (see code availability

section).

We merged the processed 1982-2016 NDVIAVHRR with the 2001-2019 NDVIMODIS by recalibrating the NDVIAVHRR with a125

generalized additive model (GAM). Specifically, we used one million observations from the overlapping 2001-2016 portion of

both records to fit a GAM using the ‘mgcv’ R package (Wood, 2017) to model NDVIMODIS from AVHRR derived covariates

as:

NDV IMODIS = s(NDV IAVHRR)+ s(month)+ s(SZA)+ s(TOD)+ s(x,y) (1)

where ‘s’ represents a penalized smoothing function using a thin-plate regression spline, SZA is the solar zenith angle,130

NDV IAVHRR is the uncalibrated NDVI from AVHRR, TOD is time of day of retrieval, and x and y represent longitude and

latitude, respectively. The fit GAM was then used to generate the recalibrated AVHRR NDVI. The merged NDVI dataset was

created by joining the 1982-2000 recalibrated AVHRR NDVI with the 2001-2019 NDVIMODIS. We further reduced monthly

temporal variability of NDVI by calculating a three month rolling mean of NDVI which we used for subsequent statistical

model fitting.135

2.3 Estimating NDVI and climate trends

We estimated the relative increase in NDVI between 1982-2019 with respect to time (equation 2) for each grid cell with an

iteratively weighted least squares robust linear model via the ‘rlm’ function in R’s MASS package (Venables and Ripley, 2002)

as follows.

NDV I = β0 +β1 year+β2 sensor (2)140

Here β0 represents the estimated NDVI in 1982, the year term starts at 1982, and the sensor term is a binary covariate that

accounts for residual offset differences between the recalibrated AVHRR NDVI , and the NDVIMODIS. The relative temporal

trends for climate variables and the MODIS vegetation continuous fractions were fit for each grid cell location using the Theil-

Sen estimator, a form of robust pairwise regression, with the ‘zyp’ R package (Bronaugh and Consortium, 2019). The temporal

covariate was recentered to start with the first hydrological year (where the year starts one month earlier in December) of the145

data so that the intercept term represents the mean at the start of the time series. The relative rate of change for each variable

was reconstructed by calculating

100 ∗ [β1(yearend − yearstart)

β0
] (3)

where β0 and β1 are the intercept and trend derived from Theil-Sen regression.
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2.4 Estimating contribution of CO2 and climate toward NDVI trends150

We fit six forms of statistical models to the merged NDVI observations in order to to quantify the impact of changes in CO2

and meteorological variables on NDVI. Figure 1 shows the relationship between NDVI and multi-annual mean of P:PET was

nonlinear and followed a monotonic saturating sigmoidal relationship. GAMs can characterize a nonlinear response without

specifying a functional form, yet the underlying spline parameters are not easily interpreted as the parameters of a fixed nonlin-

ear function. Therefore we fit models with a set of fixed nonlinear functional forms using nonlinear least squares (nls.multstart155

package; Padfield and Matheson (2020) in R v4.01) and compared models fit using all pixel-locations. The nonlinear functional

forms included the Weibull function (equation 4; Fig. 5), the logistic function (equation 5; Fig. A5), and the Richards growth

function (equation 6; Fig. A6). We focused on the Weibull models because they showed equivalent goodness of fit with fewer

parameters than the Richards function models. Next we added a linear modifier to the Weibull function using the covariates of

CO2 (umolumol−1; Ca) and the ratio of the anomaly of P:PET (MIanom) to the mean annual P:PET (MIMA) as follows:160

NDV I = Va −Vd[exp(−exp(cln)(MIMA)
q)] + η (4)

η = β1
MIanom
MIMA

+β2CaMIMA +β3Ca
MIanom
MIMA

+ sensor

Here the sensor term is a binary covariate indicating the AVHRR or MODIS platform. Model-fitted parameters Va and Vd

correspond to the asymptote, and the asymptote’s difference from the minimum NDVI, while cln is the logarithm of the rate

constant, and q is the power to which MIMA is raised. The model was fit by individual season with one million observations165

per model fit. Corresponding goodness-of fit metrics (R2 and root mean square error) were calculated by season (Fig. 5) with

one million randomly sampled observations.

We tested alternative nonlinear functional forms to characterize the effect of CO2 upon NDVI. A logistic model was fit

across space for each hydrological year as

NDV I =
VA

(1+ exp((m−MI12mo)/s))
(5)170

where NDV I is the hydrological year mean value of NDVI for a grid cell location, m is the midpoint, s is a scale parameter,

and VA is the asymptote (plotted in Fig. A5). We also used a modified Richards growth function to characterize the CO2 effect

upon seasonal NDVI (Fig. A6) as

NDV I = (VA +β1Ca +β2MIf.anom)
(1+ exp(m+β3Ca +β4MIf.anom −MIMA))

(s+β5Ca +β6MIf.anom)(−exp(−(q+β7Ca+β8F )))
(6)

MIf.anom =
MIanom
MIMA

175

Here the β terms act to linearly modify the core nonlinear parameters (VA,m,s,q) with the effects of CO2 and MIf.anom.

Each seasonal model component was fit across space with one million random samples from the total merged NDVI record

(approx 14.3 million observations).
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To ensure consistent interpretation of the nonlinear response across P:PET, we also fit linear models explaining NDVI with

CO2 and MIanom by season in MIMA bin-widths of 0.2 (equation 7; Fig. A4). Separate linear models were fit for increments180

of 0.15 of MIMA for each season using the merged 1982-2019 NDVI record. NDVI was modeled as

NDV I = β0 +β1Ca +β2MIanom +β3V eg.Class+β4 sensor (7)

where V eg.Class is the NVIS 5.1 vegetation class, and sensor is a binary variable used to account for residual differences

between the recalibrated AVHRR NDVI and NDVIMODIS records. To aid the comparison of model effects, we centered and

standardized the continuous model covariates before regression. The standardized CO2 and P:PETanom. effects (β) are presented185

in Fig. A4.

Next, to produce spatially varying estimates of the CO2 effect, we fit robust multiple linear regression models to the time

series of NDVI for each of the 39,463 pixel locations. The CO2 effect for each grid cell location was simultaneously estimated

with the linear effects of the anomalies (anom) of P, PET, VPD, and MI as fractions of their mean annual values (MA) as

follows:190

NDV I = β0 +β1Ca +β2
Panom

PMA
+β3

PETanom

PETMA
+β4

V PDanom

V PDMA
+β5 sensor (8)

Finally we produced a GAM to estimate the CO2 effect in addition to the nonlinear interactions between CO2, mean annual

climate, and climate anomalies. Here instead of predetermined nonlinear functional forms, the GAM used penalized smoothing

functions (s) to estimate the potentially nonlinear effect of the covariates. The GAM was fit across all pixel locations and

estimated the CO2 effect and the effects of the anomalies and mean annual values of VPD, P, and PET and sensor epoch as195

follows.

NDV I = s(MIMA,Ca)+ s(V PDanom,V PDMA)+ s(Panom,PMA)+ s(PETanom,PETMA)+ sensor (9)

2.5 A simplified theoretical water use efficiency model

We compared the statistically attributed CO2 amplification of NDVI with the expectation from a simple theoretical model of

WUE. Following Donohue et al. (2013), WUE (W ) is defined as:200

Wleaf =
Aleaf

Eleaf
=

Ca

1.6D
(1−χ) (10)

where A is leaf level carbon assimilation (umolm2 s−1), E is leaf level transpiration (molm2 s−1), Ca is atmospheric CO2

(umolumol−1), Ci is intercellular CO2 (umolumol−1), χ is Ci

Ca
, and D is atmospheric vapor pressure deficit (molmol−1).

The relative rate of change in W with respect to a change in Ca can be calculated as:

dWleaf

Wleaf
=

dAleaf

Aleaf
− dEleaf

Eleaf
=

dCa

Ca
− dD

D
+

d(1−χ)

(1−χ)
(11)205
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If temperature increases without a corresponding increase in humidity, D increases which also causes transpiration to rise

and thus reduces W . However, W is predicted to increase with CO2 which may offset increases in D. Experiments suggest

that χ does not change with Ca but is sensitive to D (Wong et al., 1985; Drake et al., 1997) and can be estimated as being

proportional to the square root of D (Medlyn et al., 2011). By substituting

(1−χ)≈
√
(D)210

into equation (11) we can estimate the theoretical combined effect of Ca and D upon Wleaf as:

dWleaf

Wleaf
=

dAleaf

Aleaf
− dEleaf

Eleaf
=

dCa

Ca
− 1

2

dD

D
(12)

Transpiration per unit ground area is strongly controlled by water supply in warm, water limited environments with relatively

low leaf area such as eastern Australia (Specht, 1972) therefore we approximate canopy transpiration (Ecanopy) as:

Ecanopy = Eleaf L (13)215

where L is leaf area. The change in Ecanopy can then be defined as:

dEcanopy

Ecanopy
≈ dEleaf

Eleaf
+

dL

L
(14)

If we assume there is no overall change in precipitation then we can assume change in Ecanopy is tightly coupled to the

water supply, therefore we have:

−dEleaf

Eleaf
≈ dL

L
(15)220

We note that the assumption of constant precipitation is obviously unrealistic, most notably because two major droughts

occurred during the observation period. However, over much longer periods (i.e. 1910-2018) precipitation in eastern Australia

has been relatively stationary (Ukkola et al., 2019).

NDVI is linearly related to foliar cover (F ) until LAI ≈ 3 (m2m−2) (Carlson and Ripley, 1997), which is the predominantly

the case when P:PET < 1. Most woody ecosystems in eastern Australia are strongly water limited with LAI ≤ 1 (m2m−2),225

where NDVI is approximately proportional with the fraction of foliar cover:

dL

L
≈ dF

F
≈ dNDV I

NDV I
(16)

Then substituting equation (15) into equation (12) gives:

dWleaf

Wleaf
≈ dAleaf

Aleaf
+

dF

F
≈ dCa

Ca
− 1

2

dD

D
(17)

If we assume that the benefit towards Wleaf from rising Ca is split evenly between the relative changes in Aleaf and F , we230

can predict the change towards NDVI to be

dNDV I

NDV I
≈ 1

2
[
dCa

Ca
− dD

2D
] (18)
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We compared the WUE theoretical model with the robust linear models fit for each pixel location (equation 8), and the GAM

(equation 9) fit across the study region. The WUE theoretical model assumes no change in P, but does account for changes in

VPD. Therefore in using the statistical models to compare with the WUE predictions, we generated counterfactual predictions235

from the statistical models with no precipitation anomaly but with the observed increases in CO2 and VPD. One weakness

with the application of this WUE theoretical model is the uncertainty regarding the assumed allocation of the Wleaf benefit

towards either Aleaf or F (e.g. LAI; see above). Donohue et al. (2017) proposed a similar model to eq (18), the Partitioning of

Equilibrium Transpiration and Assimilation (PETA) hypothesis where the relative allocation to leaf area is predicted to decline

with increasing resource availability (which could be inferred from growing season LAI). We calculated the expectation from240

the PETA hypothesis as another point of comparison with the CO2 attributable effect on NDVI.
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Figure 1. Individual grid cell temporal 38-year trajectories of the normalized difference vegetation index (NDVI) and the ratio of annual

precipitation (P) to potential evapotranspiration (PET). A vector field plot showing the direction of change in mean annual NDVI and P:PET

between 1982-1986 and 2015-2019 for 1000 randomly sampled grid-cell locations (color indicates direction of change in P:PET as indicated

by legend). An inset shows a magnification of the samples from the 0.1-0.4 P:PET range. The distributions of mean P:PET (mmmm−1)

and NDVI for the period of 1982-1986 are shown as histograms above and to the right of the main panel. Note that the majority of arrows

shift towards higher aridity (lower P:PET) and higher NDVI.
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Figure 2. Long-term aridity change and climate zones. (a) The linear trend of annual P:PET (the moisture index) between 1982-2019,

(b) Simplified Köppen climate zones. Climate zone abbreviations correspond to Equatorial (Equat.), Tropical (Trop.), Subtropical (Subtr.),

Grassland (Grass.), Temperate (Temp.), and Temperate Tasmania (Tasm.).
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3 Results

3.1 Long-term Greening in a changing climate

Parts of northern Queensland grew wetter, but aridity (as measured by reduced P:PET; the moisture index, MI) in over 52%

of eastern Australian woody ecosystems since 1982 (Figs. 1,2a). Aridity decreased over northern Queensland encompassing245

the entirety of Equatorial and Tropical regions, and most of the Grassland and Subtropical regions, driven by large wet-season

increases in precipitation (Fig. A2a). Widespread increases in PET were evident from September-February (Fig. A2b). At

the same time as these changes in climate were occurring, over 92% of these regions experienced overall greening (Fig.

3a), including regions where P:PET declined (Figs. 1,2b,A3). The relative increases in NDVI were comparable between the

earlier AVHRR epoch (1982-2000) and the later MODIS epoch (2001-2019) at 5.7% (CI=[-2.9%, +20.3%]) and 5.1% (CI=[-250

6.4%, +20.1%]), respectively. However, the spatial patterns of greening/browning differed between epochs (Fig. 3b), and most

regions also showed high decadal-scale variability of greening/browning trends (Fig. 4). The overall greening trends between

the AVHRR 1982-2000 epoch and the MODIS 2001-2019 epoch generally agree across regions and seasons. However linear

NDVI trends fit over shorter intervals of 10 years are much less consistent (Fig. 4), exemplifying the importance of estimating

trends over long enough periods to average over decadal-scale variability. Long term browning only occurred in the Arid region255

(Fig. 3,4). Nevertheless, by examining NDVI trends over nearly forty years, we were able to separate regional decadal-scale

variability from the overall, broad greening trend across eastern Australia (Figs. 3,4,A3).
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Figure 3. Overall long-term NDVI change and change shown by satellite epoch and season. (a) The annual rate of

NDVI change from the merged satellite record spanning 1982-2019. The seasonal AVHRR NDVI between 1982-2000 (b-

top) and MODIS NDVI between 2001-2019 (b-bottom). Non woody ecosystem regions are masked in gray. A notable

browning trend is evident at the interface of the Grassland and Arid regions during DJF of the MODIS time period.

Note: Season abbreviations correspond to September-October (SON), December-February (DJF), March-May (MAM), and July-August

(JJA).
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Figure 4. Variability of linear trends over varying time periods by season and climate zone. The (black) line represents the overall 1982-

2019 trend, the (light green) line represents the calibrated AVHRR 1982-2000, and the (green) line represents the MODIS 2001-2019.

Gray colors indicate linear trends from overlapping 10 year time intervals. The boundaries of the climate zones are shown in Figure 2b.

Note: Climate zone abbreviations correspond to Equatorial (Equat.), Tropical (Trop.), Subtropical (Subtr.), Grassland (Grass.), Temper-

ate (Temp.), and Temperate Tasmania (Tasm.). Season abbreviations correspond to September-October (SON), December-February (DJF),

March-May (MAM), and July-August (JJA).
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3.2 Empirical attribution of the CO2 effect

We found consistently positive NDVI responses to CO2 across the moisture gradient of P:PET for all seasons, with the greatest

increases located in regions of higher P:PET (>0.5) (Fig. 5). The nonlinear Weibull models showed a larger CO2 attributable260

effect on NDVI in regions of higher P:PET (Fig. 5), but the effect size of the NDVI response to CO2 was largely consistent

across model forms (Figs. A4-7). The CO2-attributable increase in NDVI between 1982-2019 ranged from approximately 5%

in the Arid interior regions to >20% in the wettest Tropical and Temperate regions (Fig. 5a). This was consistent with linear

model forms when fit for individual grid cell locations (equation 8; Fig. 6), as well as by comparing the CO2 effect size across

16 linear models fit for grid cell locations grouped into bins spanning 0.1 increments of P:PET (equation 7; Fig. A4). The GAM265

fit across grid cell locations also indicated a larger CO2 effect in regions with higher P:PET (Figs. 6,7b). Quantile regression

with generalized additive models showed a pronounced response to CO2 across the distribution of pixels with both low and

high NDVI (10 - 97.5 percentiles) across the full aridity gradient of P:PET (Fig. A7).

A recent study found the global CO2 fertilization effect was halved between the 1980s and 2000s (Wang et al., 2020). In con-

trast to the estimates over eastern Australia from Wang et al. (2020), we found no consistent evidence of a decline in the effect270

of CO2 on NDVI through time. Neither the GAM estimates nor the robust linear model estimates of the CO2 effect showed any

consistent evidence of a weakening CO2 effect between 1982-2000 and 2001-2019 (Fig. 6). The central 25-75% percentiles of

the distribution of robust linear model effect sizes overlapped in all regions between epochs. The central 25-75% of the GAM

estimated distributions also overlapped, with the exception of the Grassland and Arid regions where the CO2 effect was larger

during 2001-2019. Consistent with the finding of a greater CO2 effect in wetter regions (Fig. 5), the robust linear models and275

the GAM estimated the CO2 effect to be greatest in the Equatorial and Tropical regions, and lowest in the Arid region (Fig. 6).
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Figure 5. Effect of increasing CO2 on seasonal NDVI across P:PET. Predictions of seasonal NDVI as a function of mean annual P:PET

fit using a standard Weibull function (methods - eq 2), modified with linear effects of CO2, the running 12-month anomaly of P:PET, and

the satellite sensor. The CO2 concentration gradient represents the atmospheric CO2 change between 1982-2019. Panel (a) maps the total

predicted contribution of CO2 towards the relative increase of NDVI between 1982-2019 assuming no anomaly of P:PET. Panel (b) shows

the merged sensor response between 1982-2019 across the gradient of mean annual P:PET, (c) shows the model response when fit using just

MODIS MCD43 data between 2001-2019, and (d) shows the response when the model was fit with the recalibrated AVHRR data between

1982-2000. The AVHRR and MODIS satellite epoch NDVI predictions are plotted in gray for panels (b) and (c), respectively.
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Figure 6. Boxplot representation of the CO2 attributable effect upon changing NDVI. Here the 25th, 50th, and 75th percentiles of the CO2

attributable effect on NDVI are shown. The robust linear models (RLM; methods - eq 13) were fit for each individual grid cell location,

whereas the generalized additive model (GAM; methods - eq 14) was fit using all grid cell locations. The distribution of RLMs yielded a

median R2 of 0.58 and RMSE of 0.025 over the merged period. The GAM had an overall R2 of 0.91 and RMSE of 0.049.
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3.3 CO2 driven greening and expectations from water use efficiency

The range of statistically estimated CO2-attributable greening responses was compared with the expectation from the theo-

retical CO2 water use efficiency model. The Donohue et al. (2013) CO2 x WUE model (see methods) accounts for changes280

in VPD, but assumes no change in water supply. Assuming an equal split in the benefits of WUE between greater carbon

assimilation and increased foliage cover (see below for alternative assumptions), the model predicted an 8.7% (10-90% per-

centile range [+6.8%,+10.2%]) increase in NDVI (proxy for foliage cover, see methods). This compared to an estimated 11.7%

([+4.6%,+14.6%]) relative increase from the GAM, when accounting for simultaneous increase in VPD (which the WUE ac-

counts for), and factoring out the effects of changing precipitation and PET (which the WUE model does not account for). We285

needed to assume differing levels of allocation to foliar gain (i.e. not 50%) for the theoretical WUE model to match the statis-

tically estimated CO2 effect (Fig. 7d). Regions of higher P:PET (Equatorial, Tropical, Temperate, and Temperate Tasmanian)

required greater allocation fractions than 50%, whereas the allocation fraction would be between 25-50% for regions with

lower P:PET (Arid, Grassland, and Subtropical). In comparison, the PETA hypothesis (Donohue et al., 2017) predicted the

greatest CO2 effect on leaf area to be in regions with the lowest LAI, but this was not supported by the statistically estimated290

CO2 effect on NDVI (Fig. A9). Despite having the lowest LAI, the Arid region received the smallest CO2 effect, but it is worth

noting the Arid region also experienced the greatest increase in VPD and reduction in P over the 38 year period (Fig. 7a, A8).

In contrast, the largest estimated CO2-attributable effect on greening were found to be in the Equatorial and Tropical areas.

3.4 Co-occurring shifts in aridity, NDVI, and vegetation cover

The shifts in P:PET and NDVI were accompanied by vegetation cover changes in some regions. Most notably, the Arid and295

Temperate regions experienced the strongest zonally averaged declines in P:PET (Fig. 8a) and increases in VPD (Fig. A8).

Seasonal greening trends were relatively similar apart from the aforementioned exceptions in the Grassland. The MODIS veg-

etation continuous fraction data from 2001-2018 indicated most regions experienced modest changes in tree vegetation cover.

The largest decline in tree cover occurred in the Temperate regions (Fig. 8c, A10). Most regions experienced declines in non-

vegetated (bare) cover, increases in non-tree vegetation, and modest change in tree-cover (Fig. 8c), however the proportional300

increase of non-tree vegetation typically exceeded tree cover increases (Fig. A10).
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Figure 7. Long-term changes in vapor pressure deficit, and comparison between the ∆ NDVI due to CO2 and the expected CO2 fertilization

effect on foliar area due to gains in water use efficiency (WUE). (a) The relative increase in the annual mean of vapor pressure deficit (VPD)

between 1982-2019. (b) The predicted relative increase in NDVI due to CO2 (methods - eq 14) with a concurrent increase in VPD. (c) The

relative expected increase in NDVI following the theoretical WUE prediction where 50% of the gain is allocated to foliar area (methods - eq

11). (d) The difference between the predictions of relative NDVI from the WUE model with 50% allocation and the GAM estimated relative

increase caused by CO2. Blue regions indicate where the GAM prediction was greater than the WUE prediction. (e) Boxplot of the expected

relative NDVI% increase from WUE gains due to CO2 fertilization depending upon differing levels of foliar allocation from the CO2 benefit

toward WUE, and the GAM estimated NDVI% increase due to CO2 (methods - eq 11). The boxplot distribution of the Equatorial region

appears collapsed because the Equatorial portion of the region is relatively small (Fig. 7a).
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Figure 8. The relative percentage change in P:PET by climate zone and corresponding distributions of ∆ NDVI yr−1 and percentage annual

change in vegetation cover fraction. (a) The linear relative changes in annual P:PET trend by climate zone between 1982-2019, as estimated

by robust regression (methods). The annual P:PET change (%) and corresponding standard error were as follows: Equatorial (-0.045 ± 0.01),

Tropical (0.477 ± 0.005), Subtropical (-0.007 ± 0.005), Grassland (0.576 ± 0.006), Arid (-0.293 ± 0.006), Temperate (-0.342 ± 0.004), and

Temperate Tasmania (0.047 ± 0.005). (b) Distribution of linear long term NDVI trends for the six climate clusters by season using the Theil-

Sen estimator. Filled distributions are trends from the MODIS sensors (2001-2019) and transparent (black outline) distributions are from the

AVHRR sensors (1982-2000). (c) Distributions of the linear pixel level trends using the Theil-Sen estimator for non-vegetated cover, non-tree

vegetation cover, and tree cover between 2000-2018. The median is overlaid.

Note: Climate zone abbreviations are as follows: Equatorial (Equat.), Tropical (Trop.), Subtropical (Subtr.), Grassland (Grass.), Temperate

(Temp.), and Temperate Tasmania (Tasm.).
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4 Discussion

4.1 Australian woody vegetation as model systems to quantify CO2 fertilization

Australia is ideal to explore the CO2 contribution towards vegetation greening because there are fewer confounding effects

to drive greening. Forest trees are evergreen and the growing season is rarely limited by temperature or radiation. The study305

region spans a large moisture gradient (Fig. A1a), but unlike much of the global tropics, the large majority of the study region

is not so cloudy as to prevent multiple high quality multispectral satellite retrievals per month. Australia has also not been

subjected to other prominent drivers of greening such as nitrogen deposition (Ackerman et al., 2019). Nevertheless, Australia

has experienced notable land-use change during the study period such as high rates of deforestation in Queensland and northern

New South Wales (Evans, 2016). However, we excluded affected pixel locations from the analysis.310

Prior global analyses on warm arid environments have quantified the CO2 effect on greening (Donohue et al., 2013). More

expansive global-scale analyses of all terrestrial vegetation using dynamic global vegetation model attribution have found

evidence to connect Australia’s greening to changes in atmospheric CO2 concentration (Winkler et al., 2021), while an earlier

study did not (Zhu et al., 2016). Australian studies documented the greening trend up to 2010 using the long-term AVHRR

record (Donohue et al., 2009; Ukkola et al., 2016) and have been able to partially attribute CO2 as a driver of greening in315

sub-humid and semi-arid regions. Here we advanced upon prior research to separate the effects of disturbance, and changes in

aridity and moisture in order to quantify the CO2 fertilization effect across the full spectrum of moisture availability experienced

by Australian woody ecosystems, notably for 38 years.

4.2 Regional differences in greening and browning through time

Despite the region’s high decadal scale variability of NDVI (Fig. 4), the nearly four decade long record allowed us to separate320

the CO2 effect on NDVI from the anomalies caused by drought (e.g. 2003-2009) or high rainfall (e.g. La Niña 2010-2011).

Although the long-term greening trends we document in the nine years following earlier studies are generally consistent

(Donohue et al., 2009; Ukkola et al., 2016), our results diverge and lead to key differences in interpretation of why NDVI

has continued to increase. First, while the relative increase in NDVI between the 1982-2000 AVHRR epoch (5.7%) and the

2001-2019 MODIS epoch (5.1%) are comparable (Figs. 3b,8b), the underlying reasons for the change differ. VPD changed325

minimally between 1982-2000, whereas it rapidly increased between 2001-2019 (Fig. A8). These increases were largest in the

most Arid and Temperate regions (12.7% and 11% since 1982, respectively; Fig. 6), and when coupled with seasonal reductions

in precipitation (Fig. A2) these would have partially offset benefits from increased intrinsic water-use efficiency (equation 17).

In contrast, more than half of the Equatorial, Tropical, Subtropical and Grassland regions in northern Queensland experienced

increases in precipitation since 1982 (Fig. A2; Ukkola et al. (2019)), thus allowing these locations to exceed the predicted330

NDVI increases from the WUE model (Fig. 7d).

It should be noted not all regions experienced consistent greening trends throughout the observation period. For example,

‘greening’ shifted to ‘browning’ during the austral summer (Dec - Feb) in the Arid and Grassland regions of Queensland

between the 1982-2000 and 2001-2019 records (Fig. 3b). It is unclear why browning occurred during austral summer time

21



in the Grassland region (Figs. 3b,4,8b). The declines in NDVI during 2001-2019 may have been meteorologically driven and335

related to shifts in the distribution of wet and dry season precipitation (Fig. A2). Alternatively, the shift could be due to changes

in fire and cattle management that have been particularly prevalent across regions of Queensland in recent decades (Seabrook

et al.). Further, greening may have been suppressed in parts of Queensland because cattle ranching activity has intensified and

has driven forest conversion to managed pasture in the region (McAlpine et al., 2009).

4.3 Attributing a CO2 fertilization contribution towards greening340

Plants increase their rates of photosynthesis in response to rising atmospheric CO2, whilst also reducing stomatal conductance,

which reduces evaporative losses and combined, the two responses lead to greater WUE (Ainsworth and Rogers, 2007; Mori-

son, 1985). In water-limited ecosystems, it has been hypothesized that this physiological response by plants to CO2 should

result in increased leaf biomass (Donohue et al., 2013; Ukkola et al., 2016). While all of our statistical approaches indicated

a year round positive CO2 effect, in contrast to theory the effect was consistently greater in regions with higher P:PET (Figs.345

5-7;A4-7). Our analysis also diverges with a global coarse-scale analysis that found weakening of the CO2 fertilization effect

across both southeastern and northern Australia (Wang et al., 2020). We found no meaningful difference in the CO2 attributable

effect towards greening between the AVHRR 1982-2000 and MODIS 2001-2019 epochs to support the finding of temporally

weakening CO2 effect (Fig. 6). The WUE model predicted similar relative rates of NDVI increase between the two epochs

(4.5% and 4.7% for AVHRR and MODIS), yet for different reasons. CO2 increased by 30 ppm between 1982-2000 while VPD350

changed minimally and precipitation increased in Queensland and the Arid region (Fig. A8); all of which are favorable to in-

creasing NDVI. In contrast, the larger CO2 increase between 2001-2019 (40 ppm) was offset by a spatially ubiquitous increase

of VPD (3.7%, CI=[-0.4%,8.6%]; Fig. A8) and the occurrence of two multi-year droughts (Millennium Drought 2003-2009,

and The Big Dry 2017-2020). Despite the widespread evidence of the CO2 effect, the WUE model notably underpredicted

greening in some regions (Fig. 7).355

4.4 Deviations from WUE

We found the CO2 effect on foliar area was the smallest in the driest climate regions (Figs. 5-6,A4-7). This was at odds with

the WUE prediction (at 50% allocation; Fig. 7e), and contrary to expectation that the greatest WUE-derived benefit from

CO2 would be in drier climates (Donohue et al., 2017; McMurtrie et al., 2008). These deviations may have resulted from

ecosystems processes beyond the scope of a simple model, such as more severe nutrient limitations, the phenology of the360

vegetation composition, belowground root processes, and disturbances not captured by the satellite products (e.g. small fires,

grazing). Browning in the Grassland region (Fig. 3b,A3) may have been caused by distinct dry season phenological differences

between overstory woody vegetation and understory C4 grasses (Moore et al., 2016), which are dominant there (Murphy and

Bowman, 2007). C4 grasses may have been favored over C3 because precipitation increased during the austral summer over

the course of the study (Fig. A2) and this higher concentration of rainfall during the warmest months is thought to favor C4365

grasses (Hattersley, 1983; Knapp et al., 2020; Murphy and Bowman, 2007). Finally, the linear dependency of leaf area upon
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VPD in the theoretical model may be ill-suited for extreme anomalously arid conditions because NDVI observations suggest a

strongly nonlinear relationship with large VPD anomalies (Fig. A11).

We explored how much of the higher WUE benefit would have to be allocated to match the GAM estimated CO2-attributed

changes in NDVI. Allocation rates far greater than 50% would be required to match the WUE prediction in the Tropical and370

Equatorial zones (Fig. 7e), whereas allocation would need to be less than 50% to match the GAM estimate in the Arid region.

The Arid region experienced the greatest relative increase in VPD (Fig. 7a, A8), yet the theoretical model still predicted a

small but positive increase in NDVI (Fig. 7c) which the GAM estimate suggests would be closer to a 10% rather than 50%

foliar allocation level from the WUE benefit (Fig. 7d). Nevertheless, the smaller effect over the Arid region was consistent

with earlier observational findings across Australia (Ukkola et al., 2016) and experimentation from the Nevada Desert FACE375

experiment (Smith et al., 2014).

4.5 Relation to ecosystem CO2 fertilization experiments

Notably, a four year long ecosystem-scale CO2 manipulation experiment carried out in a mature Eucalyptus woodland in

Sydney (EucFACE) did not observe an increase in leaf area under elevated CO2 (Jiang et al., 2020b). The experimental site is

located upon phosphorus poor soils, typical of Australia. The lack of a leaf area growth response observed at EucFACE is not380

necessarily inconsistent with the greening effect observed in this study. Our observational window of 38 years is much longer

than the elevated CO2 exposure time in the experiment (four years in Jiang et al., 2020b), covers different CO2 increments

(historical vs future) and could imply that woodlands are eventually able to liberate belowground phosphorus to support greater

biomass growth on longer timescales. Increased autotrophic soil respiration and belowground productivity were observed at

EucFACE under elevated CO2 exposure (Drake et al., 2016; Jiang et al., 2020b), as was a brief period of enhanced nitrogen385

and phosphorus mineralization (Hasegawa et al., 2016). Over time, this increased investment of carbon belowground could

potentially liberate sufficient phosphorus to support an expansion of leaf area. The reduced allocation to foliar area in the Arid

region (Fig. 7e) may reflect that extra carbon derived from CO2 is allocated belowground to increase water uptake or mitigate

other resource limitations such as soil phosphorus (Jiang et al., 2020a).

4.6 Vegetation composition shifts390

Most grid-cell locations in the Temperate zone experienced simultaneous apparent declines in tree cover and increases in non-

tree vegetation cover (e.g. grasses/shrubs) (Figs. 8c, A10). This is surprising because we focused this regression analysis on

2001-2018 in order to exclude the reduced tree cover due to the catastrophic megafires of 2019/20 (Nolan et al., 2020). Some

may question the ability of the MODIS Vegetation Continuous Fraction product (DiMiceli et al., 2017) to accurately distinguish

Australian tree cover from non-tree vegetation (Sexton et al., 2013; Adzhar et al., 2021), however this pattern is consistent with395

a recent LiDAR derived tree-cover time series of Australia (Liao et al., 2020). Future work may seek to uncover trends in

the green vegetation fraction by analyzing higher resolution data derived from the Landsat constellation, such as Geoscience

Australia’s vegetation fractional cover product (Gill et al., 2017). The decline in tree cover suggests the drought starting in

2017 was already killing trees prior to the 2019/20 megafires. Field observations of tree decline remain relatively rare, but a
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citizen science initiative has documented more than 300 locations of non-fire related mass tree mortality between 2018-2020400

(Atlas of Living Australia, 2020). Similarly, a study using an experimental constrained plant hydraulics model to predict the

regions at risk of drought-induced tree mortality, found greater risk in the same arid regions of southeast Australian forests and

woodlands (De Kauwe et al., 2020). These predicted regions of mortality coincide with where we document the greening trends

that fell short of the theoretical WUE expectation. These rapid shifts in vegetation underlie the need for greater continuous field

vegetation monitoring to capture change imposed by climate extremes.405

5 Conclusions

We separated the effects of disturbance and meteorological anomalies with statistical models to show increasing CO2 produced

nearly four decades of widespread vegetation greening across eastern Australia. The large agreement between a theoretical

model and the statistically estimated CO2 effect indicated that greening resulted through an increase in water use efficiency.

Vegetation greening occurred despite a highly variable and increasingly arid climate, and on soils particularly poor in phos-410

phorus which have likely acted as a constraint on growth. While rising atmospheric CO2 ameliorated what would have been

a browning woody ecosystem response to declining P:PET, the CO2 effect was insufficient to promote greening when both P

and P:PET experienced long-term decline, as observed in the more arid regions in our study. Further, it is unknown whether

further increases of atmospheric CO2 will continue to enable vegetation to mitigate increases of aridity and VPD under future

warming. It is also unclear if trees or grasses are the primary contributors to the recent greening trend. Future localised work415

is urgently needed to better understand recent changes in tree and grass competition under an increasingly arid climate, which

will be essential to help forecast ecosystem resilience. Finally, our results have important implications for understanding Aus-

tralia’s terrestrial water availability. Greening trends signal changes in evapotranspiration and runoff, and therefore need to be

considered in planning for future land and water resource management on the world’s driest inhabited continent.

Code and data availability. All data used are publicly available from sources listed in Table A1. A git repository with all associated data420

processing, analysis, and code to reproduce figures is located at: https://github.com/sw-rifai/eastern-Australia-CO2-NDVI-change and (doi:

10.5281/zenodo.5711964). Processed data used in model fitting and figures can be accessed via Zenodo data repository:

https://zenodo.org/record/4340064#.YZbzhbzMIUE (doi: 10.5281/zenodo.4340064).

Appendix A: Figures and tables in appendices
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Figure A1. (a) Mean Annual P:PET between 1982-2019. (b) Forest and woodland vegetation classes from version 5.1 of the National

Vegetation Information System (source: https://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system).
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Figure A2. Long-term seasonal changes in precipitation (P) and potential evapotranspiration (PET). Linear trend in (a) monthly precipitation

and (b) PET by season over the period 1982-2019. Non forest and woodland regions are masked in grey.
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Figure A3. The long term seasonal NDVI linear trend between 1982-2019. The Theil-Sen robust linear trend estimator is used with the

calibrated merge of the CDR AVHRR (1982-2000) and MODIS MCD43 (2001-2019) surface reflectance products.
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Figure A4. Linear model covariate estimates for 128 linear models. The mean annual P:PET range is discretized over 16 increments where

NDVI is modeled as a linear function of CO2, P:PETanom., the NVIS vegetation class, and the sensor. Error bars indicate 2x the standard error

of the estimate.
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Figure A5. NDVI as a logistic function of annual P:PET. (left) Logistic function models, fit per each hydrological year. (right) The positive

long-term trend in the NDVI asymptote from the logistic model fits. m is the value of P:PET at the inflection point, and NDVI Asymptote

corresponds to the VA parameter in equation 5.
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Figure A6. Seasonal NDVI as a Richards growth function with linear modifiers of CO2 and the anomaly of P:PET (equation 6).
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Figure A7. Quantile GAM regression predictions across CO2 and anomalies of annual P:PET.

NDV I3mo = s(CO2)+ s(
P

PETMA
)+ s(CO2,

P

PETMA
)+ s(

P

PETanom.
)

Here ’s’ represents a thinplate spline smoothing function, P
PETMA

is the 30-year mean annual P:PET, and P
PETanom

is the annual anomaly

of P
PET

.
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Figure A8. The linear relative changes in annual vapor pressure deficit (VPD), precipitation (Precip.), and potential evapotranspiration (PET)

by climate zone between satellite epochs AVHRR 1982-2000 and MODIS 2001-2019, as estimated by robust regression. The relative changes

are with respect to a climatology period calculated between 1982-2011.
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Figure A9. (a) The fractional increase of NDVI from CO2 is plotted following predictions from the Partitioning of Equilibrium Transpiration

and Assimilation (PETA) hypothesis is plotted (green), the Generalized Additive Model (GAM; methods eq. 6) estimates, and the pixel-

level Robust Linear Model (RLM; methods eq. 5) estimates. Note we substitute NDVI for the leaf area formulation of the PETA hypothesis

(Donohue et al., 2017) because we assume a linear relationship between relative NDVI increase and relative leaf area increase (Donohue et

al., 2013; Carlson & Ripley 1997). (b) The relative change in NDVI between 1982-2019 across the range of mean annual leaf area index

calculated with MCD15A3H from 2002-2019.
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Figure A10. The relative shifts of land fraction by tree cover, non-tree vegetation cover (predominantly grasses), and bare ground. 2000-2018

annual rate of change for tree cover (left), non-tree vegetation (middle), and discretized change classes. Min. change indicates the annual rate

of change of percentage cover was between -0.1 & 0.1% yr−1
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Figure A11. The nonlinear dependency of NDVI upon the annual anomaly of vapor pressure deficit. 2D density plot of NDVI and the running

12-month anomaly of vapor pressure deficit. The red line shows a GAM fit.
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Table A1. Table A1

Product Variable Spatial Temporal Reference

NOAA-CDR v5 AVHRR

surface reflectance

surface reflectance 0.05° daily Vermote et al., 2014

MODIS MCD43 surface reflectance 500 m daily Schaaf and Wang 2015

MODIS MOD44B Tree cover, non-tree vege-

tation cover, non-vegetation

cover

250 m annual Dimiceli et al., 2015

MODIS MCD64A1 Burn Area 500 m monthly Giglio et al., 2015

MODIS MCD15A3H Leaf Area Index 500 m 4-day Myneni et al., 2015

NVIS v5.1 Major vegetation classes 100 m - https://www.environment.gov.au/land/native-

vegetation/national-vegetation-

information-system

AWAP Climate Precip, PET, Tmin, Tmax,

Vapor pressure

0.05° daily Jones et al., 2009

ERA5-Land PET 9 km hourly Copernicus Climate Change Service

(C3S) (2017)

BoM Major Köppen Cli-

mate

Major Köppen Climate

zones

- - http://www.bom.gov.au/jsp/ncc/climate_averages/climate-

classifications
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